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Sources	

•  Apache	Hadoop	
•  Yahoo!	Developer	Network	
•  Hortonworks	
•  Cloudera	
•  Prac)cal	Problem	Solving	with	Hadoop	and	Pig	
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«	Big	Data	»	

•  Google,	2008	
– 20	PB/day	
– 180	GB/job	(variable)		

•  Web	index	
– 50B	pages	
– 15PB	

•  Large	Hadron	Collider	(LHC)	@	CERN	:	
produces	15PB/year	
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Capacity	of	a	(large)	server	

•  RAM:	256	GB	
•  Hard	drive	capacity:	24TB	
•  Hard	drive	throughput:	100MB/s	
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Solu)on:	Parallelism	

•  1	server	
– 8	disks	
– Read	the	Web:	230	days	

•  Hadoop	Cluster		@	Yahoo	
– 4000	servers	
– 8	disks/server	
– Read	the	Web	in	parallel:	1h20	
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Data	center	Google	
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Pi_alls	in	parallelism	

•  Synchroniza)on	
– Mutex,	
semaphores	…	

•  Difficul)es	
– Deadlocks	
– Op)miza)on	
– Costly	(experts)	
– Not	reusable	
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Programming	models	

•  Shared	memory	(mul)cores)	

	
•  Message	passing	(MPI)	
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Fault	tolerance	

•  A	server	fails	every	few	months	
•  1000	servers	…	
– MTBF	(mean	)me	between	failures)	<	1	day	

•  A	big	job	may	take	several	days	
–  There	will	be	failures,	this	is	normal	
–  Computa)ons	should	finish	within	a	reasonable	)me	
à	You	cannot	start	over	in	case	of	failures	

•  Checkpoin)ng,	replica)on	
– Hard	to	implement	correctly	
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Big	Data	Pla_orm	

•  Let	everyone	write	programs	for	massive	
datasets	
– Encapsulate	parallelism	
•  Programming	model	
•  Deployment	

– Encapsulate	fault	tolerance	
•  Detect	and	handle	failures	

à 	Code	once	(experts),	benefit	to	all	
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MAP-REDUCE	MODEL	
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What	are	Map	and	Reduce?	

•  2	simple	func)ons	inspired	from	func)onal	
programming	
– Transforma6on:	map	
map(f,	[x1,	…,	xn])	=	[f(x1),	…,	f(xn)]	
Ex:	map	(*2,	[1,2,3])	=	[(*2	1),(*2	2),(*2	3)]	
	 	 	 	 	 	 		=	[2,4,6]	

– Aggrega6on:	reduce	
reduce(f,	[x1,	…,	xn])	=	f(x1,	f(x2,f(x3,	…	f(xn-1,xn)))))	
Ex:	reduce	(+,[2,4,6])	=	(+2	(+4	6))	
	 	 	 	 	 	 			=	12	
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What	are	Map	and	Reduce?	

•  Generic	
– Take	a	func)on	as	a	parameter	

•  Can	be	instan)ated	and	combined	to	solve	
many	different	problems	
– map(toUpperCase,	[“hello”,	“data”])	
=	[“HELLO”,	“DATA”]	

–  reduce(max,	[87,	12,	91])=91	

•  The	developer	provides	the	func)on	applied	
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Data	as	key/value	pairs	

•  MapReduce	does	not	manipulate	atomic	
pieces	of	data	
– Everything	is	a	(Key,Value)	pair	
– Key	and	value	can	be	of	any	type	
•  Ex:	(Hello,	17)	

–  Key	=	Hello,	type	text	
–  Value	=	17	type	int	

•  When	ini)al	data	is	not	key/value,	interpret	it	
as	key/value	
–  Input	text	file	becomes	[(#line,	line_content)…]	
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Map-Reduce	on	Key-Value	pairs	

•  Map	and	Reduce	adjusted	to	Key-Value	pairs	
–  In	map,	f	is	applied	independently	on	every	key/
value	pair	
f(key,	value)	à	list(key,	value)	

–  In	reduce,	f	is	applied	to	all	values	associated	with	
the	same	key	
f(key,list(value))	à	list(key,value)	

– The	types	of	keys	and	values	taken	as	input	does	
not	have	to	be	the	same	as	the	output	
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Example:	Coun)ng	frequency	of	words	

•  Input	:	A	file	of	2	lines	
–  1,	"a	b	c	aa	b	c"	
–  2,	"a	bb	cc	a	cc	b"	

