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Abstract

Discrimination in machine learning often arises along multiple dimensions (a.k.a.
protected attributes); it is then desirable to ensure intersectional fairness—i.e.,
that no subgroup is discriminated against. It is known that ensuring marginal
fairness for every dimension independently is not sufficient in general. Due to
the exponential number of subgroups, however, directly measuring intersectional
fairness from data is impossible. In this paper, our primary goal is to understand
in detail the relationship between marginal and intersectional fairness through
statistical analysis. We first identify a set of sufficient conditions under which an
exact relationship can be obtained. Then, we prove bounds (easily computable
through marginal fairness and other meaningful statistical quantities) in high-
probability on intersectional fairness in the general case. Beyond their descriptive
value, we show that these theoretical bounds can be leveraged to derive a heuristic
improving the approximation and bounds of intersectional fairness by choosing,
in a relevant manner, protected attributes for which we describe intersectional
subgroups. Finally, we test the performance of our approximations and bounds on
real and synthetic data-sets.

1 Introduction
Research on fairness in machine learning has been very active in recent years, in particular on fair
classification under group fairness notions, see e.g., [16, 30, 34, 33, 7, 28]. Such notions define
demographic groups based on so-called protected attributes (e.g., gender, race, religion), and impose
that some statistical quantity be constant across the groups. For instance, demographic parity imposes
that the class-1 classification rate is the same for all groups, but other notions were defined such
as equal opportunity [16] or calibration by group [7]—see a survey in [4]. As exact fairness is too
constraining, one often measures unfairness, which roughly quantifies the distance to the fairness
constraint.

Most works on fair classification consider a single protected attribute and hence only two (or a small
number of) groups. Then, they use measures of unfairness to evaluate and penalize classifiers in
order make them more fair. This is making an implicit but very fundamental assumption that one can
estimate the unfairness measure from the data at hand. With only a few groups, this assumption is
indeed easily satisfied as there are sufficiently many data points for each group.

In many—if not most—real-world applications, there are multiple protected attributes (typically
10-20) along which discrimination is prohibited [1, 2]. It is then desirable to consider the strong
notion of intersectional fairness, which roughly specifies that no subgroup (defined by an arbitrary
combination of protected attributes) is unfavorably treated. In that case, however, estimating the
unfairness measure becomes very challenging: as the number of groups is exponentially large (e.g.,
210 for 10 binary protected attributes), it is very likely that the dataset has at least one subgroup
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for which there are very few (or zero) data point. A potential solution is to treat each protected
attribute separately through its marginal unfairness (which is easy to estimate); but it was observed
in several real-world and algorithmic examples that it is not sufficient to ensure intersectional fairness
[8, 5, 21, 22]. This raises the question: How to estimate intersectional fairness from data, and what
is its precise relation to marginal fairness? To date, only very few papers have tackled this issue.
[21, 22] adopt a definition of intersectional fairness that weights the unfairness of each group by
its size. This allows them to get large-samples generalization guarantees of empirical estimates
(hence solving the estimation issue), but then it does not protect minorities since it allows a very high
unfairness for tiny subgroups—which is contradictory to the intuitively desired behavior.

[17] makes a similar assumption by considering only subgroups above a minimum size, which eases
estimate generalization. [14] on the other hand uses the more natural definition of intersectional
fairness based on the worst treated group irrespective of its size; but they consider only a few protected
attributes, precisely to have enough data points on each subgroup to estimate intersectional unfairness.
[13] extends this work by proposing methods to interpolate for subgroups for which too few points
are available, based on Bayesian machine learning models. However, this work is empirical and
does not give any guarantee on the estimates obtained. In this paper, we also use the natural (strong)
definition of intersectional fairness but we take instead a purely statistical approach. We view the
protected attributes as random variables to understand intersectional fairness and how it related to
marginal fairness more finely.

Contributions: We identify sufficient conditions under which intersectional fairness can be exactly
derived from marginal densities, which clarifies when marginal unfairness is a good estimate of
intersectional unfairness. We prove probabilistic bounds on intersectional unfairness based on
marginal densities and independence measures of the protected attributes, that we show are easy
to estimate. We propose a method to improve the approximation of intersectional unfairness and
the theoretical bound based on grouping carefully some of the protected attributes together, which
we do through a heuristic by leveraging the independence measures exhibited in our bounds. We
perform experiments on real and synthetic datasets that illustrate the performance of our approach. In
particular, we show that grouping with our heuristic does improve the approximation of intersectional
unfairness. To the best of our knowledge, our work is the first work to exploit statistical information
to better understand and estimate intersectional (un)fairness. Our work is fairly general and can be
instantiated for a variety of standard fairness notions (demographic parity, equal opportunity, etc.).
For simplicity, we focus on discrete protected attributes and on classification, but most of the core
results can be extended to other cases.

Further Related Works: [31] proposes a unified framework to train a fair classifier under intersec-
tional fairness metrics, but without taking into account regimes with sparse group membership data.
Some works propose to audit the accuracy of fairness metrics in contexts other than intersectionality,
when there are missing data [35] or when there are unlabeled examples [18]. Others tackle the
problem of intersectionality beyond group fairness, e.g., [32] considers causal intersectional fairness.
Finally there has been some interest [24, 10] in a different formulation of intersectional group fairness
as a multi-objective optimization problem where each objective is the discrimination faced by a given
protected group. Another interesting approach to fairness is individual fairness developed in [12],
however this is quite different from group fairness metrics on which we focus on and our techniques
do not apply.

2 Setting and Models
2.1 Basic Setting
Notational convention: Wherever useful, for any two random variables V andW , we will use the short-
hand pV (v)=Pr(V =v), pV,W (v, w)=Pr(V =v,W =w) and pV |W (v | w)=Pr(V =v |W =w).

Consider a multi-class classification task. A given individual is described by a tuple of random
variables (X,A, Y ) drawn according to a distribution D where X is the features vector, Y is the label
with values in Y , and A = (A1, ..., Ad) is a d-tuple of protected attributes. The only variable used
to make a prediction is X and the only variable to measure unfairness is A, but otherwise there are
no constraints and A can be a part of X . We denote the support of X , Y , A and Ak for 1 ≤ k ≤ d,
by X , Y , A and Ak respectively. We assume that A is finite (hence discrete). For a deterministic
classifier h, Ŷ = h(X) is the predicted class for a random individual. The classifier h is fixed, as we
are interested in measuring its fairness and not finding a fair classifier.
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To compare the discrimination between groups, we consider a second random variable A′ such that
(A′ | Ŷ ) is independent and identically distributed (i.i.d.) to (A | Ŷ ). Some authors look at the
difference in the treatment of protected groups as a ratio [14], and some others as a difference [21].
Here we choose to study discrimination in terms of ratio. We further apply a logarithm to symmetrize
the discrimination measure between two protected groups and for ease of computation. We will
consider Statistical Parity for simplicity of exposition, but other group fairness metrics can be either
derived directly or adapted using the methods developed in this paper (see Appendix A.1). We define
our measure of unfairness as follows:
Definition 2.1. For a distribution D and a classifier h, we define the intersectional unfairness and the
kth protected attribute marginal unfairness as:

u∗ = sup
(y,a,a′)∈Y×A2

u(y, a, a′), and u∗k = sup
(y,ak,a′

k)∈Y×A2
k

uk(y, ak, a
′
k) (1)

with u(y, a, a′)=
∣∣∣ log( Pr(Ŷ =y |A=a)

Pr(Ŷ =y |A′=a′)

)∣∣∣, uk(y, ak, a′k)= ∣∣∣ log(Pr(Ŷ =y |Ak=ak)

Pr(Ŷ =y |A′
k=a

′
k)

)∣∣∣. (2)

One could think that if the marginal unfairness of each protected attribute is smaller than some ϵ > 0,
then the overall unfairness is smaller than ϵ; measuring uM=supk u

∗
k corresponds to this idea. As

stated in the introduction this is not sufficient to describe unfairness and we can still have u∗>uM.
We can rewrite (1) as u∗=supY log(supA pŶ |A/ infA pŶ |A), and similarly for u∗k. This means that
to measure unfairness we only need to analyze the function pŶ |A.

2.2 Estimation of Unfairness

If we want to estimate unfairness, the most straightforward approach is to estimate the probability
mass function pA,Ŷ and then to compute the unfairness over these estimated distributions. The main
difficulty in estimating the unfairness is estimating inf pŶ |A, as we can upper bound the sup by 1,
but we cannot easily lower bound the inf . For a data-set of n samples and d protected attributes, we
denote for (a, y) ∈ A×Y the counts by group and prediction asNa,y=

∑n
i=1 1[(A

(i), Ŷ (i))=(a, y)]

where (A(i), Ŷ (i)) is the i-th i.i.d. realization of (A, Ŷ ). The empirical probability is then defined as
P̂r(Ŷ =y,A=a)=Na,y/n. [14] shows in Theorem VIII.3 that the error made by using empirical
estimates is decreasing in Na, which means that there needs to be sufficient data for each protected
group to estimate u∗. When there are many protected groups the probability that at least one group
receives no sample is high, and in this case there is at least one a in A for which the empirical
probability P̂r(Ŷ = y | A= a) is undefined, hence the inf and sup cannot be computed. [13] and
[14] alleviate this issue of 0-counts by using a Dirichlet prior of uniform parameter α > 0. This yield
the Bayesian estimates (Na,y + α)/(n+ |A||Y|α), that are then used to compute the estimator uB .
They also propose other methods to estimate pŶ |A which empirically performs better, but without
guarantees; whereas uB has the nice property that uB is a consistent estimator of u∗. This is because
of the consistency of the Bayesian probability estimates and by applying the Continuous Mapping
Theorem for max and min which are continuous. Note that the empirical estimator (with α = 0 is
also consistent, but has infinite bias.

Nonetheless, uB has the drawback that for a low amount of samples and when the number of protected
groups is high, it is almost determined deterministically by the parameter α and cannot be trusted. If
Na=0 for a protected group a, the estimated distribution is uniform on Ŷ | A=a and this group
does not affect the computation of the sup and inf . Hence if the most discriminated group is among
the undiscovered one, we risk making an important error on the estimation. When Na increases, we
gain more information on the distribution of Ŷ | A. However, when Na is still low for all groups, the
estimated distribution of the inf of Ŷ | A=a is almost entirely determined by the prior parameter α.

2.3 Probabilistic Unfairness

When the number of protected subgroups grows arbitrarily large, it may be useless to try to guarantee
fairness for every single one of them, regardless on how many people this truly affects. Should a
decision maker sacrifice any potential predictive performance in order to guarantee fairness? It could
be argued that an algorithm which discriminates 1 person among a 1000 can be described as fair to
an extent. We may even be able to directly compensate the small amount of persons discriminated
against if possible. Let us consider another example: if a company has clients on which it leverages
machine learning predictions to make decisions, it would seem very limiting to guarantee fairness
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for clients among specific protected groups for whom we will almost never deal with. Nevertheless,
if the underlying clients distribution changes, our decision making process should also reflect this
change in terms of fairness. This motivates looking at unfairness probabilistically in (Ŷ , A,A′). To
do that we define U =u(Ŷ , A,A′) the random variable which corresponds to randomly choosing
a prediction, and then independently selecting two protected groups according to pA|Ŷ to compare
them. We now define our notion of probabilistic unfairness:
Definition 2.2. For ϵ ≥ 0 and δ ∈ [0, 1], we say that classifier h over distributionD is (ϵ, δ)-probably
intersectionally fair if Pr(U > ϵ) ≤ δ.
It can be seen for some given ϵ as a statement on the expected size of the population that is not
being discriminated too much against. Probable intersectional fairness corresponds to searching for
quantiles of U . We define the δ-probabilistic unfairness as ϵ∗(δ)=min{ϵ ∈ R | Pr(U > ϵ) ≤ δ}. It
is the (1− δ)-quantile of U . We also know by definition that any classifiers over any distributions
is (u∗, 0)-probably intersectionally fair, as we have U ≤ u∗ with probability 1. This shows that
probabilistic fairness is a relaxed version of the hard intersectional unfairness as limδ→0 ϵ

∗(δ)=u∗,
and thus can be made arbitrarily close to intersectional fairness. In order to give more intuition on what
this measure of fairness represents, we will briefly only for this paragraph consider discrimination of
protected groups compared to the predictions distribution pŶ instead of between groups, meaning
that we now measure | log(pŶ |A/pŶ )|. Suppose that a prediction model will be deployed over a
population of n individuals. Then if the classifier is (ϵ, δ)-probably intersectionally fair, this means
that EA,Ŷ [

∑n
i=1 1[u(Ŷ

(i), A(i)) > ϵ]] the expected number of people that faces a discrimination
more than ϵ is less than nδ. This allows us to measure and control the size of the population that may
face a difference in treatment that would be deemed too high. It corresponds to the notion of fairness
we were searching for. For more comparisons between these different notions, see Appendix A.3.

