
NoSQL	Databases	

Vincent	Leroy	

1	



Database	

•  Large-scale	data	processing	
–  First	2	classes:	Hadoop,	Spark	
–  Perform	some	computaCon/transformaCon	over	a	full	
dataset	

–  Process	all	data	
•  SelecCve	query	
– Access	a	specific	part	of	the	dataset	
– Manipulate	only	data	needed	(1	record	among	
millions)	
à	Database	system	

2	



Lo
ad
	d
at
a	

W
rit
e	
re
su
lts
	

W
rit
e	
re
su
lts
	

Se
rv
e	

qu
er
ie
s	

Processing	/	Database	Link	

3	

Database	

Batch	Job	
(Hadoop,	Spark)	

Stream	Job	
(Spark,	Storm)	

ApplicaCon	1	 ApplicaCon	2	 ApplicaCon	3	

e.g.	senCment	
analysis	

e.g.	TwiSer	
trends	page	

In
se
rt
	

re
co
rd
s	



Different	types	of	databases	

•  So	far	we	used	HDFS	
– A	file	system	can	be	seen	as	a	very	basic	database	
– Directories	/	files	to	organize	data	
– Very	simple	queries	(file	system	path)	
– Very	good	scalability,	fault	tolerance	…	

•  Other	end	of	the	spectrum:	RelaConal	
Databases	
– SQL	query	language,	very	expressive	
– Limited	scalability	(generally	1	server)	

4	



Size	/	Complexity	

5	
Size	

Co
m
pl
ex
ity

	

Graph	DB	

RelaConal	
DB	 Document

DB	
Column	DB	

Key/Value	
DB	

Filesystem	



The	NoSQL	Jungle	

6	



Goal	of	these	slides	

•  Present	an	overview	of	the	NoSQL	landscape	
– Trade-off	in	choosing	a	soluCon	
– Theorems	and	principles	

•  Not	a	manual	to	learn	specific	DBs	
– Too	many	of	them	
– Not	that	complicated	(especially	K/V	stores)	
– Focus	on	Neo4j	graph	DB	in	lab	work	

7	



RelaConal	Databases:	SQL	

•  SQL	language	born	1974	
– SCll	used	by	most	data	processing	systems	
(including	Spark)	

à Learn	it!	Don’t	be	a	vicCm	of	the	NoSQL	hype!	

8	



RelaConal	Databases	model	
•  Data	organized	as	tables	

–  Row	=	record	
–  Column	=	aSribute	

•  RelaCons	between	tables	
–  Integrity	constraints	

9	

Select	Ctle	from	courses	natural	join	takes_courses	group	by	ClassID	having	count(*)	>	10		



ACID	properCes	
•  Atomicity	

–  TransacCon	are	all	or	nothing	(e.g.	when	adding	a	bi-direcConal	
friendship	relaCon,	it’s	added	both	ways	or	not	at	all)	

•  Consistency	
–  Only	valid	data	wriSen	(e.g.	cannot	say	a	student	takes	a	course	
that	is	not	in	the	courses	table)	

•  IsolaCon	
–  When	mulCple	transacCons	execute	simultaneously,	they	
appear	as	if	they	were	executed	sequenCally	(aka	serializability)	

•  Durability	
–  When	data	has	been	wriSen	and	validated,	it	is	permanent	(i.e.	
no	data	loss,	even	in	the	case	of	some	failures)	

10	

à	Easy	life	for	the	developer	



Why	NoSQL	then?	
•  What	does	NoSQL	mean?	

–  No	SQL	
–  New	SQL	
–  Not	only	SQL	…	

•  SQL	strong	properCes	limit	its	ability	to	scale	to	very	large	
datasets	
–  Relax	some	properCes	to	deal	with	larger	datasets	(ACID)	
–  But	at	what	cost?	

•  SQL	is	very	structured	(each	record	has	the	same	columns	
…),	Web	data	ooen	is	not	
–  Semi-structured	data	
–  Unstructured	data	
–  Graph	data	

11	



CAP	

•  Consistency	
– When	mulCple	operaCons	execute	simultaneously,	it	
appears	as	if	they	were	executed	one	aoer	the	other	
(A	of	ACID)	

•  Availability	
–  Every	request	received	by	a	non	failed	node	must	be	
answered	

•  ParCCon	tolerance	
–  System	must	respond	correctly	even	if	network	fails	

12	



CAP	theorem	

•  Impossible	to	have	3	simultaneously	
– Choose	CA,	CP,	or	AP	
–  In	a	centralized	system,	no	need	for	P	
•  RelaConal	databases	have	CA	

–  In	a	distributed	system,	you	cannot	ignore	P	
•  Distributed	databases	choose	CP	or	AP	

13	



CAP	intuiCon	

14	

A:	2	

B:	5	

A:	3	

B:	6	

A:	3	

ParCCon	

Client	
1	

Client	
2	

2	soluCons:	
•  Refuse	to	answer	in	case	of	parCCon	
•  Answer	but	risk	inconsistencies	



NoSQL	and	CAP	

15	



Weaker	consistency	models	
•  Eventual	consistency	

–  When	there	is	no	parCCon,	DB	is	consistent	
–  In	case	of	parCCon,	DB	can	return	stale	data	
–  Once	parCCon	is	gone,	there	is	a	Cme	limit	on	how	long	it	takes	
for	consistency	to	return	

•  Different	levels	of	consistency	(consistency	/	cost		trade-
off)	
–  Causal	consistency	
–  Read-your-writes	consistency	
–  Session	consistency	
–  Monotonic	read	consistency	
–  Monotonic	write	consistency	
à	Again,	many	choices,	so	many	different	systems	

16	



Vector	clocks	&	conflict	detecCon	

17	



Vector	clocks	&	conflict	detecCon	

18	



Vector	clocks	&	conflict	detecCon	

19	



Vector	clocks	&	conflict	detecCon	

20	



Vector	clocks	&	conflict	detecCon	

21	



Vector	clocks	&	conflict	detecCon	

22	



Vector	clocks	&	conflict	detecCon	

23	



Vector	clocks	&	conflict	detecCon	

24	



Vector	clocks	&	conflict	detecCon	

25	



Key/Value	store	

•  2	basic	operaCons,	similar	to	the	HashMap	
data	structure	
– Put(K,V)	
– Get(K)	

•  Ooen	used	for	caching	informaCon	in	memory	
– Facebook	uses	them	a	lot	

26	



Column/Tabular	DB	

•  Data	organized	as	rows	with	a	primary	key	
– Flexible	format,	each	row	can	have	different	fields	
in	a	column	family	

– Relies	on	HDFS	for	fault	tolerance	

27	



Document	DB	

•  Data	stored	as	documents	(ooen	JSON)	
•  Richer	than	K/V	stores	
–  Insert	
– Delete	
– Update	
– Find	
– AggregaCon	funcCons	(Map,	Reduce	…)	
–  Indexes	

	
28	



Document	DB	

29	



Document	DB	

30	



Graph	DB	

•  Represent	data	as	graphs	
– Nodes	/	relaConships	with	properCes	as	K/V	pairs	

31	



Graph	DB:	Neo4j	

•  Rich	data	format	
– Query	language	as	paSern	matching	
– Limited	scalability	
•  ReplicaCon	to	scale	reads,	writes	need	to	be	done	to	
every	replica	

32	


