
Introduc)on	to	Map-Reduce	

Vincent	Leroy	

1	

Sources	

•  Apache	Hadoop	
•  Yahoo!	Developer	Network	
•  Hortonworks	
•  Cloudera	
•  Prac)cal	Problem	Solving	with	Hadoop	and	Pig	

2	

«	Big	Data	»	

•  Google,	2008	
– 20	PB/day	
– 180	GB/job	(variable)		

•  Web	index	
– 50B	pages	
– 15PB	

•  Large	Hadron	Collider	(LHC)	@	CERN	:	
produces	15PB/year	

3	

Capacity	of	a	(large)	server	

•  RAM:	256	GB	
•  Hard	drive	capacity:	24TB	
•  Hard	drive	throughput:	100MB/s	

4	

Solu)on:	Parallelism	

•  1	server	
– 8	disks	
– Read	the	Web:	230	days	

•  Hadoop	Cluster		@	Yahoo	
– 4000	servers	
– 8	disks/server	
– Read	the	Web	in	parallel:	1h20	

5	

Data	center	Google	

6	

Pi_alls	in	parallelism	

•  Synchroniza)on	
– Mutex,	
semaphores	…	

•  Difficul)es	
– Deadlocks	
– Op)miza)on	
– Costly	(experts)	
– Not	reusable	

7	

Programming	models	

•  Shared	memory	(mul)cores)	

	
•  Message	passing	(MPI)	

8	

Fault	tolerance	

•  A	server	fails	every	few	months	
•  1000	servers	…	
– MTBF	(mean)me	between	failures)	<	1	day	

•  A	big	job	may	take	several	days	
–  There	will	be	failures,	this	is	normal	
–  Computa)ons	should	finish	within	a	reasonable)me	
à	You	cannot	start	over	in	case	of	failures	

•  Checkpoin)ng,	replica)on	
– Hard	to	implement	correctly	

9	

Big	Data	Pla_orm	

•  Let	everyone	write	programs	for	massive	
datasets	
– Encapsulate	parallelism	
•  Programming	model	
•  Deployment	

– Encapsulate	fault	tolerance	
•  Detect	and	handle	failures	

à 	Code	once	(experts),	benefit	to	all	

10	

MAP-REDUCE	MODEL	

11	

What	are	Map	and	Reduce?	

•  2	simple	func)ons	inspired	from	func)onal	
programming	
– Transforma6on:	map	
map(f,	[x1,	…,	xn])	=	[f(x1),	…,	f(xn)]	
Ex:	map	(*2,	[1,2,3])	=	[(*2	1),(*2	2),(*2	3)]	
	 	 	 	 	 	 		=	[2,4,6]	

– Aggrega6on:	reduce	
reduce(f,	[x1,	…,	xn])	=	f(x1,	f(x2,f(x3,	…	f(xn-1,xn)))))	
Ex:	reduce	(+,[2,4,6])	=	(+2	(+4	6))	
	 	 	 	 	 	 			=	12	

12	

What	are	Map	and	Reduce?	

•  Generic	
– Take	a	func)on	as	a	parameter	

•  Can	be	instan)ated	and	combined	to	solve	
many	different	problems	
– map(toUpperCase,	[“hello”,	“data”])	
=	[“HELLO”,	“DATA”]	

–  reduce(max,	[87,	12,	91])=91	

•  The	developer	provides	the	func)on	applied	

13	

Data	as	key/value	pairs	

•  MapReduce	does	not	manipulate	atomic	
pieces	of	data	
– Everything	is	a	(Key,Value)	pair	
– Key	and	value	can	be	of	any	type	
•  Ex:	(Hello,	17)	

–  Key	=	Hello,	type	text	
–  Value	=	17	type	int	

•  When	ini)al	data	is	not	key/value,	interpret	it	
as	key/value	
–  Input	text	file	becomes	[(#line,	line_content)…]	

14	

Map-Reduce	on	Key-Value	pairs	

•  Map	and	Reduce	adjusted	to	Key-Value	pairs	
–  In	map,	f	is	applied	independently	on	every	key/
value	pair	
f(key,	value)	à	list(key,	value)	

–  In	reduce,	f	is	applied	to	all	values	associated	with	
the	same	key	
f(key,list(value))	à	list(key,value)	

– The	types	of	keys	and	values	taken	as	input	does	
not	have	to	be	the	same	as	the	output	