As a remark, looking at E[U ], it can serve as a lower bound of u∗ because E[U ] =∑
y,a,a′ pŶ ,A,A′(y, a, a′)u(y, a, a′) ≤ u∗. This represents the average discrimination in a popu-

lation between two protected groups. This is weaker than the notion presented above and is only
mentioned in passing.

Probabilistic fairness can be especially relevant in the context where A are continuous sensitive
attributes. Indeed, even for a very basic multivariate normal distribution on A, we will end up with
u∗=∞ which is unhelpful. Yet by considering this notion of probabilistic fairness we end up with
finite (hence comparable) measures of unfairness where the discriminated population size can be
explicitly controlled; see Appendix A.4 for some examples. All in all, this notion of probabilistic
unfairness, beyond its main interest of being a relaxed version of intersectional unfairness, could be
in itself helpful for decision makers.

3 Measures of Independence and Theoretical Bounds
We now focus on providing valid (ϵ, δ) couples for probable intersectional fairness. First note that
while the intersectional unfairness u∗ is hard to estimate, it is much easier to estimate the marginal
unfairness uM. The work done by [22] in the different setting of weighted unfairness, however, shows
through experiments that across multiple classifiers and data-sets, u∗ and uM can be uncorrelated,
correlated, or even equal. Building on this observation, we would like to approach u∗ using marginal
quantities estimable for reasonably-sized data-sets.

3.1 Intersectional Unfairness with Independence

Since the intersectional unfairness takes into account the interactions between all the protected
attributes Ak, one could guess that if the Ak are mutually independent, this implies that u∗ is close to
uM. Our first result is not far from this intuition, but we also need to take into account the influence
from the classifier h. Indeed, even if the protected attributes are independent, since the classifier
makes predictions based on X which may encode redundant information from some Ak, there can
be interaction between those protected attributes through the classifier. See Appendix B.1 for a
counter example with the independence of the Ak only but no clear relationship between marginal
and intersectional fairness.
Proposition 3.1. If the protected attributes Ak are mutually independent and mutually independent
conditionally on Ŷ , then

u∗ = sup
y∈Y

d∑
k=1

sup
(ak,a′

k)∈A2
k

uk(y, ak, a
′
k) ≤

d∑
k=1

u∗k. (3)
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Sketch of proof. The main idea is to decompose pA and pA|Ŷ as their products of marginals using
the independence assumptions, and using the fact that the sup taken over a product of functions with
independent variables is distributed over the product. The inequality is obtained because the sup of a
sum is smaller than the sum of the sup. See proof in Appendix B.2.
This theorem gives us a first sense on how intersectional unfairness relates with marginal unfairness
in some contexts. This shows us that if the independence conditions are fulfilled, then u∗ becomes
easy to estimate. What we provide here are conditions and a equation to derive a direct relationship
between the intersectional unfairness and the marginal unfairness of each Ak. These are unfortunately
too strong conditions to actually expect and are almost never randomly satisfied, but they help us give
insight into the relationship between marginal and intersectional fairness. It also drives the analysis
conducted in the next sub-section. We would like to relax the independence criteria while still using
marginal information from the problem.

3.2 Bounds on Probable Intersectional Fairness

In order to bound the probable intersectional unfairness and relate it with the strictly independent
case, we want to use some measure of independence. We want to bound in probability the joint
probability density Pr(A=a) with the product of its marginals

∏d
k=1 Pr(Ak=ak). We will use one

of the possible multivariable generalization of Mutual Information known as Total Correlation [29]:

C(A)=EA

[
log
( pA(A)∏d

k=1 pAk
(Ak)

)]
=
∑
a∈A

pA(a)log
( pA(a)∏d

k=1 pAk
(ak)

)
=
( d∑
k=1

H(Ak)
)
−H(A), (4)

where H(A) is the Shannon Entropy of A. Similarly we define the conditional total correlation as
C(A | Ŷ )=EA,Ŷ [log(pA|Ŷ (A | Ŷ )/

∏
k pAk|Ŷ (Ak | Ŷ ))] = (

∑d
k=1H(Ak | Ŷ )) −H(A | Ŷ ) where

H(A | Ŷ ) is the conditional entropy of A given Ŷ . Note that both can also be written in terms of a KL
or expectation in Ŷ over conditional KL divergence, which means that C(A)≥0 and C(A | Ŷ )≥0.
From these measures of independence, we intuitively define the following two random variables,
L= log(pA(A)/

∏
k pAk

(Ak)) and Ly = log(pA|Ŷ (A | Ŷ )/
∏

k pAk|Ŷ (Ak | Ŷ )). By definition we

have that E[L]=C(A) and E[Ly]=C(A | Ŷ ). We denote σ and σy the standard deviation of these
two variables. We have the following property:

⊥⊥d
k=1 Ak ⇔ C(A) = 0⇔ σ = 0 and ⊥⊥d

k=1 Ak|Ŷ ⇔ C(A | Ŷ ) = 0⇔ σy = 0. (5)
The equivalence between independence and C(A)=0 comes from rewriting C(A) as a KL and the
fact that KL(P∥Q)=0 if and only if P =Q almost everywhere. For C(A | Ŷ )=Ey[KL(pA|Ŷ=y∥ ⊗
pAi|Ŷ=y)] we also use that the expectation of a positive random variable is 0 if and only the variable
is 0 almost everywhere. When σ=0 then L=c is a constant which means that pA=

∏
k pAk

ec, and
using that the probabilities must sum to 1 we have ec=1 hence L=c=0. The same arguments apply
for σy . We denote I(V,W )=H(V )−H(V |W ) the mutual information between a variable V and
W . With these definitions, we can now derive the following theorem which bounds the probable
intersectional fairness with independence measures and functions of marginal densities:
Theorem 3.2. For δ ∈ (0, 1], any classifier h over a distribution D is (ϵ1, δ) and (ϵ2, δ)-probably
intersectionally fair with

ϵ1=2
√
2
s∗√
δ
+sup

y∈Y

{ d∑
k=1

sup
(ak,a′

k)∈A2
k

uk(y, ak, a
′
k)
}

(6)

ϵ2=
√
2
s∗√
δ
+γ+sup

y∈Y

{ d∑
k=1

log
( p

1−1/d

Ŷ
(y)

infak∈Ak
pŶ |Ak

(y |ak)

)}
(7)

where s∗ = (σ2/3 + σ2/3
y )3/2 and γ=C(A)− C(A | Ŷ )=

( d∑
k=1

I(Ak, Ŷ )
)
− I(A, Ŷ ). (8)

Sketch of proof. We apply Chebyshev’s inequality to L and Ly for some introduced parameters α to
bound the tails of these random variables, while making sure that overall the probability bounds stay
larger than 1− δ. We can then compute inequalities on pA and pA|Ŷ , and take the inf for a and sup

for α. This leads to a constrained minimization problem that can be solved, which yields s∗. The full
proof is in Appendix B.3. For ϵ2 we additionally use that pŶ |A ≤ 1 as Y is discrete.
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We observe that both ϵ1 and ϵ2 are composed of one term in s∗ related with the δ-confidence, and
a quantity with marginal information. Aditionnaly ϵ2 also includes a term in γ that corresponds to
some form of mutual information correction. We can control the confidence in this bound with the
parameter δ. Because s∗ =0 if and only if σ= σy =0 and combined with (5) we can see that s∗
somewhat measures how far we are from the conditions of Proposition 3.1. With ϵ1 we see that when
s∗ goes to zero, we recover exactly the conditions of Proposition 3.1.

In order to prove Theorem 3.2, we used Chebyshev’s inequality. We can derive a similar proof for
other concentration inequalities, specifically with Chernoff bounds through the estimation of the
moment generating function, which often leads to tighter bounds. However this leads to harder
quantities to estimate in addition to having to solve a non-convex optimization problem, see Appendix
B.4.

To conclude this section we provide additional intuition on the relationship between marginal and
intersectional fairness. For this we temporarily change our definition of unfairness for this paragraph
only: suppose we are now only interested in the unfairness regarding one outcome y ∈ Y , say y = 1,
and let us redefine our unfairness, probabilistic unfairness, γ and s∗ accordingly (see in Appendix
(15)). We can then derive the following corollary from the proof of the above Theorem:
Corollary 3.3. Denoting (Ω, T ,Pr) the probability space on which (A,A′) is defined, there exists
an event F so that for f(a) =

∏d
k=1 pŶ=y|Ak

(a)/pd
Ŷ=y

we have

sup
ω∈F

pŶ=y|A(A(ω)) ∈ [pŶ (y)e
−2

√
2s∗

√
δ

−γ
sup
ω∈F

f(A)(ω), pŶ (y)e
2
√

2s∗
√

δ
−γ

sup
ω∈F

f(A(ω))], (9)

inf
ω∈F

pŶ=y|A(A(ω)) ∈ [pŶ (y)e
−2

√
2s∗

√
δ

−γ
inf
ω∈F

f(A)(ω), pŶ (y)e
2
√

2s∗
√

δ
−γ

inf
ω∈F

f(A(ω))], (10)

and Pr(F | Ŷ = y) ≥ 1− δ, (11)
and the same inequalities hold for supω∈F pŶ=y|A(A

′)(ω) for the same event F .

The proof can be found in Appendix B.3. This means that there is a fraction of the relevant
pairs population of size bigger than 1− δ, for which we can give intervals for the extreme values of
pŶ=y|AA and pŶ=y|AA

′ over this fraction F . These intervals are centered and reduce around a unique
quantity as s∗ goes to 0. We also have that | log(supω∈F pŶ=y|A(A)(ω)/ infω∈F pŶ=y|A(A)(ω))|
goes to u∗ and that | log(supω∈F f(A)(ω)/ infω∈F f(A)(ω))| goes toward the quantity derived in
the corresponding Proposition 3.1 as δ goes to 0. This tells us that in a way we approach the quantity
derived in Proposition 3.1 when s∗ and δ go to 0.

3.3 Estimation of the measures of independence

Theorem 3.2 trades the precise estimation of u∗ with an upper bound, but with much easier quantities
to estimate. More specifically, as they are information measures, we can leverage the extensive
literature on statistical estimators and entropy estimation. We can intuitively see that the estimation
of s∗ and γ will be easier to handle because even the estimation with the empirical distribution p̂A,Ŷ

is always well defined, and is a Maximum Likelihood Estimator (MLE) as continuous functions
of MLE. They are well defined because s∗ and γ are functions of entropies and of the quantities
Q(P ) =

∑
i pi log(pi)

2 for a probability distribution P , which is finite event for pi = 0 because
x 7→ x log(x) and x 7→ x log(x)2 are continuous at 0. Contrarily to uB we do not have to use any
prior to obtain a well defined estimator. In addition, using the delta method on the sum of entropies,
for which the MLE is asymptotically normal (See [27] 3.1), shows that γ̂ is asymptotically normal.
For more information on the estimation of entropy, mutual information or total correlation we defer
to [27, 26, 3, 6, 15] to name but a few. Moreover even with the very simple MLE, we can obtain L2

error upper-bounds for H(P ) in O(log(|P |)2/n) where |P | is the number of outcomes for a discrete
distribution P [20]. This bound depends only on the number of outcomes (supposed known), and not
the actual distribution. Using the same tools, we derive a rough error bound for Q(P ):
Proposition 3.4.