•  Output	
–  a,	3	
–  b,	3	
–  c,	2	
–  aa,	1	
–  bb,	1	
–  cc,	2	
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Word	frequency:	Mapper	

•  Map	processes	a	por)on	(line)	of	text	
–  Split	words	
–  For	each	word,	count	one	occurrence	
–  Key	not	used	in	this	example	(line	number)	

•  map(Int	lineNumber,	Text	line,	Output	output){	
	 	foreach	word	in	line.split(space)	{	
	 	 	output.write(word,	1)	
	 	}	
	}	
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Word	frequency:	Reducer	
•  For	each	key,	reduce	processes	all	the	
corresponding	values	
– Add	number	of	occurrences	

•  reduce(String	word,	List<Int>	occurrences,	
Output	output){	
	 	int	count	=	0	
	 	foreach	int	occ	in	occurrences	{	
	 	 	count	+=	occ	
	 	}	
	 	output.write(word,count)	
	}	
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Execu)on	flow	
1,	"a	b	c	aa	b	c"	 2,	"a	bb	cc	a	cc	b"	
a,	1	
b,	1	
c,	1	
aa,	1	
b,	1	
c,	1	

a,	1	
bb,	1	
cc,	1	
a,	1	
cc,	1	
b,	1	

Map	

Reduce	 a,	[1,1,1]	

b,	[1,1,1]	

c,	[1,1]	

aa,	[1]	

bb,	[1]	

cc,	[1,1]	

a,	3	

b,	3	

c,	2	

aa,	1	

bb,	1	

cc,	2	 19	



How	to	build	a	Web	index?	

•  Ini)al	data:	(URL,	web_page_content)	
•  Goal:	build	inverted	index	

Grenoble	

h}ps://fr.wikipedia.org/wiki/Grenoble	

h}p://www.grenoble.fr/	

h}p://www.grenoble-tourisme.com/	

h}p://wikitravel.org/en/Grenoble	

UNIL	

h}p://www.unil.ch/	

h}ps://fr.wikipedia.org/wiki/
Universit%C3%A9_de_Lausanne	

h}ps://twi}er.com/unil	

h}p://www.forma)on-con)nue-unil-epfl.ch/	
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How	to	build	a	Web	index?	

•  map(URL	pageURL,	Text	pageContent,	Output	
output){	
	 	foreach	word	in	pageContent.parse()	{	
	 	 	output.write(word,	pageURL)	
	 	}	
	}	
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How	to	build	a	Web	index?	

•  reduce(Text	word,	List<URL>	webPages,	
Output	output){	
	 	pos)ngList	=	initPos)ngList()	
	 	foreach	url	in	webPages	{	
	 	 	pos)ngList.add(url)	
	 	}	
	 	output.write(word,	pos)ngList)	
	}	
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APACHE	HADOOP:	MAPREDUCE	
FRAMEWORK		
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Objec)ve	of	Hadoop	MapReduce	

•  Provide	a	simple	and	generic	programming	
model:	map	and	reduce	

•  Deploy	execu)on	automa)cally	
•  Provide	fault	tolerance	
•  Scale	to	thousands	of	machines	
•  Performance	is	important	but	not	the	priority	
– What’s	important	is	that	jobs	finish	within	reasonable	
)me	

–  If	it’s	to	slow,	add	servers!		
Kill	It	With	Iron	(KIWI	principle)	
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Architecture	

•  From	a	monolithic	architecture	to	composable	
layers	
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Execu)on	steps	

Shuffle	&Sort:	group	by	key	and	transfer	to	reducer	
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Shuffle	&	Sort	

•  Barrier	in	the	execu)on	
– All	map	tasks	must	complete	before	star)ng	
reduce	

•  Par))oner	to	assign	keys	to	servers	execu)ng	
reduce	
– Ex:	hash(key)	%	nbServers	
– Deal	with	load	balancing	

27	



Combiner	
•  Poten)al	problem	of	a	map	func)on:	many	key/
value	pairs	in	the	output	
– Materialized	to	disk,	sent	to	the	reducer	over	the	
network	

–  Costly	step	of	the	execu)on	
•  Add	an	operator:	Combiner	
– Mini-reducer	executed	on	the	data	produced	by	map	
on	a	single	machine	to	start	aggrega)ng	it	

•  Combiner	may	be	used	by	Hadoop	(op)onal)	
–  The	correctness	of	the	program	should	not	depend	on	
it	
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Combiner	
Map	

Reduce	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	
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Combiner	
Map	

Reduce	

Combine	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 CKI	 CVI	

Output	 CK0	 CV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	
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Combiner	
Map	