15	

Example:	Coun)ng	frequency	of	words	

•  Input	:	A	file	of	2	lines	
–  1,	"a	b	c	aa	b	c"	
–  2,	"a	bb	cc	a	cc	b"	

•  Output	
–  a,	3	
–  b,	3	
–  c,	2	
–  aa,	1	
–  bb,	1	
–  cc,	2	

16	

Word	frequency:	Mapper	

•  Map	processes	a	por)on	(line)	of	text	
–  Split	words	
–  For	each	word,	count	one	occurrence	
–  Key	not	used	in	this	example	(line	number)	

•  map(Int	lineNumber,	Text	line,	Output	output){	
	 	foreach	word	in	line.split(space)	{	
	 	 	output.write(word,	1)	
	 	}	
	}	

17	

Word	frequency:	Reducer	
•  For	each	key,	reduce	processes	all	the	
corresponding	values	
– Add	number	of	occurrences	

•  reduce(String	word,	List<Int>	occurrences,	
Output	output){	
	 	int	count	=	0	
	 	foreach	int	occ	in	occurrences	{	
	 	 	count	+=	occ	
	 	}	
	 	output.write(word,count)	
	}	

18	

Execu)on	flow	
1,	"a	b	c	aa	b	c"	 2,	"a	bb	cc	a	cc	b"	
a,	1	
b,	1	
c,	1	
aa,	1	
b,	1	
c,	1	

a,	1	
bb,	1	
cc,	1	
a,	1	
cc,	1	
b,	1	

Map	

Reduce	 a,	[1,1,1]	

b,	[1,1,1]	

c,	[1,1]	

aa,	[1]	

bb,	[1]	

cc,	[1,1]	

a,	3	

b,	3	

c,	2	

aa,	1	

bb,	1	

cc,	2	 19	

How	to	build	a	Web	index?	

•  Ini)al	data:	(URL,	web_page_content)	
•  Goal:	build	inverted	index	

Grenoble	

h}ps://fr.wikipedia.org/wiki/Grenoble	

h}p://www.grenoble.fr/	

h}p://www.grenoble-tourisme.com/	

h}p://wikitravel.org/en/Grenoble	

UNIL	

h}p://www.unil.ch/	

h}ps://fr.wikipedia.org/wiki/
Universit%C3%A9_de_Lausanne	

h}ps://twi}er.com/unil	

h}p://www.forma)on-con)nue-unil-epfl.ch/	

20	

How	to	build	a	Web	index?	

•  map(URL	pageURL,	Text	pageContent,	Output	
output){	
	 	foreach	word	in	pageContent.parse()	{	
	 	 	output.write(word,	pageURL)	
	 	}	
	}	

21	

How	to	build	a	Web	index?	

•  reduce(Text	word,	List<URL>	webPages,	
Output	output){	
	 	pos)ngList	=	initPos)ngList()	
	 	foreach	url	in	webPages	{	
	 	 	pos)ngList.add(url)	
	 	}	
	 	output.write(word,	pos)ngList)	
	}	

22	

APACHE	HADOOP:	MAPREDUCE	
FRAMEWORK		

23	

Objec)ve	of	Hadoop	MapReduce	

•  Provide	a	simple	and	generic	programming	
model:	map	and	reduce	

•  Deploy	execu)on	automa)cally	
•  Provide	fault	tolerance	
•  Scale	to	thousands	of	machines	
•  Performance	is	important	but	not	the	priority	
– What’s	important	is	that	jobs	finish	within	reasonable	
)me	

–  If	it’s	to	slow,	add	servers!		
Kill	It	With	Iron	(KIWI	principle)	

24	

Architecture	

•  From	a	monolithic	architecture	to	composable	
layers	

25	

Execu)on	steps	

Shuffle	&Sort:	group	by	key	and	transfer	to	reducer	

26	

Shuffle	&	Sort	

•  Barrier	in	the	execu)on	
– All	map	tasks	must	complete	before	star)ng	
reduce	

•  Par))oner	to	assign	keys	to	servers	execu)ng	
reduce	
– Ex:	hash(key)	%	nbServers	
– Deal	with	load	balancing	

27	

Combiner	
•  Poten)al	problem	of	a	map	func)on:	many	key/
value	pairs	in	the	output	
– Materialized	to	disk,	sent	to	the	reducer	over	the	
network	

