Introduction to Map-Reduce

Sources

Apache Hadoop

Yahoo! Developer Network

Hortonworks

Cloudera

Practical Problem Solving with Hadoop and Pig

« Big Data »

* Google, 2008

— 20 PB/day

— 180 GB/job (variable)
* Web index

— 50B pages

— 15PB

e Large Hadron Collider (LHC) @ CERN :
produces 15PB/year

Capacity of a (large) server

* RAM: 256 GB
* Hard drive capacity: 24TB
* Hard drive throughput: 100MB/s

Solution: Parallelism

e 1 server
— 8 disks
— Read the Web: 230 days

 Hadoop Cluster @ Yahoo
— 4000 servers

— 8 disks/server
— Read the Web in parallel: 1h20

Data center Google

Pitfalls in parallelism

* Synchronization Mutex
it it
— Mutex, re"l'gse @
semaphores ... shared resource

* Difficulties
— Deadlocks
— Optimization
— Costly (experts)
— Not reusable

Programming models

e Shared memory (multicores)

|| Bus Interconnect ||

* Message passing (MPI)

Fault tolerance

A server fails every few months
1000 servers ...

— MTBF (mean time between failures) < 1 day
A big job may take several days
— There will be failures, this is normal

— Computations should finish within a reasonable time
- You cannot start over in case of failures

Checkpointing, replication

— Hard to implement correctly

Big Data Platform

* Let everyone write programs for massive
datasets
— Encapsulate parallelism

* Programming model
* Deployment

— Encapsulate fault tolerance
e Detect and handle failures

— Code once (experts), benefit to all

10

MAP-REDUCE MODEL

What are Map and Reduce?

e 2 simple functions inspired from functional
programming
— Transformation: map
map(f, [x; ..., x,]) = [f(xy), ..., f(x,)]
Ex: map (*2, [1,2,3]) = [(*2 1),(*2 2),(*2 3)]
=[2,4,6]
— Aggregation: reduce
reduce(f, [x; ..., x,]) = f(xy, f(x,,f(x3 ... f(x,.1,%,)))))
Ex: reduce (+,[2,4,6]) = (+2 (+4 6))
=12

What are Map and Reduce?

e Generic

— Take a function as a parameter

e Can be instantiated and combined to solve
many different problems

— map(toUpperCase, [“hello”, “data”])
= [“HELLO”, “DATA”]

— reduce(max, [87, 12, 91])=91
 The developer provides the function applied

Data as key/value pairs

* MapReduce does not manipulate atomic
pieces of data
— Everything is a (Key,Value) pair
— Key and value can be of any type

e Ex: (Hello, 17)
— Key = Hello, type text
— Value = 17 type int

 When initial data is not key/value, interpret it
as key/value

— Input text file becomes [(#line, line_content)...]

Map-Reduce on Key-Value pairs

 Map and Reduce adjusted to Key-Value pairs

— In map, fis applied independently on every key/
value pair
f(key, value) =2 list(key, value)

— In reduce, fis applied to all values associated with

the same key
f(key, list(value)) =2 list(key,value)

— The types of keys and values taken as input does
not have to be the same as the output

15

Example: Counting frequency of words

* Input: Afile of 2 lines

—1,"abcaabc"
— 2,"abbccacchb”

* Qutput
— 3,3
— b, 3
—C, 2
—aa, 1
— bb, 1
— cc, 2

Word frequency: Mapper

* Map processes a portion (line) of text
— Split words
— For each word, count one occurrence
— Key not used in this example (line number)

 map(Int [ineNumber, Text line, Output output){
foreach word in line.split(space) {
output.write(word, 1)

J

Word frequency: Reducer

* For each key, reduce processes all the
corresponding values

— Add number of occurrences

* reduce(String word, List<Int> occurrences,
Output output){
Int count =0
foreach int occ in occurrences {
count += occ

J

output.write(word,count)

Map

Reduce

Execution flow

1,"abcaabc"

2, "abbccacchb"

a, 1
bb, 1
cc, 1
a, 1
cc, 1
b, 1

a, 3

b, 3

C, 2

aa, 1

bb, 1

cc, 2

How to build a Web index?

* |nitial data: (URL, web_page content)
* Goal: build inverted index

https://fr.wikipedia.org/wiki/Grenoble http://www.unil.ch/

http://www.grenoble.fr/ https://fr.wikipedia.org/wiki/

_ Universit%C3%A9 de_Lausanne
http://www.grenoble-tourisme.com/

https://twitter.com/unil

http://wikitravel.org/en/Grenoble
http://www.formation-continue-unil-epfl.ch/

20

How to build a Web index?