E[(Q(P )−Q(P̂ ))2] = O
( log4(n)

n

)
. (12)

Sketch of proof. We apply the methods described in [20] that bounds the bias using approximation
theory for Bernstein polynomials and bounds the variance using the Efron-Stein inequality. See proof
in Appendix B.6.
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More efficient estimators can be created using methods of [19], nevertheless the main interest of this
proposition is to show that these quantities have an error rate depending on the number of samples n,
and not the number of samples per group Na, which is much better.

Beyond the practical use of these inequalities and approximations, these theorems also show one
crucial idea: we can relate intersectional and marginal unfairness with the help of information on the
independence of the protected attributes.

4 Refined approximations and inequalities
In the previous section, we have derived conditions for marginal unfairness to directly relate to u∗,
and bounds on probable intersectional fairness. We now would like to propose an approximation of
u∗ using similar ideas. Looking at (6), (3), and indirectly through Corollary 3.3 it seems natural to
propose as one possible approximation of u∗ the following quantity:

uI = sup
y∈Y

d∑
k=1

sup
(ak,a′

k)∈A2
k

uk(y, ak, a
′
k). (13)

For the rest of the article, we thus now only focus on s∗ and uI . Compared with uB the estimator
with Bayesian prior, it does not depend on a prior parameter, and is usually well defined as we only
need Nai,y the number of samples per ai and y to be strictly positive instead of all Na,y. However
this estimator of u∗ is not consistent. We will show that the previous bounds can be improved and
that we can make our estimator consistent by gradually grouping together the protected attributes as
the number of samples increases.

4.1 Grouping protected Attributes together

Until now, we have always decomposed the protected attributes A on their marginals Ai. However it
may be that we have more than just marginal information available. Take the example of 4 protected
attributesA=(A1, A2, A3, A4). For a set t ⊆ {1, 2, 3, 4}, we defineAt=(Ak)k∈t. We may not have
enough data to compute the full intersectional unfairness, but it may be possible to compute it for the
grouped protected attributes A{1,2}=(A1, A2) and A{3,4}. We can use the same decomposition as
we did before on the new marginals attributes (which corresponds to flattening A1 and A2 together)
with support A{1,2}=A1 ×A2 and A{3,4}=A3 ×A4.

More generally, let q be a partition of {1, ..., d}=[d]. For a partition q, we denote A(q)=(At)t∈q.
This is only a different way to group together the marginal attribute, and is the same as A. Whenever
quantities are changed according to some partition q, it will be indicated with (q). For each of the
new marginal attributes defined by a set t of q, the new marginal unfairness u∗t corresponds to the
intersectional unfairness of the (Ak)k∈t. If the At are independent, and independent conditionally
on Ŷ , we can apply Proposition 3.1 and obtain directly u∗ through the newly defined marginals.
If we relax the independence conditions, the same arguments of the previous section still apply,
and we can look at the bounds and approximations defined by these new marginal densities. We
denote the new approximation with partition q by u(q)I = supy∈Y

∑
t∈q sup(at,a′

t)∈A2
t
ut(y, at, a

′
t)

where we are using the new marginals defined by q. If we use the partition q of singletons then
u
(q)
I = uI , and if we use the trivial partition then u(q)I = u∗. The constraints of independence for

these new marginals should be more feasible than the original marginals, hence it is possible that
the At fulfill the independence conditions, even if the Ak do not (the trivial partition is such an
example). If we have enough data to compute the marginal densities derived from q and the At fulfill
the independence conditions, we can then compute u∗ through the partition q. Of course most of the
time the independence conditions are not satisfied satisfied for a partition q. Nonetheless because s∗
measures how far we are from the independence conditions, we can more carefully select a partition
among those for which we can compute the new marginal densities.

4.2 Efficient Partition Selection

Let Q be the set of all feasible partitions q, that is Q = {q ∈ P([d]) | ∀t ∈ q,∀(at, y) ∈ At ×
Y, Nat,y > 0} with P([d]) the set of all partitions of [d]. This set represents the set of partitions for
which we can compute the newly defined marginals without having to use a prior parameter. Note
that Q is a random set that converges to P([d]) almost surely as the number of samples n increases.
If q ∈ Q, then any partitions q′ finer (meaning that any element of q′ is a subset of an element of
q) than q is in Q as well. We will say that q can be merged further if there exists a partition q′ ∈ Q

7



so that q is finer than q′. Note that the choice of a partition q does not change the value of u∗ but
only that of u(q)I . We therefore want to find a good feasible partition q in Q so that we can expect
heuristically |u(q)I − u∗| to be the lowest among the partitions. There are two criteria that should help
us decide which partition q ∈ Q to choose from.

Algorithm 1 Greedy Partition Finder

input: Protected attributes data and occurrences of Ŷ
require: The partition of singletons is feasible
q∗← the partition of singletons
repeat
M={{t1∪t2}∪q∗\({t1}∪{t2}), (t1, t2)∈q∗2, t1 ̸= t2}
s∗min ← +∞
for q inM do

if q is feasible and s∗(q) < s∗min then
(s∗min, q

∗)← (s∗(q), q)
end if

end for
untilM = ∅ or s∗min =∞ (Nothing possible to merge)
return: q∗

If a partition q′ is coarser than q
(which means that q is finer than q′),
then reasonably the approximation is
better with q′ than q. The reasoning
is that by taking coarser partitions,
we are taking more interactions be-
tween the protected attributes into ac-
count. For example the coarsest parti-
tion which is the whole set gives us the
intersectional unfairness as mentioned
earlier. However because the ‘finer-
than’ relationship is only a partial or-
der, we are not able to choose between
any two sets. Because Theorem 3.2
seems to hint that there is a relation-
ship between the error |u(q)I −u∗|, and
the distance to the independence con-
ditions s∗, the second criterion will
be to select the partitions q with the

smallest s∗(q) defined as s∗ but taking the marginals in q. These two criteria are closely linked.
Selecting coarser partitions does tend to yield partitions with smaller s∗, but not always. We give
some details on relationship between s∗(q) of a partition q compared to a coarser one in Appendix
C.2. More crucially, finding a good partition with a small s∗(q) will also improve our inequalities
as they are a function of s∗(q) which decreases on average as shown in Figure 5 as the number of
sample grows (and as the partitions get coarser).

In principle, finding the best partition according to our criteria requires enumerating all feasible
partitions which is computationally intractable. Instead we propose a greedy heuristic that we describe
in Algorithm 1. We start from the finest partition (the partition of singletons), look at all the feasible
partitions (with enough data) that can be obtained from merging two elements of the current partition,
select the one with the smallest s∗, and repeat until there are no coarser partitions with enough data.
Note that when we want to verify that there is enough data available, we may need to do it multiple
times for the same subset of protected attributes. This is an expensive call so it is more efficient to do
memoization and remember if there is enough data available for a given subset once encountered,
which we do using a hash table to reduce the lookup time. We denote this partition q∗. We have the
following property with the proof in Appendix C.1:

Proposition 4.1. The estimator u(q
∗)

I is a consistent estimator of u∗.

This proposition shows that u(q
∗)

I is relevant in estimating u∗, while not needing to use a Bayesian
prior with parameters that may overwhelmingly affect the estimation. Note that instead of using Q
which ensures that Nat,y > 0, we can instead use Qτ for τ ∈ N which ensures that for any q ∈ Qτ ,
Nat,y > τ for t ∈ q.

5 Experiments
In this section, we present experimental results that show how our inequalities and approximations
perform on real and synthetic data-sets, and compare their estimation error rates as the number of
samples grow. All the code used in our experiments can be found in the supplementary material or at
https://github.com/mathieu-molina/BoundApproxInterMargFairness.

5.1 Data-sets and processing

In order to compare how well uB and uI perform as estimators on data on datasets with a high number
of protected attributes, we need to compute u∗ which is as discussed above inherently difficult. We
will always measure the unfairness with respects to the empirical distribution of the dataset. For this
empirical distribution to yield a well defined fairness measure, we need that Na,y > 0 for all a and y.
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This means that if we want to take into account a high number of sensitive attributes, we have to pick
a very large dataset.

We used US Census data from 1990 [11] which contains n=2, 458, 285 samples, and for which we
identified many potential protected attributes. We then train a Random Forest binary classifier on a
poverty binary label, where we weight the labels differently so as to obtain about the same number
of predictions for each outcome. However we still do not have Na,y > 0 on the whole dataset. To
alleviate this issue, we will consider subsets of the protected attributes for which this is true, and we
will measure fairness with respect to these subsets. We obtain about 100 different subsets with d = 8
protected attributes, that we denote as Di which is the original dataset where we only kept the i-th
subset of protected attributes and the predictions Ŷ . Each of these subsets yield different values of
u∗ and s∗. We pick 12 (for computational reasons) different Di with various values of u∗ and s∗.
Some examples of the final protected attributes include sex, not speaking English at home, being
overweight, being Hispanic, and others. We will always take δ=0.1 when relevant.

We also conduct experiments on synthetic data. We generate (A, Ŷ ) probability distributions from a
Dirichlet distribution, thus we can directly compute u∗ without dealing with a very large dataset. We
take d=10. This synthetic data is one of the worst case for the approximation of u∗ with uI , as the
marginal distributions are a sum of 2d−1 i.i.d. random variables that all converges to 1/2 as d grows.
We therefore will not plot uI for the synthetic data (it is close to 0). Nonetheless, this synthetic data
remains useful in order to compare the error rates between uB and ŝ∗. We denote by Pi a generated
probability distribution. We generate 12 of them.

5.2 Experiments Results

We first want to compare the convergence rate of uB , s∗ and uI to their asymptotic value. To do
that, and because they can take different values, we compute for each estimator T̂n that converges in
probability to T the relative expected L2 error rate Lr

2(T̂n)=E[(T̂n − T )2/T 2]. We fix a number
of available samples n from 100 to 2, 000, and we sample without replacement from the datasets.
From these available samples, we compute all our estimators. We denote by ûI the estimator of uI
computed with the empirical marginal densities for n samples. In order to compute Lr

2, for each
subset and each sample size n, we sample from Di and Pi 20 times for each fixed number of samples
n.

We see in Figure 1 on the left-most plot, that ûI is reasonably close to u∗ on average. Still the gap
between ϵ∗ and ϵ1 is quite big. Other bounds such as ϵ2 or with other concentration inequalities are
generally a bit more efficient, but we focus here on comparing the error rates between s∗ and uB , and
on how uI performs. The other two plots look at the Lr

2 for the various estimators, with the middle
one being with the real datasets Di, and the right on the synthetic datasets Pi. We can see that ŝ∗ and
ûI converges much faster than uB . Moreover, it seems that the difference in error rate will only grow
bigger as d increases, as there is a bigger gap for Pi. We can also see that uB is unreliable, because
the error rate varies a lot depending on α, and can even increase. This is because the parameter α
dominates the computation of uB as discussed earlier.
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Figure 1: On the left-most plot, each point represents one real dataset Di, and we compare ϵ1, ϵ∗,
and uI with u∗. The dotted line corresponds to the equation x = y for reference. The middle plot
describes the average over the Di of Lr

2 as n increases for ûI , ŝ∗, and ũ∗. uB is computed for
multiple values of α. The right-most plot is similar, but uses the synthetic datasets Pi.

