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Abstract. Generating the prime implicates of a formula consists in find-
ing its most general consequences. This has many fields of application
in automated reasoning, like planning and diagnosis, and although the
subject has been extensively studied (and still is) in propositional logic,
very few have approached the problem in more expressive logics because
of its intrinsic complexity. This paper presents one such approach for flat
ground equational logic. Aiming at efficiency, it intertwines an existing
method to generate all prime implicates of a formula with a rewriting
technique that uses atomic equations to simplify the problem by remov-
ing constants during the search. The soundness, completeness and termi-
nation of the algorithm are proven. The algorithm has been implemented
and an experimental analysis is provided.

1 Introduction

The automated generation of the prime implicates of a formula (i.e. its most
general consequences, shortened as p.i. from this point on) has been a topic of
interest in automated reasoning because of its various applications (e.g. program
analysis, knowledge representation...). Generating the p.i. of a formula allows
one to extract relevant information, and is useful for instance to remove redun-
dant variables, to simplify the formula, to identify sufficient conditions, etc. The
notion of p.i. and their duals, prime implicants, were first introduced for proposi-
tional logic in 1955 [21] and from that point on, a lot of algorithms were designed
for their computation. Efficient algorithms for computing p.i. in propositional
logic use either variants of the resolution rule [5, 12, 13, 24] or decomposition-
based approaches in the spirit of the DPLL method [3, 4, 10, 11, 15, 17, 22, 23].
However, most applications of automated reasoning (e.g. in program verifica-
tion) require the handling of properties and theories that cannot be expressed
in propositional logic, hence the need to extend tools such as p.i. generators
to more expressive logics (such as quantifier-free equational logic or first-order
logic). One of the strong points of the decomposition methods is that they can
be applied to all kinds of formulæ, while resolution-based methods can only deal
with formulæ in clausal normal form. On the other hand, decomposition methods
are designed to handle only finitely many propositional variables, which greatly



impairs the possibility of extending such algorithms to more expressive logics.
However, extending resolution-based methods is not a trivial task either, since
crucial characteristics such as completeness or termination of propositional al-
gorithms are lost in more expressive logics, rendering them useless. Thus, such
an extension must be designed very carefully, which explains why a domain that
was extensively studied over the past sixty years contains so few results outside
of propositional logic. Nevertheless, methods have been devised for generating
p.i. in first-order logic, based mostly either on first-order resolution [16] or the se-
quent calculus [18]. These methods can handle equational reasoning, the domain
targeted in this paper, by adding equality axioms. Other techniques also exist,
such as [14] which proposes a built-in method for handling equational reasoning
based on an analysis of unification failures. These approaches are very general
but not well-suited for real-world applications since termination is not ensured
(even for standard decidable classes); furthermore they include no technique for
removing equational redundancies, which is a major source of inefficiency. [27]
uses the superposition calculus [1] to generate positive and unit p.i. for specific
theories. However, as shown in [9, 14], the superposition calculus is not complete
for non-positive or non-unit p.i. Some work has also been done on domains near
first-order logic: [2] focuses on a modal logic and presents an extensive study of
p.i. in this context. [7] devises a technique for computing some specific prime
implicants called minimum satisfying assignments in several theories, provided
there exists a decision procedure for testing the satisfiability of first-order for-
mulæ in the considered theory (e.g. Presburger arithmetic). This technique is
applied in [6] to perform a semi-automated bug detection. [25, 26] propose an
approach to synthesize p.i.-like constraints ensuring that a system satisfies some
invariant or safety properties. This approach relies on external provers to check
satisfiability of first-order formulæ in some base theories. It is very generic and
modular, however no automated method is presented to simplify the obtained
constraints.

