Data replication,
consistency models & protocols

C. L. Roncancio - S. Drapeau

Grenoble INP — Ensimag / LIG - Obeo

Replication

v Data and process

+ Focus on data: several physical copies of one
logical object

What for?

+ Performances, availability, reliability

v Scalability

v Application requirements

@Drapeau & Roncancio 2

Execution Model

v There are physical copies of logical objects in the system.
v Operations are specified on logical objects, but translated to operate on
physical objects.
v One-copy equivalence
The effect of transactions performed by clients on replicated objects should
be the same as if they had been performed on a single set of objects.

Write(x)

@ Logical data item

/

Write(x,) Write(x,) Write(r,)
® ® . ®

Physical data item (replicas, copies)

©M. T. Ozsu & P. Valduriez

Difficulties

« Transparency of replication

+ Global coherency
Mutual consistency among copies
— Transactional coherency

v Mutual consistency
— Cost

— Impact on the availability

@Drapeau & Roncancio

4

Widely used

= Distributed systems

= Parallelism: fragmentation (sharding) &
replication

= Contexts with few conflicting updates

= Data warehouses, read only systems..

@Drapeau & Roncancio 5

Mutual consistency, what for?

Weak Consistency Strong
High Performance Medium
No Availability/reliability Full

Many protocols with different
= performances
= fault tolerance guaranties
= transparency
= Programming difficulties

Drapeau & Roncancio, notes de cours

6

Several aspects

Replication

Concurrency
control
Other Fault tolerance
aspects

Notions from distributed systems

+ Consistency model

Consistency perceived by the programmers/users

v Consistency protocol
— How the system insures de consistency model
Degree of synchronization of the copies
— Update propagation, invalidation

@Drapeau & Roncancio 8

Types of replication

v Symmetric
Updates on any copy

v Asymmetric
— Updates on some selected copies
— Other copies are read-only

+ Snapshots

Materialized views

Symmetric replication

io 10

Asymmetric replication (1)

Slave2

@Drapeau & Roncancio 11

Asymmetric replication (2)

temps @Drapeau & Roncancio 12

Update propagation (1)

v Eager
— Update of the copies in a single transaction

+ Synchronous

v Lazy

— Update of the copies in separate transactions
+ Asynchronous

@Drapeau & Roncancio 13

Update propagation (2)

Symmetric Asymmetric
ul(i [S— —— _——= |u(i [—————
Eager master! ———— master2 master slave

|5

u2(i)

C
Cl=
i«

:
5

Lazy

@Drapeau & Roncancio 14

One-copy serializability (1SR)

The execution of the transactions is equivalent
to a sequential execution on non replicated
data

+ Eager and lazy strategies

Mutual consistency

v Strong consistency
— When reading any copy the user gets a value
including all the preceding updates
v Weak consistency
— Copies may not have the “last” value but all
updates will be eventually propagated to all the
copies
— Eventual consistency: copies will converge to a single
value in a finite time

@Drapeau & Roncancio 16

Update propagation strategies

Eager

« Full synchronization

v Synchronization of available copies
v Quorum

Lazy

v Master / slaves

+ Master / secondary

+ Lazy asymmetric (independent)

@Drapeau & Roncancio 17

Full synchronization

+ All the copies are updated in a
synchronous way

+ Atomic update of the copies

2PC, Concurrency control requirements

@Drapeau & Roncancio 18

Synchronization of available
copies

v All the available copies are updated in a

synchronous way
+ Asynchronous update of the unavailable
copies
v Invariant: available copies are up-to-date
v Use of 2PC
v Some copies are not up-to-date

@Drapeau & Roncancio 19

Impatiente

Quorum

+ Synchronous update of a quorum of copies
« Other copies are updated in asynchronously

/QR+QW >N
7 QW >N/2

« Invariant: a quorum of copies is up-to-date

@Drapeau & Roncancio 20

Master/slaves

v Updates on the master copy
v Asynchronous update of the slaves

< Invariant: master copy up-to-date

+ Static / dynamic

Master/secondary
v Updates on the master copy

+ Synchronous update of a secondary copy (fault
tolerance of the master)

v Asynchronous update of the other slaves

Paresseuse

Lazy asymmetric (independent)

+ Updates everywhere
v Divergence of the copies
v Reconciliation algorithms

v Invariant no watranty on the value of the
copies

v Applications in large scale and mobile
systems

@Drapeau & Roncancio 23

Update detection

v Log based
— Analyzing the system logs

v Event based
General approach
— Part of the transaction

@Drapeau & Roncancio 2

4

Update propagation

+ Approaches
— Value: total, delta
Transaction replication

v Initiative
Push / Pull

@Drapeau & Roncancio 25

Replication & adaptation

v Applications
v Non functional context

transactional, shared memory, cache, cloud

v Replication protocols
v Partial, full
v Static, dynamic

@Drapeau & Roncancio 26

Examples — adapting consistency

The price of the items (strong consistency)

Data about the products sold (eventual with
constraints)

— Credit card information (strong consistency)

— Data of customer profiles (eventual with
constraints)

Records on user’s preferences (weak
consistency)

— Logging information (weak consistency)

@Drapeau & Roncancio 27

Examples — adapting consistency

v Time Policy
+ Numeric Policies
+ Demarcation policy

“...Pay only when it matters”

@Drapeau & Roncancio 28

CAP theorem

v Brewer’s conjencture, Symposium on Principles of
Distributed Computing, PODC, 2000

v Proved by Seth Gilbert & Nancy Lynch, 2002

@Drapeau & Roncancio 29

CAP theorem (2)

Consistency: all nodes see the same data at the same

time

Availability: a guarantee that every request receives

a response about whether it was successful or failed

Partition Tolerance: the system continues to operate

despite arbitrary message loss or failure of part of the

system

« Distributed systems cannot satisfy all three of
these guarantees at the same time.

@Drapeau & Roncancio 30

BASE Transactions

Basically Available, Soft state, Eventual consistency

v Basically Available :
response to any request but, that response could still be
“failure’ to obtain the requested data or the data may be
in an inconsistent

v Soft state:
the state of the system could change over time, so even
during times without input there may be changes going
on due to ‘eventual consistency’

v Eventual consistency: the system will eventually become

consistent once it stops receiving input

Eventual consistency

v If no new updates are made to the object,
eventually all access will return the last
updated value

v Read your writes
+ Monotonic read & Monotonic write

@Drapeau & Roncancio 32

Conclusion on replication

+ Important issue
— Performances, availability, fault tolerance
— Transparency

+ Main aspects of replication

— What, when, where
Consistency model

@Drapeau & Roncancio

34

