
An Approach to Abductive Reasoning in

Equational Logic∗

M. Echenim, N. Peltier, S. Tourret
University of Grenoble (CNRS, Grenoble INP/LIG)

Abstract

Abduction has been extensively studied in propositional logic because

of its many applications in arti�cial intelligence. However, its intrinsic

complexity has been a limitation to the implementation of abductive rea-

soning tools in more expressive logics. We have devised such a tool in

ground �at equational logic, in which literals are equations or disequa-

tions between constants. Our tool is based on the computation of prime

implicates. It uses a relaxed paramodulation calculus, designed to gen-

erate all prime implicates of a formula, together with a carefully de�ned

data structure storing the implicates and able to e�ciently detect, and re-

move, redundancies. In addition to a detailed description of this method,

we present an analysis of some experimental results.

1 Introduction

Abductive reasoning (see for instance [15]) is the process of inferring relevant
hypotheses from data (as opposed to deduction, which consists in deriving logi-
cal consequences of axioms). Given a logical formula C, the goal is to compute
a formula H such that the implication H ⇒ C holds. This mode of reasoning
can be used for instance to infer plausible explanations of observed facts. It has
many natural applications in arti�cial intelligence and there exists an exten-
sive amount of research on abductive reasoning, mainly in propositional logic,
with numerous applications for instance in planning [20] or truth-maintenance
in knowledge bases [2]. Abduction can be performed in a top-down manner, by
allowing some hypotheses to be asserted instead of being proven. However it
is more often reduced to a consequence-generation problem: indeed, by contra-
positive, the implication H ⇒ C holds i� ¬H is a logical consequence of ¬C.
Thus explanations of C can be generated from the derivation of the logical conse-
quences (i.e., the implicates) of the negation of C. In general, these explanations
are further restricted to ensure relevance: for instance only explanations de�ned
on a particular set of symbols, called the abducible symbols are considered. It is
clear that the problem of generating all the implicates of a given formula is much

∗This work has been partly funded by the project ASAP of the French Agence Nationale

de la Recherche (ANR-09-BLAN-0407-01).

1

more di�cult than merely testing whether the latter is satis�able (note that a
formula F is unsatis�able i� false is an implicate of F). Existing proof proce-
dures are tailored to test that a given formula is a logical consequence of a set of
axioms (usually by reductio ad absurdum), and therefore are not well-adapted
to generate all such implicates. Existing approaches for computing implicates
are mostly restricted to propositional logic. They use either variants of the
resolution rule (see, e.g., [9]), together with speci�c redundancy criteria and
strategies ensuring e�ciency [22, 8, 7, 1], or decomposition-based approaches
in the spirit of the DPLL method, which compute implicates by recursively de-
composing them into smaller pieces [18, 16, 11]. To the best of our knowledge,
the only published papers in which the problem of abductive reasoning in more
expressive logics has been considered are [12, 10, 13]. In [10], implicates are gen-
erated by using the resolution rule. This approach extends straightforwardly to
�rst-order logic (using uni�cation) and some speci�c classes for which termina-
tion can be ensured are de�ned, relying on well-known termination results for
the resolution calculus, see for instance [4, 5]. In [12] a tableaux-based proof
procedure is described for abductive reasoning. The principle is to apply the
usual decomposition rules of propositional logic, and then to compute the for-
mulæ that force the closure of all open branches in the tableaux, thus yielding
su�cient conditions ensuring unsatis�ability. The approach is extended to �rst-
order logic by using reverse skolemization techniques in order to eliminate the
Skolem symbols introduced for handling existential quanti�ers. This procedure
has been extended to some modal logics [13]. As far as we are aware, there is
no published work on abductive reasoning for equational formulæ.

Abductive reasoning for equational formulæ has many applications in the
�elds of arti�cial intelligence and automated deduction. For instance, [3] pro-
poses a method to extract ground abducible implicates of �rst-order formulæ,
motivated by some applications in program veri�cation. The method works by
using a speci�cally tailored superposition-based calculus [14] which is capable of
generating, from a given set of �rst-order clauses S with equality, a set of ground
(i.e., with no variables) and �at (i.e., with no function symbols) clauses S′ such
that all abducible implicates of S are implicates of S′. If the formula at hand
is satis�able, these implicates can be seen as missing hypotheses explaining the
�bad behavior� of the program (if the formula is unsatis�able then the program
is of course error-free). However, the proposed calculus is not able to generate
explicitly the implicates of S′, and the authors rely for this purpose on a straight-
forward reduction to propositional logic. They use a post-processing step which
consists in translating the clause set S′ into a propositional formula by adding
relevant instances of the equality axioms, and then using the unrestricted reso-
lution calculus to generate the propositional implicates. This approach is sound,
complete and terminating, but it is also very ine�cient, in particular due to the
fact that a given clause may have several (in general, exponentially many) rep-
resentants, that are all equivalent modulo the usual properties of the equality
predicate (for example a 6' b ∨ b 6' c, a 6' b ∨ a 6' c and a 6' c ∨ b 6' c are all
equivalent). Computing and storing such a huge set of clauses is time-consuming
and of no practical use.

2

The present paper addresses this issue. We devise a new algorithm for
generating implicates of quanti�er-free equational formulæ with no function
symbols. It uses a more direct approach, in which the properties of the equality
predicate are �built-in� instead of being explicitly encoded as axioms. This
a�ects both the representation of the clauses, i.e., the way they are stored in
the database and tested for redundancy, and their generation: instead of using
the resolution method, new rules are devised, which can be viewed as a form of
relaxed paramodulation. Our algorithm is proven to be sound, terminating and
complete (i.e., it generates all implicates in a �nite time, up to redundancy).
An implementation is available.

The paper is structured as follows. In Section 2, we brie�y recall the basic
de�nitions that are necessary for the understanding of our work. In Section 3,
a new data-structure is introduced to allow for a compact storage of the clauses
(up to equivalence) and algorithms are devised for storing and retrieving clauses.
In Section 4, inference rules are presented to generate implicates in equational
logic. Section 5 reports some experiments showing evidence of the practical
interest of our approach (w.r.t. the translation-based approach, using state-of-
the-art systems for propositional logic). Section 6 brie�y concludes the paper
and discusses some promising lines of future work.

2 Equational logic

Let C be a �nite set of constant symbols (usually denoted by the letters a, b,
c, . . .). We assume that a total precedence ≺ is given on the elements of C
(in all examples the symbols are ordered alphabetically: a ≺ b ≺ c ≺ . . .). An
atom is an expression of the form a ' b, where a, b ∈ C. Atoms are considered
modulo commutativity of ', i.e. a ' b and b ' a are viewed as syntactically
equivalent. A literal is either an atom a ' b (positive literal) or the negation of
an atom a 6' b (negative literal). A literal l will sometimes be written a ./ b,
where the symbol ./ stands for ' or 6'. The literal lc denotes the complement
of l. A clause is a �nite multiset of literals (usually written as a disjunction).
As usual 2 denotes the empty clause and |C| is the number of literals in C. For
every clause C, ¬C denotes the set of clauses {{lc} | l ∈ C}. For any set of
clauses S, we denote by |S| the cardinality of S and by size(S) the total size of

S: size(S)
def
= ΣC∈S |C|.

An equational interpretation I is an equivalence relation on C. Given two
constant symbols a, b ∈ C, we write a =I b if a and b belong to the same
equivalence class in I. A literal a ' b (resp. a 6' b) is true in I if a =I b (resp.
if a 6=I b). A clause C is true in I if it contains a literal l that is true in I. A
clause set S is true in I if all clauses in S are true in I. We write I |= E and
we say that I is a model of E if the expression (literal, clause or clause set) E
is true in I. For all expressions E, E', we write E |= E′ if every model of E is
a model of E′. A tautology is a clause for which all equational interpretations
are models and a contradiction is a clause that has no model. For instance,
a 6' b ∨ a 6' c ∨ b ' c is a tautology (indeed, for all equivalence relations =I ,
if a =I b and a =I c, then necessarily b =I c, by transitivity), whereas 2 and
a 6' a are contradictions.

3

We now introduce the central notion of a prime implicate.

De�nition 1 A clause C is an implicate of a clause set S if S |= C. C is a
prime implicate of S if, moreover, C is not a tautology, and for every clause D
such that S |= D, we have either D 6|= C or C |= D. 3

Example 2 Consider the clause set S:

1 a ' b ∨ d ' a 2 a ' c
3 c 6' b 4 c 6' e ∨ d ' e

The clause d ' a is an implicate of S, since Clauses 2 and 3 together entail a 6' b
and thus d ' a can be inferred from the �rst clause. The clause a 6' e ∨ d ' e
can be deduced from 4 and 2 and thus is also an implicate. But it is not prime,
since d ' a |= a 6' e∨d ' e (it is clear that d ' a, a ' e |= d ' e, by transitivity)
but a 6' e ∨ d ' e 6|= d ' a. ♣

The purpose of the present paper is to devise an algorithm that, given a set
of clauses S, is able to compute the entire set of prime implicates of S, up to
equivalence.

3 Representation of Clauses Modulo Equality

In propositional logic, detecting redundant1 clauses is an easy task, because
a clause C is a logical consequence of D i� either it is a tautology or D is a
subclause of C. Thus a non-tautological clause C is redundant in a clause set i�
there exists a clause D ∈ S such that D ⊆ C. Furthermore, the only tautologies
in propositional logic are the clauses containing two complementary literals,
which is straightforward to test. The clause set S can be represented as a trie
(a tree-based data-structure commonly used to represent strings [6]), so that
inclusion can be tested e�ciently (the literals can be totally ordered and sorted
to handle commutativity). However, in equational logic, the above properties do
not hold anymore: for example the clause a 6' b∨ b ' c is a logical consequence
of a ' c but obviously a ' c is not a subclause of a 6' b ∨ b ' c. Thus testing
clause inclusion is no longer su�cient and representing clause sets as tries would
yield many undesired redundancies: for instance the clauses a 6' b ∨ b ' c and
a 6' b ∨ a ' c would be both stored, although they are equivalent. Our �rst
task is thus to devise a new redundancy criterion that generalizes subsumption,
together with a new way of representing clauses, that takes into account the
special properties of the equality predicate. To this purpose we show how to
normalize ground clauses according to the total ordering ≺ on constant symbols,
and we introduce a new notion of projection.