This paper focuses on the generation of p.i. in function-free equational logic:
the considered formulæ are boolean combinations of equations between con-
stants. This research stems from the design of a method for abductive reasoning
in first-order logic [8], in which a superposition-based calculus is devised to
generate function-free consequences of first-order formulæ. This superposition
procedure is sound and deduction-complete (for ground function-free implicates;
the absence of function symbols is not really restrictive, since functions can be
reduced to equalities by adding substitutivity axioms [20]) but the obtained
formulæ contain many redundancies which make them hard to analyze. The au-
tomated generation of their p.i. allows for the elimination of these redundancies
and the computation of a minimal representation of the given formulæ. Note that
in [25] a similar lack of parsimony is also identified as one of the main issues. In
[9], we designed a tool that is capable of efficiently finding the most general con-
sequences of a quantifier-free equational formula with no function symbols. The
proposed algorithm is somewhat similar to the resolution-based p.i. generation
method for propositional logic of [5] in its structure, but uses built-in techniques



to handle the properties of the equality predicate. This affects both the represen-
tation of clauses, i.e. the way they are stored and tested for redundancy, and their
generation: instead of using the resolution method, new inference rules that can
be viewed as a form of relaxed paramodulation are defined. An implementation
of this algorithm, named Kparam, was compared to state-of-the-art proposi-
tional p.i. generation tools by respectively feeding in ground equational formulæ
and equivalent propositional abstractions. The Kparam tool outperforms the
propositional one in most cases, but it performs badly on some problems. A
careful analysis of the experimental results has shown that this is due, for a
large part, to the lack of an efficient technique for handling equational simpli-
fications. Obviously, a most natural and efficient way of handling an equation
a ' b is to uniformly replace one of the terms, say a, by the other, b, thus
yielding a simpler problem. It is clear that this operation preserves satisfiability,
because a formula F ∧ a ' b is satisfiable iff F [b/a] is. The application of such a
strategy in the context of p.i. generation raises two important and related issues.
First, how to reconstruct the set of implicates of the original problem F ∧a ' b,
from that of F [b/a]? This is not obvious, since, although rewriting preserves
satisfiability, it does not in general preserve the set of implicates, as shown later.
Second, how to intertwine the systematic application of the rewriting operation
with the overall algorithm used to handle the clauses incrementally? This last
point is important because the equational simplifications are not transparent to
the overall process of p.i. generation. Adjustments are needed, that obviously
should not counterbalance the gain of handling equations. In this paper, we in-
vestigate both issues and provide solutions for each of them, yielding a much
more efficient algorithm for generating implicates of ground equational formulæ.
This algorithm is proved to be sound, terminating and complete, thus generat-
ing all implicates of the input up to redundancy in a finite time. Experimental
comparisons show that equational propagation improves the performances of the
algorithm by several orders of magnitude.

Structure of the paper. In Sect. 2 the original strategy from [9] is in-
troduced along with the notations necessary to follow the technical part of the
article. Section 3 is a presentation of the rewriting algorithm used in the first step
of the strategy and the theoretical properties (completeness and termination) of
the global algorithms are provided in Sect. 4. An experimental comparison is
conducted in Sect. 5 and the final section contains a summary of the obtained
results, along with some lines of future work. Due to space restriction, the proofs
are omitted (a technical report containing the proofs is available on the authors
web pages).

2 On Equational Logic and Prime Implicate Generation

This section contains the necessary definitions about equational logic along with
a simplified presentation of the starting point of our work, namely the p.i. gen-
eration algorithm of [9].



2.1 Equational Logic

Let Σ be a finite set of constants denoted by a,b,c... We assume a total order ≺
on Σ. We also write a � b if b ≺ a. A literal l is either an atom (or equation)
a ' b (where a, b ∈ Σ and ' is the symbol for semantic equality), or the negation
of an atom (or disequation) a 6' b. A literal written a ./ b denotes either a ' b
or a 6' b and by commutativity a ./ b and b ./ a are considered equivalent.
The literal lc denotes the complement of l, i.e. a 6' b if l = a ' b and a ' b if
l = a 6' b. A clause C is a disjunction (or multiset) of literals. C+ is the clause
composed of the atoms in C and C− is composed of the disequations in C. A
clause is positive if C− = ∅. The empty clause is denoted by 2 and |C| is the
number of literals in C. An atomic clause is a positive unit clause. A formula S
is a set of clauses. For every clause C, ¬C denotes the formula {{lc} | l ∈ C}.