We now conduct similar experiments, but this time using partitions. We can see in the middle plot of
Figure 2 that û(q

∗)
I performs better. The choice of τ the count threshold for grouping always gives

reasonable approximations, with τ = 1 being close to uB , and τ big makes it close to uI . Most
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importantly, the apparent good error rate of uB is merely an artifact of the current range of u∗ being
above the starting values of uB for these α. It is clear that uB is unreliable by looking at the left
plot in Figure 2: the estimation with uB at n = 2000 for different values of α varies very little when
u∗ varies (it is almost not a function of u∗). This means that uB depends very little on the data
for low amount of samples. Even if it is not perfect, u(q

∗)
I still has better performance and is more

coherent. We note that the approximation performs well comparatively only when d is high, and
considering more sensitive attributes should make an even bigger difference. These results combined
with Proposition 4.1 show that u(q

∗)
I is a relevant estimator of u∗ with scarce data and high number

of protected attributes. Concerning s∗(q∗) the right-most plot shows that while it is not completely
monotone, s∗(q∗) does decreases on average when using partitions as the number of sample increases.
The upper bound will become tighter as n grows, which will make bigger groupings of protected
attributes possible.
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Figure 2: Each point of the same color and shape represent the estimation for one dataset Di. The
estimations are computed for n = 2000. The middle plot is the same as above, but with û(q

∗)
I this

time. The rightmost plot is the average evolution of s∗(q∗) for τ = 10 as n increases.

6 Discussion
In this work, we presented new methods to approximate and to bound (in high probability) a strong
intersectional unfairness measure, based on statistical information computable from a reasonable
dataset. Our results highlight the key role of independence of the protected attributes conditionally
to the classifier, and propose to approach it via a smart grouping of some attributes—which our
theoretical bound allows us to compute via an efficient heuristic.

Our experiments show that the approximations proposed here perform reasonably well for data-sets
with a high number of protected attributes, but that our bounds are not very effective. However their
main interest is that it gives insight into the link between marginal and intersectional fairness, which
was the main goal of this work. It also helps us derive the proposed approximation. We expect
that more effective bounds could be derived for our notion of probabilistic fairness, for instance by
making additional assumptions on the distribution, but presumably without an explicit dependence on
independence measures and marginal densities, making the link between marginal and intersectional
fairness harder to see.

In order to train fair models using the proposed approximations or bounds of this paper, we can use
soft counts to compute the empirical densities (based on the classifier score for instance) as suggested
in [14]. This makes the approximations and bounds differentiable, and ensure that we can apply
gradient based methods so as to solve a constrained or penalized optimization problem using these
quantities.

We hope that our approach will enable the development of improved bounds, raise interest in
the proposed notion of probabilistic unfairness which we think is crucial to the development of
fair algorithms, as well as the use of our approximations to penalize classifiers in order to train
intersectionally fair classifiers.
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A Additional elements on Measures of Fairness

A.1 Generalization to other measures of fairness

Throughout the whole paper, we used a specific measure of fairness for simplicity. Nevertheless, the
same arguments apply to a broader set of fairness measures, by modifying u∗.

To define u∗, we decided to take the log of a ratio. We note that when taking the sup over all possibles
a and a′ in A, supA2 u(1, ·, ·) ≤ ϵ is equivalent to the definition in [14], that is to say:

∀(a, a′) ∈ A2, e−ϵ ≤ Pr(Ŷ = 1 | A = a)

Pr(Ŷ = 1 | A = a′)
≤ eϵ. (14)

However if we want to define a measure of unfairness between two protected groups, it is reasonable
for it to be symmetric in the groups considered. We make it so by applying log and an absolute value
function to the above middle quantity. Other distances and pseudo distances can also be chosen, such
as |Pr(Ŷ = 1 | A = a) − Pr(Ŷ = 1 | A = a′)|. It is also symmetric, but may be less useful in
comparing models with many protected attributes that are not designed to be fair, as this measure will
be close to 1 most of the time, making the comparison less precise between two different models.

We can also modify U and the definition of probabilistic fairness accordingly to obtain other desirable
measures of unfairness. Say that we are only interest in the unfairness related to the outcome Ŷ = 1.
Taking U ′ = u(1, A,A′) and Pr(U ′ > ϵ | Ŷ = 1) ≤ δ the new definition of probabilistic fairness in
this case, we can derive similar propositions and theorems as done in this paper. We only need to
take the expectation and variance with respect to Pr(· | Ŷ = 1) for L and Ly. This yields statistical
quantities which are harder to interpret (

∑
a∈A Pr(A = a | Ŷ = 1) log(Pr(A = a)/

∏d
k=1 Pr(Ak =

ak)) but that should remain easy to estimate as they are always well defined because, considering
the empirical distribution p̂ we have p̂A(A = a) = 0 =⇒ p̂A(A = a | Ŷ = 1) = 0. The changed
definitions would be the following if we are only interested in the outcome y ∈ Y:

u∗ = sup
(a,a′)∈A2

u(a, a′), and u∗k = sup
(ak,a′

k)∈A2
k

uk(ak, a
′
k) (15)

with u(a, a′)=
∣∣∣ log( Pr(Ŷ =y |A=a)

Pr(Ŷ =y |A′=a′)

)∣∣∣, uk(ak, a′k)= ∣∣∣ log(Pr(Ŷ =y |Ak=ak)

Pr(Ŷ =y |A′
k=a

′
k)

)∣∣∣, (16)

γ = E[L− Ly | Ŷ = y], σ =

√
Var(L | Ŷ = y), σy =

√
Var(Ly | Ŷ = 1). (17)

Notably, we obtain a much nicer variant of Proposition 3.1, with u∗ =
∑d

k=1 u
∗
k.

Similarly we can also change only the underlying probability distribution. We can replace the
underlying probability Pr by PrY=1. Using this new probability measure we see that u∗ is a relaxed
version of Equality of Opportunity for a binary predictor defined in [16] by

Pr(Ŷ = 1 | A = a, Y = 1) = Pr(Ŷ = 1 | Y = 1). (18)

Indeed, u∗ = 0 is now equivalent with Equality of Opportunity. Practically, changing the underlying
probability does not make much difference as showed in [21] because this amounts to measuring
unfairness on the part of the dataset for which Y = 1.

We compared the treatment faced by groups between them, such as looking at the discrimination
between men and women. Another possibility is to measure the difference in treatment faced
by a group compared to a reference value. This reference value is most of the time taken to be
the population average of the decision criterion EA[pŶ |A(y | A)] = pŶ (y). Therefore instead of
evaluating pŶ |A(y | a)/pŶ |A(y | a′) we evaluate pŶ |A(y | a)/pŶ (y).

Finally we can change over which treatment criterion we want to evaluate differences. In this paper
we decided to look at the variable Ŷ . We can similarly define our fairness measure with Y . We can
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actually use any (X,A, Y )-measurable random variable Z instead of Ŷ . For instance |Ŷ −Y |, which
tells us whether or not the prediction is correct for binary classification, can be a good candidate.

Combining all of the above comments, we can consider a wider array of fairness metrics for which
variations of the techniques and theorems described in this paper apply.

A.2 Some variants of Theorem 3.2 for modified fairness measures

Intersectional Fairness in terms of absolute difference: We consider the following definition of
unfairness:

u∗ = sup
y∈Y

sup
(a,a′)∈A2

u(y, a, a′) (19)

with u(y, a, a′) =
∣∣∣ log Pr(Ŷ = y | A = a)− Pr(Ŷ = y | A′ = a′)

∣∣∣. (20)

The new version of Theorem 3.2 is
Theorem. For δ ∈ (0, 1], any classifier h over a distribution D is (ϵ1, δ)-probably intersectionally fair
with

ϵ1 = e−γ sup
Y
p1−d

Ŷ

(
e

√
2s∗√
δ

d∏
k=1

sup
Ak

pŶ |Ak
− e−

√
2s∗√
δ

d∏
k=1

inf
Ak

pŶ |Ak

)
. (21)

Intersectional Fairness when comparing to the population average: We consider the following
definition of unfairness:

u∗ = sup
y∈Y

sup
a∈A

u(y, a) (22)

with u(y, a) =
∣∣∣ log (Pr(Ŷ = y | A = a)

Pr(Ŷ = y)

)∣∣∣. (23)

The new version of Theorem 3.2 is
Theorem. For δ ∈ (0, 1], any classifier h over a distribution D is (ϵ1, δ)-probably intersectionally fair
with

ϵ1 =
√
2
s∗√
δ
+ sup

Y
max{γ +

d∑
k=1

log
( pŶ
infAk

pŶ |Ak

)
,−γ +

d∑
k=1

log
( supAk

pŶ |Ak

pŶ

)
} (24)

The proof for both of these variants is exactly the same as for 3.2 until we obtain an upper and
lower bound on sup pŶ |A and inf pŶ |A. We then use the fact that for E ⊂ R, sup(x,y)∈E2 |x− y| ≤
supE x− infE y, and supx∈E | log(x/y)| ≤ max{log(y/ infE x), log(supE x/y)}.

A.3 Comparison between other measures of fairness

In [21], a different fairness metric is used. Indeed, instead of simply measuring unfairness as the
unweighted difference |Pr(Ŷ = 1 | A = a) − Pr(Ŷ = 1)|, they use the weighted difference
Pr(A = a)|Pr(Ŷ = 1 | A = a) − Pr(Ŷ = 1)|. For this subsection, we will use as a definition
of unfairness u∗ = supa∈A u(a) with u(a) = |Pr(Ŷ = 1 | A = a) − Pr(Ŷ = 1)|. We define
the weighted unfairness used in [21] as w∗ = supa∈A w(a) with w(a) = pA(a)u(a) the weighted
version of u. This definition yields very useful statistical properties in terms of the unfairness
estimation, and [21] shows with Theorem 2.11 that the error made using the empirical estimator is
less than Õ(

√
((1 + V CDIM(H)) log(n)− log(δ))/n) with high probability 1− δ. Unfortunately

this notion of unfairness is hard to control as the meaning of w∗ ≤ ϵ may be difficult to use for a
decision maker, and can lead to the discrimination of groups of small sizes compared to using u∗.
This is already discussed and supported empirically in [14].

We will briefly give some inequalities relating these quantities. We have that

w∗ = sup
A
pAu ≤

∑
a∈A

pA(a)u(a) = E[U ] ≤ u∗. (25)
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Through these equations we see that w∗ cannot approach u∗.

The advantage of the notion of probable intersectional fairness compared to w∗ is two-fold: we can
be arbitrarily close to u∗, and through δ we explicitly control the size of the population that faces
discrimination.

Additionally we will present an example, which shows that when the number of protected groups
grows large, the notion of weighted unfairness can become inadequate for certain scenarios compared
to probabilistic unfairness.

We will consider that we have 991 protected groups with three different protected groups sets of
sizes 1, 495 and 495, for which we will denote any of their elements by a1, a2, and a3 respectively.
We will consider that Pr(A = a1) = 0.01, and that the remaining protected groups are distributed
uniformly Pr(A = a2) = Pr(A = a3) = 0.001.