–  Costly	step	of	the	execu)on	
•  Add	an	operator:	Combiner	
– Mini-reducer	executed	on	the	data	produced	by	map	
on	a	single	machine	to	start	aggrega)ng	it	

•  Combiner	may	be	used	by	Hadoop	(op)onal)	
–  The	correctness	of	the	program	should	not	depend	on	
it	

28	

Combiner	
Map	

Reduce	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	

29	

Combiner	
Map	

Reduce	

Combine	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 CKI	 CVI	

Output	 CK0	 CV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	

30	

Combiner	
Map	

Reduce	

Combine	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 CKI	 CVI	

Output	 CK0	 CV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	

31	

Combiner	
1,	"a	b	c	aa	b	c"	 2,	"a	bb	cc	a	cc	b"	
a,	1	
b,	1	
c,	1	
aa,	1	
b,	1	
c,	1	

a,	1	
bb,	1	
cc,	1	
a,	1	
cc,	1	
b,	1	

Map	

Reduce	 a,	[1,2]	

b,	[2,1]	

c,	[2]	

aa,	[1]	

bb,	[1]	

cc,	[2]	

a,	3	

b,	3	

c,	2	

aa,	1	

bb,	1	

cc,	2	

a,	1	
b,	2	
c,	2	
aa,	1	

a,	2	
bb,	1	
cc,	2	
b,	1	

Combiner	

32	

Combiner	

•  Same	API	as	reduce	(key,	List<value>)	
– Not	the	same	contract!	
For	one	key,	you	get	SOME	values	

•  O�en	the	same	aggrega)on	as	reduce	
– E.g.	WordCount	

•  Different	when	using	global	proper)es	
– E.g.	Keep	words	present	at	least	5)mes	

33	

Hadoop	MapReduce	as	a	developer	

•  Provide	the	func)ons	performed	by	Map	and	
Reduce	(Java,	C++)	
– Applica)on	dependent	

•  Defines	the	data	types	(keys	/	values)	
–  If	not	standard	(Text,	IntWritable	…)	
– Func)ons	for	seraliza)on	

•  That’s	all.	

34	

Imports	
import java.io.IOException ;
import java.util.* ;

import org.apache.hadoop.fs.Path ;
import org.apache.hadoop.io.IntWritable ;
import org.apache.hadoop.io.LongWritable ;
import org.apache.hadoop.io.Text ;
import org.apache.hadoop.mapreduce.Mapper ;
import org.apache.hadoop.mapreduce.Reducer ;
import org.apache.hadoop.mapreduce.JobContext ;
import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat ;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat ;
import org.apache.hadoop.mapreduce.Job ;

Do	not	use	the	old	mapred	API!	 35	

Mapper	
 // input key type, input value type, output key type,
output value type
public class WordCountMapper extends Mapper<LongWritable,
Text, Text, IntWritable> {

 @Override
 protected void map(LongWritable key, Text value,

Context context) throws IOException, InterruptedException
{

 for (String word : value.toString().split("\\s+")) {
 context.write(new Text(word), new IntWritable(1));
 }
 }

}

36	

Reducer	
// input key type, input value type, output key type,
output value type
public class WordCountReducer extends Reducer<Text,
IntWritable, Text, LongWritable> {

 @Override
 protected void reduce(Text key, Iterable<IntWritable>

values, Context context) throws IOException,
InterruptedException {

 long sum = 0;
 for (IntWritable value : values) {
 sum += value.get();
 }

 context.write(key, new LongWritable(sum));
 }

}

37	

Main	
public class WordCountMain {
 public static void main(String [] args) throws Exception {

 Configuration conf = new Configuration();

 String[] otherArgs = new GenericOptionsParser(conf,
args).getRemainingArgs();

 Job job = Job.getInstance(conf, "word count");

 job.setJarByClass(WordCountMain.class);

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(IntWritable.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(LongWritable.class);

 job.setMapperClass(WordCountMapper.class);

 job.setReducerClass(WordCountReducer.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

}
38	

Writable	example	
public class StringAndInt implements WritableComparable<StringAndInt> {

 private IntWritable iw = new IntWritable();
 private Text t = new Text();
 public StringAndInt() {}
 public StringAndInt(String s, int i) {
 this.iw.set(i);
 this.t.set(s);}
 @Override
 public void write(DataOutput out) throws IOException {
 this.iw.write(out);
 this.t.write(out);}
 @Override
 public void readFields(DataInput in) throws IOException {
 this.iw.readFields(in);
 this.t.readFields(in);}
 @Override
 public int compareTo(StringAndInt o) {
 int c1 = this.t.compareTo(o.t);
 if (c1 != 0) {
 return c1;
 } else {
 return this.iw.compareTo(o.iw);
 }}