An equational interpretation I is a partition of Σ into equivalence classes.
Given two constant symbols a and b, we write a =I b if a and b belong to the
same equivalence class in I, and in this case we say that a ' b is true in I
(respectively, if a 6=I b then a 6' b is true in I). This notation is extended to
literals: a ./ b =I c ./ d means that both literals have the same sign and that
either a =I c and b =I d or a =I d and b =I c (this implies that both literals
have the same truth value in I, but the converse does not hold). A clause C
is true in I if C contains at least one literal that is true in I and a formula S
is true in I if all clauses in S are true in I. Let E represent either a literal, a
clause or a formula, then I |= E means that E is true in I and in this case I is
called a model of E. The notation E |= E′ means that all the models of E are
also models of E′. If E |= E′ and E′ |= E then we write E ≡ E′. A tautology is a
clause that is true in all equational interpretations. Unless stated otherwise, only
non-tautological clauses will be considered. A contradiction, e.g. 2 or a 6' a, is
a clause with no model. To each clause C we associate a special interpretation
IC such that a =IC b iff ¬C |= a ' b. To lighten notations we write a =C b
instead of a =IC b. Note that IC |= C iff C is a tautology. The following related

notations are also used: [a]C
def
= {b ∈ Σ | a =C b} is the equivalence class of a in

IC and a�C
def
= min�[a]C is the representative of the class [a]C .

In the original method of p.i. generation from [9], a critical point is redun-
dancy detection. To deal with the constraints induced by the equality axioms,
we define a redundancy criterion named eq-subsumption, essentially equivalent
to semantic entailment.

Definition 1. Let C,D be two clauses. The clause D eq-subsumes C (written
D ≤eq C) iff the two following conditions hold:

– for all a, b ∈ Σ, if ¬D |= a ' b then ¬C |= a ' b;
– for every positive literal l ∈ D, there exists a literal l′ ∈ C such that l =C l′.

D <eq C means that D ≤eq C and C 6≤eq D. If S,S′ are formulæ, we write
S ≤eq C if ∃D ∈ S, D ≤eq C and S ≤eq S′ if ∀C ∈ S′, S ≤eq C. A clause C is
redundant in S if either C is a tautology or there exists a clause D ∈ S such that
D <eq C. A clause set S is subsumption-minimal if it contains no redundant
clause, i.e. ∀C ∈ S, C is not redundant in S.



Example 2. Let C = a 6' b ∨ b 6' c ∨ a ' d and D = a 6' c ∨ b ' d. Then IC =
{{a, b, c} , {d}} and ID = {{a, c} , {b} , {d}}, thus D ≤eq C because {a, c} ⊆
{a, b, c} and a ' d =C c ' d. On the other hand a 6' e ∨ a ' d 6≤eq C and
a 6' b∨b ' e 6≤eq C, respectively because {a, e} 6⊆ {a, b, c} and because b ' e 6=C

a ' d.

This criterion offers a syntactic method to detect equational entailment.

Theorem 3. (Th. 8 of [9]) Let C and D be two clauses. If C is not a tautology
then D |= C iff D ≤eq C.

To reduce the work of the redundancy detection algorithms, a normal form is
defined for clauses which projects all equivalent clauses onto a single one, thus
drastically reducing the number of clauses to be considered.

Definition 4. The normal form of a non-tautological clause C is:

C↓
def
=

 ∨
a∈Σ,a6=a�C

a 6' a�C

 ∨( ∨
a'b∈C

a�C ' b�C

)

and all the literals in C↓ occur only once. A formula S is in normal form (denoted
by S↓) iff all its non-tautological clauses are in normal form. The normal form
of a set of atomic clauses U = {ai ' bi}i∈{1...n} is the set of atomic clauses

U↓
def
=
{
a′j ' b′j

}
j∈{1...m} such that (

n∨
i=1

ai 6' bi)↓ =
m∨
j=1

a′j 6' b′j.

Proposition 5. (Prop. 4 of [9]) For every non-tautological clause C, C↓ is
equivalent to C. Furthermore, if D and C are equivalent and non-tautological
then C↓ = D↓.

Example 6. Let C = a 6' b ∨ b 6' c ∨ a 6' c ∨ b ' d. If a � b � c � d then the
normal form of C is C↓ = b 6' c ∨ a 6' c ∨ c ' d.