Suppose that Pr(Ŷ = 1 | A = a1) = 1 and Pr(Ŷ = 1 | A = a2) = Pr(Ŷ = 1 | A = a3) = 1/2.
Then Pr(Ŷ = 1) = 1/100 + 99/200 = 101/200. Thus u(a1) = 1 − 101/200 = 99/200,
w(a1) = 99/20000, u(a2) = u(a3) = 101/200− 1/2 = 1/200, and w(a2) = w(a3) = 1/200000.
Which means that w∗ = 99/20000 and the model is (1/200, 0.99)-probabilistically fair. Now
suppose that Pr(Ŷ = 1 | A = a1) = 1, Pr(Ŷ = 1 | A = a2) = 1, and Pr(Ŷ = 1 | A = a3) = 0.
Then we have Pr(Ŷ = 1) = 101/200. Thus u(a1) = 99/200, w(a1) = 99/20000, u(a2) =
99/200, w(a2) = 99/200000, u(a3) = 101/200, and w(a3) = 101/200000. Which means that
w∗ = 99/20000 and the model is (101/200, 0.99)-probabilistically fair. Here we see from these two
examples, that 99% population of their population saw their unfairness multiply by about a 100 times
while w∗ did not change. But probabilistic unfairness did manage to capture this change.

What we see is that when there is a high number of protected groups, relatively bigger groups tend to
determine the weighted measure of unfairness w∗, but they can still consist of only a very small part
of the total population overall.

We present here two simple inequalities relating (ϵ, δ) probabilistic fairness with w∗ and E[U ].

w∗ ≤ max{sup
A
pAϵ, δu

∗} (26)

E[U ] ≤ ϵ+ δu∗ (27)

Proof. Let Aϵ = {a ∈ A | u(a) ≤ ϵ} and AC
ϵ its complementary set.

If a∗ = argmaxw(a) ∈ Aϵ then w(a∗) = pA(a
∗)u(a∗) ≤ supA pAϵ. Otherwise using that

Pr(AC
ϵ ) ≤ δ, we have w(a) ≤ δu∗.

Now for E[U ]:

E[U ] =
∑
a∈Aϵ

pA(a)u(a) +
∑

a∈AC
ϵ

pA(a)u(a)

≤
∑
a∈Aϵ

pA(a)ϵ+
∑

a∈AC
ϵ

pA(a)u
∗

= ϵPr(Aϵ) + u∗ Pr(Aϵ)

≤ ϵ+ δu∗.

A.4 Intersectional Fairness and Continuous Protected Attributes

Here we will show that when A is continuous, even for reasonable distributions, we might end up
with u∗ = ∞. Whereas our definition of probabilistic unfairness still has finite values, and can
therefore be used as an interpretable tool to compare unfairness across models.

Suppose that we have a random vector (A1, A2, ..., Ad, Ŷ ) distributed according to a multivariate
normalN (µ,Σ) with µ and Σ the mean and covariance. Because Ŷ is continuous, we will instead use
the density fŶ |A in the definition of u∗. Because this vector is distributed according to a multivariate
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normal, the conditional distribution is still normal and we can derive the exact parameters. The
conditional distribution is

Ŷ | A = a ∼ N (µ̄, Σ̄) (28)

with µ̄ a linear form in a, and Σ̄ that depends only in Σ. Basically, we can make the mean go to∞ by
making a go to∞. Hence for a given y ∈ Y , we have that infa∈A fŶ |A(y | a) = 0 for all y, which
means that the unfairness is always infinite.

Whereas our notion of probabilistic fairness, is finite and computationally tractable as we need to
evaluate δ = E[1[U > ϵ]]. It goes to 1 as ϵ goes to∞.

If we want to compare two machine learning models, and we do not want to compare for a specific
point δ, then ϵ∗(δ) can be seen as a function of ϵ, and we can compare these functions. If for two
models h1 and h2 one function is always above the other, we could say that one is more fair than the
other.

As an example, we consider for d = 10 the couples (A, Ŷ ) ∼ N (0,Σw) with Σw generated through
a Wishart distribution, and (A, Ŷ ) ∼ N (0,Σc) with Σc = (1 + Id)/2 and 1 the constant matrix
equal to 1. We then compute the probabilistic fairness on Figure 3 by computing the expectation of
1[U > ϵ].

1 2 3 4 5 6
*

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Randomly generated covariance matrix
Constant matrix plus diagonal

Figure 3: Probabilistic Unfairness for continuous protected attributes.

There are other fairness metrics specifically for continuous attributes, such as in [25] the HGR
coefficient between A and Ŷ , but which may be less interpretable to decision makers.

B Missing proofs and elements of part 3

B.1 Counter example with independence of the sensitive attributes

Let us define the following probability distribution on (A1, A2, Ŷ ), with A1, A2, and Ŷ binary:

3

16
= Pr(A1 = 0, A2 = 0, Ŷ = 0)

= Pr(A1 = 1, A2 = 1, Ŷ = 0)

= Pr(A1 = 0, A2 = 1, Ŷ = 1)

= Pr(A1 = 1, A2 = 0, Ŷ = 1)

and
1

16
= Pr(A1 = 0, A2 = 0, Ŷ = 1)

= Pr(A1 = 0, A2 = 1, Ŷ = 0)

= Pr(A1 = 1, A2 = 0, Ŷ = 0)

= Pr(A1 = 1, A2 = 1, Ŷ = 1)
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We have pA = 1/4, and pA1 = pA2 = 1/2. Therefore A1 ⊥⊥ A2. We have pŶ = 1/2, hence
pA1|Ŷ (0 | 0) = pA2|Ŷ (0 | 0) = 1/2 and pA1,A2|Ŷ (0, 0, | 0) = 3/8 ̸= pA2|Ŷ (0 | 0)pA1|Ŷ (0 | 0),
therefore the Ak are not independent conditionally on Ŷ . Because pA1|Ŷ = pA2|Ŷ = 1/2, any form
of marginal unfairness is 0, and u∗ = log((3/4)/(1/4)) = log(3) ̸= 0. In this example we have
mutual independence of theAk, independence betweenAk and Ŷ , but still no meaningful relationship
between intersectional and marginal fairness because we did not have independence conditionally on
Ŷ .

B.2 Proof of Proposition 3.1

Using the assumed independence, for any a in A and y in Y we can rewrite pŶ |A with marginal
quantities:

Pr(Ŷ = y | A = a) =
Pr(A = a | Ŷ = y) Pr(Ŷ = y)

Pr(A = a)
(29)

= Pr(Ŷ = y)

∏d
k=1 Pr(Ai = ai | Ŷ = y)∏d

k=1 Pr(Ai = ai)
(30)

= Pr(Ŷ = y)

d∏
k=1

Pr(Ŷ = y | Ai = ai)

Pr(Ŷ = y)
. (31)

Because the numerator is a product of independent variables (in the functional sense), taking the sup
in A yields:

sup
a∈A

Pr(Ŷ = y | A = a) = Pr(Ŷ = y)

d∏
k=1

supak∈Ak
Pr(Ŷ = y | Ak = ak)

Pr(Ŷ = y)
. (32)

We can do the same for inf . Hence

supa∈A Pr(Ŷ = y | A = a)

infa∈A Pr(Ŷ = y | A = a)
=

d∏
k=1

supak∈Ak
Pr(Ŷ = y | Ak = ak)

infak∈Ak
Pr(Ŷ = y | Ak = ak)

, (33)

and we obtain

u∗ = sup
y∈Y

sup
(a,a′)∈A2

∣∣∣ log ( Pr(Ŷ = y | A = a)

Pr(Ŷ = y | A = a′)

)∣∣∣ = sup
y∈Y

d∑
k=1

sup
(ak,a′

k)∈A2
k

u(y, ak, a
′
k). (34)

The inequality is obtained by triangle inequality and because supy∈Y sup(ak,a′
k)∈A2

k
uk(y, ak, a

′
k) =

u∗k by definition.

B.3 Proof of Theorem 3.2 and Corollary 3.3

Theorem. For δ ∈ (0, 1], any classifier h over a distribution D is (ϵ1, δ) and (ϵ2, δ)-probably
intersectionally fair with

ϵ1=2
√
2
s∗√
δ
+sup

y∈Y

{ d∑
k=1

sup
(ak,a′

k)∈A2
k

uk(y, ak, a
′
k)
}

ϵ2=
√
2
s∗√
δ
+γ+sup

y∈Y

{ d∑
k=1

log
( p

1−1/d

Ŷ
(y)

infak∈Ak
pŶ |Ak

(y |ak)

)}
where s∗ = (σ2/3 + σ2/3

y )3/2 and γ=C(A)− C(A | Ŷ )=
( d∑
k=1

I(Ak, Ŷ )
)
− I(A, Ŷ ).

Proof. We want to show that our classifier is (ϵ, δ) probably fair for a given δ.
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We will first bound in probability L and Ly, to be able to approach the joint densities through the
product of marginal densities. We will denote by µ, µy , σ and σy the expectations and variances of L
and Ly Let us apply Chebyshev’s inequality to L. We obtain that

Pr(|L− µ| ≥ α1) ≤
σ2

α2
1

.

Using the fact that {|L− µ| < α1} ⊂ {|L− µ| ≤ α1} and taking the complementary event we can
write that

Pr(|L− µ| ≤ α1) ≥ 1− Pr(|L− µ| > α1) ≥ 1− σ2

α2
1

.

From this inequality we have

|L− µ| ≤ α1 =⇒
{
L− µ ≤ α1

µ− L ≤ α1

=⇒
{
L ≤ α1 + µ

L ≥ µ− α1

=⇒
{
pA(A) ≤ eα1+µ

∏
pAk

(Ak)

pA(A) ≥ eµ−α1
∏
pAk

(Ak)
.

We can do the same for Ly with a parameter α2 > 0.

Now we want to consider a condition on the parameters α = (α1, α2) so that the probability of
the conjunction of the events {|L − µ| ≤ α1} and {|Ly − µy| ≤ α2} is greater than 1 − δ. For

δ > 0, α1 > 0 and α2 > 0, a sufficient condition is that σ2

α2 +
σ2
z

α2
2
≤ δ. We can show this using

complementary event and Boole’s inequality:

Pr({|L− µ| ≤ α1} ∩ {|Ly − µy| ≤ α2})
≥ Pr({|L− µ| ≤ α1}) + Pr({|Ly − µy| ≤ α2})− 1

≥ (1− σ2

α2
) + (1−

σ2
y

α2
2

)− 1

≥ 1− δ.

We define g(α) = σ2

α2
1
+

σ2
z

α2
2
− δ.

For any α such that g(α) ≤ 0 we have with probability at least 1− δ that

pŶ |A(Ŷ | A) =
pA|Ŷ (A | Ŷ )pŶ (Ŷ )

pA(A)
(35)

≤ pŶ (Ŷ )
eα2+µy

eµ−α1

∏d
k=1 pAk|Ŷ (Ak | Ŷ )∏d

k=1 pAk
(Ak)

(36)

≤ pŶ (Ŷ )
eα2+µy

eµ−α1

∏d
k=1 pŶ |Ak

(Ŷ | Ak)

pŶ (Ŷ )d
(37)

= pŶ (Ŷ )φ(µy, µ)ψ(α)f(Ŷ , A), (38)

where φ(µy, µ) = eµy−µ, ψ(α) = eα1+α2 , and f(y, a) =
∏d

k=1 pŶ |Ak
(y | ak)/pŶ (y)d. Hence by

taking the sup over a and inf over α on the right hand-side, we obtain

pŶ |A(A | Ŷ ) ≤ pŶ (Ŷ )φ(µy, µ) inf
g(α)≤0

ψ(α) sup
a∈A

f(y, a).

As it is a product of functions of independent variables, supa∈A f(y, a) is just the product of the sup
of each pŶ |Ak

.
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We will now solve the constrained optimization problem for ψ. We can write inf eα1+α2 =
einf(α1+α2), so we will just need to solve the simpler problem infg(α)≤0 s(α), with s(α) = α1 + α2.
Let us compute the gradients of s and g:

∇g = (−2σ2α−3
1 ,−2σ2

yα
−3
2 )⊤,

∇s = (1, 1)⊤.

We will now show that this is a convex problem. The function s is linear thus convex, and we will
now compute the hessian of g:

Hg = 6 ·
(
σ2α−4

1 0
0 σ2

yα
−4
2

)
.

