
A Deductive-Complete Constrained Superposition

Calculus for Ground Flat Equational Clauses

M. Echenim, N. Peltier and S. Tourret1

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France firstname.lastname@imag.fr

Abstract

We describe an algorithm that generates prime implicates of equational clause sets without variables

and function symbols. The procedure is based on constrained superposition rules, where constraints

are used to store literals that are asserted as additional axioms (or hypotheses) during the proof search.

This approach is sound and deductive-complete, and it is more e�cient than previous algorithms based

on conditional paramodulation. It is also more �exible in the sense that it allows one to restrict the

search space by imposing additional properties that the generated implicates should satisfy (e.g., to

ensure relevance).

1 Introduction

An implicate of a formula φ is a clause that is a logical consequence of φ. It is prime if it is
minimal w.r.t. logical entailment. The computation of prime implicates of logical formulæ (also
known as the consequence-�nding problem) is a fundamental problem in automated deduction,
with many applications in computer science and arti�cial intelligence. It is essentially useful
to compute explanations of observed facts: indeed, by duality, any implicate l1 ∨ . . . ∨ ln of
some formula φ in a theory T corresponds to a conjunction ¬l1 ∧ . . .∧¬ln that logically entails
¬φ modulo T . This problem has been extensively studied in propositional logic and many
algorithms have been proposed to compute implicates e�ciently, see, e.g., [3, 8, 9, 12, 13].
These algorithms use either re�nements of the Resolution calculus1 or decomposition procedures
in the spirit of the DPLL method. Other approaches have tackled more expressive logics
[2, 10, 11, 14, 15]. In [6, 5] we devised an algorithm to generate implicates of ground, function-
free equational clause sets, i.e. clause sets built over atoms of the form a ' b, where a and b are
constant The resulting calculus, called K-paramodulation, uses transitivity rules to derive new
clauses from premises, together with indexing techniques for e�ciently storing generated clauses
and deleting redundant ones (modulo logical entailment in equational logic). In particular it
is based on a form of �conditional paramodulation�, meaning that equality conditions are not
checked statically, but asserted by adding new disequations to the derived clause. For instance,
given a clause C[a] and an equation a′ ' b, our calculus generates the clause a 6' a′ ∨ C[b],
which can be interpreted as a ' a′ ⇒ C[b] (the condition a ' a′ is asserted). The procedure is
sound and deductive-complete (i.e., all prime implicates are generated), and also more e�cient
than existing approaches based on a reduction from equational (quanti�er-free, function-free)
logic to propositional logic.

In this paper we propose a new, slightly di�erent approach in which a distinction is drawn
between the literals that are asserted and the standard ones � the former being attached to
the clauses as constraints. It is clear that from a theoretical point of view this approach can
strongly increase the search space, since any clause of size n can now have 2n distinct equivalent

1Unordered Resolution is well-known to be complete for implicates generation.

1

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

representatives, depending on which literals are stored in the constraints. However, it also has
many advantages:

• First, all the usual ordering restrictions or selection strategies of the superposition calculus
[1] can be carried over to the new procedure. This was not the case for our previous algo-
rithm: their addition renders the K-paramodulation calculus incomplete for consequence-
�nding.

• Second, this approach o�ers the possibility to control the literals that can be asserted, for
instance to limit the number of asserted literals, to impose additional syntactic restrictions
on them, or even to test semantic conditions. This is especially important in practice since
the number of implicates of a formula is typically huge, as soon as equality axioms are
considered.

The principle of the presented calculus is to apply the standard superposition calculus, enriched
by new rules that allow the addition of ground unit clauses as new axioms (or hypotheses) during
the search. The additional axioms used to derive a given clause are attached to the clause as
constraints and these constraints are taken into account when testing redundancy2. Once an
empty clause has been generated, the negation of the conjunction of the hypotheses used to
derive it can be returned as an implicate of the considered clause set.

2 Preliminary De�nitions

Let C be a set of constant symbols. An atom is an equation a ' b where a, b ∈ C. A literal is
either an atom (positive literal) or the negation of an atom (negative literal), written ¬(a ' b)
or (a 6' b). The literal complementary of l is lc, with (a ' b)c

def

= a 6' b and (a 6' b)c
def

= a ' b.
The symbol ./ is often used to denote indi�erently ' or 6'. A clause is a �nite set of literals
written as a disjunction. The empty clause is denoted by 2.

De�nition 1. A constraint is a (possibly empty) conjunction of literals. A constrained clause
(or c-clause) is a pair [C |X] where C is a clause and X is a constraint. Empty constraints are
denoted by >. [C |>] is often written simply as C and referred to as a standard clause.

If X =
∧n

i=1 li then X c denotes the clause
∨n

i=1 l
c
i . Similarly, if C =

∨n
i=1 li then Cc def

=∧n
i=1 l

c
i . We often identify sets of unit clauses with conjunctions, e.g., considering a set of

clauses S, we write S ∪
∧n

i=1 li for S ∪{li | i ∈ [1, n]}, and instead of {l1, . . . , ln} ⊆ {l′1, . . . , l′m},
we write

∧n
i=1 li ⊆

∧m
i=1 l

′
i.