39	

Terminology	

•  MapReduce	program	=	job	
•  Jobs	are	submi}ed	to	the	JobTracker	
•  A	job	is	divided	in	several	tasks	
– A	Map	is	a	task	
– A	Reduce	is	a	task	

•  Tasks	are	monitored	by	TaskTrackers	
– A	slow	task	is	called	a	straggler	

40	

Job	execu)on	
•  $	hadoop	jar	wordcount.jar	org.myorg.WordCount	inputPath(HDFS)	

outputPath(HDFS)	
•  Check	parameters	

–  Is	there	an	output	directory	?	
–  Does	it	already	exist	?	
–  Is	there	an	input	directory	?	

•  Compute	splits	
•  The	job	(MapReduce	code),	its	configura)on	and	splits	are	copied	

with	a	high	replica)on	
•  Create	an	object	to	follow	the	progress	a	the	tasks	is	created	by	the	

JobTracker	
•  For	each	split,	create	a	Map	
•  Create	default	number	of	reducers	

41	

Tasktracker	
•  TaskTracker	sends	a	periodic	signal	to	the	
JobTracker	
–  Show	that	the	node	s)ll	func)ons	
–  Tell	whether	the	TaskTracker	is	ready	to	accept	a	new	
task	

•  A	TaskTracker	is	responsible	for	a	node	
–  Fixed	number	of	slots	for	map	tasks	
–  Fixed	number	of	slots	for	reduce	tasks	
–  Tasks	can	be	from	different	jobs	

•  Each	task	runs	on	its	own	JVM	
–  Prevents	a	task	crash	to	crash	the	TaskTracker	as	well	

42	

Job	Progress	

•  A	Map	task	reports	on	its	progress,	i.e.	amount	of	the	
split	processed	

•  For	a	reduce	task,	3	states	
–  copy	
–  sort	
–  reduce	

•  Report	sent	to	the	TaskTracker	
•  Every	5	seconds,	report	forwarded	to	the	JobTracker	
•  User	can	see	the	JobTracker	state	through	Web	
interface	

43	

Progress	

44	

End	of	Job	
•  Output	of	each	reducer	wri}en	to	a	file	
•  Job	tracker	no)fies	the	client	and	writes	a	

report	for	the	job	
14/10/28	11:54:25	INFO	mapreduce.Job:	Job	
job_1413131666506_0070	completed	successfully	
								Job	Counters		
																Launched	map	tasks=392	
																Launched	reduce	tasks=88	
																Data-local	map	tasks=392	
																[...]	
								Map-Reduce	Framework	
																Map	input	records=622976332	
																Map	output	records=622952022	
																Reduce	input	groups=54858244	
																Reduce	input	records=622952022	
																Reduce	output	records=546559709	
																[...]	

45	

Server	failure	during	a	job	

•  Bug	in	a	task	
–  task	JVM	crashes	→	TaskTracker	JVM	no)fied	
–  task	removed	from	its	slot	

•  Task	become	unresponsive	
– )meout	a�er	10	minutes	
–  task	removed	from	its	slot	

•  Each	task	may	be	re-run	up	to	N)mes	(default	
7)	in	case	of	crashes	

46	

HDFS	:	DISTRIBUTED	FILE	SYSTEM	

47	

Random	vs	Sequen)al	disk	access	
•  Example	

–  DB	100M	users	
–  100B/user	
–  Alter	1%	records	

•  Random	access	
–  Seek,	read,	write:	30mS	
–  1M	users	à	8h20	

•  Sequen)al	access	
–  Read	ALL	Write	ALL	
–  2x	10GB	@	100MB/S	à	3	minutes	

	
à	It	is	o�en	faster	to	read	all	and	write	all	sequen)ally	

48	

Distributed	File	System	(HDFS)	

•  Goal	
–  Fault	tolerance	(redundancy)	
–  Performance	(parallel	access)	

•  Large	files	
–  Sequen)al	reads	
–  Sequen)al	writes	

•  “in	place”	data	processing	
– Data	is	stored	on	the	machines	that	process	it	

•  Be}er	usage	of	machines	(no	dedicated	filer)	
•  Less	network	bo}lenecks	(be}er	performance)	

