
1

Transactions

Serializability
Isolation Levels

Atomicity

Slides from Jeff Ullman
Taught by Claudia Roncancio

2

The Setting

 Database systems are normally being
accessed by many users or processes at
the same time.
  Both queries and modifications.

 Unlike operating systems, which
support interaction of processes, a
DMBS needs to keep processes from
troublesome interactions.

3

Example: Bad Interaction

 You and your domestic partner each
take $100 from different ATM�s at
about the same time.
  The DBMS better make sure one account

deduction doesn�t get lost.

 Compare: An OS allows two people to
edit a document at the same time. If
both write, one�s changes get lost.

4

ACID Transactions

 A DBMS is expected to support �ACID
transactions,� processes that are:
  Atomic : Either the whole process is done or

none is.
  Consistent : Database constraints are

preserved.
  Isolated : It appears to the user as if only one

process executes at a time.
  Durable : Effects of a process do not get lost if

the system crashes.

5

Transactions in SQL

 SQL supports transactions, often behind
the scenes.
  Each statement issued at the generic query

interface is a transaction by itself.
  In programming interfaces like Embedded

SQL or PSM, a transaction begins the first
time a SQL statement is executed and ends
with the program or an explicit transaction-
end.

6

COMMIT

 The SQL statement COMMIT causes a
transaction to complete.
  It�s database modifications are now

permanent in the database.

7

ROLLBACK

 The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.
  No effects on the database.

 Failures like division by 0 or a
constraint violation can also cause
rollback, even if the programmer does
not request it.

8

An Example: Interacting Processes

 Assume the usual Sells(bar,beer,price)
relation, and suppose that Joe�s Bar sells
only Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and
lowest price Joe charges.

 Joe decides to stop selling Bud and
Miller, but to sell only Heineken at $3.50.

9

Sally�s Program

 Sally executes the following two SQL
statements, which we call (min) and
(max), to help remember what they do.

(max) SELECT MAX(price) FROM Sells
 WHERE bar = �Joe��s Bar�;

(min) SELECT MIN(price) FROM Sells
 WHERE bar = �Joe��s Bar�;

10

Joe�s Program

 At about the same time, Joe executes the
following steps, which have the mnemonic
names (del) and (ins).

(del) DELETE FROM Sells
 WHERE bar = �Joe��s Bar�;

(ins) INSERT INTO Sells
 VALUES(�Joe��s Bar�, �Heineken�,
3.50);

11

Interleaving of Statements

 Although (max) must come before
(min), and (del) must come before
(ins), there are no other constraints on
the order of these statements, unless
we group Sally�s and/or Joe�s
statements into transactions.

12

Example: Strange Interleaving

 Suppose the steps execute in the order
(max)(del)(ins)(min).

Joe�s Prices:
Statement:
Result:

 Sally sees …

2.50, 3.00

(del) (ins)

3.50

(min)

2.50, 3.00

(max)

13

Fixing the Problem by Using
Transactions

 If we group Sally�s statements (max)
(min) into one transaction, then she
cannot see this inconsistency.

 She sees Joe�s prices at some fixed
time.
  Either before or after he changes prices, or

in the middle, but the MAX and MIN are
computed from the same prices.

14

Another Problem: Rollback

 Suppose Joe executes (del)(ins), not as
a transaction, but after executing these
statements, thinks better of it and
issues a ROLLBACK statement.

 If Sally executes her statements after
(ins) but before the rollback, she sees a
value, 3.50, that never existed in the
database.

15

Solution

 If Joe executes (del)(ins) as a
transaction, its effect cannot be seen by
others until the transaction executes
COMMIT.
  If the transaction executes ROLLBACK

instead, then its effects can never be
seen.

16

Isolation Levels

 SQL defines four isolation levels =
choices about what interactions are
allowed by transactions that execute at
about the same time.

 How a DBMS implements these isolation
levels is highly complex, and a typical
DBMS provides its own options.

17

Choosing the Isolation Level

  Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

 where X =
1.  SERIALIZABLE
2.  REPEATABLE READ
3.  READ COMMITTED
4.  READ UNCOMMITTED

18

Serializable Transactions

 If Sally = (max)(min) and Joe = (del)(ins)
are each transactions, and Sally runs with
isolation level SERIALIZABLE, then she will
see the database either before or after Joe
runs, but not in the middle.

 It�s up to the DBMS vendor to figure out
how to do that, e.g.:
  True isolation in time.
  Keep Joe�s old prices around to answer Sally�s

queries.

19

Read-Commited Transactions

 If Sally runs with isolation level READ
COMMITTED, then she can see only
committed data, but not necessarily the
same data each time.

 Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is
allowed, as long as Joe commits.
  Sally sees MAX < MIN.

20

Repeatable-Read Transactions

 Requirement is like read-committed,
plus: if data is read again, then
everything seen the first time will be
seen the second time.
  But the second and subsequent reads may

see more tuples as well.

21

Example: Repeatable Read

 Suppose Sally runs under REPEATABLE
READ, and the order of execution is
(max)(del)(ins)(min).
  (max) sees prices 2.50 and 3.00.
  (min) can see 3.50, but must also see 2.50

and 3.00, because they were seen on the
earlier read by (max).

22

Read Uncommitted

 A transaction running under READ
UNCOMMITTED can see data in the
database, even if it was written by a
transaction that has not committed (and
may never).

 Example: If Sally runs under READ
UNCOMMITTED, she could see a price
3.50 even if Joe later aborts.

23

Practice in Oracle 11g

  Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

 where X =
1.  SERIALIZABLE
2.  READ COMMITTED

  Set autocommit off / on