* map(URL pageURL, Text pageContent, Output
output){
foreach word in pageContent.parse() {
output.write(word, pageURL)

}
J

How to build a Web index?

* reduce(Text word, List<URL> webPages,
Output output){
postinglList = initPostingList()
foreach url in webPages {
postingList.add(url)
}

output.write(word, postingList)

APACHE HADOOP: MAPREDUCE
FRAMEWORK

Objective of Hadoop MapReduce

Provide a simple and generic programming
model: map and reduce

Deploy execution automatically
Provide fault tolerance
Scale to thousands of machines

Performance is important but not the priority

— What’s important is that jobs finish within reasonable
time

— If it’s to slow, add servers!
Kill It With Iron (KIWI principle)

Architecture

* From a monolithic architecture to composable
layers

HADOOP 1.0 HADOOP 2.0

Hive Others RT j i
(cascadmg) Stream. SGMOQSE

————————

J Pig Hive Lothers

(data ﬂow} (sal} || (cascading) Tez

=y - (execution engine)

YARN

(cluster resource management)

N MapReduce

(cluster resource management
& data processing)

25

Execution steps

Shuffle &Sort: group by key and transfer to reducer

...

' HDFS
™ replication

. f - . replication
B - 5 § :

Shuffle & Sort

e Barrier in the execution

— All map tasks must complete before starting
reduce

e Partitioner to assign keys to servers executing
reduce

— Ex: hash(key) % nbServers
— Deal with load balancing

Combiner

* Potential problem of a map function: many key/
value pairs in the output

— Materialized to disk, sent to the reducer over the
network

— Costly step of the execution

* Add an operator: Combiner

— Mini-reducer executed on the data produced by map
on a single machine to start aggregating it

 Combiner may be used by Hadoop (optional)

— The correctness of the program should not depend on
it

Combiner

Map

 [Key
Input MKI MVI
Output MKO MVO

Input RKI RVI
Output RKO RVO

Reduce

29

Combiner

Map

I Key

Input MKI MVI

Output MKO MVO Combine
Input CKl CVI
Output CKO CVO

Input RKI RVI
Output RKO RVO

Reduce .

Combiner

Map
| |Key
Input MKI MVI
Output MKO MVO Combine
\
Input CKl CVI
Output CKO CVO

Input RKI RVI
Output RKO RVO

Reduce .

Map

Combiner

2, "abbccacchb"

e

a, 1

bb, 1 a, 2
cc 1 bb, 1
a, 1 cc, 2
cc, 1 b, 1
b, 1

Combiner

Reduce

1,"abcaabc"
j

a, 1

b, 1 a, 1

c,1 , 2

aa, 1 c, 2

b, 1 aa, 1

c,1
a, [1,2] a3
b, [2,1] b, 3
2] |[—c2
aa, [1] —>| aa, 1
bb, [1] > bb, 1
cc, [2] > cc, 2

32

Combiner

 Same API as reduce (key, List<value>)

— Not the same contract!
For one key, you get SOME values

e Often the same aggregation as reduce
— E.g. WordCount

* Different when using global properties

— E.g. Keep words present at least 5 times

Hadoop MapReduce as a developer

* Provide the functions performed by Map and
Reduce (Java, C++)
— Application dependent

* Defines the data types (keys / values)
— If not standard (Text, IntWritable ...)
— Functions for seralization

e That’s all.

Imports

import java.io.IOException ;
import Jjava.util.* ;

import org.apache.hadoop.fs.Path ;

import org.apache.hadoop.io.IntWritable ;

import org.apache.hadoop.io.LongWritable ;

import org.apache.hadoop.10.Text ;

import org.apache.hadoop.mapreduce.Mapper ;

import org.apache.hadoop.mapreduce.Reducer ;

import org.apache.hadoop.mapreduce.JobContext ;

import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat ;
import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat ;
import org.apache.hadoop.mapreduce.Job ;

Do not use the old mapred API!

Mapper

// input key type, input value type, output key type,
output value type
public class WordCountMapper extends Mapper<LongWritable,
Text, , IntWritable> {

@Override

protected void map (LongWritable key, Text value,
Context context) throws IOException, InterruptedException

{

for (String word : value.toString().split ("\\s+"))

)
context.write (new (word), new IntWritable(l)):;

{

36

Reducer

// input key type, input value type, output key type,
output value type

public class WordCountReducer extends Reducer<Text,
IntWritable, , LongWritable> {

@Override

protected void reduce (Text key, Iterable<IntWritable>
values, Context context) throws IOException,
InterruptedException

long sum = 0;
for (IntWritable wvalue : values) {
sum += value.get ()

}

context.write (, new LongWritable (sum)) ;