In all algorithms, we assume that the formulæ are always subsumption-minimal.
If a formula S is described by set operations, the redundant clauses are auto-
matically removed. The process is straightforward for all operations except the
difference operation, which is defined as follows: for two formulæ S1 and S2,

S1\S2
def
= {C ∈ S1 | ∀D ∈ S2, D 6|= C}. Note that if S2 ⊆ S1 then, since S1 is

subsumption-minimal, only clauses actually belonging to S2 are removed from
S1. The subject of clause manipulations is not developed further in this article
since it is not essential for the understanding of the present paper and there is
no significant change in their use w.r.t. the algorithm described in [9].

2.2 Implicate Generation

Definition 7. A clause C is an implicate of a formula S if S |= C. An implicate
C is a prime implicate of S if C is not a tautology, and for every clause D such
that S |= D, either D 6|= C or C |= D. Given a formula S, PI(S) is the set of
all the p.i. of S.



Intuitively, a p.i. of a formula is a consequence that is as general as possible. If
any information is removed from it, it is no longer a consequence of the original
formula.

Example 8. Let S = {a ' b ∨ d ' e, a ' c, d 6' e}. Both c ' b and c ' b ∨ d ' e
are implicates of S, but only c ' b is a p.i., because c ' b <eq c ' b ∨ d ' e.

A standard method for testing the satisfiability of equational clause sets is the
superposition calculus. This calculus is refutationally complete, meaning that it
generates a contradiction from every unsatisfiable set. It is however not complete
for deduction, since we may have S |= C even if C cannot be generated from S.

Example 9. Consider S = {a ' b, c 6' d ∨ a 6' d} with a � b � c � d. By super-
position, the only new implicate that can be generated is c 6' d∨ b 6' d but there
are other implicates of S such as b 6' c ∨ a 6' d.

The implicates of an equational formula are generated using a relaxed paramod-
ulation calculus that permits the replacement of arbitrary constants (instead of
identical ones), by adding equality conditions in the resulting clause. For exam-
ple, the paramodulation rule usually applies between a clause C[a] (a clause C
containing the constant a) and a ' b ∨D, yielding the clause C[b] ∨D. In our
setting, the clauses C[a′] where a 6= a′ and a ' b∨D generate a 6' a′ ∨C[b]∨D
which can be understood as “if a ' a′ holds then so does C[b] ∨D”. Formally,
the following rules define the so-called K-paramodulation calculus.

Paramodulation (P):
a ' b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ' c ∨ C ∨D

Factorization (F):
a ' b ∨ a′ ' b′ ∨ C

a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

Negative Multi-Paramodulation (M):

∨n
i=1(ai 6' bi) ∨ P1 c ' d ∨ P2∨n
i=1(ai 6' c ∨ d 6' bi) ∨ P1 ∨ P2

The rule M can be applied to one or several disequations at once.

Example 10. Let C = a 6' d∨c 6' e∨d ' e and D = a ' b. Using M, it is possible
to generate the clause (a 6' a∨)b 6' d ∨ c 6' e ∨ d ' e by selecting only a 6' d in
C and the clause (a 6' a∨)b 6' d ∨ a 6' c ∨ b 6' e ∨ d ' e by selecting both a 6' d
and c 6' e.

Theorem 11. (Th. 13 of [9]) The K-paramodulation calculus is complete for
deduction, i.e. it generates all the implicates of any formula up to redundancy.

A formula S is saturated up to redundancy iff all clauses that can be inferred from
premises in S using the rules P, F or M are either in S or redundant w.r.t. S. Note
that unlike the superposition calculus, no ordering restrictions are imposed on
the premises. This is needed for completeness, as shown in the following example.

Example 12. Let C = b ' c and D = a ' c, with a � b � c. Usual ordering
restrictions prevent the generation of the clause a ' b because c, being the
smallest constant, cannot be replaced by b.



In the algorithms, the following additional notation related to the
K-paramodulation calculus is needed.

Definition 13. Let S be a formula, and C be a clause. S`i,C is the set of all
clauses obtained from S ∪ {C} by exactly i steps of K-paramodulation such that
at least one parent of each K-paramodulation step is C. Similarly, we denote
by S`C the set of all clauses (up to redundancy) generated by any number of
K-paramodulation steps from S ∪ {C} where C is always one of the parents.