3.1 Testing Logical Entailment

Let C be a clause. The C-representative of a constant a is the constant a�C
def
=

min≺{b ∈ C | b 6' a |= C}. Note that every constant has a representative,

1Note that the redundancy relation is de�ned only at the level of clauses: indeed, a clause
C entailed by a clause set S is not necessarily redundant w.r.t. S in our context; for instance
C can be a prime implicate of S not occurring in S.

4

since it is clear that a 6' a |= C. This notion extends easily to more complex

expressions: (a ./ b)�C
def
= a�C ./ b�C and D�C

def
= {l�C | l ∈ D}. The expression

E�C is called the projection of E on C. We write E ≡C E′ if E�C = E′�C . By
de�nition, ≡C is an equivalence relation and the following equivalences hold:
(a ≡C b)⇔ (a 6' b |= C)⇔ (¬C |= a ' b).

Example 3 Let C = a 6' b∨ b 6' c∨d 6' e∨a ' e. We have a 6' b |= C and b 6'
c |= C since both a 6' b and b 6' c occur in C. By transitivity, this implies that
a 6' c |= C, and therefore we have a�C = b�C = c�C = a (recall that constants
are ordered alphabetically). Similarly, d�C = e�C = d. If f is a constant distinct
from a, b, c, e, d, then f�C = f . We have (b ' e ∨ a 6' b)�C = a ' d ∨ a 6' a. ♣

The next proposition introduces a notion of normal form for equational
clauses, which in particular permits to test e�ciently whether a clause is tau-
tological. The intuition behind this proposition is best seen by considering
negations: the negation of a clause C :

∨n
i=1 ai 6' bi ∨

∨m
i=1 ci ' di is equivalent

to the set ¬C = {ai ' bi | i ∈ [1, n]} ∪ {ci 6' di | i ∈ [1,m]}. By de�nition,
the relation ≡C is the smallest equivalence relation satisfying all the equations
ai ' bi and a�C denotes the smallest representant of constant a modulo this
relation. The relation ≡C can be de�ned in a canonical way by stating that
each constant a is mapped to its normal form a�C , which is expressed by the
negative literal a 6' a�C . Then each constant a can be replaced by its normal
form in the positive part of the clause.

Proposition 4 Every clause C is equivalent to the clause:

C↓
def

=
∨

a∈C,a 6=a�C

a 6' a�C ∨
∨

a'b∈C

a�C ' b�C

Furthermore, C is a tautology i� C↓ contains a literal a ' a.

Proof. By de�nition of a�C , we have a 6' a�C |= C, for every constant a.
Furthermore, for every literal a ' b ∈ C, we have a ' a�C , b ' b�C , a�C '
b�C |= a ' b |= C and therefore C↓ |= C. Conversely, for every constant a, the
implication ¬C↓ |= a ' a�C holds by de�nition of C↓. Let l be a literal in C.
If l is a negative literal b 6' a then we have b 6' a |= C, hence b�C = a�C , thus
¬C↓ |= lc. If l is a positive literal b ' a then C↓ contains a literal a�C ' b�C
and a�C 6' b�C , a ' a�C , b ' b�C |= lc, therefore we must have ¬C↓ |= lc.
Consequently, ¬C↓ |= lc.

By de�nition, if C↓ contains a ' a then C↓ is equivalent to true, and thus C
is a tautology. Conversely, if C↓ contains no such literal, then we have a 6≡C b,
for every literal a ' b ∈ C↓ (since a = a�C and b = b�C by de�nition of C↓) thus
the interpretation ≡C falsi�es every literal in C↓ (since every negative literal in
C↓ is of the form a 6' a�C and thus must be false in ≡C). Thus C↓ cannot be
equivalent to true and C is not a tautology.

De�nition 5 A non-tautological clause C is in normal form if C = C↓ and if,
moreover, all literals occur at most once in C. 3

5

Example 6 The clause C of Example 3 is equivalent to the clause in normal

form: b 6' a ∨ c 6' a ∨ e 6' d ∨ a ' d. Let D def
= a 6' b ∨ b 6' c ∨ a ' c, then D↓ is

b 6' a ∨ c 6' a ∨ a ' a, and therefore D is a tautology. ♣

We now introduce conditions that will permit to design e�cient methods to
test if a given clause is redundant w.r.t. those stored in the database (forward
subsumption) and conversely to delete from the database all clauses that are
redundant w.r.t. a newly generated clause (backward subsumption).

De�nition 7 Let C,D be two clauses. The clause D eq-subsumes C (written
D ≤eq C) i� the two following conditions hold.
- ≡D⊆≡C (i.e. every negative literal in D�C is a contradiction).

- For every positive literal l ∈ D, there exists a literal l′ ∈ C such that l ≡C l′.
If S, S′ are sets of clauses, we write S ≤eq C if ∃D ∈ S,D ≤eq C and S ≤eq S

′

if ∀C ∈ S′, S ≤eq C. A clause C is redundant in S if either C is a tautology or
if there exists a clause D ∈ S such that D 6≡ C and D |= C. A clause set S is
subsumption-minimal if it contains no redundant clause. 3

Intuitively, the test is performed by verifying that ¬C |= ¬D. To this purpose,
we �rst check that all equations in ¬D are logical consequences of those in ¬C,
which can be easily done by checking that the relation ≡D⊆≡C holds. Then,
we consider the negative literals in ¬D. Such a literal ¬l can only be entailed
by ¬C i� ¬C contains a literal ¬l′ that can be reduced to ¬l by the relation
≡C .

Example 8 Let C be the clause of Example 3. C is eq-subsumed by the clauses
a 6' b ∨ a 6' c, a 6' b ∨ c ' e and c ' d. However, it is neither eq-subsumed by
the clause a 6' d, because a�C 6= d�C , nor by the clause a ' b, because there is
no literal l ∈ C such that (a ' b)�C = l�C . ♣

Example 9 The clause d ' a eq-subsumes the clause D = a 6' e ∨ d ' e,
because the clause d ' a contains no negative literal (and thus ≡d'a is the
identity) and theD-representatives of the literals d ' e and d ' a are identical.♣

Theorem 10 Let C and D be two clauses and assume that C is not a tautology.
Then D |= C i� D ≤eq C.

Proof. Assume that D |= C, that C is not a tautology and that D 6≤eq C. If
there is a negative literal b 6' a in D such that b�C 6= a�C , then a 6' b 6|= C,
hence we cannot have D |= C, since b 6' a ∈ D. Now, consider a positive literal
b ' a ∈ D and assume that b�C ' a�C does not occur in C�C . We consider the
interpretation I such that =I is the smallest re�exive, symmetric and transitive
relation satisfying b =I a and d =I c for every c, d ∈ C such that d 6' c ∈ C.
It is clear that I |= D, thus we must have I |= C. Furthermore, I falsi�es all
the negative literals in C, by de�nition. Therefore, I must validate a positive
literal d ' c in C. By de�nition of =I this means that there exists a sequence of
constant symbols c1, . . . , cn such that c1 = d, cn = c and for every i ∈ [1, n− 1],

6

we have either ci 6' ci+1 ∈ C or ci = a and ci+1 = b (or ci+1 = a and ci = b). If
for every i ∈ [1, n − 1] the �rst condition holds, then we have d 6' c |= C, and
therefore C must be a tautology (since d ' c occurs in C), which contradicts
our hypothesis. Otherwise, we can assume, without loss of generality, that the
sequence c1, . . . , cn is minimal (i.e., contains no repetition), so that there is
exactly one index i satisfying the second condition. In this case we must have
d 6' a |= C and b 6' c |= C (or d 6' b |= C and a 6' c |= C), and thus d�C = a�C
and b�C = c�C (or d�C = b�C and b�C = a�C). But then, since d ' c ∈ C, this
entails that a�C ' b�C occurs in C which again contradicts our hypothesis.

Conversely, assume that D ≤eq C. Let I be a model of D. By de�nition
I validates some literal l ∈ D. If l is a negative literal b 6' a then we have
b�C = a�C , and thus b 6' a |= C. Consequently, I |= C. If l is a positive
literal b ' a then there exists a literal b′ ' a′ ∈ C such that b′�C = b�C and
a′�C = a�C . If I |= c 6' c�C for some constant symbol c ∈ C we have I |= C,
since by de�nition c 6' c�C |= C. Thus we can assume that I |= a ' a′, b ' b′,
and since I |= b ' a we deduce that I |= b′ ' a′, hence that I |= C.

Remark 11 In the following, we will actually use a slightly more restrictive
version of this criterion for redundancy elimination: we impose that the positive
literals in D�C are mapped to pairwise distinct literals in C�C . This additional
restriction is necessary to prevent the factors of a clause from being redundant
w.r.t. the initial clause. For example, the clause a ' b ∨ a 6' a′ will not be
redundant w.r.t. a ' b ∨ a′ ' b ∨ a 6' a′, although a ' b ∨ a′ ' b ∨ a 6' a′ |= a '
b ∨ a 6' a′.

3.2 Clausal Trees

A prime implicate generation algorithm will typically infer huge sets of clauses.
It is thus essential to devise good data-structures for storing and retrieving the
generated clauses, in such a way that the redundancy criterion introduced in
Section 3.1 can be tested e�ciently. We devise for this purpose a tree data-
structure, called a clausal tree, speci�cally tailored to store sets of literals while
taking into account the usual properties of the equality predicate. As in tries,
the edges of the tree are labeled by literals and the leaves are labeled either by
2 (representing the empty clause) or by ∅ (failure node). Each branch leading
to a leaf labeled by 2 represents a clause de�ned as the disjunction of the
literals labeling the nodes in the branch. Failure nodes are useful mainly to
represent empty sets � in fact they can always be eliminated by straightforward
simpli�cation rules, except if the root itself is labeled by ∅.