Reduce	

Combine	

Key	 Value	

Input	 MKI	 MVI	

Output	 MK0	 MV0	

Key	 Value	

Input	 CKI	 CVI	

Output	 CK0	 CV0	

Key	 Value	

Input	 RKI	 RVI	

Output	 RK0	 RV0	
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Combiner	
1,	"a	b	c	aa	b	c"	 2,	"a	bb	cc	a	cc	b"	
a,	1	
b,	1	
c,	1	
aa,	1	
b,	1	
c,	1	

a,	1	
bb,	1	
cc,	1	
a,	1	
cc,	1	
b,	1	

Map	

Reduce	 a,	[1,2]	

b,	[2,1]	

c,	[2]	

aa,	[1]	

bb,	[1]	

cc,	[2]	

a,	3	

b,	3	

c,	2	

aa,	1	

bb,	1	

cc,	2	

a,	1	
b,	2	
c,	2	
aa,	1	

a,	2	
bb,	1	
cc,	2	
b,	1	

Combiner	
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Combiner	

•  Same	API	as	reduce	(key,	List<value>)	
– Not	the	same	contract!	
For	one	key,	you	get	SOME	values	

•  O�en	the	same	aggrega)on	as	reduce	
– E.g.	WordCount	

•  Different	when	using	global	proper)es	
– E.g.	Keep	words	present	at	least	5	)mes	
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Hadoop	MapReduce	as	a	developer	

•  Provide	the	func)ons	performed	by	Map	and	
Reduce	(Java,	C++)	
– Applica)on	dependent	

•  Defines	the	data	types	(keys	/	values)	
–  If	not	standard	(Text,	IntWritable	…)	
– Func)ons	for	seraliza)on	

•  That’s	all.	
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Imports	
import java.io.IOException ; 
import java.util.* ;  
 
import org.apache.hadoop.fs.Path ; 
import org.apache.hadoop.io.IntWritable ; 
import org.apache.hadoop.io.LongWritable ; 
import org.apache.hadoop.io.Text ; 
import org.apache.hadoop.mapreduce.Mapper ; 
import org.apache.hadoop.mapreduce.Reducer ; 
import org.apache.hadoop.mapreduce.JobContext ; 
import 
org.apache.hadoop.mapreduce.lib.input.FileInputFormat ; 
import 
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat ; 
import org.apache.hadoop.mapreduce.Job ; 

Do	not	use	the	old	mapred	API!	 35	



Mapper	
 // input key type, input value type, output key type, 
output value type 
public class WordCountMapper extends Mapper<LongWritable, 
Text, Text, IntWritable> { 
 

 @Override 
 protected void map(LongWritable key, Text value, 

Context context) throws IOException, InterruptedException 
{ 

  for (String word : value.toString().split("\\s+")) { 
   context.write(new Text(word), new IntWritable(1)); 
  } 
 } 

} 
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Reducer	
// input key type, input value type, output key type, 
output value type 
public class WordCountReducer extends Reducer<Text, 
IntWritable, Text, LongWritable> { 
 

 @Override 
 protected void reduce(Text key, Iterable<IntWritable> 

values, Context context) throws IOException, 
InterruptedException { 

  long sum = 0; 
  for (IntWritable value : values) { 
   sum += value.get(); 
  } 

   context.write(key, new LongWritable(sum)); 
 } 

} 
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Main	
public class WordCountMain { 
    public static void main(String [] args) throws Exception { 

  Configuration conf = new Configuration(); 

  String[] otherArgs = new GenericOptionsParser(conf, 
args).getRemainingArgs(); 

  Job job = Job.getInstance(conf, "word count"); 

  job.setJarByClass(WordCountMain.class); 

  job.setMapOutputKeyClass(Text.class); 

  job.setMapOutputValueClass(IntWritable.class); 

  job.setOutputKeyClass(Text.class); 

  job.setOutputValueClass(LongWritable.class); 

  job.setMapperClass(WordCountMapper.class); 

  job.setReducerClass(WordCountReducer.class); 

  job.setInputFormatClass(TextInputFormat.class); 

  job.setOutputFormatClass(TextOutputFormat.class); 

  FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 

  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 

  System.exit(job.waitForCompletion(true) ? 0 : 1); 