Algorithm 1 Kparam(S)

T := ∅
S1 := S
while S1 6= ∅ do

Choose a clause C ∈ S1

if T 6≤eq C then
T := T ∪ {C} \{D ∈ T | C ≤eq D}
S1 := (S1 ∪ T`1,C )\ {C}

else
S1 := S1\ {C}

end if
end while
return T

To generate only the p.i. of a formula, the redundant implicates must be deleted
as soon as possible to avoid using them to generate other redundant implicates.
For this purpose, the algorithm Kparam (Algorithm 1, originally proposed in [9])
selects implicates one at a time from a waiting set S1 and uses the selected clause
in K-paramodulation inferences with previously selected clauses to generate new
implicates. The newly generated clauses are stored in the waiting set and a new
implicate can then be selected. Redundant clauses found during the process are
removed. The non-redundant used clauses are stored in the processed set T 1.
This procedure was proved to be sound, complete and terminating.

3 Atomic Rewriting

To improve the performance of the algorithm described in Sect. 2, we incor-
porate a rewriting strategy, atomic rewriting (otherwise known as equational
simplification), to the process of implicate generation. It simplifies the problem
by reducing the number of constants it contains. The underlying principle is
simple: assume that an atomic clause a ' b is an implicate of a formula S. It
is clear that for every model M of S, necessarily a =M b. Since a and b are
always equal, they can be substituted with each other and it is actually possible

1 Kparam is an instance of the given clause algorithm in the Otter variant [19].



to entirely replace one of these constants with the other in the formula, storing
the atom a ' b apart to avoid any loss of information. Note that the removal
of an atom can lead to the generation of new ones as shown in the following
example.

Example 14. Consider the formula S = {a ' b, a 6' b ∨ c 6' d, a 6' c ∨ a ' e, b 6'
c ∨ b ' e, c ' a ∨ c ' b}. Using the atom a ' b, the formula S can be rewritten
into S′ = {b ' b, b 6' b ∨ c 6' d, b 6' c ∨ b ' e, b 6' c ∨ b ' e, c ' b ∨ c ' b}
and further simplified into S′′ = {c 6' d, b 6' c ∨ b ' e, c ' b}. Since S′′ contains
the atom c ' b, it can in turn be rewritten in S(3) = {c 6' d, b 6' b ∨ b ' e}, etc.,
until only c 6' d remains in the formula.

We introduce the following notations:

Notation 15 Let S be a formula and U be a set of atomic clauses:

– for a and b constants with a � b, S[b/a] is the formula S where every occur-
rence of a is replaced by b,

– S[U ] is the set S where every constant a is replaced by min{a′ |U |= a ' a′}.
For example, if U contains a ' b and a ' c with a � b � c then both a and
b are replaced by c in S[U ].

In what follows, we will invoke a procedure atomRewrite that recursively
removes the atomic clauses appearing in a formula and rewrites all the re-
maining clauses according to the clauses extracted, until no atom remains.
atomRewrite(S) returns the pair 〈S′, U〉 made of the rewritten formula S′

and a set U of extracted atomic clauses such that S |= U , and S′ = S[U ] where
S′ contains no atomic clause. Note that U does not necessarily contain all the
atomic clauses that are logical consequences of S. However, it necessarily con-
tains all those occurring in S and those generated by atomic rewriting.

Example 16. Assume that S = {a ' b, a 6' b ∨ c 6' d, c ' d ∨ e ' f}. Then in-
voking atomRewrite(S) returns S′ = {c 6' d, c ' d ∨ e ' f} and U = {a ' b},
even though it is simple to verify that S |= e ' f .

New “hidden” atomic implicates like the one in the previous example can be
generated at any iteration of the strategy, hence the atomic rewriting should
be applicable not only on the initial clause set but also on the newly generated
clauses. However, in order to preserve completeness, some clauses occurring in
the processed set must then be transferred back to the waiting set (i.e. resp. T1
and S1 in Algorithms 1 and 2), otherwise some inferences involving the rewritten
clauses of the processed set can never occur. A straightforward way to ensure
completeness would be to transfer all clauses back to the waiting set, but this
yields a very inefficient algorithm. The following definition introduces a refined
criterion that strongly reduces the number of clauses that must be reprocessed.