De�nition 12 A clausal tree is inductively de�ned as either 2, or a set of pairs
(l, T ′) where l is a literal and T ′ a clausal tree. The set of clauses represented
by a clausal tree T is denoted by C(T) and de�ned inductively as follows:
- C(T) = {2} if T = 2

- C(T) =
⋃

(l,T ′)∈T

(⋃
D∈C(T ′)

l ∨D

)
otherwise. 3

7

Note that by construction, C(∅) = ∅

Example 13 The structure T below is a clausal tree. There
is no failure node, and for readability the labels are associ-
ated with the nodes rather than to the edges leading to them.

T

a ' b

a ' c

a 6' b

a ' c c 6' d

a ' c c ' e

The represented clauses C(T) are:

a ' b ∨ a ' c
a 6' b ∨ a ' c
a 6' b ∨ c 6' d ∨ a ' c
a 6' b ∨ c 6' d ∨ c ' e

Formally, it is de�ned as {(a ' b, T ′), (a 6' b, T ′′)}, with

T ′
def
= {(a ' c,2)}

T ′′
def
= {(a ' c,2), (c 6' d, {(a ' c,2), (c ' e,2)})}. ♣

We impose additional conditions on clausal trees, in order to ensure that
the represented clauses are in normal form and that sharing is maximal, in the
sense that there are no two edges starting from the same node and labeled by
the same literal. Furthermore, the literals occurring along a given branch are
ordered using the usual multiset extension of ≺, with the additional constraints
that all negative literals are strictly smaller than positive ones. More formally,
we de�ne an ordering < on literals as follows.
- If l is a negative literal and l′ is a positive literal, then l < l′.

- If l and l′ have the same sign, with l = (b ./ a), l′ = (d ./ c), b � a and d � c
then l < l′ i� either b ≺ d or (b = d and a ≺ c).

De�nition 14 A clausal tree T is a normal clausal tree if for any pair (l, T ′)
in T , all the following conditions hold.
- There is no T ′′ 6= T ′ such that (l, T ′′) ∈ T ;
- l is not of the form a ' a or a 6' a, all literals occurring in T ′ are strictly
greater than l w.r.t. < and if l = a 6' b with a ≺ b then b does not occur in T ′.
- T ′ is a normal clausal tree. 3

It is easy to see that if T is a normal clausal tree then all the clauses in C(T)
are in normal form. The tree of Example 13 satis�es these requirements, for
example the constant b does not occur below the literal a 6' b.

We now introduce two algorithms for manipulating such data-structures.
The �rst algorithm (isEntailed) is invoked on a clause C and a tree T , and re-
turns true if and only if there exists a clause D in C(T) such that D eq-subsumes
C. To test this entailment, the algorithm performs a depth-�rst traversal of T
and attempts to project every encountered literal on C. If a literal cannot be
projected, the exploration of the subtree associated to this literal is useless, so
the algorithm switches to the following literal. As soon as a clause entailing C
is found, the traversal halts and true is returned.

8

Algorithm 1 isEntailed(C, T)

if T = 2 then

return true
end if

if C = 2 then

return false
end if

l1 ← min
<
{l ∈ C}

for all (l, T ′) ∈ T such that l ≥ l1 do
if l1 = a 6' b, with a � b then

if l = l1 then
if isEntailed(C \ {l1}, T ′) then

return true
end if

else if ¬(l = a 6' c), with a � c then
if isEntailed(C \ {l1}, (l.T ′)[a := b]) then

return true
end if

end if

else if l ∈ C then

if isEntailed(C \ {l}, T ′) then
return true

end if

end if

end for

return false

For any expression E, E[a := b] denotes the expression obtained from E
by replacing all occurrences of a by b. For any clausal tree T and literal l, we

denote by l.T the clausal tree l.T
def
= {(l, T)}.

Before proving that the algorithm is correct, we must verify that its require-
ments are always respected, namely, that for all recursive calls, the input clause
is in normal form and the input tree is a normal clausal tree. For the clauses,
this is obvious because no rewriting operation is ever performed, and literals are
deleted from the smallest to the greatest, which is su�cient to ensure that the
resulting clause remains in normal form. For the clausal trees, the proof is more
involved: actually, we can remark that, although all the clauses occurring in the
initial normal clausal tree are in normal form, this property is not preserved by
recursive calls due to the fact that constants may be replaced (if an inequation
a 6' b is encountered in the clause). We thus need to introduce a slightly relaxed
version of this notion.

De�nition 15 A clausal tree is a relaxed normal clausal tree if
- for any pair (l, T ′) ∈ T , if l is a negative literal then:

9

- l is not of the form a 6' a;
- for all literals l′ in T ′, we have l < l′;

- if l = a 6' b, with a � b, then for all literals l′ occurring in T ′, the constant a
does not occur in l′;

- for any pair (l, T ′) ∈ T , T ′ is a relaxed normal clausal tree. 3

It is also necessary to relax the conditions on the clauses accordingly, since
the clauses represented by a relaxed normal clausal tree are not necessarily in
normal form:

De�nition 16 A clause C is in relaxed normal form if C = C↓ and if, moreover,
all negative literals occur at most once in C and C contains no literal of the
form a 6' a. 3

Thus, if C is in relaxed normal form, then it possibly contains several oc-
currences of the same positive literal, or a literal of the form a ' a.

We also need to introduce additional propositions, stating some basic prop-
erties of the clauses and clausal trees.

Proposition 17 The two following properties hold.
- Let (l, T) be a relaxed normal clausal tree. If l is a positive literal, then all
the literals occurring in T are also positive.

- If T1, . . . , Tn are relaxed normal clausal trees distinct from 2, then so is
n⋃

i=1

Ti.

Proof. The �rst item of this proposition is justi�ed by the fact that if l and
l′ are literals such that l < l′ and l is a positive literal, then l′ is also a posi-
tive literal by de�nition of <. The second item is a direct consequence of the
de�nition of a relaxed normal clausal tree.

Proposition 18 The following properties hold:

1. If C and D are two non-tautological clauses containing the same negative
literals then for every constant a we have a�C = a�D.

2. If a non-tautological clause C contains no negative literal, then for any
constant a, a�C = a.

Proposition 19 Let C be a clause in relaxed normal form. For any constant
a, we have a�C = a i� for all literals l occurring in C, if l is of the form a 6' b
then b � a.

Proof. Let a be a constant and C be a clause in relaxed normal form; assume
a�C = a. If l ∈ C is of the form a 6' b with a � b, then by de�nition b = a�C = a
and l is a contradiction; but this is impossible since C is a clause in relaxed
normal form. Now assume that there exists an l ∈ C such that l is of the form
a 6' b with a � b, then by de�nition b = a�C , thus a � a�C .

10

Proposition 20 Consider the clauses C,D and assume that a 6' b ∨ C is a
clause in normal form, for constants a, b such that a � b. Then D |= a 6' b ∨C
if and only if D[a := b] |= C.

Proof. Assume D[a := b] |= C and let I be an interpretation such that I |= D.
If a =I b then I |= a 6' b ∨ C. Otherwise, we have I |= D[a := b] and by
hypothesis I |= C |= a 6' b ∨ C.

Assume D |= a 6' b ∨ C, let I |= D[a := b] and consider the interpretation
J identical to I, except that a =J b. Then by construction J |= D[a := b] and
J |= a ' b, hence J |= D and J |= a 6' b∨C. We deduce that J |= C. Since C
is in normal form, we have C = C[a := b], and since constant a does not occur
in C, we conclude that I |= C.

Lemma 21 proves that the requirements of the isEntailed algorithm are
met at every recursive call.

Lemma 21 Let C be a clause and T a relaxed normal clausal tree. All the trees
appearing in the recursive calls of isEntailed(C, T) are also relaxed normal
clausal trees.

Proof. For any (l, T ′) ∈ T , T ′ is a relaxed normal clausal tree by de�nition.
It is also straightforward to see that l.T ′ is a relaxed normal clausal tree. The
only case to consider is when l1 is of the form a 6' b with a � b, l > l1 and l is
not of the form a 6' c with a � c. We then show by induction that (l.T ′)[a := b]
(the argument of the recursive call) is a relaxed normal clausal tree.

We suppose that: ∀(l′, T ′′) ∈ T ′, (l′.T ′′)[a := b] is a relaxed normal clausal
tree. Then by Proposition 17, T ′[a := b] is a relaxed normal clausal tree and if
l is a positive literal, then so is any literal l′ occurring in T ′ thus (l.T ′)[a := b]
is also a relaxed normal clausal tree. If l is of the form u 6' v with u � v, then
necessarily u � a, because l > a 6' b and l 6= a 6' c with a � c, thus l[a := b]
is not a contradiction. Furthermore, for all literals l′ labeling an edge starting
from the root of T ′, if l′ is positive, then by de�nition of the order on literals,
l[a := b] < l′[a := b]. If l′ is negative, then l′ = s 6' t with s � u (and s � t), so
s � a, hence l[a := b] < l′[a := b]. In addition, since u does not appear in T ′, it
also does not appear in T ′[a := b] (because u 6= b). Since all the properties are
veri�ed, we conclude that (l.T ′)[a := b] is a relaxed normal clausal tree.

The following theorem states the main properties of isEntailed.

Theorem 22 The procedure isEntailed terminates in O(size(C(T)) + |C| ×
|C(T)|). If C is a clause in normal form and T is a relaxed normal clausal tree
then isEntailed(C, T) is true i� C(T) contains a clause D such that D ≤eq C.

Proof. We �rst assume that isEntailed(C, T) = true and show by induction
on size(T) that there exists a clause D ∈ C(T) such that D ≤eq C. We examine
all the cases in which isEntailed(C, T) returns true in their order of appearance
in the algorithm.

11

- If T = 2 then it represents the empty clause and since 2 ≤eq C, the property
holds.

- Assume l1 = min
<
{li ∈ C} is of the form a 6' b with a � b.

• If there exists a (l1, T
′) ∈ T such that isEntailed(C \ {l1}, T ′) is true, then

by induction, there exists a D ∈ C(T ′) such that D ≤eq C \ {l1}. Therefore
l1 ∨D ≤eq C and since l1 ∨D ∈ C(T), we have the result.