Clearly we have that the determinant of Hg, Det(Hg) is strictly positive. Therefore Hg is definite
positive, and g is convex. And for δ > 0 there is a feasible interior point by taking α1 and α2 big
enough, which means that Slater’s conditions hold (e.g. a convex constraint with a feasible interior
point). We will now analyze the KKT conditions for minimization with the dual parameter c ≥ 0:

{
∇s+ c∇g = 0

cg(α) = 0
⇔


1 = 2cσ2α−3

1

1 = 2cσ2
yα

−3
2

cg(α1, α2) = 0

.

We obtain that α1 =
3
√
2cσ2 and α2 = 3

√
2cσ2

y

Clearly c > 0 otherwise the first two lines cannot be 1, hence using the last equation we have
g(α1, α2) = 0. We now develop this last equality to obtain c:

g(α) = 0 =⇒ σ2

(2cσ2)2/3
+

σ2
y

(2cσ2
y)

2/3
= δ

=⇒ c =
1

2

(
σ2/3 + σ

2/3
y

δ

)3/2

.

Plugging c in the previous expressions we have

=⇒


α∗
1 =

√(
σ2/3+σ

2/3
y

δ

)
3
√
σ2 =

s∗1√
δ

α∗
2 =

√(
σ2/3+σ

2/3
y

δ

)
3

√
σ2
y =

s∗2√
δ

with

s∗1 =

√
σ2/3 + σ

2/3
y σ2/3

s∗2 =

√
σ2/3 + σ

2/3
y σ

2/3
y

.

Finally the minimum is

inf
g(α)≤0

s =
s∗1 + s∗2√

δ
=

(
σ2/3 + σ

2/3
y

)3/2
√
δ

=
s∗√
δ

with s∗ =
(
σ2/3 + σ2/3

y

)3/2
.
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We will now do the same in order to lower bound pA(Ŷ |A).

pŶ |A(Ŷ | A) =
pA|Ŷ (A | Ŷ )pŶ (Ŷ )

pA(A)
(39)

≥ pŶ (Ŷ )
e−α2+µy

eµ+α1

∏d
k=1 pAk|Ŷ (Ak | Ŷ )∏d

k=1 pAk
(Ak)

(40)

≥ pŶ (Ŷ )
e−α2+µy

eµ+α1

∏d
k=1 pŶ |Ak

(Ŷ | Ak)

pŶ (Ŷ )d
(41)

= pŶ (Ŷ )φ(µy, µ)ψ(α)−1f(Ŷ , A), (42)

Here we take the sup over α and inf over a instead. We have that supψ(α)−1 = (inf ψ(α))−1 =

exp(−s∗/
√
δ).

Because U involves the two variables A and A′, we need to bound L′ and L′
y the variables L and

Ly that are taken as a function of A′ instead of A. Because (A′, Ŷ ) ∼ (A, Ŷ ), all the computations
above still apply, and we have

Pr({|L− µ| ≤ α∗
1} ∩ {|Ly − µy| ≤ α∗

2} ∩ {|L′ − µ| ≤ α∗
1} ∩ {|L′

y − µy| ≤ α∗
2}) ≥ 1− 2δ.

Hence we only need to replace δ by δ/2 in the above inequalities.

Combining everything, we can conclude that when the event {|L − µ| ≤ α∗
1} ∩ {|Ly − µy| ≤

α∗
2} ∩ {|L′ − µ| ≤ α∗

1} ∩ {|L′
y − µy| ≤ α∗

2} occurs, we have

U =

∣∣∣∣∣log
(
pŶ |A(Ŷ | A)

pŶ |A′(Ŷ | A′)

)∣∣∣∣∣
≤ log

(
pŶ (Ŷ )φ(µy, µ) exp(

√
2s∗/
√
δ) supA f(Ŷ , a)

pŶ (Ŷ )φ(µy, µ) exp(−
√
2s∗/
√
δ) infA f(Ŷ , a)

)

= 2
√
2
s∗√
δ
+ log

(∏d
k=1 supak∈Ak

pŶ |Ak
(ak)∏d

k=1 infak∈Ak
pŶ |Ak

(ak)

)

≤ 2
√
2
s∗√
δ
+sup

y∈Y

d∑
k=1

sup
(a,a′)∈A2

uk(y, a, a
′).

We can conclude that

Pr(U ≤ ϵ1) ≥ 1− δ

with ϵ1 = 2
√
2
s∗√
δ
+sup

y∈Y

d∑
k=1

sup
(a,a′)∈A2

uk(y, a, a
′),

which means that our classifier is (ϵ1, δ)-probably intersectionally fair. Note that ϵ1 is a function of
(δ, σ, σy).

In order to derive the proof for ϵ2, we simply remark that pŶ |A ≤ 1 which can be used to upper
bound the numerator. Therefore when the event {|L− µ| ≤ α∗

1} ∩ {|Ly − µy| ≤ α∗
2} ∩ {|L′ − µ| ≤
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α∗
1} ∩ {|L′

y − µy| ≤ α∗
2} occurs, we have

U =

∣∣∣∣∣log
(
pŶ |A(Ŷ | A)

pŶ |A′(Ŷ | A′)

)∣∣∣∣∣
≤ log

(
1

pŶ (Ŷ )φ(µy, µ) exp(−
√
2s∗/
√
δ) infA f(Ŷ , a)

)

=
√
2
s∗√
δ
+γ+

d∑
k=1

log
( p

1−1/d

Ŷ
(Ŷ )

infak∈Ak
pŶ |Ak

(Ŷ |ak)

)

≤
√
2
s∗√
δ
+γ+sup

y∈Y

{ d∑
k=1

log
( p

1−1/d

Ŷ
(y)

infak∈Ak
pŶ |Ak

(y |ak)

)}
= ϵ2.

We can conclude in the same way as for ϵ1.

Looking at the proof, it also holds true that the model will also be (min{ϵ1, ϵ2}, δ)-probably intersec-
tionally fair.

Now let us prove Corollary 3.3. Recall we now suppose that we are interested in only one outcome
y ∈ Y , and we redefine our notions of unfairness and probabilistic unfairness, as well as s∗ and γ, as
done in (15).
Corollary. Denoting (Ω, T ,Pr) the probability space on which (A,A′) is defined, there exists an
event F so that for f(a) =

∏d
k=1 pŶ=y|Ak

(a)/pd
Ŷ=y

we have

sup
ω∈F

pŶ=y|A(A(ω)) ∈ [pŶ (y)e
−2

√
2s∗

√
δ

−γ
sup
ω∈F

f(A)(ω), pŶ (y)e
2
√

2s∗
√

δ
−γ

sup
ω∈F

f(A(ω))], (43)

inf
ω∈F

pŶ=y|A(A(ω)) ∈ [pŶ (y)e
−2

√
2s∗

√
δ

−γ
inf
ω∈F

f(A)(ω), pŶ (y)e
2
√

2s∗
√

δ
−γ

inf
ω∈F

f(A(ω))], (44)

and Pr(F | Ŷ = y) ≥ 1− δ, (45)

and the same inequalities hold for supω∈F pŶ=y|A(A
′)(ω) for the same event F .

Proof. Let F be the event defined as follows:

F = {ω ∈ Ω | pŶ |A(y | A(ω)) ≤ pŶ (y) exp (
2
√
2s∗√
δ
− γ)f(A)(ω), (46)

pŶ |A′(y | A′(ω)) ≤ pŶ (y) exp (
2
√
2s∗√
δ
− γ)f(A′)(ω), (47)

pŶ |A(y | A(ω)) ≥ pŶ (y) exp (
−2
√
2s∗√
δ
− γ)f(A)(ω), (48)

pŶ |A′(y | A′(ω)) ≥ pŶ (y) exp (
−2
√
2s∗√
δ
− γ)f(A′)(ω)}. (49)

What we have shown in the proof of the theorem, is that the event {|L− µ| ≤ α∗
1} ∩ {|Ly − µy| ≤

α∗
2} ∩ {|L′ − µ| ≤ α∗

1} ∩ {|L′
y − µy| ≤ α∗

2} is included in F , and hence Pr(F | Ŷ = y) ≥ 1− δ.
Now we just need to take the sup and inf in ω over F for these 4 inequalities in the definition of F to
directly obtain the corollary. Note that we did not obtain a direct statement on U(ω) because lower
bounding the sup of a ratio of two functions is not easy.

22



B.4 Additional Bounds on Probable Intersectional Fairness

Looking at how we proved Theorem 3.2, we can derive more bounds by using other concentration
inequalities. Let κ(t) = log(E[etL]) and κy(t) = log(E[etLy ]) be the cumulant generating-function
of L and Ly . We define the α-Renyi Divergence between two discrete distributions P and Q of size
S for α > 0 as

Dα(P∥Q) =
1

α− 1
log(

S∑
k=1

pαk
qα−1
k

). (50)

These moments generating functions can be expressed as functions of Renyi Divergences, indeed

κ(t) = tDt+1(pA∥
d⊗

k=1

pAk
) (51)

and κy(t) = log(
∑
y∈Y

pŶ (y) exp(tDt+1(pA|Ŷ (· | y)∥
d⊗

k=1

pAk|Ŷ (· | y)))). (52)

While κ(t) can therefore be estimated using techniques of [15] for instance, the estimation of κy is
less straightforward.

For λ+ and λ− in R, we define I+y (λ+) = supt∈R+{tλ+ − κy(t)} and I−(λ−) = supt∈R−{tλ− −
κ(t)}. We apply the generic Chernoff bounds to L and Ly:

Pr(Ly ≥ λ+) ≤ e−I+
y (λ+) (53)

and Pr(L ≤ λ−) ≤ e−I−(λ−). (54)

We will apply the same reasoning used in Appendix B.3 and will only highlight the differences.

Pr([Ly ≥ λ+] ∩ [L ≤ λ−]) ≥ 1− (e−I+
y (λ+) + e−I−(λ−))

We want to ensure that the right hand-side is greater than 1− δ. Because we need to make sure that it
also holds for L′ and L′

y , we need 2δ instead of δ. We define the constraint

g(λ+, λ−) = e−I+
y (λ+) + e−I−(λ−) − 2δ, (55)

we need to have g(λ+, λ−) ≤ 0. Hence using feasible values of λ+ and λ−, the event [Ly ≥
λ+] ∩ [L ≤ λ−] implies

U ≤ (λ+ − λ−) + sup
Y

d∑
k=1

log(
p
1−1/d

Ŷ

infAk
pŶ |Ak

) (56)

≤ inf
g(λ)≤0

(λ+ − λ−) + sup
Y

d∑
k=1

log(
p
1−1/d

Ŷ

infAk
pŶ |Ak

) (57)

We therefore have the following Theorem:

Theorem B.1. For δ ∈ (0, 1], any classifier h over a distributionD is (ϵ3, δ)-probably intersectionally
fair, with

ϵ3 = inf
g(λ)≤0

(λ+ − λ−) + sup
Y

d∑
k=1

log(
p
1−1/d

Ŷ

infAk
pŶ |Ak

) (58)

Compared to using Chebyshev, this should be both tighter as we are using more information than the
first and second moment, and this bound should also be more efficient in terms of probability, as we
are using one sided concentration inequalities.
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B.5 Properties of the cumulant generating-function

We now want to be able to say a bit more on the properties of this constrained minimization problem.
We will show by first recalling and developing useful properties on κ that the problem is non convex
and differentiable almost everywhere.

We will list the properties about κ that will be useful to us developed in [9], with [23] being a
summary containing all the information needed.
Lemma B.2. We have that κ is strictly convex and infinitely many times differentiable. This means
that κ′ is strictly increasing and that it can be inverted on Im(κ′). We will write κ′(−1) = η, and for
all x so that κ′′(η(x)) ̸= 0 we have η′ = 1/κ′′(η).