Definition 17. A clause D is 〈a, b〉-neutral if D+[b/a] = (D[b/a]↓)
+

. The
function Neutral(D, a, b) returns true iff D is 〈a, b〉-neutral.



This property means that the replacement of a by b does not affect the repre-
sentatives of the equivalence classes occurring in the positive part of a clause,
even if it contains both a and b.

Example 18. Consider the clauses C = a 6' c∨b 6' d∨c ' e and D = a 6' c∨b 6'
c∨ c ' d, with a � b � c � d. C is not 〈a, b〉-neutral since C+[b/a] = c ' e while
(C[b/a]↓)

+
= d ' e. On the other hand D is 〈a, b〉-neutral because D+[b/a] =

(D[b/a]↓)
+

= c ' d.

In the procedure splitAtomRewrite (Algorithm 2) we therefore assume that
every non-〈a, b〉-neutral clause occurring in T1 is transferred back to S1 after
rewriting. This procedure takes as an input a pair (T, S) of processed set/waiting
set, and returns the new sets after rewriting every atomic clause they contain.
〈a, b〉-neutrality is the key ensuring the completeness of the algorithm. The in-
formal and intuitive justification is that, if C is 〈a, b〉-neutral, then all inferences
that can be performed on the clause C[b/a] can be “simulated” by inferences
with descendants of C. Hence the clause C[b/a] does not need to be considered
again.

Algorithm 2 splitAtomRewrite(T, S)

U1 := {a ' b ∈ T ∪ S}↓
T1 := T // T1 is the processed set
S1 := S // S1 is the waiting set
U := ∅
while U1 6= ∅ do

extract a clause a ' b from U1 and put it into U
T2 := {D | ∃D′ ∈ T1, D = (D′[b/a])↓ ∧Neutral(D′, a, b)}
S2 := (S1[b/a])↓ ∪

{
(T1[b/a])↓\T2

}
U1 := (U1 ∪ {u ' v ∈ T2 ∪ S2} )↓
T1 := T2

S1 := S2

end while
return 〈T1, S1, U〉

When initializing U1, taking atoms directly from S is possible because every
unit implicate of a non-contradictory formula is one of its p.i., since no clause
other than 2 and itself subsumes it. Note that the replacement of a by b implicitly
deletes the clause a ' b from the sets T2 and S2.

Lemma 19. splitAtomRewrite terminates.

4 Prime Implicate Generation: a New Algorithm

The new algorithm combines K-paramodulation with atomic rewriting to sim-
plify the p.i. computation on the fly. This process is presented in Subsection



4.1 and results in the generation of the set of non-atomic p.i. of the simplified
problem together with the set of atomic clauses collected during the search. The
recovery of the p.i. of the original formula is described in Subsection 4.2. From
this point on, any clause appearing in an algorithm is assumed to be in normal
form.

4.1 Integration of the Atomic Rewriting

Algorithm 3 SaturateRw(S)

〈S1, U1〉 := atomRewrite(S)
T1 := ∅
while S1 6= ∅ do

Choose a clause C ∈ S1

S2 := S1\ {C}
if T1 6≤eq C then

T2 := T1 ∪ {C}
R1 := (T2)`1,C

〈T3, S3, U2〉 := splitAtomRewrite(T2, (S2 ∪R1))
U1 := U1 ∪ U2

T1 := T3

S1 := S3

else
S1 := S2

end if
end while
return 〈T1, U1〉

As can be seen in Algorithm 3, atomic rewritings are added to the original
procedure both during the initialization phase, where a call to atomRewrite
removes the atomic clauses occurring in the original formula, and at each iter-
ation of the main loop, where splitAtomRewrite is used. SaturateRw(S)
returns the pair 〈T,U〉 where T is the set of clauses eventually obtained by sat-
uration and U is the set of atomic clauses collected during proof search (and
deleted from the search space by atomRewrite or splitAtomRewrite).

Lemma 20. The algorithm SaturateRw terminates.

Theorem 21. Let S be a formula. If 〈T,U〉 = SaturateRw(S), then T is
saturated up to redundancy and contains no positive unit clauses while U contains
only positive unit clauses. Additionally S |= U and T ≡ S[U ].