• Suppose there exists a (l, T ′) ∈ T such that l is not of the form a 6' c with
a � c and isEntailed(C \{l1}, l.T ′[a := b]) = true. Then by induction there
exists a D′ ∈ C(l.T ′[a := b]) such that D′ ≤eq C \ {l1}, and therefore there
exists a D ∈ C(l.T ′) such that D[a := b] ≤eq C \ {l1}. Thus we must have
D ≤eq C and since C(l.T ′) ⊆ C(T), the property is veri�ed.

- Now assume that l1 = a ' b with a � b, that there exists a pair (l, T ′) ∈ T
with l ≥ l1 such that l ∈ C and isEntailed(C \ {l}, T ′) is true. By induction
there exists a D ∈ T ′ such that D ≤eq C \ {l}. Hence l ∨ D ≤eq C, so the
property is veri�ed.
Suppose that there exists a clause D ∈ C(T) such that D ≤eq C, we prove by

induction on size(T) that isEntailed(C, T) = true. If T = 2 then the result
is clear; otherwise, D is of the form l ∨D′, for some (l, T ′) ∈ T and D′ ∈ C(T ′).
Let l1 = min< {l′ ∈ C}, so that C = l1 ∨ C ′. Note that necessarily, l ≥ l1.
Indeed, assume this is not the case. If l1 is of the form a 6' b where a � b,
then l must be of the form u 6' v, where u � v. Since a 6' b is minimal in
C, necessarily v�C = v and u�C 6= v, which means that (u 6' v)�C cannot be a
contradiction and D 6≤eq C. If l1 is a positive literal then C must be a positive
clause by de�nition of the ordering <, and by Proposition 18(2), l�C = l cannot
belong to C and we cannot have D ≤eq C.

If l1 is of the form a 6' b with a � b, then there are two cases to consider. If
l = l1, then D is of the form l1∨D′ and since T ′ is a relaxed normal clausal tree,
constant a cannot occur in D′ and it is straightforward to verify that D′ ≤eq C

′;
hence the call to isEntailed on C ′ and T ′ returns true. If l > l1 then, since
l�C is a contradiction, l cannot be of the form a 6' c with a � c because a�C = b
and since a 6' b is minimal in C, we cannot have c�C = b. By Proposition 20,
D[a := b] ≤eq C

′, and since D[a := b] ∈ C(l.T ′[a := b]), the call to isEntailed
on C ′ and l.T ′[a := b] returns true.

If l1 is a positive literal, then C must be a positive clause and by Proposition
18(2), D�C = D. Necessarily, l ∈ C and D′ ⊆ C \ {l}. Therefore, the call to
isEntailed on C \ {l} and T ′ returns true.

We now investigate the complexity of the algorithm isEntailed. We assume
that the rewriting of the constant a with the constant b performed in the recur-
sive call isEntailed(C \ {l1}, l.T ′[a := b]) is not carried out by going through
the whole tree l.T ′, but simply taken into account in the following recursive
calls (with a constant cost2). We can then estimate that in the worst case, we
have one recursive call per edge in the tree T , plus one recursive call per literal

2because necessarily b = b�C , thus each constant a is rewritten at most only once; and
assuming a constant access to each rewritting, stored for example in a hashtable

12

in the clause C for each branch of T . Moreover, there are at most as many
edges in T than there are literals in the clauses of C(T). Thus, the complexity
of isEntailed(C, T) is in O(size(C(T)) + |C| × |C(T)|).

The second algorithm (pruneEntailed) deletes from a tree T all clauses
that are eq-subsumed by C. It performs a depth-�rst traversal of T and at-
tempts to project C on every clause in C(T), deleting those on which such a
projection succeeds. As soon as a projection is identi�ed as impossible, the
exploration of the associated subtree halts and the algorithm moves on to the
next clause. When every literal in C has been projected, all the clauses rep-
resented in the current subtree are entailed by C, and are therefore deleted.
Afterward, the clause C can itself be added in the tree (the insertion algorithm
is straightforward and thus is omitted).

Algorithm 2 pruneEntailed(C, T)

if C = 2 then

return ∅
end if

if T = 2 then

return T
end if

l1 ← min
<
{li ∈ C}

for all (l, T ′) ∈ T such that l ≤ l1 do
if l1 = l then

T ′′ := pruneEntailed(C \ {l1}, T ′)
else

if l = a ' b then
T ′′ := pruneEntailed(C, T ′)

else if l = a 6' b, with a � b
and @c, l1 = a 6' c, with a � c then
T ′′ := pruneEntailed(C[a := b], T ′)

end if

end if

T := (T \ {(l, T ′)}) ∪ {(l, T ′′)}
end for

return T

As with the previous algorithm, before proving the soundness, we must en-
sure that the requirements of the algorithm are met by all the recursive calls.
Note that pruneEntailed(C, T) is necessarily a normal clausal tree. Indeed,
it is clear that pruneEntailed does not add or modify nodes or labels in T :
the only operations performed by the algorithm are replacing subtrees with
empty sets and removing elements. Thus, all the conditions in De�nition 14 are
preserved.

The following proposition analyses the e�ect on the relation ≡C of the addi-
tion of a disequation a 6' b into C. It is clear that this addition can only a�ect

13

the equivalence classes of the constant symbols that are already in relation with
a or b:

Proposition 23 Let C be a clause and let a, b, c, d be constant symbols. If
c ≡a6'b∨C d and c 6≡C d, then a 6≡C b and {a�C , b�C} = {c�C , d�C}. Furthermore,
if {a�C , b�C} = {c�C , d�C}, then c ≡a6'b∨ d.

Proof. We only prove the �rst point, the second one being immediate. Obvi-
ously we cannot have a ≡C b, otherwise ≡C would be identical to ≡a6'b∨C . By
de�nition of ≡a 6'b∨C there exist a sequence of constant symbols e1, . . . , en such
that e1 = c, en = d and for all i ∈ [1, n − 1], ei 6' ei+1 occurs in a 6' b ∨ C.
W.l.o.g. we assume that this sequence is minimal, which implies that the ei's
are pairwise distinct. Then there exists at most one i ∈ [1, n − 1] such that
ei 6' ei+1 is identical to a 6' b (up to commutativity). Notice that such an i
necessarily exists otherwise we would have c ≡C d. We have c = e1 ≡C ei and
ei+1 ≡C en = d. If ei 6' ei+1 is a 6' b, then we have c ≡C a and d ≡C b,
otherwise ei 6' ei+1 must be b 6' a, and we have c ≡C b and d ≡C a.

Lemma 24 Let C be a clause in relaxed normal form and T a normal clausal
tree. All the clauses arguments of a recursive call in pruneEntailed(C, T) are
in relaxed normal form.

Proof. Since C is in relaxed normal form, clearly C \ {l′} is also in relaxed
normal form for all literals l′ in C. The only case that must be detailed is the
recursive call pruneEntailed(C[a := b], T ′) which is invoked for (l, T ′) ∈ T ,
where l is of the form a 6' b with a � b; l1 = min< {li ∈ C} is not of the form
a 6' c with a � c and l ≤ l1.

If l1 is a positive literal, then all the literals in C and C[a := b] are positive.
Thus by Proposition 18(2), for all li ∈ C[a := b], li = li�C[a:=b], and so C[a := b]
is in relaxed normal form. In the case where l1 is a negative literal (of the form
u 6' v with u � v), we prove by induction on the size of C that if C is in relaxed
normal form, then so is C[a := b]. By de�nition, C \ {l1} is in relaxed normal
form and by induction, so is (C \ {l1})[a := b]. The literal l1[a := b] (denoted
by l′1 in the rest of the proof) veri�es the following properties:

l′1 = u′ 6' v′ is not a contradiction. Since l1 = u 6' v is not a contradiction
and u � a by hypothesis, u 6= a, thus u′ = u and v′ ≤ v < u; hence u′ 6= v′

and l′1 cannot be a contradiction.

l′1 is unique in C[a := b]. The literal l′1 is smaller than all the positive literals
in C[a := b]. Moreover, for any negative literal l′2 ∈ (C \ {l1})[a := b],
the corresponding literal l2 ∈ C \ {l1} is of the form s 6' t (where s � t),
with s � u, so s � a and l′1 < l′2 (since u = u′). Thus, l′1 is minimal in
C[a := b].

l′1 = u′ 6' v′ with u′�C[a:=b] = v′. Let D = C[a := b] and assume v′�D = w,
where w 6= v′. Since D[a := b] = D = C[a := b], by Proposition 20,
D |= a 6' b ∨ C. Since v′ 6= w, this means that ¬C 6|= v′ ' w and

14

¬C∪{a ' b} |= v′ ' w. Thus by Proposition 23, either ¬C |= v′ ' a,w '
b, or ¬C |= v′ ' b, w ' a. But since C is in relaxed normal form, this
means that C should contain either b 6' w or a 6' w, and both cases are
impossible since a 6' b is minimal in C.

In addition, since u does not appear in any literal in C \{l1} and since b 6= u, for
all literal li ∈ C \ {l1}, li�C[a:=b] = li�(C\{l1})[a:=b]. Thus, the properties veri�ed
by induction by the literals of (C \ {l1})[a := b] are also veri�ed in C[a := b].

Theorem 25 Let C be a clause in relaxed normal form and T be a normal
clausal tree. Then pruneEntailed(C, T) is a normal clausal tree that contains
exactly the clauses D ∈ C(T) such that C 6≤eq D. Furthermore, the procedure
pruneEntailed terminates in O(size(C(T))).

Proof. If D occurs in pruneEntailed(C, T), then it necessarily also oc-
curs in C(T), because pruneEntailed(C, T) is obtained by removing some
branches from T . If C = 2, then we have C |= D for every clause D, thus
any clause in C(T) must be removed and in this case, the algorithm ensures
that pruneEntailed(C, T) = ∅. Now assume that C 6= 2. We prove that
C(pruneEntailed(C, T)) = {D ∈ C(T) | C 6≤eq D} by proving both inclusions.