} 
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Writable	example	
public class StringAndInt implements WritableComparable<StringAndInt> { 

 private IntWritable iw = new IntWritable(); 
 private Text t = new Text(); 
 public StringAndInt() {} 
 public StringAndInt(String s, int i) { 
  this.iw.set(i); 
  this.t.set(s);} 
 @Override 
 public void write(DataOutput out) throws IOException { 
  this.iw.write(out); 
  this.t.write(out);} 
 @Override 
 public void readFields(DataInput in) throws IOException { 
  this.iw.readFields(in); 
  this.t.readFields(in);} 
 @Override 
 public int compareTo(StringAndInt o) { 
  int c1 = this.t.compareTo(o.t); 
  if (c1 != 0) { 
   return c1; 
  } else { 
   return this.iw.compareTo(o.iw); 
  }} 
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Terminology	

•  MapReduce	program	=	job	
•  Jobs	are	submi}ed	to	the	JobTracker	
•  A	job	is	divided	in	several	tasks	
– A	Map	is	a	task	
– A	Reduce	is	a	task	

•  Tasks	are	monitored	by	TaskTrackers	
– A	slow	task	is	called	a	straggler	
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Job	execu)on	
•  $	hadoop	jar	wordcount.jar	org.myorg.WordCount	inputPath(HDFS)	

outputPath(HDFS)	
•  Check	parameters	

–  Is	there	an	output	directory	?	
–  Does	it	already	exist	?	
–  Is	there	an	input	directory	?	

•  Compute	splits	
•  The	job	(MapReduce	code),	its	configura)on	and	splits	are	copied	

with	a	high	replica)on	
•  Create	an	object	to	follow	the	progress	a	the	tasks	is	created	by	the	

JobTracker	
•  For	each	split,	create	a	Map	
•  Create	default	number	of	reducers	
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Tasktracker	
•  TaskTracker	sends	a	periodic	signal	to	the	
JobTracker	
–  Show	that	the	node	s)ll	func)ons	
–  Tell	whether	the	TaskTracker	is	ready	to	accept	a	new	
task	

•  A	TaskTracker	is	responsible	for	a	node	
–  Fixed	number	of	slots	for	map	tasks	
–  Fixed	number	of	slots	for	reduce	tasks	
–  Tasks	can	be	from	different	jobs	

•  Each	task	runs	on	its	own	JVM	
–  Prevents	a	task	crash	to	crash	the	TaskTracker	as	well	
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Job	Progress	

•  A	Map	task	reports	on	its	progress,	i.e.	amount	of	the	
split	processed	

•  For	a	reduce	task,	3	states	
–  copy	
–  sort	
–  reduce	

•  Report	sent	to	the	TaskTracker	
•  Every	5	seconds,	report	forwarded	to	the	JobTracker	
•  User	can	see	the	JobTracker	state	through	Web	
interface	
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Progress	
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End	of	Job	
•  Output	of	each	reducer	wri}en	to	a	file	
•  Job	tracker	no)fies	the	client	and	writes	a	

report	for	the	job	
14/10/28	11:54:25	INFO	mapreduce.Job:	Job	
job_1413131666506_0070	completed	successfully	
								Job	Counters		
																Launched	map	tasks=392	
																Launched	reduce	tasks=88	
																Data-local	map	tasks=392	
																[...]	
								Map-Reduce	Framework	
																Map	input	records=622976332	
																Map	output	records=622952022	
																Reduce	input	groups=54858244	
																Reduce	input	records=622952022	
																Reduce	output	records=546559709	
																[...]	
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Server	failure	during	a	job	

•  Bug	in	a	task	
–  task	JVM	crashes	→	TaskTracker	JVM	no)fied	
–  task	removed	from	its	slot	

•  Task	become	unresponsive	
– )meout	a�er	10	minutes	
–  task	removed	from	its	slot	

•  Each	task	may	be	re-run	up	to	N	)mes	(default	
7)	in	case	of	crashes	
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HDFS	:	DISTRIBUTED	FILE	SYSTEM	
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Random	vs	Sequen)al	disk	access	
•  Example	

–  DB	100M	users	
–  100B/user	
–  Alter	1%	records	

•  Random	access	
–  Seek,	read,	write:	30mS	
–  1M	users	à	8h20	

•  Sequen)al	access	
–  Read	ALL	Write	ALL	
–  2x	10GB	@	100MB/S	à	3	minutes	

	
à	It	is	o�en	faster	to	read	all	and	write	all	sequen)ally	
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Distributed	File	System	(HDFS)	

•  Goal	
–  Fault	tolerance	(redundancy)	
–  Performance	(parallel	access)	