By Theorem 11, we deduce that T contains all its own p.i. These p.i. are also
implicates of S (since S |= T ), but it is clear that T does not in general contain
all the p.i. of S. For instance this set also includes U and all clauses that can be
inferred from T and U . Reconstructing the set of p.i. of S is the subject of the
next section.



Algorithm 4 ComputePI(T,U)

T1 := T
for all C ∈ U do // U is in normal form

T1 := T1 ∪ {C}
R := (T1`1,C )\T1 // R contains only newly generated clauses
while R 6= ∅ do

T1 := T1 ∪R
R := (R`1,C )\T1

end while
end for
return T1

4.2 Recovery of the Main Solution

The invocation of SaturateRw on an initial clause set S generates a saturated
set of non-atomic clauses T and a normalized set of atomic clauses U . To recover
the set of p.i. of S from T and U the principle of ComputePI is to apply the
K-paramodulation calculus between the p.i. of T and all atomic clauses in U .
In this way, for each atom extracted from S by SaturateRw, ComputePI
generates the missing implicates, i.e. those containing the constants that had
been previously removed. The essential point (which ensures the efficiency of
the approach) is that it is not necessary to apply any inference between the
newly generated clauses: only the inferences involving U need to be considered.
Formally, what renders ComputePI efficient is the fact that all the implicates of
a set of clauses S ∪ {a ' b} (with a � b) are eq-subsumed by clauses recursively
obtained by K-paramodulation between a ' b and the p.i. of S[b/a] as stated in
Lemma 22.

Lemma 22. Let S be a formula, a ' b be a literal such that a � b and S′ =
(PI(S[b/a]))`a'b . Let D be a clause such that S ∪ {a ' b} |= D, then S′ ≤eq D.
Thus S′ ≡ S ∪ {a ' b} and S′ is saturated up to redundancy.

Lemma 23. ComputePI terminates.

The following theorem states that the proposed algorithm, composed of succes-
sive calls to SaturateRw and ComputePI, is complete, i.e., that it computes
all the p.i. of the input formula.

Theorem 24. Let S be a formula, 〈T,U〉 = SaturateRw(S) and S′ =
ComputePI(T,U↓). Then S′ is the set of p.i. of S.

5 Experimental Results

Both Kparam and KparamRw have been implemented in Ocaml2. Below is an
experimental comparison of both tools. The benchmark is made of a thousand

2 See http://membres-lig.imag.fr/tourret/documents/kparam.tgz for the source
code.
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ground flat equational formulæ of a reasonable size3 that were randomly gener-
ated. All tests were conducted on a machine equipped with an Intel core i5-3470
CPU and 4x2 GB of RAM, with a timeout of 100 seconds when not explicitly
said otherwise.

A first result worth mentioning is that in KparamRw the execution time of
ComputePI is quasi-negligible no matter what the total execution time is: the
maximum is less than one second and the mean is 0.09 seconds. In general, it
always represents less that 1 percent of the total execution time. Another inter-
esting indicator of the relative superiority of KparamRw compared to Kparam
is the fact that while 15% of the benchmark reaches timeout before terminating
with Kparam, only 9% does so with KparamRw. An additional 45% of the
formulæ have no atomic p.i. and are thus of little interest to us since Kparam
and KparamRw merely coincide on such problems. Results concerning the re-
maining 46% of the benchmark are presented on Fig. 1 & 2. On Fig. 1 the
gain of going from Kparam to KparamRw with regards to the execution time
can be observed. A logarithmic scale is used for the X axis to highlight that
this graph empirically indicates an exponential gain for our benchmark. The
results on Fig. 2 were obtained with a timeout of 5 minutes and compare the
number of implicates generated by Kparam and KparamRw (for readability
issues the scales of the X and Y axis differ). There are two kinds of dots rep-
resented on the graph: filled diamonds and X’s, the latter representing tests
for which Kparam reaches the 5 minutes timeout before terminating. It shows
that some problems with atomic p.i. that Kparam cannot solve by computing
more than a million implicates can be solved by KparamRw with less than two
hundred thousand implicates generated. We also compared our algorithms with
Zres [24]4, a state-of-the-art tool for p.i. generation in propositional logic that
uses a resolution-based algorithm together with ZBDDs for storing clause sets.
This system was chosen because it outperforms all other available propositional

3 Each test is made of 6 clauses with a maximum of 5 literals, using 8 constants. Al-
though the size of the initial formula is small, hundreds of thousand or even millions
of implicates are often generated, leading to hundreds of them being eventually kept
as prime.