We also have that κ(0) = 0, κ′(0) = µ, and κ′′(0) = σ2.

From these properties we can conclude that η(µ) = 0, and that η′(µ) = 1/κ′′(η(µ)) = 1/σ2.

We will recall the definition of the convex conjugate of a function.
Definition B.3. Let E be a Euclidean vector space with scalar product ⟨·, ·⟩, we define the convex-
conjugate of a function f : E → R for x ∈ E by

f⋆(x) = sup
t∈E
{⟨x, t⟩ − f(t)}. (59)

We will now list the useful properties about I = κ⋆ also developed in [23].
Lemma B.4. The function I is infinitely many times differentiable on Im(κ′), I(µ) = 0, and for
every x ∈ Im(κ′) we can rewrite I as

I(x) = xη(x)− κ(η(x)). (60)

Proposition B.5. The function I+ is continuously differentiable on (−∞, supκ′).

Proof. We define Ĩ+(x) = I(x) if x ≥ µ, and Ĩ+(x) = 0 otherwise. We will first show that
Ĩ+ = I+.

We have µ ∈ Im(κ′) because κ′(0) = µ. Let fx(t) = tx − κ(t). If x < µ, then because κ′ is
increasing we have for any t ≥ 0

f ′x(t) = x− κ′(t)
≤ µ− κ′(0)
= 0.

This means that the max on R+ is at 0, and therefore I+(x) = fx(0) = 0x− κ(0) = 0 = Ĩ+(x).

If x ≥ µ, then for any t ≤ 0 we have

f ′x(t) = x− κ′(t)
≥ µ− κ′(0)
= 0.

Hence for all t ≤ 0 we have fx(t) ≤ fx(0) therefore the sup of fx is not on R−. Consequently when
x ≥ µ we have I+(x) = Ĩ+(x). All in all we can conclude that Ĩ+ = I+ on Im(κ′).

Let us analyze the potential discontinuity at µ. We have I(µ) = 0 and I+ = 0 on (−∞, µ), so the
function is continuous on (−∞, supκ′). Let us compute I ′:

I ′(x) = η(x) + xη′(x)− η′(x)κ′(η(x))
= η(x) + xη′(x)− η′(x)x
= η(x),

and we know that η(µ) = 0. Hence we have that I+ is continuously differentiable on (−∞, supκ′).

Proposition B.6. The function e−I+

is non-convex at µ.
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Proof. We will simply look at the second derivative of h(x) = e−I+(x) for x ≥ µ:

h′′(x) = (I+
′
(x)2 − I+

′′
(x))e−I(x)

= (η(x)2 − 1

κ′′(η(x))
)e−I(x).

Therefore h′′(µ) = −1/σ2 < 0 for σ ̸= 0, which means that it is non-convex at µ.

The same proposition applies to I+y and I−, with the relevant κ or κy . This means that g′′((µy, µ)) =

−(1/σ2 + 1/σ2
y) < 0 hence the following corollary

Corollary B.7. The constraint g is non convex at (µy, µ).

Finally we remark that when A is finite, the sup of κ′ is bounded and therefore there are finite values
of λ for which I(λ) =∞. Hence there are feasible points for any δ ∈ [0, 1].

B.6 Errors bounds on Q

Let P = (p1, ..., pS) be a discrete distribution of size |P | = S, we want to estimate the quantity
Q(P ) =

∑S
k=1 pk log

2(pk) with n i.i.d. realizations of P . We denote Nk, the number of realizations
for category k.

In order to bound the L2 error of Q̂ =
∑S

k=1(Nk/n) log
2(Nk/n), we will use the bias variance

decomposition of Q̂:

E[(Q̂−Q)2] = b(Q̂)2 +Var(Q̂) (61)

where b(Q̂) = E[Q̂]−Q,Var(Q̂) = E[(Q̂− E[Q̂])2] (62)

The analysis of these error terms is completely derived from [20]. In particular, the method they
use for entropy is close to this problem. They show that the bias term can be bounded by deriving
smoothness modulus for the function x 7→ x log(x), and that the variance term can be bounded
using an Efron-Stein inequality. Here, we need to analyse x 7→ x log2(x), which is technically more
difficult as some nice properties such as the convexity of x log(x) is lost. Still we can show the
following two lemmas with the proof further down:
Lemma B.8.

Var(Q(P̂n)) = O
( log4(n)

n

)
. (63)

Lemma B.9.
b(Q̂)2 = O

(( |P | log(n)
n

)2)
. (64)

Using these two lemmas, we can directly conclude that E[(Q̂−Q)2] = O(log4(n)/n).
Note that we will directly use some elements already derived in [20], and will only show here the
parts where special care is needed.

Proof of Lemma B.8. Let f : x 7→ x log2(x). [20] analyze the statistic of the form F (P ) =∑S
k=1 f(pk). We apply Lemma 13 of [20] for discrete functionals of P , which is derived from a

corollary of the Efron-Stein inequality, on Q:

Var(Q̂) ≤ n max
0≤j≤n

(f(
j + 1

n
)− f( j

n
))2. (65)

We will look for n in N∗ at the function g : x 7→ x+1
n log2(x+1

n ) − x
n log2( xn ) for x ∈ [0, n]. We

have

g(x) =
x

n
log(

x+ 1

x
)(log(x(x+ 1))− log(n2)) +

1

n
log2(

x+ 1

n
) (66)

=
x

n
log(1+

1

x
)(log(x(x+1))−log(n2)) + 1

n
(log2(x+1)+log2(n)−2 log(x+1) log(n)). (67)
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We first look at the term in 1/n · h(x). We have that h′(x) = 2(log(x+1)− log(n))/(x+1) which
is 0 for x = n − 1. Thus argmaxx∈[0,n] |h(x)| ∈ {0, n − 1, n}. We evaluate h at these points:
h(n− 1) = 0, h(n) = log2(1 + 1/n) ∼ 1/n2, and h(0) = log(n)2. Hence the max of |h(x)| over
[0, n] is log2(n) Using on (67) the inequality log(1 + 1/x) ≤ 1/x, and because x 7→ log(x(x+ 1))
is increasing over R+, we obtain

|g(x)| ≤ 1

n
(log(n(n+ 1)) + log(n2)) +

1

n
log2(n) = O

( log2(n)
n

)
(68)

Finally

Var(Q̂) = nO
( log4(n)

n2

)
= O

( log4(n)
n

)
. (69)

Proof of Lemma B.9. In order to bound the bias [20] use the fact that for any f ,

E[Q̂]−Q =

S∑
k=1

(Bn(f)(pk)− f(pk)) (70)

with Bn(f)(x) =

n∑
i=1

f(
i

n
)

(
i

n

)
xi(1− x)n−i. (71)

The function Bn(f)(x) is the Bernstein polynomial of f(x). Lemma 5. of [20] shows that for
φ(x) =

√
x(1− x):

|E[Bn(f)(x)]− f(x)| ≤
5

2
ω2
φ(f, n

−1/2) (72)

with ω2
φ(f, t)=sup{|f(u)+f(v)−2f(u+ v

2
)|, (u, v) ∈ [0, 1]2, |u− v|≤2tφ(

u+v

2
)}. (73)

The quantity ω2
φ is the second-order Ditzian-Totik modulus of smoothness of f . It is shown in

Lemma 8 of [20] that for the function x 7→ x log(x) (which corresponds the the entropy), ω2
φ(f, t) =

t2 log(4)/(1 + t2). We will use a proof similar to Lemma 8 to derive the modulus of smoothness for
x 7→ x2 log(x).

In addition, we remark using the triangle inequality that for any f and g continuous functions on
[0, 1], then

ω2
φ(f + g, t) ≤ ω2

φ(f, t) + ω2
φ(g, t). (74)

Let f : x 7→ x log2(x) for x in [0, 1]. By expanding g(x) = x log2(x/e) = x log2(x)+x−2x log(x)
we see that we can rewrite f as f(x) = x log2(x/e) + 2x log(x)− x. Therefore using the previous
remark and because ω2

φ(x 7→ x, t) = 0 we have

ω2
φ(f, t) ≤ ω2

φ(g, t) + 2ω2
φ(f, t) + ω2

φ(x 7→ x, t) ≤ ω2
φ(f, t) +

2t2 log(4)

1 + t2
. (75)

It remains to upper bound ω2
φ(g, t).

First we will show that g is concave on (0, 1]. We compute the first and second derivative of g for x
in (0, 1]:

g′(x) = 2 log(
x

e
) + log2(

x

e
) = log2(x)− 1, (76)

thus g′′(x) = 2
log(x)

x
< 0. (77)

Hence g is strictly concave over (0, 1].

Now we will upper bound ω2
φ(g, t). Let t in [0, 1/2]. To be clear, we will use the same language

and logic developed in [20] for the proof of Lemma 8 to make the comparison easier. Defining
M = (u + v)/2 ∈ [0, 1], then the computation of the second order modulus is an optimization
over the regime |u − v| ≤ 2t

√
M(1−M). Equivalently, it is in the interval [M(1 −∆),M(1 +
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∆)] ∩ [0, 1], where ∆ = t
√
(1−M)/M . Because g is strictly concave on [0, 1], the maximum of

|g(x) + g(y)− 2g((x+ y)/2)| is reached at the boundaries of the above feasible interval. We have

M(1−∆) ≥ 0⇔M ≥ t2

1 + t2
, (78)

M(1 + ∆) ≤ 1⇔M ≤ 1

1 + t2
. (79)

Therefore the optimization problem defined by the second order modulus of smoothness is equivalent
to the maximization of h(u, v) = |g(u) + g(v)− 2g((u+ v)/2)| over three different regimes:

Regime A: u = 0, v = 2M, 0 ≤M ≤ t2

1 + t2
(80)

Regime B: u = 2M − 1, v = 1, 1 ≥M ≥ 1

1 + t2
(81)

Regime C: u =M(1 + ∆), v =M(1−∆),M ∈ [
t2

1 + t2
,

1

1 + t2
]. (82)

Over the regime A:

h(u, v) = |2M log2(
2M

e
)− 2M log2(

M

e
)|

= 2M |(log(2M
e

)− log(
M

e
))(log(

2M

e
) + log(

M

e
))|

= 2M log(2) log(
1

2
(
e

M
)2)

= 2M log(2)(2− log(2)− 2 log(M)).

The function M 7→M reaches its max over regime A at t2/(1 + t2). The function x 7→ −x log(x)
is positive increasing until x = 1/e. Hence because t2/(1 + t2) ≤ 1/e for t ∈ [0, 1/2], M 7→
−M log(M) reaches its max over regime A also at t2/(1 + t2). Thus over regime A

h(u, v) ≤ 2t2

1 + t2
log(2)(2−log(2)+2 log(1+

1

t2
)) =t→0

−8 log(2)t2 log(t)
1 + t2

+o(−t2 log(t)) (83)

Over the regime B:

h(u, v) = |(2M − 1) log2(
2M − 1

e
) + 1− 2M log2(

M

e
)|

= |(2M−1)(log2(2M−1) + 1−2 log(2M−1)) + 1− 2M(log2(M) + 1− 2 log(M))|
= |2M(log2(2M − 1)− log2(M)) + 4M(log(M)− log(2M − 1)) + 2 log(2M − 1)− log2(2M − 1)|
≤ |2M(log2(2M − 1)− log2(M))|+|4M(log(M)− log(2M − 1))|+|2 log(2M − 1)− log2(2M − 1)|

= |2M log(
2M − 1

M
) log(M(2M − 1))|+|4M(log(

M

2M − 1
)|+| log(2M − 1)(2− log(2M − 1))|

We will upper bound each of those three terms. First note that as t ∈ [0, 1/2], t2/(1− t2) ≤ 1/3 and
(1 + t2)2/(1− t2) ≤ 25/12 Because − log is decreasing and 2M − 1 ≤ 1, we have that

| log(2M − 1)| = − log(2M − 1) ≤ log(
1 + t2

1− t2
) = log(1 +

2t2

1− t2
) ≤ 2t2

1− t2
.