37

Main

public class WordCountMain {

public static void main(String [] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser (conf,

args) .getRemainingArgs () ;
Job job = Job.getInstance(conf, "word count");
Jjob.setJarByClass (WordCountMain.class) ;
Jjob.setMapOutputKeyClass (Text.class) ;
Jjob.setMapOutputValueClass (IntWritable.class);
Jjob.setOutputKeyClass (Text.class);
job.setOutputValueClass (LongWritable.class);
Jjob.setMapperClass (WordCountMapper.class) ;
Jjob.setReducerClass (WordCountReducer.class) ;
Jjob.setInputFormatClass (TextInputFormat.class);
Job.setOutputFormatClass (TextOutputFormat.class) ;
FileInputFormat.addInputPath (job, new Path (otherArgs[0]));
FileOutputFormat.setOutputPath (job, new Path (otherArgs([1l]));

System.exit (Job.waitForCompletion(true) 2 0 : 1);

Writable example

public class StringAndInt implements WritableComparable<StringAndInt> ({
private IntWritable iw = new IntWritable();
private Text t = new Text();
public StringAndInt () {}
public StringAndInt (String s, int i) {
this.iw.set (1)
this.t.set (s);}
@Override
public void write (DataOutput out) throws IOException {
this.iw.write (out) ;
this.t.write (out);}
@Override
public void readFields (DatalInput in) throws IOException {
this.iw.readFields (in) ;
this.t.readFields (in) ;}
@Override
public int compareTo (StringAndInt o) {
int ¢l = this.t.compareTo(o.t);
if (cl !'= 0) {
return cl;
} else {
return this.iw.compareTo (o.iw);

b}

39

Terminology

MapReduce program = job
Jobs are submitted to the JobTracker

A job is divided in several tasks
— A Map is a task
— A Reduce is a task

Tasks are monitored by TaskTrackers

— A slow task is called a straggler

Job execution

S hadoop jar wordcount.jar org.myorg.WordCount inputPath(HDFS)
outputPath(HDFS)

Check parameters
— Is there an output directory ?
— Does it already exist ?
— Is there an input directory ?

Compute splits

The job (MapReduce code), its configuration and splits are copied
with a high replication

Create an object to follow the progress a the tasks is created by the
JobTracker

For each split, create a Map
Create default number of reducers

Tasktracker

* TaskTracker sends a periodic signal to the
JobTracker

— Show that the node still functions

— Tell whether the TaskTracker is ready to accept a new
task

A TaskTracker is responsible for a node
— Fixed number of slots for map tasks
— Fixed number of slots for reduce tasks
— Tasks can be from different jobs
 Each task runs on its own JVM
— Prevents a task crash to crash the TaskTracker as well

Job Progress

A Map task reports on its progress, i.e. amount of the
split processed

For a reduce task, 3 states

— COpy
— sort

— reduce
Report sent to the TaskTracker
Every 5 seconds, report forwarded to the JobTracker

User can see the JobTracker state through Web
interface

Progress

~ Cluster
About
Nodes

Applications
NEW

SUBMITTED

ACCEPTED
RUNNING
FINISHED
FAILED
KILLED

Scheduler
» Tools

Switch Theme

Cluster Metrics

Logged in as: dr.who

All Applications

Apps Apps Apps Apps Containers Memory Memory Memory Active Decommissioned Lost = Unhealthy Rebooted
Submitted Pending Running Completed Running Used Total Reserved Nodes Nodes Nodes Nodes Nodes
1 0 0 1 0 0KB 8 GB 0 KB 1 0 0 0 0
Show 20 v entries Search:

D Usei NamAe Feeeem StartTimf FinishTimf State ¢ FinalStatusA Progress ¢ Tracking Ul ¢
application_1348382062786_0001 hduser word default 23-Sep- 23-Sep- FINISHED SUCCEEDED History
count 2012 2012
12:06:36 12:07:20

Showing 1 to 1 of 1 entries

About Apache Hadoop

44

End of Job

* Output of each reducer written to a file

e Job tracker notifies the client and writes a3 Hadoop job_200709211549_0003 on localhost
report for the job e

Job Name: streamjob34453 . jar
Job File: /usr/local’hadoop-datastore/hadoop-hadoop/mapred/system/job 200709211549 0003/job.xml

14/10/28 11:54:25 INFO mapreduce.Job: Job Statws: Sucesded

job_1413131666506_0070 completed successfully rsmeau rist21 ooz cesr
Job Counters —

Launched map tasks=392

Failed/Killed

<] o, " . T D o) ino ino v e Cilles
Kind | % Complete | Num Tasks Pending Running Complete Killed Task Attembts

ma; 100.00% 3 0) 3 ((
Launched reduce tasks=88 o T T T) T T BT
Data-local map tasks=392 S R eSS AR S
Counter Map Reduce Total
[‘ b] Launched map tasks 0 0

Map-Reduce Framework Job Counters Launched reduce asks of o !
Map input records=622976332 e
Map output records=622952022 Map ouputrecords | 103909 0| 103,909
Reduce input groups=54858244 N o T

Reduce inpUt records=622952022 Reduce input groups 0| 85,095 85,095
Reduce output records=546559709 Reduce input records 0103909 | 103,909

Reduce output records 0| 85,095 85,095
[...]