49	

HDFS	model	

•  Data	organized	in	files	and	directories	
	à	mimics	a	standard	file	system	

•  Files	divided	in	blocks	(default:	64MB)	spread	
on	servers	

•  HDFS	reports	the	data	layout	to	the	Map-
Reduce	framework	
à	If	possible,	process	data	on	the	machines	
where	it	is	already	stored	

50	

Fault	tolerance	

•  File	blocks	replicated	(default:	3)	to	tolerate	
failures	

•  Placement	according	to	different	parameters	
– Power	supply	
– Network	equipment	
– Diverse	servers	to	increase	the	probability	of	
having	a	“close”	copy	

•  Checksum	of	data	to	detect	corrupter	blocks	
(also	available	in	modern	file	systems)	

51	

Master/Worker	architecture	
•  A	master,	the	NameNode	
– Manage	the	space	of	file	names	
– Manages	access	rights	
–  Supervise	opera)ons	on	files,	blocks	…	
–  Supervise	the	health	of	the	file	system	(failures,	load	
balance…)	

•  Many	(1000s)	slaves,	the	DataNodes	
–  Store	the	data	(blocks)	
–  Perform	read	and	write	opera)ons	
–  Perform	copies	(replica)on,	ordered	by	the	
NameNode)	

52	

NameNode	

•  Stores	the	metadata	of	each	file	and	block	
(inode)	
– File	name,	directory,	blocks	asso)ated,	posi)on	of	
these	blocks,	number	of	replicas	…	

•  Keeps	all	in	main	memory	(RAM)	
– Limi)ng	factor	=	number	of	files	
– 60M	objects	in	16GB	

53	

DataNode	

•  Manage	and	monitor	the	state	of	blocks	
stored	on	the	host	file	system	(o�en	Linux)	

•  Directly	accessed	by	the	clients	
à	data	never	transit	through	the	NameNode	

•  Send	heartbeats	to	the	NameNode	to	show	
that	the	server	has	not	failed	

•  Report	to	the	NameNode	if	blocks	are	
corrupted	

54	

Wri)ng	a	file	
•  The	client	sends	a	query	to	the	NameNode	to	create	a	new	

file	
•  The	NameNode	checks	

–  Client	authoriza)ons	
–  File	system	conflicts	(exis)ng	file	…)	

•  NameNode	choses	DataNodes	to	store	file	and	replicas	
–  DataNodes	“pipelined”	

•  Blocks	are	allocated	on	these	DataNodes	
•  Stream	of	data	sent	to	the	first	DataNode	of	the	pipeline	
•  Each	DataNode	forwards	the	data	received	to	the	next	

DataNode	in	the	pipeline	

55	

Reading	a	file	
•  Client	sends	a	request	to	the	NameNode	to	read	a	file	
•  NameNode	checks	the	file	exists	and	builds	a	list	of	DataNodes	

containing	the	first	blocks	
•  For	each	block,	NameNode	sends	the	address	of	the	DataNodes	

hos)ng	them	
–  List	ordered	wrt.	Proximity	to	the	client	

•  Client	connects	to	the	closest	DataNode	containing	the	1st	block	of	
the	file	

•  Block	read	ends:	
–  Close	connec)on	to	the	DataNode	
–  New	connec)on	to	the	DataNode	containing	the	next	block	

•  When	all	blocks	are	read:	
–  Query	the	NameNode	to	retrieve	the	following	blocks	

56	

HDFS	Structure	

1	

2	

1	

2	

3	4	

1	

2	

3	

57	

HDFS	commands	(directories)	

•  Create	directory	dir	
$	hadoop	dfs	-mkdir	/dir	

•  List	HDFS	content	
$	hadoop	dfs	-ls	

•  Remove	directory	dir	
$	hadoop	dfs	-rmr	/dir	

58	

HDFS	commands	(files)	

•  Copy	local	file	toto.txt	to	HDFS	dir/	
$	hadoop	dfs	-put	toto.txt	dir/toto.txt	

•  Copy	HDFS	file	to	local	disk	
$	hadoop	dfs	-get	dir/toto.txt	./	

•  Read	file	/dir/toto.txt	
$	hadoop	dfs	-cat	/dir/toto.txt	

•  Remove	file	/dir/toto.txt	
$	hadoop	dfs	-rm	/dir/toto.txt	

59	