Let D ∈ C(T) such that C ≤eq D. We show by induction that D 6∈
C(pruneEntailed(C, T)). If D = 2 (i.e. T = 2), then C must be
a contradiction and since C is in relaxed normal form, C = 2. Thus,
pruneEntailed(C, T) = ∅ and D 6∈ C(pruneEntailed(C, T)). From now on,
we assume that D 6= 2 and C 6= 2. Let l1 = min< {li ∈ C}, l = min< {l′ ∈ D}
and D′ = D \ {l}. Since T is a normal clausal tree and D ∈ C(T), by de�-
nition there exists a unique normal clausal tree T ′ such that (l, T ′) ∈ T and
D′ ∈ C(T ′). There are several cases to consider:

1. l > l1, in which case no recursive call is done,

2. l = a 6' b and l1 = l, in which case pruneEntailed(C \ 1}, T ′) is invoked,

3. l = a 6' b and l1 = a 6' c, where a � c, in which case no recursive call is
done,

4. l = a 6' b, l1 > l and l1 is not of the form a 6' c with a � c, in which case
pruneEntailed(C[a := b], T ′) is invoked,

5. l = a ' b and l1 = l, in which case pruneEntailed(C \ {l1}, T ′) is
invoked,

6. l = a ' b and l1 > l, in which case pruneEntailed(C, T ′) is invoked.

These cover all the possible relations between l and l1.

1. Assume l > l1. We distinguish two cases depending on the polarity of l1:

15

- If l1 = c 6' d with c � d, then l1�D is a contradiction by Theorem 10, so
c�D = d�D. But for all l′ ∈ D, l′ > l1, and since D which is in relaxed
normal form cannot contain a literal d 6' d�D which would be smaller
than l1, d�D = d. Therefore c�D = d and by de�nition of a clause in
normal form, l1 ∈ D.

- If l1 is positive, then l1�D ∈ D�D by Theorem 10, and because D is in
normal form, l1�D ∈ D. But since l′ > l1 for all l′ ∈ D, D must only
contain positive literals. Hence by Proposition 18(2), l1�D = l1, and
l1 ∈ D.

Thus, in both cases, l1 ∈ D, which is impossible since ∀l′ ∈ D, l1 < l ≤ l′,
and C 6≤eq D.

2. Assume l = a 6' b with a � b and l1 = l. In this case, pruneEntailed(C\
{l1}, T ′) is invoked. Since C ≤eq D, for any literal l′ ∈ C such that l′ 6= l1:

- If l′ is negative, then l′�D is a contradiction. By de�nition of a clause in
relaxed normal form, the constant a cannot appear in any literal other
than l1 in C, hence C \ {l1}�D = C \ {l1}�D′ . Thus l′�D′ is also a con-
tradiction.

- If l′ is positive then l′�D ∈ D�D. But by de�nition of a normal clausal
tree, the positive literals of D�D are the same as those of D, D′ and
D′�D′ . Hence l′�D′ ∈ D′�D′ .

This means that C \ {l1} ≤eq D′ and by induction D′ 6∈
C(pruneEntailed(C, T ′)), thus D 6∈ C(pruneEntailed(C, T)).

3. If l = a 6' b and l1 = a 6' c, where a � c, then l1�D = b 6' c is not
a contradiction. Thus by Theorem 10, C 6≤eq D, which contradicts our
hypothesis.

4. If l = a 6' b where a � b, l1 > l and l1 is not of the form a 6' c with
a � c, then pruneEntailed(C[a := b], T ′) is invoked. By Proposition
20, C[a := b] ≤eq D[a := b], hence C[a := b] ≤eq D′. By induction
D′ 6∈ C(pruneEntailed(C, T ′)), hence D 6∈ C(pruneEntailed(C, T)).

5. Assume l = a ' b and l1 = l. In this case, both C and D contain only
positive literals, thus for any l′ ∈ C such that l′ 6= l1, by Proposition 18(2),
l′�D = l′�D′ = l′ and D�D = D. Furthermore, l′ ∈ D�D, hence l

′ ∈ D′, and
C \ {l1} ≤eq D

′, so by induction D′ 6∈ C(pruneEntailed(C \ {l1} , T ′))
and �nally D 6∈ C(pruneEntailed(C, T)).

6. If l = a ' b and l1 > l, then the same reasoning as for the pre-
vious point holds for any l′ ∈ C, including l1, thus C ≤eq D′ and
D′ 6∈ C(pruneEntailed(C, T ′)) by induction.

Now assume that D ∈ C(T) is such that C 6≤eq D (this necessarily entails
that C 6= 2). We show by induction that D ∈ C(pruneEntailed(C, T)).
If D = 2, then T = 2 and pruneEntailed(C, T) = T , so D ∈
C(pruneEntailed(C, T)). As before we write l1 = min< {li ∈ C}, l =

16

min< {li ∈ D}, D′ = D \ {l} and we consider the unique couple (l, T ′) ∈ T .
By Theorem 10, there must be a literal l′ ∈ C that is not successfully projected
on D. We must consider the same cases as before:

1. If l1 < l, then no recursive call is done on T ′, and T ′ 6= ∅ because D′ ∈
C(T ′), thus D ∈ C(pruneEntailed(C, T)).

2. Assume l = a 6' b with a � b and l1 = l. Clearly, l′ 6= l1
since l1 ∈ D, thus l′ ∈ C \ {l1} and l′ also cannot be projected on
D′, because D′�D′ = (D�D) \ {l�D}. Hence C \ {l1} 6≤eq D′ and
by induction D′ ∈ C(pruneEntailed(C, T ′)). By de�nition, D ∈
C(pruneEntailed(C, T)).

3. If l = a 6' b and l1 = a 6' c, with a � c, then as seen above, C 6≤eq

D. No recursive call is done, so pruneEntailed(C, T ′) = T ′, and D ∈
C(pruneEntailed(C, T)).

4. Assume l = a 6' b, where a � b, l1 > l and l1 is not of the form a 6' c
with a � c. The constant a does not occur in l′ by Proposition 18(2), thus
l′[a := b] = l′ and l′�D = l′�D′ . This permits to conclude that l′ ∈ C[a := b]
and that l′ cannot be projected on D′ because D′�D′ = (D�D) \ {(l�D)};
hence C[a := b] 6≤eq D

′. By induction D′ ∈ C(pruneEntailed(C, T ′))
and so D ∈ C(pruneEntailed(C, T)).

5. If l = a ' b and l1 = l, then as in Point 2, l′ 6= l1, hence l
′ ∈ C \ {l1}.

Furthermore, all the literals in D are positive, thus D′�D′ = D \ {l}. This
implies that l′ cannot be projected on D′ and by Theorem 10, C \ {l1}
does not entail D′. By induction D′ ∈ C(pruneEntailed(C, T ′)) and so
D ∈ C(pruneEntailed(C, T)).

6. If l = a ' b and l1 > l, then the proof is the same as in Point 5, except
that it is possible that l′ = l1, thus it is C that does not entail D′ instead
of C \ {l1}.

The two algorithms isEntailed and pruneEntailed have a similar struc-
ture in terms of recursive calls, hence they also have a similar complexity. How-
ever, even in the worst case the recursive calls to pruneEntailed always reduce
the tree, which is not the case in isEntailed. Thus these recursive calls are
not in�uenced by the number of literals in C, which ensure a slightly better
theoretical complexity for pruneEntailed than for isEntailed: O(C(T)) in
the worst case.

4 Generation of Implicates

This section addresses the problem of implicate generation. We consider the
inference rules below. These rules are very similar to the usual inference rules
of the paramodulation calculus (see for instance [14]). The only di�erence is
that the replacement of arbitrary terms is allowed, provided some additional
semantic conditions are attached to the conclusion. For instance, the usual

17

paramodulation rule applies on clauses of the form C[a] and a ' b∨D, yielding
C[b] ∨ D. In our context, the rule is applied on a clause C[a′], where a′ is an
arbitrary constant and the conclusion is a 6' a′ ∨ C[b] ∨D. This clause can be
viewed as an implication, stating that C[b] ∨D holds if the condition a ' a′ is
satis�ed (indeed, in this case C[a′] is equivalent to C[a] and thus C[b] ∨D can
be derived by standard paramodulation).

Paramodulation (P):
a ./ b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ./ c ∨ C ∨D

Factorization (F):
a ' b ∨ a′ ' b′ ∨ C

a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

Negative Multi-Paramodulation (M):∨n
i=1(ai 6' bi) ∨ P1 c ' d ∨ P2∨n
i=1(ai 6' c ∨ d 6' bi) ∨ P1 ∨ P2

We write S ` C if C is generated from premises in S by one application of
the rules P, F or M. The premises are assumed to be in normal form and the
conclusion is normalized before being stored. The rule P is similar to the usual
paramodulation rule, except that the uni�cation between the terms a and a′ is
omitted and replaced by the addition of the literal a 6' a′ ensuring that these
terms are semantically equal. Similarly, F factorizes the literals a ' b and a′ ' b′
and adds literals ensuring that a = a′ and b = b′. The rule M corresponds to an
application of a factorization rule on the negative literals ai 6' bi, followed by a
paramodulation step which removes these literals, while adding the conditions
ensuring that ai = c and bi = d.

Example 26 The application of the rule P on d ' c ∨ d ' b and d ' a yields
the following clauses (among others):

d 6' d ∨ a ' c ∨ d ' b (terms d and d)
c 6' a ∨ d ' d ∨ d ' b (terms c and a)
b 6' d ∨ d ' c ∨ d ' a (terms b and d)

The clauses can be normalized afterwards: the �rst clause is reduced to a '
c∨ d ' b, the second is removed (it is a tautology) and the third one is replaced
by d 6' b ∨ c ' b ∨ b ' a (since b ≺ d). ♣

Example 27 The rule F applies on the clause a ' b ∨ a ' c ∨ c ' d, yielding,
e.g., a ' b ∨ a 6' a ∨ b 6' c ∨ c ' d. The normal form of the consequent is
c 6' b ∨ a ' b ∨ b ' d. ♣

Example 28 Consider the clauses a 6' b ∨ a 6' c and a ' b. With n = 1, the
rule M applies on the couples of literals (a 6' b, a ' b) or (a 6' c, a ' c), the �rst
application yielding a 6' a∨ b 6' b∨a 6' c, i.e., after normalization a 6' c. It also
applies with n = 2, yielding a 6' a ∨ b 6' b ∨ a 6' a ∨ b 6' c, or, in normalized
form, b 6' c. ♣

18

De�nition 29 A set of clauses S is saturated i� for every non-tautological
clause C that can be derived from S using these rules, there exists a clause
C ′ ∈ S such that C ′ ≤eq C. 3

It would be tempting to remove the rule M (note that the case n = 1 in this
rule is actually already covered by the rule P). This would make the calculus
much more e�cient, since the branching factor is drastically reduced; however,
this also renders the calculus incomplete, as the next example proves.