Change priority from NORMAL to: VERY _HIGH HIGH LOW VERY LOW

45

Server failure during a job

* Bugin a task
— task JVM crashes = TaskTracker JVM notified
— task removed from its slot

* Task become unresponsive
— timeout after 10 minutes
— task removed from its slot

e Each task may be re-run up to N times (default
7) in case of crashes

HDFS : DISTRIBUTED FILE SYSTEM

Random vs Sequential disk access

 Example
— DB 100M users
— 100B/user
— Alter 1% records

e Random access
— Seek, read, write: 30mS
— 1M users =2 8h20

* Sequential access

— Read ALL Write ALL
— 2x 10GB @ 100MB/S = 3 minutes

— It is often faster to read all and write all sequentially

Distributed File System (HDFS)

e Goal
— Fault tolerance (redundancy)
— Performance (parallel access)

* Large files
— Sequential reads
— Sequential writes

* “in place” data processing

— Data is stored on the machines that process it

* Better usage of machines (no dedicated filer)
* Less network bottlenecks (better performance)

HDFS model

* Data organized in files and directories
- mimics a standard file system

* Files divided in blocks (default: 64MB) spread
on servers

 HDFS reports the data layout to the Map-

Reduce framework
- If possible, process data on the machines

where it is already stored

Fault tolerance

* File blocks replicated (default: 3) to tolerate
failures

* Placement according to different parameters
— Power supply
— Network equipment

— Diverse servers to increase the probability of
having a “close” copy

* Checksum of data to detect corrupter blocks
(also available in modern file systems)

Master/Worker architecture

A master, the NameNode
— Manage the space of file names
— Manages access rights
— Supervise operations on files, blocks ...

— Supervise the health of the file system (failures, load
balance...)

 Many (1000s) slaves, the DataNodes
— Store the data (blocks)
— Perform read and write operations

— Perform copies (replication, ordered by the
NameNode)

NameNode

* Stores the metadata of each file and block
(inode)
— File name, directory, blocks assotiated, position of
these blocks, number of replicas ...

* Keeps all in main memory (RAM)

— Limiting factor = number of files
— 60M objects in 16GB

DataNode

Manage and monitor the state of blocks
stored on the host file system (often Linux)

Directly accessed by the clients
— data never transit through the NameNode

Send heartbeats to the NameNode to show
that the server has not failed

Report to the NameNode if blocks are
corrupted

Writing a file

The client sends a query to the NameNode to create a new
file
The NameNode checks

— Client authorizations

— File system conflicts (existing file ...)

NameNode choses DataNodes to store file and replicas
— DataNodes “pipelined”

Blocks are allocated on these DataNodes
Stream of data sent to the first DataNode of the pipeline

Each DataNode forwards the data received to the next
DataNode in the pipeline

Reading a file

Client sends a request to the NameNode to read a file

NameNode checks the file exists and builds a list of DataNodes
containing the first blocks

For each block, NameNode sends the address of the DataNodes
hosting them

— List ordered wrt. Proximity to the client

Client connects to the closest DataNode containing the 15t block of
the file

Block read ends:

— Close connection to the DataNode

— New connection to the DataNode containing the next block
When all blocks are read:

— Query the NameNode to retrieve the following blocks

HDFS Structure

Namespace Metadata & Log

—
1 getLocations create

getFilelnfo NIBTRE e addBlock
2

3 blockReceiv

1
copy ad

read
write 2

2

B0 (] | | (B (] | | () (g —emicsle —

4

- l . write |write
= = 3

! gm

HDFS commands (directories)

* Create directory dir
S hadoop dfs -mkdir /dir

* List HDFS content
S hadoop dfs -Is

* Remove directory dir
S hadoop dfs -rmr /dir

HDFS commands (files)

* Copy local file toto.txt to HDFS dir/
S hadoop dfs -put toto.txt dir/toto.txt

* Copy HDFS file to local disk
S hadoop dfs -get dir/toto.txt ./

* Read file /dir/toto.txt
S hadoop dfs -cat /dir/toto.txt

e Remove file /dir/toto.txt
S hadoop dfs -rm /dir/toto.txt