•  Large	files	
–  Sequen)al	reads	
–  Sequen)al	writes	

•  “in	place”	data	processing	
– Data	is	stored	on	the	machines	that	process	it	

•  Be}er	usage	of	machines	(no	dedicated	filer)	
•  Less	network	bo}lenecks	(be}er	performance)	
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HDFS	model	

•  Data	organized	in	files	and	directories	
	à	mimics	a	standard	file	system	

•  Files	divided	in	blocks	(default:	64MB)	spread	
on	servers	

•  HDFS	reports	the	data	layout	to	the	Map-
Reduce	framework	
à	If	possible,	process	data	on	the	machines	
where	it	is	already	stored	
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Fault	tolerance	

•  File	blocks	replicated	(default:	3)	to	tolerate	
failures	

•  Placement	according	to	different	parameters	
– Power	supply	
– Network	equipment	
– Diverse	servers	to	increase	the	probability	of	
having	a	“close”	copy	

•  Checksum	of	data	to	detect	corrupter	blocks	
(also	available	in	modern	file	systems)	
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Master/Worker	architecture	
•  A	master,	the	NameNode	
– Manage	the	space	of	file	names	
– Manages	access	rights	
–  Supervise	opera)ons	on	files,	blocks	…	
–  Supervise	the	health	of	the	file	system	(failures,	load	
balance…)	

•  Many	(1000s)	slaves,	the	DataNodes	
–  Store	the	data	(blocks)	
–  Perform	read	and	write	opera)ons	
–  Perform	copies	(replica)on,	ordered	by	the	
NameNode)	
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NameNode	

•  Stores	the	metadata	of	each	file	and	block	
(inode)	
– File	name,	directory,	blocks	asso)ated,	posi)on	of	
these	blocks,	number	of	replicas	…	

•  Keeps	all	in	main	memory	(RAM)	
– Limi)ng	factor	=	number	of	files	
– 60M	objects	in	16GB	
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DataNode	

•  Manage	and	monitor	the	state	of	blocks	
stored	on	the	host	file	system	(o�en	Linux)	

•  Directly	accessed	by	the	clients	
à	data	never	transit	through	the	NameNode	

•  Send	heartbeats	to	the	NameNode	to	show	
that	the	server	has	not	failed	

•  Report	to	the	NameNode	if	blocks	are	
corrupted	
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Wri)ng	a	file	
•  The	client	sends	a	query	to	the	NameNode	to	create	a	new	

file	
•  The	NameNode	checks	

–  Client	authoriza)ons	
–  File	system	conflicts	(exis)ng	file	…)	

•  NameNode	choses	DataNodes	to	store	file	and	replicas	
–  DataNodes	“pipelined”	

•  Blocks	are	allocated	on	these	DataNodes	
•  Stream	of	data	sent	to	the	first	DataNode	of	the	pipeline	
•  Each	DataNode	forwards	the	data	received	to	the	next	

DataNode	in	the	pipeline	
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Reading	a	file	
•  Client	sends	a	request	to	the	NameNode	to	read	a	file	
•  NameNode	checks	the	file	exists	and	builds	a	list	of	DataNodes	

containing	the	first	blocks	
•  For	each	block,	NameNode	sends	the	address	of	the	DataNodes	

hos)ng	them	
–  List	ordered	wrt.	Proximity	to	the	client	

•  Client	connects	to	the	closest	DataNode	containing	the	1st	block	of	
the	file	

•  Block	read	ends:	
–  Close	connec)on	to	the	DataNode	
–  New	connec)on	to	the	DataNode	containing	the	next	block	

•  When	all	blocks	are	read:	
–  Query	the	NameNode	to	retrieve	the	following	blocks	
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HDFS	Structure	

1	

2	

1	

2	

3	4	

1	

2	

3	
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HDFS	commands	(directories)	

•  Create	directory	dir	
$	hadoop	dfs	-mkdir	/dir	

•  List	HDFS	content	
$	hadoop	dfs	-ls	

•  Remove	directory	dir	
$	hadoop	dfs	-rmr	/dir	
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HDFS	commands	(files)	

•  Copy	local	file	toto.txt	to	HDFS	dir/	
$	hadoop	dfs	-put	toto.txt	dir/toto.txt	

•  Copy	HDFS	file	to	local	disk	
$	hadoop	dfs	-get	dir/toto.txt	./	

•  Read	file	/dir/toto.txt	
$	hadoop	dfs	-cat	/dir/toto.txt	

•  Remove	file	/dir/toto.txt	
$	hadoop	dfs	-rm	/dir/toto.txt	
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