Example 30 Consider the set: S = {c 6' a ∨ d 6' a, a ' b ∨ c 6' b ∨ d 6' b}
and let C = c 6' b ∨ d 6' b. It is clear that S |= C (e.g. by paramodulating
twice a ' b into the �rst clause) and that C is a prime implicate of S. However,
if M is forbidden, then it can be veri�ed that S is saturated. For example,
paramodulating the literal a ' b of the second clause into the literal c 6' a of
the �rst clause yields a 6' a ∨ c 6' b ∨ d 6' a ∨ c 6' b ∨ d 6' b, and the normalized
form of this clause is c 6' a ∨ d 6' a, which is eq-subsumed by the �rst clause in
S. Therefore, without rule M, C cannot be generated. ♣

We now prove that a saturated set S subsumes all its implicates. Therefore,
if moreover S is subsumption-minimal then it contains exactly its set of prime
implicates, up to equivalence. We �rst state the following result, that is similar
in essence, but much weaker since it does not cope with redundancy elimination.

Lemma 31 Let S be a set of clauses such that S contains every clause that can
be derived from premises in S by the rules P or F. For every implicate C of S,
there exists a clause D ∈ S such that D |= C.

Proof. Let C be a non-tautological clause such that for all D ∈ S, D 6|= C. We
begin by de�ning an ordering <C on literals that will permit to distinguish the
literals entailing C (by ensuring that these literals are smaller than the other
ones), and to order all the literals according to their projection on C. For all
literals l1, l2, l1 <C l2 i� one of the conditions below holds:
- l1|=C and l2 6|=C;
- or else l1�C = a1 ./ b1, with a1 � b1; l2�C = a2 ./ b2, with a2 � b2 and

• a1 ≺ a2, or
• a1 = a2 and b1 ≺ b2.
Note that <C is a total ordering on atoms. This order is extended to clauses
using the standard multiset extensioun. We then de�ne an interpretation I
that will satisfy S but not C, by induction on the ordering <C . Note that I is
constructed as a propositional interpretation, i.e., it maps atoms to truth values.
We shall prove later that I actually de�nes an equational interpretation, i.e. an
equivalence relation on C.

Let p1 <C . . . <C pn be the set of atoms. For all i ∈ {1 . . . n}, we de�ne the
propositional interpretation Ii as follows.

1. For any atom l such that l�C = pj with j < i, Ii|=l i� Ii−1|=l.

2. For any atom l such that l�C = pj with j > i, Ii 6|=l.

19

3. For any atom l such that l�C = pi, Ii|=l i�

(a) either pi is of the form a ' a,
(b) or pi 6∈ C↓ and there exists a clause D ∨ l′ ∈ S such that:

∗ l′�C = pi,
∗ D <C l′,
∗ Ii−1 6|=D.

We denote by I the interpretation In. For all i ∈ 1 . . . n, I coincides with Ii for
all literals l such that l�C = pj or l�C = pj

c, where j ≤ i. In particular, given
two atoms l and l′ such that l�C = l′�C , necessarily, either I|=l and I|=l′, or
I6|=l and I6|=l′.

The proof of this lemma consists in showing that I is actually an equational
interpretation (i.e. that it satis�es the equality axioms), and that it satis�es the
formula S ∪ ¬C. We prove �rst that I 6|= C, assuming that I is an equational
interpretation such that I |= S, which will be proven later.

Assume that I|=C, in this case there is a literal l ∈ C such that I|=l.
- If l is a positive literal, then there exists an i ∈ {1 . . . n} such that l�C = pi.
By de�nition of I, either pi is of the form a ' a, in which case C↓ and C are
both tautologies by Proposition 4, a contradiction; or pi 6∈ C↓, hence l /∈ C,
again a contradiction.

- Otherwise l is a negative literal and there exists an i ∈ {1 . . . n} such that
l�C = pi

c. In this case, pi cannot be a tautology by Condition 3a of the
de�nition of I. But l is of the form a 6' b, and since l|=C, necessarily a�C = b�C
and pi = a�C ' b�C is a tautology. Therefore, I6|=C.
We now prove that I |= S, under the assumption that I is an equational

interpretation. For i = 1, . . . , n, we consider the set Li,C of literals l such that
pi 6<C l, and de�ne Si,C = {D ∈ S | ∀l ∈ D, l ∈ Li,C}. We prove by induction
that Ii is an equational interpretation on Li,C such that Ii |= Si,C . Let D ∈
Si,C . If D ∈ Si−1,C then by the induction hypothesis Ii−1 |= D, and since Ii
coincides with Ii−1 on Li−1,C , Ii |= D. We now assume that there exists a
literal l ∈ D such that l�C ∈ {pi, pic}.

1. If there are two literals l and l′ in D such that l�C = pi and l
′
�C = pi

c,
then by construction, if Ii 6|=l then Ii|=l′ and if Ii 6|=l′ then Ii|=l. Thus in
both cases Ii|=D.

2. If there is no literal l ∈ D such that l�C = pi, then there are two possibil-
ities to consider.

- If there is exactly one literal l ∈ D such that l�C = pi
c, then D is of

the form l ∨D′, where D′ <C l. If Ii|=pic, then the result is immediate.
Otherwise, either pi is a tautology, in which case l�C is a contradiction
and by Theorem 10, l|=C, which, by de�nition of <C , entails that l

′|=C
for every l′ ∈ D′, so that D|=C, a contradiction; or pi is not a tautology,
which entails that pi 6∈ C↓. In this case, there exists a clause D′′ ∨ l′ ∈ S
such that l′�C = pi, D

′′ <C l′ and Ii−1 6|=D′′. Assume l = a 6' b and

20

l′ = a′ ' b′ with a�C = a′�C and b�C = b′�C , and let E = a 6' a′ ∨
b 6' b′ ∨ D′ ∨ D′′. Note that E <C pi because a 6' a′, b 6' b′|=C and
D′, D′′ <C pi. By inference rule P, l ∨D′, l′ ∨D′′ ` E, thus E ∈ Si−1,C .
By the induction hypothesis Ii |= E but Ii 6|=a 6' a′, b 6' b′, D′, D′′ by
construction, so that Ii 6|=E, a contradiction.

- If there are several literals l ∈ D such that l�C = pi
c, then the same

disjunction of cases can be applied as with only one such literal, with
the di�erence that in the second case, the rule P is applied several times
until a clause E of the form l1 ∨ . . . ∨ lk ∨D′ ∨ . . . ∨D′ ∨D′′ ∨ . . . ∨D′′
where l1, . . . , lk are negative literals entailing C is generated. The same
contradiction can then be raised on E.

3. If there is no literal l ∈ D such that l�C = pi
c, then there are again two

possibilities to consider.

- If there is exactly one literal l ∈ D such that l�C = pi, then D is of the
form D′ ∨ l, where D′ <C pi. If Ii−1|=D′, then by de�nition Ii|=D.
Otherwise, if pi ∈ C↓, then l|=C by Theorem 10 and by de�nition of <C ,
for all literals l′ ∈ D′, necessarily l′|=C, so that D|=C, which contradicts
our hypothesis. Thus pi 6∈ C↓ and l veri�es Condition 3b of the de�nition
of I, hence Ii|=l and Ii |= D.

- Assume there are two maximal literals l, l′ ∈ D such that l�C = l′�C = pi.
Then D is of the form l ∨ l′ ∨ D′, where D′ <C l and D′ <C l′. The
proof is similar if there are more than two maximal atoms, by applying
several time the rule F instead of just once. Suppose l is of the form
a ' b and l′ is of the form a′ ' b′, where a�C = a′�C and b�C = b′�C . Let
E = a 6' a′ ∨ b 6' b′ ∨ l ∨D′. By inference rule F, D ` E. Thus, E ∈ S
and the previous case proves that Ii |= l and Ii |= D.

This proves that Ii |= Si,C , there remains to prove that the restriction of
Ii to Li,C is an equational interpretation. Let l = a ' b be a literal such that
l�C = pi.

Re�exivity: if l is a tautology, then so is pi and by construction Ii|=l.

Commutativity: since a ' b and b ' a are assumed to be identical, commu-
tativity is naturally respected by Ii.

Transitivity: assume Ii |= a ' b and Ii|=a ' c, where a ' c ∈ Li,C , we prove
that Ii|=b ' c, provided that b ' c ∈ Li,C . There are several cases to
consider, depending on which of (a ' b)�C or (a ' c)�C is a tautology.

1. If b�C = a�C = c�C , then (b ' c)�C = pi is a tautology and by
construction, Ii|=b ' c.

2. Assume b�C = a�C and (a ' c)�C is not a tautology. Then there is a
j ≤ i such that (a ' c)�C = pj , and there exists a clause D∨a′ ' c′ ∈
S such that (a ' c)�C = (a′ ' c′)�C , D <C (a′ ' c′) and Ij−1 6|=D.
By construction Ij |= a ' c, and since Ii and Ij coincide on Lj,C ,

21

we deduce that Ii |= a ' c. But (b ' c)�C = (a ' c)�C , therefore
Ii|=b ' c.

3. The same reasoning proves the result if c�C = a�C and (a ' b)�C is
not a tautology.

4. Assume neither (a ' b)�C nor (a ' c)�C is a tautology. Then there
exists a clause D ∨ d ' e ∈ Si,C such that (a ' b)�C = (d ' e)�C ,
D <C (d ' e) and Ii−1 6|=D. W.l.o.g., we assume that a�C = d�C
and b�C = e�C . Similarly, for some j ≤ i, there exists a clause
D′∨d′ ' f in Sj,C such that (a ' c)�C = (d′ ' f)�C , D

′ <C (d′ ' f)
and Ij−1 6|=D′. W.l.o.g., we assume that a�C = d′�C and c�C = f�C .

