
1

Transactions

Serializability
Isolation Levels

Atomicity

Slides from Jeff Ullman
Taught by Claudia Roncancio

2

The Setting

 Database systems are normally being
accessed by many users or processes at
the same time.
  Both queries and modifications.

 Unlike operating systems, which
support interaction of processes, a
DMBS needs to keep processes from
troublesome interactions.

3

Example: Bad Interaction

 You and your domestic partner each
take $100 from different ATM�s at
about the same time.
  The DBMS better make sure one account

deduction doesn�t get lost.

 Compare: An OS allows two people to
edit a document at the same time. If
both write, one�s changes get lost.

4

ACID Transactions

 A DBMS is expected to support �ACID
transactions,� processes that are:
  Atomic : Either the whole process is done or

none is.
  Consistent : Database constraints are

preserved.
  Isolated : It appears to the user as if only one

process executes at a time.
  Durable : Effects of a process do not get lost if

the system crashes.

5

Transactions in SQL

 SQL supports transactions, often behind
the scenes.
  Each statement issued at the generic query

interface is a transaction by itself.
  In programming interfaces like Embedded

SQL or PSM, a transaction begins the first
time a SQL statement is executed and ends
with the program or an explicit transaction-
end.

6

COMMIT

 The SQL statement COMMIT causes a
transaction to complete.
  It�s database modifications are now

permanent in the database.

7

ROLLBACK

 The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.
  No effects on the database.

 Failures like division by 0 or a
constraint violation can also cause
rollback, even if the programmer does
not request it.

8

An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe�s Bar sells
only Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and
lowest price Joe charges.

 Joe decides to stop selling Bud and
Miller, but to sell only Heineken at $3.50.

9

Sally�s Program

 Sally executes the following two SQL
statements, which we call (min) and
(max), to help remember what they do.

(max) SELECT MAX(price) FROM Sells
 WHERE bar = �Joe��s Bar�;

(min) SELECT MIN(price) FROM Sells
 WHERE bar = �Joe��s Bar�;

10

Joe�s Program

 At about the same time, Joe executes the
following steps, which have the mnemonic
names (del) and (ins).

(del) DELETE FROM Sells
 WHERE bar = �Joe��s Bar�;

(ins) INSERT INTO Sells
 VALUES(�Joe��s Bar�, �Heineken�,
3.50);

11

Interleaving of Statements

 Although (max) must come before
(min), and (del) must come before
(ins), there are no other constraints on
the order of these statements, unless
we group Sally�s and/or Joe�s
statements into transactions.

12

Example: Strange Interleaving

 Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe�s Prices:
Statement:
Result:

 Sally sees …

2.50, 3.00

(del) (ins)

3.50

(min)

2.50, 3.00

(max)

13

Fixing the Problem by Using
Transactions

 If we group Sally�s statements (max)
(min) into one transaction, then she
cannot see this inconsistency.

 She sees Joe�s prices at some fixed
time.
  Either before or after he changes prices, or

in the middle, but the MAX and MIN are
computed from the same prices.

14

Another Problem: Rollback

 Suppose Joe executes (del)(ins), not as
a transaction, but after executing these
statements, thinks better of it and
issues a ROLLBACK statement.

 If Sally executes her statements after
(ins) but before the rollback, she sees a
value, 3.50, that never existed in the
database.

15

Solution

 If Joe executes (del)(ins) as a
transaction, its effect cannot be seen by
others until the transaction executes
COMMIT.
  If the transaction executes ROLLBACK

instead, then its effects can never be
seen.

16

Isolation Levels

 SQL defines four isolation levels =
choices about what interactions are
allowed by transactions that execute at
about the same time.

 How a DBMS implements these isolation
levels is highly complex, and a typical
DBMS provides its own options.

17

Choosing the Isolation Level

  Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

 where X =
1.  SERIALIZABLE
2.  REPEATABLE READ
3.  READ COMMITTED
4.  READ UNCOMMITTED

18

Serializable Transactions

 If Sally = (max)(min) and Joe = (del)(ins)
are each transactions, and Sally runs with
isolation level SERIALIZABLE, then she will
see the database either before or after Joe
runs, but not in the middle.

 It�s up to the DBMS vendor to figure out
how to do that, e.g.:
  True isolation in time.
  Keep Joe�s old prices around to answer Sally�s

queries.

19

Read-Commited Transactions

 If Sally runs with isolation level READ
COMMITTED, then she can see only
committed data, but not necessarily the
same data each time.

 Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is
allowed, as long as Joe commits.
  Sally sees MAX < MIN.

20

Repeatable-Read Transactions

 Requirement is like read-committed,
plus: if data is read again, then
everything seen the first time will be
seen the second time.
  But the second and subsequent reads may

see more tuples as well.

21

Example: Repeatable Read

 Suppose Sally runs under REPEATABLE
READ, and the order of execution is
(max)(del)(ins)(min).
  (max) sees prices 2.50 and 3.00.
  (min) can see 3.50, but must also see 2.50

and 3.00, because they were seen on the
earlier read by (max).

22

Read Uncommitted

 A transaction running under READ
UNCOMMITTED can see data in the
database, even if it was written by a
transaction that has not committed (and
may never).

 Example: If Sally runs under READ
UNCOMMITTED, she could see a price
3.50 even if Joe later aborts.

23

Practice in Oracle 11g

  Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

 where X =
1.  SERIALIZABLE
2.  READ COMMITTED

  Set autocommit off / on