4 Many thanks to Laurent Simon for providing the executable.



Number of Generated Atoms 0 1 > 1 > 0 Total

Kparam 64% 26% 23% 25% 45%

KparamRw 64% 83% 80% 82% 73%

Table 1. Percentage of Tests Executed Twice Faster than Zres

systems on all our examples. To the best of our knowledge, besides Kparam no
complete p.i. computation tool is available for equational logic5. To make the
comparison possible, the equational formulæ of the benchmark were translated
into equivalent propositional formulæ by abstracting literals away and adding
suitable instances of the equality axioms. This straightforward translation is ob-
viously not the most efficient existing method, but it has the advantage of being
simple. It still gives a rough execution time reference with which to compare
the new algorithm, keeping into account that the time needed for translating
the result back to equational logic and removing the redundancies was omitted,
so as to underestimate this time. As shown in Table 1, this comparison proved
useful by giving an insight of where to improve the original algorithm. The main
observation on the line corresponding to Kparam is that Zres is a lot more
efficient than this algorithm as soon as atomic implicates appear in the formulæ
(only 25% of the tests are faster than Zres, while 64% are faster when there
are no atomic implicates), which was the motivation for designing KparamRw
in the first place. As can be seen in the second line of the table, KparamRw
is a good answer to this problem since an additional 57% of the problems with
atomic implicates turn out faster than Zres with KparamRw, for a total of 82%
of these tests being at least twice faster than the state-of-the-art tool. The re-
sults also distinguish between formulæ with a single atomic implicate (72%) and
several ones (28%). A slight improvement of the performances is noted for the
latter, but not as significant as the gap between none and one atomic implicate.

6 Conclusion

In this paper, a new algorithm for the generation of p.i. in ground flat equational
logic was presented. It is based on a previous version introduced in [9]. The main
idea of this algorithm is to isolate atomic equations to reduce the number of
constants handled by the p.i. generator. Although in some applications it may be
possible to directly use the simplified results along with the extracted equations,
we also devised a way to recover the p.i. of the original input in a efficient way.
This new algorithm is terminating, sound and complete and outperforms the
previous one when atomic implicates are present. According to our experimental
results, the gain is empirically exponential in time. This system can be used

5 To our knowledge, there exists only one tool, integrated in the Mistral solver [7],
that is seemingly similar to Kparam. However, in contrast to it, the Mistral tool is
not complete (it does not compute all the p.i.) hence no comparison is possible.



in connection with the calculus presented in [8] to efficiently generate ground
implicates of first-order theories.

An idea to improve atomic rewriting is to find a faster way to generate
all the atomic equations entailed by the input formula instead of waiting for
them to appear during the inference steps. To do so, the K-paramodulation
calculus could be replaced with a more efficient calculus specifically tailored
to directly generate all atomic implicates, so that, after a unique rewriting step,
the K-paramodulation calculus can be used to generate all remaining non-atomic
implicates. To extend further the atomic rewriting strategy, it should be possible
to apply it to any equation appearing in the formula in a “divide and conquer”
way. Any clause of the form a ' b ∨ C would then lead to two recursive calls of
the strategy, one where a ' b is true where the rewriting applies and the other
where only C remains. It is still unclear whether this idea is efficient because
of two problems: merging the results of the two recursive calls is by no means
a simple task, and the fact that there are two calls on formulæ that differ only
by one clause may generate a lot of redundant computation steps, thus slowing
down the whole process. These questions need a thorough investigation and are
one of our objectives for future work.

Up to now, our system has been mainly tested on randomly computed in-
stances. We now plan to apply it, in conjunction with an implementation of the
calculus described in [8], to more concrete problems in system verification, partic-
ularly for checking properties of algorithms operating on arrays or pointer-based
data-structures.
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