Let E = d 6' d′ ∨ e ' f ∨D ∨D′. If E /∈ Si,C , then since d 6' d′ |= C
andD∨D′ ∈ Si−1,C , necessarily pi <C (e ' f)�C and there is nothing
to prove. Otherwise, Since Ii |= Si,C , we deduce that Ii |= E; and
since Ii 6|= D,D′, d 6' d′, necessarily Ii |= e ' f , and Ii |= b ' c.

Theorem 34 states a more powerful result than Lemma 31, namely that any
implicate of a saturated set S is eq-subsumed by a clause in S. The proof of
Theorem 34, requires the handling of redundancy elimination. We �rst show
that a disjunction of literals that are all eq-subsumed by a clause D can be
factorized into a clause that is itself eq-subsumed by D.

Proposition 32 Let C,D be two clauses. Assume that for every literal l ∈ C,
we have l ≤eq D. There exists a clause C ′ derivable by factorization from C
such that C ′ ≤eq D.

Proof. By de�nition, for all negative literals a 6' b ∈ D, we have a ≡D b, .
Moreover, there exists a function γ mapping the positive literals in C to positive
literals in D such that ∀l ∈ C, l ≡D γ(l). Note that if γ is not injective, then
we do not have C ≤eq D. Suppose that C is of the form a ' b ∨ c ' d ∨ C ′′,
where (a ' b) ≡D (c ' d). W.l.o.g., we may assume that a ≡D c and b ≡D d.
Then inference rule F applied to C generates a 6' c ∨ b 6' d ∨ a ' b ∨ C ′′. This
clause satis�es the same requirements as C and contains one less positive literal.
By induction, we deduce that there exists a clause C ′ derivable by factorization
from C such that C ′ ≤eq D.

The next lemma deals with inferences applied to positive literals only. It
shows that any sequence of such inferences on a set of clauses S′ can be �simu-
lated� by applying inference rules on any set S ≤eq S

′.

Lemma 33 Let S be a set of clauses that is saturated. If S ≤eq S′ and if
C is a clause deduced from clauses in S′ by a sequence of applications of the
Factorisation or Paramodulation rules into positive literals, then S ≤eq C.

Proof. The proof is done by induction on the number of inference steps. If C
occurs in S′ then the proof is immediate since S ≤eq S

′. Otherwise, let D be the
�rst clause generated in the derivation leading to C. D must be deduced from
clauses in S′ by applying either the rule P into a positive literal or the rule F.

22

We consider only the case of the rule P, the case of the rule F is similar. Assume
that D = a ' d ∨ b 6' c ∨ P1 ∨ P2 is generated by P, from clauses a ' b ∨ P1

and c ' d ∨ P2. We prove that S ≤eq a ' d ∨ b 6' c ∨ P1 ∨ P2. By de�nition, S
contains a clause eq-subsuming a ' b ∨ P1. If this clause eq-subsumes P1, then
it also eq-subsumes a ' d∨ b 6' c∨P1 ∨P2. The case where S contains a clause
eq-subsuming P2 is symmetrical. Otherwise, S contains a clause of the form
a′ ' b′ ∨ P ′1, where P ′1 ≤eq P1 (since ≡P ′

1
and ≡a′'b′∨P ′

1
are identical and since

no positive literal in P ′1 can be mapped to a ' b) and (a ' b) ≡P1
(a′ ' b′);

and a clause c′ ' d′ ∨ P ′2, with (c′ ' d′) ≡P2
(c ' d) and P ′2 ≤eq P2. The

Paramodulation rule applied to both clauses yields a′ ' d′ ∨ b′ 6' c′ ∨ P ′1 ∨ P ′2,
and this clause eq-subsumes a ' d ∨ b 6' c ∨ P1 ∨ P2. Since S is saturated, we
have S ≤eq a

′ ' d′ ∨ b′ 6' c′ ∨ P ′1 ∨ P ′2, hence S ≤eq a ' d ∨ b 6' c ∨ P1 ∨ P2.
Thus, S ≤eq S

′ ∪ {a ' d ∨ b 6' c ∨ P1 ∨ P2} and by the induction hypothesis,
S ≤eq C.

Theorem 34 Let S be a normalized clause set that is saturated. If S |= C then
S ≤eq C.

Proof. Assume that S |= C and let S′ = {D′ | ∃D ∈ S,D ≤eq D
′}. Note that

S ⊆ S′ and S ≤eq S
′; thus S ≡ S′ and S |= C if and only if S′ |= C. We prove

that all clauses that can be derived from S′ by P or F are eq-subsumed by S. If
this is the case then S also eq-subsumes the closure S′′ by inference rules P and F

of S′, and since S′′ ≤eq C by Lemma 31, we will have the result. Since S ≤eq S
′,

by Lemma 33, we already know that S eq-subsumes all clauses that can be
obtained from clauses in S′ by applying the Factorization or Paramodulation
rule into positive literals. Thus we only consider the case of the application of
the Paramodulation rule into negative literals.

Let a 6' b∨P1, c ' d∨P2 be two clauses in S
′, for which the Paramodulation

rule generates Q = a 6' c ∨ b 6' d ∨ P1 ∨ P2. We prove that S ≤eq Q. The same
reasoning as in the proof of Lemma 33, can be used to show that either S ≤eq P2,
in which case S ≤eq Q, or S contains a clause c′ ' d′ ∨ P ′2 such that c ≡P2 c

′,
d ≡P2 d

′ and P ′2 ≤eq P2. We distinguish two cases involving a 6' b ∨ P1.

- Assume that S contains a clause P ′1 such that P ′1 ≤eq a 6' b∨Q and ≡P ′
1
⊆≡Q.

By de�nition, there exists an injective function γ mapping the positive literals
in P ′1 to the positive literals in a 6' b ∨ Q such that for every positive literal
l ∈ P ′1, l ≡a 6'b∨Q γ(l). Let D be the disjunction of positive literals l ∈ P ′1 such
that l 6≡Q γ(l), and let D′ be the disjunction of the literals γ(l) for l ∈ D. Note
that D′ ⊆ Q, since a 6' b is negative. By de�nition, every negative literal in
P ′1 eq-subsumes Q, since ≡P ′

1
⊆≡Q by hypothesis, and for all positive literals l

in P ′1 \D, we have l ≡Q γ(l), hence l ≤eq Q. Thus P
′
1 is of the form Q′1 ∨D,

where Q′1 ≤eq Q.

By construction D ≡a6'b∨Q D′, thus for every constant symbol g occurring in
D, there exists a constant g′ occurring at the same position in D′ such that
g ≡a6'b∨Q g′. We consider the clause D′′ obtained from D by replacing every
constant symbol g by a constant g′′ chosen as follows:

- If g 6≡Q g′ and g ≡Q a then g′′ = d′.

23

- If g 6≡Q g′ and g ≡Q b then g′′ = c′.

- Otherwise g′′ = g.

We show that g′′ ≡Q g′ for every constant g in D. Assume that this property
is falsi�ed for some constant g. If g ≡Q g′ then g′′ = g by de�nition of g′′, a
contradiction. If g ≡Q a and g 6≡Q g′, then by Proposition 23 g′ ≡Q b, since
g ≡a6'b∨Q g′ by hypothesis. But then g′′ = d′, and since d′ ≡P2 d, we deduce
that d′ ≡Q d ≡Q b ≡Q g′, which contradicts our initial assumption. The proof
is similar if g ≡Q b and g 6≡Q g′. Otherwise, we must have g 6≡Q a, g 6≡Q b and
g = g′′, which is impossible by Proposition 23, since otherwise we would have
g 6≡a6'b∨Q g′. Therefore g′′ ≡Q g′ for every constant g in D, and D′′ ≡Q D′.
Since D ⊆ Q, this entails that D′′ ≤eq Q.

The Paramodulation of c′ ' d′ ∨ P ′2 into Q′1 ∨D generates a clause E of the
form Q′1 ∨D′′ ∨ F ∨ P ′2 ∨ · · · ∨ P ′2, where F is a disjunction of disequations of
one of the following forms:

- g 6' c′ with g ≡Q a and g 6≡Q g′

- or g 6' d′ with g ≡Q b and g 6≡Q g′

Since c′ ≡Q c ≡Q a and d′ ≡Q d ≡Q b, it is clear that F ≤eq Q. Since
P ′2 ≤eq Q, Q

′
1 ≤eq Q and D′′ ≤eq Q, by Proposition 32, the clause E can be

factorized into a clause F ′ ≤eq Q. By Lemma 33 S ≤eq F
′, hence S ≤eq Q.

- Assume that S contains no clause P ′1 such that P
′
1 ≤eq a 6' b∨Q and ≡P ′

1
⊆≡Q.

Since S ≤eq S
′, S must contain a clause P ′1 ≤eq a 6' b∨P1, and we may assume

that ≡P ′
1
6⊆≡P1 (otherwise we would have ≡P ′

1
⊆≡Q and P ′1 ≤eq a 6' b∨Q, hence

we would be back in the previous case). P ′1 is of the form
∨n

i=1(ei 6' fi) ∨ P ′′1 ,
where ≡P ′′

1
⊆≡P1

, and for every i ∈ [1, n], we have ei ≡a6'b∨P1
fi but ei 6≡P1

fi.
By Proposition 23, we know that for every i ∈ [1, n], we have either ei ≡P1

a
and fi ≡P1

b or ei ≡P1
b and fi ≡P1

a. By commutativity, we may assume
that we always have ei ≡P1 a and fi ≡P1 b.

The rule M applied to P ′1 and c′ ' d′ ∨ P ′2 generates R =
∨n

i=1(ei 6' c′ ∨ d′ 6'
fi) ∨ P ′′1 ∨ P ′2. We have c′ ≡P2 c and c ≡a6'c a, hence by Proposition 23, for
all i ∈ [1, n], c′ ≡a 6'c∨P1∨P2 ei and c′ ≡Q ei. Similarly, for every i ∈ [1, n],
d′ ≡b 6'd∨P1∨P2

fi hence d
′ ≡Q fi. Since P ′′1 ≤eq a 6' b ∨ P1 by de�nition and

P ′2 ≤eq P2 we deduce that R ≤eq a 6' b∨Q. Furthermore, since ≡P ′′
1
⊆≡P1

, we
deduce that ≡R⊆≡Q. Since S is saturated, S contains a clause R′ ≤eq R. We
have ≡R′⊆≡Q and R′ ≤eq a 6' b ∨Q, and the previous case proves the result.