Hence

| log(2M − 1)(2− log(2M − 1))| ≤ t2

1− t2
16

3
(84)

For M ≤ 1, we have that (2M − 1)/M ≤ 1. Hence

|4M log(
M

2M − 1
)| = 4M log(

M

2M − 1
) ≤ 4 log(

M

2M − 1
) ≤ 4 log(1 +

t2

1− t2
) ≤ 4t2

1− t2
.
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The functions M 7→ 1/(M(2M − 1)) and M 7→ M/(2M − 1) are decreasing in M over (1/2, 1]
and bigger than 1. Therefore

| log(M(2M − 1))| = log(
1

M(2M − 1)
) ≤ log(

(1 + t2)2

1− t2
) ≤ log(

25

12
)

and | log(2M − 1

M
)| = log(

M

2M − 1
) ≤ log(

1

1− t2
) ≤ t2

1− t2

Combining everything we have over regime B using that M ≤ 1

h(u, v) ≤ (4 + 16/3 + log(25/12))t2

1− t2
=t→0 o(−t2 log(t)) (85)

Over the regime C:

h(u, v) =M |(1−∆) log2(
M

e
(1−∆)) + (1 + ∆) log2(

M

e
(1 + ∆))− 2 log2(

M

e
)|

=M |(1−∆) log2(1−∆)+(1+∆) log2(1+∆)−2 log(M
e
)((1−∆) log(1−∆)+(1+∆) log(1+∆))|

=
t2

t2 +∆2
|(1−∆) log2(1−∆)+(1+∆) log2(1+∆)−2 log(M

e
)((1−∆) log(1−∆)+(1+∆) log(1+∆))|

≤ t2

∆2
|(1−∆) log2(1−∆)+(1+∆) log2(1+∆)|+2(1− log(M))t2

∆2
|(1−∆) log(1−∆)+(1+∆) log(1+∆)|

≤ t2

∆2
|(1−∆) log2(1−∆)+(1+∆) log2(1+∆)|+

2(1 + log(1 + 1
t2 ))t

2

∆2
|(1−∆) log(1−∆)+(1+∆) log(1+∆)|

The functions g1 : ∆ 7→ ((1 + ∆) log(1 + ∆) + (1 − ∆) log(1 − ∆))/∆2 and g2 : ∆ 7→ ((1 +
∆) log2(1 + ∆) + (1−∆) log2(1−∆))/∆2 are both continuous over [0, 1] hence bounded with a
max reached respectively (can be seen graphically, or by looking at the derivative) at 1 and 0. With
g1(1) = 2 log(2), and for ∆→ 0:

g2(∆) =
(1−∆)(∆2 +∆3 + o(∆3)) + (1 + ∆)(∆2 −∆3 + o(∆3))

∆2
−→∆→0 2. (86)

Finally
h(u, v) ≤t→0 −8 log(t)t2 + o(− log(t)t2). (87)

Hence using these bounds over regime A, B, and C, and remarking that it is reached for regime A on
t2/(1 + t2), we obtain

ω2
φ(g, t) =t→0

−8 log(2)t2 log(t)
1 + t2

+ o(−t2 log(t)). (88)

By applying on Equation (75) the upper bounds we derived and taking t = n−1/2, we can conclude

|b(Q̂)| ≤
S∑

k=1

|E[Bn(f)(pk)]− f(pk)| (89)

≤ S 5

2
ω2
φ(f, n

−1/2) (90)

S ≤n→∞ 10 log(2)
log(n)

n
+ o(

log(n)

n
) (91)

=n→∞ O
(S log(n)

n

)
(92)
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C Using partitions of protected attributes

C.1 Consistency of u(q
∗)

I

The main idea of this proof, is that when the number of samples n increases, the probability that
minA,Y Na,y < τ goes to 0 as n→∞. And when minA,Y Na,y ≥ τ then by definition u(q

∗)
I = û∗

which is consistent.

We define for a in A the modified empirical estimator p̂A(A = a), with p̂A(A = a) = Na/n if
Na > 0 and 1 otherwise. Using Chebyshev’s inequality and because Na,y ∼ B(pA,Ŷ (a, y), n) we
have for ϵ > 0:

Pr(|p̂A(a)−pA(a)|≥ϵ)=Pr(|p̂A(a)−pA(a)|≥ϵ,Na=0)+Pr(|p̂A(a)−pA(a)|≥ϵ,Na>0)

(93)

≤ Pr(Na = 0) + Pr(|Na

n
− pA(a)| ≥ ϵ,Na > 0) (94)

≤ (1− pA(a))n + Pr(|Na − npA(a)| ≥ nϵ) (95)

≤ (1− pA(a))n +
pA(a)(1− pA(a))

nϵ2
(96)

−→n→∞ 0, (97)

which means that p̂A is a consistent estimator of pA. By Slutsky’s Theorem and because pA(a) > 0,
p̂A,Ŷ (a, y)/p̂(a) is a consistent estimator of pŶ |A(y | a). Hence by the Continuous Mapping
Theorem using the continuous functions max, min, log and | · |, we have that û∗ the estimator using
the modified empirical probabilities, is a consistent estimator of u∗.

Now for the consistency of u(q
∗)

I , for τ > 0 and ϵ > 0, we have

Pr(|u(q
∗)

I − u∗| > ϵ) = 1− Pr(|u(q
∗)

I − u∗| ≤ ϵ) (98)

≤ 1− Pr(|u(q
∗)

I − u∗| ≤ ϵ,min
A,Y

Na,y > τ) (99)

= 1− Pr(|û− u∗| ≤ ϵ,min
A,Y

Na,y > τ) (100)

= Pr([|û− u∗ >≤ ϵ] ∪ [min
A,Y

Na,y ≤ τ ]) (101)

≤ Pr(|û− u∗| > ϵ) + Pr(min
A,Y

Na,y ≤ τ) (102)

≤ Pr(|û− u∗| > ϵ) + Pr(∃(a, y) ∈ A× Y, Na,y ≤ τ) (103)

≤ Pr(|û− u∗| > ϵ) +
∑

(a,y)∈A×Y

Pr(Na,y ≤ τ). (104)

The first term goes to 0 by the consistency of û. We will show that the second term also goes to zero
as n → ∞. For τ > 0 we apply Hoeffding’s inequality on Na,y ∼ B(pA,Ŷ (a, y), n) to obtain the
following concentration inequality:

Pr(Na,y ≤ τ) ≤ exp(−2n(pA,Ŷ (a, y)−
τ

n
)) −→n→∞ 0. (105)

Therefore because |A||Y| is finite we have the consistency of u(q
∗)

I .

C.2 Some intuition on the impact of grouping protected attributes

Let q a partition and ρ a partition coarser than q, which means that every element of q is a subset
of some element of ρ. We want to somewhat relate the approximations and inequalities obtained
using ρ or q. Using the fact that ρ is coarser than q, we can define for any r ∈ ρ the partition
qr = {t ∈ q | t ⊂ r} of r. This is a partition because the t are disjoints, cover the whole set so r as
well in particular, and any t ∈ q can either be a subset of r or disjoint as ρ is coarser than q.

We redefine the random variable L for these partitions. We define L(q) = log(pA/
∏

t∈q pAt
) ◦ A

and L(q,r) = log(pAr
/
∏

t∈qr
pAt

) ◦A.
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Proposition C.1. We have
L(q) = L(ρ) +

∑
r∈ρ\q

L(q,r). (106)

Therefore
E[L(q)] = E[L(ρ)] +

∑
r∈ρ\q

E[L(q,r)] (107)

and

Var(L(q)) = Var(L(ρ)) +
∑

r∈ρ\q

Var(L(q,r))+

2
∑

r∈ρ\q

Cov(L(ρ), L(q,r)) +
∑

(r1,r2)∈(ρ\q)2
r1 ̸=r2

Cov(L(q,r1), L(q,r2)).
(108)

Proof. Using the partitions qr we can group together the pAt
terms:

pA(a)∏
t∈q pAt(at)

=
pA(a)∏

t∈q pAt(at)

∏
r∈ρ pAr

(ar)∏
r∈ρ pAr (ar)

=
pA(a)∏

r∈ρ pAr
(ar)

∏
r∈ρ\q

pAr
(ar)∏

t∈qr
pAt

(at)
.

Then by taking the log, we obtain the proposition.

Looking at (107), we have the interesting property that if ρ is a coarser partition than q, then
C(A(ρ)) ≤ C(A(q)). This corresponds to the intuition that taking coarser partition decreases some
measure of independence, which is here the total correlation.

We define ℓt = log(pAt/
∏

k∈t pAk
) and Lt = ℓt(At). By applying the previous proposition, and by

remarking that any partition is coarser than the set of all singletons we obtain the following corollary.
Corollary C.2. For any partition q ∈ Q we have

L = L(q) +
∑
t∈q
|t|>1

Lt (109)

Which is why when using a partition q to group together the protected attributes, we may be able
to reduce the original variance of L and Ly, hence reduce s∗ which is an increasing function of
the variances. The decrease in s∗ is not guaranteed when using a coarser partition because of the
covariance terms, but empirically this is often the case.

D Additional Experiments and Plots

In this section we will present additional plots from the experiments conducted in Section 5.

The experiments were conducted on a machine with a i7 7700HQ CPU, and 8gb of ram. Running all
the experiments took about 1 full day.

The main dataset used is a publicly available sample from the 1990 US census. The US census
is legally mandated, hence every citizen has to give its information to the US government. No
identifiable information is available, and the samples were randomly chosen from the original full
dataset. Full information is available at the UCI archive link.

We reproduce here Figure 1 and Figure 2 on Figure 4 and Figure 5 adding the 1st and 10th decile but
only using α = 1 for uB and τ = 10 to make it readable.

We recall that we always take δ = 0.1. We present on Figure 6 a comparison of the relative error rate
between uB , s∗, and infg(λ) λ

+ − λ− where g is estimated through the empirical distribution, and
the optimization problem is solved numerically. We see that while it is easier to estimate than uB , it
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Figure 4: Average Lr
2 convergence rate, on real data for the left one, and synthetic data for the right

one. In all these graphs the intervals represent the 1st and 10th decile.
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Figure 5: In the left-most plot each point with same shape and color correspond a different Di, with
the estimators values taken at n = 2000. The middle plot is the average Lr

2 error rate on the real data.
The rightmost plot is the average evolution of s∗(q∗) for τ = 10 as n increases. In all these graphs
the intervals represent the 1st and 10th decile.

is harder than s∗. Note that numerically solving the minimization problem may lead to numerical
errors for too low number of samples.

We also compare some of the bounds presented throughout this paper. Here we do not care about
their estimation, but only their asymptotic value. In addition, we want to evaluate the impact of using
partitions on these bounds. In order to do so we take a sample of size n = 2000 of each of ourDi, and
compute q∗. Then we use the full dataset to compute s∗(q∗) for τ = 10, γ(q∗) and infg(λ) λ

+ − λ−.
We also compute the exact unfairness quantile ϵ∗(δ). We obtain Figure 7. We see that using partitions
seem to always yield tighter bounds, and that most of the time ϵ1 ≥ ϵ2 ≥ ϵ3. Even the improved
bounds are still far from ϵ∗ (the optimal bound in probability), but it shows that these bounds can be
improved. We conjecture that if we want to find reliable information on u∗ when d becomes very
large, these bounds can be useful in practice. Conversely, these bounds and approximations should
not be used if sufficient information is available to directly use uB (for instance at least 1 sample by
protected group).
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2 convergence rate, on real data. The intervals represent the 1st and 10th decile.
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