Putting together the previous results, we present the overall algorithm for
prime implicates generation. It is similar to the standard �given clause� algo-
rithm used by state-of-the-art saturation-based theorem provers (see, e.g., [17]).
Note that the generated clauses are handled in a lazy way: rather than storing
them in the clausal tree as soon as they are generated, they are kept in a clausal
tree T ′ until they are considered for inferences. The procedure Add(S, T) adds
every clause C ∈ S into the clausal tree T , using the previously de�ned proce-
dures isEntailed and pruneEntailed (its de�nition is straightforward). The

24

choice of the clause in C(T ′) is heuristically guided by the cardinality of the
clauses: the smallest clauses are selected with the highest priority (thus, if 2 is
generated, then the search stops immediately).

Algorithm 3 PrimeImplicates(S)

T := ∅
% T is the clausal tree used to store the implicates, it is initially empty
T ′ := Add(S, ∅)
% T ′ is the clausal tree used to store the newly generated clauses
while T ′ 6= ∅ ∧2 6∈ C(T) do

Choose a clause C ∈ T ′
Remove C from T ′

if ¬isEntailed(C, T) then
T := pruneEntailed(C, T)
Add C in T
Let N be the set of clauses that can be
generated from C and a premise in T
T ′ := Add(N,T ′)

end if

end while

return C(T)

Theorem 35 Let S be a set of clauses. PrimeImplicates terminates on S.
Moreover, PrimeImplicates(S) is the set of prime implicates of S.

5 Experiments

We have implemented our algorithms in an Ocaml program called K-param3As
far as we are aware there are two available systems for generating prime impli-
cates of propositional formulæ. The �rst one is Zres [21] that uses a resolution-
based algorithm together with ZBDDs for storing clause sets, and the second
one is ri-trie4, which uses a decomposition method to transform the formula
in a reduced implicate trie. We have chosen to compare K-param against Zres
with the �Tison� strategy, since our experiments showed that the latter per-
forms uniformly better than the other propositional systems on the considered
benchmark. Our benchmark is made of more than 500 satis�able ground �at
equational formulæ that were randomly generated. Their propositional equiv-
alent were obtained by instantiating the transitivity5 axiom for all constant
symbols appearing in the corresponding equational formulæ. Both programs
were run on the same machine6 and forcibly halted after 5 minutes of execu-
tion. Our experimental results are shown in the graphs of Figure 1. Graph

3http://membres-lig.imag.fr/tourret/index.php?&slt=tools
4http://www.cs.albany.edu/ritries/index.html
5The re�exivity and commutativity axioms are encoded directly in the transformation by

orienting and simplifying the equations.
6equipped with an Intel core i5-3470 CPU and 4x2 GB of RAM

25

(a) Prime implicates: K-param/Zres-tison (b) Execution time: K-param/Zres-tison

(c) K-param: generated implicates/prime im-
plicates

Figure 1: Experimental results

(1a) is a comparison (using a logarithmic scale for the X axis) of the number
of prime implicates found by Zres for the propositional formulæ (X axis) with
the one found by K-param for the equivalent equational problems (Y axis). Our
results indicate that the number of prime implicates is exponentially smaller in
equational logic than in propositional logic. This observation is understandable
if we take into account the numerous instantiations of the transitivity axiom
that were necessary to translate the problems into propositional logic and the
many instances of equivalent clauses that cannot be detected in a purely propo-
sitional setting. This means that the propositional output contains a lot of
redundancy that has to be deleted in a post-processing step, a problem that our
method averts. The results shown in Graph (1b) concern the execution time
(in seconds). Note that the running time for Zres represented here does not
include the aforementioned post-processing step. These results are somewhat
less evidently in favour of K-param, that is at least twice as fast 54% of the
time, and globally faster 65% of the time. We have observed that the prob-
lems for which Zres outperforms K-param are mostly those containing many
unit clauses. Our system is not well-suited for this class of problems because it
does not currently use equational unit propagation techniques. If we focus on
problems with no initial unit clauses, then K-param is faster 85% of the time

26

(92% if simultaneous timeouts are ignored). In most cases, K-param is very
e�cient, which is encouraging, seeing as it is only a �rst prototype. Graph (1c)
represents the relative number of implicates (Y axis) and prime implicates (X
axis) generated by K-param. There is a quadratic growth of the total number
of implicates generated, hence the importance of the redundancy elimination
techniques from Section 3.2. This suggests that a lot of time could be gained
by constraining the inference rules so as to generate less non-prime implicates.

6 Conclusion

We have devised an algorithm for generating prime implicates of clause sets
de�ned over equations and disequations between constants, which is much more
e�cient than the naive approach consisting in applying the resolution calculus
on the equality axioms. In particular, all the properties of the equality pred-
icate are built-in and appropriate data-structures are used to represent clause
sets. Algorithms are provided for updating such data-structures and detecting
redundancy. Implicates are generated by a relaxed paramodulation rule, where
equations permitting the application of the transitivity axiom are allowed to be
asserted instead of being proved. The �rst experimental results are promising
although they leave some place for improvements, at least in terms of execution
time.

Future work includes the improvement of the implementation (e.g., by us-
ing a low-level programming language such as C/C++) and the re�nement of
the inference rules, for instance by considering ordering restrictions. The usual
ordering restrictions of the superposition calculus cannot be employed in our
context, because they may block the generation of some implicates, but some
partial ordering conditions can probably be enforced while retaining complete-
ness. Similarly, some of the literals in the clauses, more precisely the negative
literals corresponding to the conditions introduced by the inference rules can
be �frozen� in the sense that no further inference would be allowed within them
(these literals will eventually remain � after normalization � in the considered
prime implicate). Although this strategy can dismiss many inferences, its prac-
tical interest remains unclear, since the frozen literals have to be considered
apart when applying the redundancy detection algorithm, which may prevent
the removal of numerous clauses (this is the reason why such a strategy was not
considered in our current implementation). Apart from constraining the rules,
we plan to investigate other means of gaining e�ciency, such as the addition of
equational unit propagation techniques to handle unit clauses in a proper way,
the handling of symmetric variables or the study of di�erent strategies to select
clauses. In a longer range, the extension of the presented techniques to more
expressive languages (such as �rst-order clauses with variables and function
symbols) deserves to be considered, although it raises very di�cult theoretical
issues: not only can termination not be enforced in general (due to well-known
theoretical limitations), but also the (clausal) logical entailment relation is un-
decidable [19] and even worse, not well-founded [10], thus a given clause set is
no longer equivalent to the conjunction of its prime implicates.

27

References

[1] J. De Kleer. An improved incremental algorithm for generating prime impli-
cates. In Proceedings of the National Conference on Arti�cial Intelligence,
pages 780�780. John Wiley & Sons ltd, 1992.

[2] J. De Kleer and R. Reiter. Foundations for assumption-based truth mainte-
nance systems: Preliminary report. In Proc. American Assoc. for Arti�cial
Intelligence Nat. Conf, pages 183�188, 1987.

[3] M. Echenim and N. Peltier. A Calculus for Generating Ground Explana-
tions. In Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR'12). Springer LNCS, 2012.

[4] C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods
for the Decision Problem. LNAI 679. Springer, 1993.

[5] C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution
decision procedures. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, chapter 25, pages 1791�1849. North-Holland, 2001.

[6] E. Fredkin. Trie memory. Commun. ACM, 3(9):490�499, 1960.

[7] P. Jackson. Computing prime implicates incrementally. In Proceedings of
the 11th International Conference on Automated Deduction, pages 253�267.
Springer-Verlag, 1992.

[8] A. Kean and G. Tsiknis. An incremental method for generating prime im-
plicants/implicates. Journal of Symbolic Computation, 9(2):185�206, 1990.

[9] A. Leitsch. The resolution calculus. Springer. Texts in Theoretical Com-
puter Science, 1997.

[10] P. Marquis. Extending abduction from propositional to �rst-order logic. In
P. Jorrand and J. Kelemen, editors, FAIR, volume 535 of Lecture Notes in
Computer Science, pages 141�155. Springer, 1991.

[11] A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Auto-
mated Reasoning with Analytic Tableaux and Related Methods, pages 250�
264, 2009.

[12] M. C. Mayer and F. Pirri. First order abduction via tableau and sequent
calculi. Logic Journal of the IGPL, 1(1):99�117, 1993.

[13] M. C. Mayer and F. Pirri. Propositional abduction in modal logic. Journal
of the IGPL, 3:153�167, 1994.

[14] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
J. A. Robinson and A. Voronkov, editors, Handbook of Automated Reason-
ing, pages 371�443. Elsevier and MIT Press, 2001.

28

[15] C. S. Peirce. Philosophical Writings of Peirce. Dover Books, Justus Buchler
editor, 1955.

[16] A. Ramesh, G. Becker, and N. Murray. CNF and DNF considered harmful
for computing prime implicants/implicates. Journal of Automated Reason-
ing, 18(3):337�356, 1997.

[17] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
North-Holland, 2001.

[18] R. Rymon. An se-tree-based prime implicant generation algorithm. Annals
of Mathematics and Arti�cial Intelligence, 11(1):351�365, 1994.

[19] M. Schmidt-Schauÿ. Implication of clauses is undecidable. Theor. Comput.
Sci., 59:287�296, 1988.

[20] M. Shanahan. Prediction is deduction but explanation is abduction. In
Proceedings of the 11th International Joint Conference on Arti�cial Intel-
ligence, pages 1055�1060. Morgan Kaufmann, 1989.

[21] L. Simon and A. Del Val. E�cient consequence �nding. In Proceedings
of the 17th International Joint Conference on Arti�cial Intelligence, pages
359�370, 2001.

[22] P. Tison. Generalization of consensus theory and application to the mini-
mization of boolean functions. Electronic Computers, IEEE Transactions
on, (4):446�456, 1967.

29