Let � be a total ordering on C (in all examples, we assume that a � b � c � . . .). The
ordering is extended to atoms, literals and clauses by multiset extension as usual (see, e.g., [1]).
A constraint X (resp. a clause C) is normalized if for every equation a ' b (resp. disequation
a 6' b) occurring in X (resp. C) where a � b, the constant a occurs only once within X (resp. C).
Let E represent a constraint or a clause, then E↓ denotes the normalized form of E. Note that
E↓ always exists and is unique if E is either a non-tautological clause or a non contradictory
constraint.

For any clause C and constraint X , we denote by C�X the clause obtained by �rst replacing
every constant x in C by the smallest (w.r.t. ≺) constant x′ such that X |= x ' x′, and then
removing all literals of the form x 6' x. For example, (a ' b ∨ a 6' c)�a'c = c ' b.

2For instance a clause p∨ q with no assumed literals is not necessarily less general than a unit clause p with

constraint r.

2

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

From a semantic point of view, a constrained clause [C | X] is equivalent to X c ∨ C. For
example the c-clause [c ' b | a ' c ∧ c 6' d] is equivalent to c ' b ∨ a 6' c ∨ c ' d. More
speci�cally, the intended meaning of a c-clause [C | X] is that the clause C can be inferred
provided the literals in X are added as axioms to the considered clause set.

3 A Calculus for Abductive Reasoning

In this section the superposition calculus [1, 17] is extended to sets of c-clauses. Note that the
applicability conditions are much simpler than usual ones since c-clauses do not contain variables
or function symbols. First, the standard inference rules are extended in a straightforward way
by adding the constraints of the premises to the conclusion (cf. Table 1). As usual the calculus
is parameterized by the ordering � on terms and a selection function sel, where sel(C) contains
all maximal literals in C or (at least) one negative literal. A literal is selected in C if it occurs
in sel(C).

The abduction rules (cf. Table 2) allow for the addition of new hypotheses in the constraint
part of a c-clause. To this purpose the most simple solution would be to add to the clause set
all tautological axioms of the form [l | l] (meaning that l can be derived from l) where l is a
ground literal, and then to let the inference rules of Table 1 derive all the consequences of these
axioms. However, this solution is not completely satisfactory since there are numerous axioms
of the previous form, and that not all of them are relevant w.r.t. the considered clause set. It
is preferable to avoid the blind enumeration of axioms, which is why we add rules simulating
all possible inferences from these axioms and the already generated c-clauses3 (cf. Table 2).

We now explain and motivate the form of the new abduction rules. The positive assertion
rule asserts an equation t ' u as a new hypothesis in the constraint part of a clause. This is
done if the addition of such a hypothesis enables the application of the superposition rule into
the considered clause. Note that the term u does not necessarily occur in C: the condition is
only that it must be strictly smaller than t. The negative assertion rule proceeds in a similar
way for disequations, which allow for an application of the superposition rule into them. A
literal t 6' u is added to the constraint part of a clause of the form t ' s ∨ C that is changed
into s 6' u ∨ C, only if this allows a Superposition inference into this new clause (again, the
term u does not necessarily occur in the premise).

Example 2. The following example shows how to derive the implicate a 6' c ∨ b ' d from
{a ' b, c ' d}.

1 [a ' b |>] (hyp)
2 [c ' b |a ' c] (Pos. AR, 1)
3 [c 6' d |a ' c ∧ b 6' d] (Neg. AR, 2)
4 [c ' d |>] (hyp)
5 [d 6' d |a ' c ∧ b 6' d] (Sup. 3, 4)
6 [2 |a ' c ∧ b 6' d] (Ref. 5)

The negation of a ' c ∧ b 6' d is the desired implicate.

The usefulness of the c-clause representation becomes apparent when looking at the inference
rules (both standard and abduction rules). It is a way to separate the literals that can be used
for inferences from the �frozen� ones stored in the constraints, on which no inference should be
applied.

3From a purely theoretical point of view the two solutions are of course equivalent.

3

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

Superposition [l ' r ∨ C |X] [l ./ u ∨D |Y]
[r ./ u ∨ C ∨D |X ∧ Y]

If l � r, l � u, and (l ' r) and (l ./ u)
are selected in (l ' r ∨ C) and (l ./
u ∨D) respectively.

Re�exivity [t 6' t ∨ C |X]
[C |X]

No condition is imposed.

Factoring [t ' u ∨ t ' v ∨ C |X]
[t ' v ∨ u 6' v ∨ C |X]

If t � u, t � v and (t ' u) is selected
in t ' u ∨ t ' v ∨ C.

Normalization [t 6' u ∨ t ./ v ∨ C |X]
[t 6' u ∨ u ./ v ∨ C |X]

If t � u.

Table 1: Standard Inference Rules

Positive

Assertion
[t ./ s ∨ C |X]

[u ./ s ∨ C |X ∧ t ' u]
If t � s, t � u and t ./ s is selected
in t ./ s ∨ C.

Negative

Assertion
[t ' s ∨ C |X]

[s 6' u ∨ C |X ∧ t 6' u]
If t � u, t � s, and t ' s is selected
in t ' s ∨ C.

Table 2: Abduction Rules

3.1 Redundancy Elimination Rule

Redundancy testing is done as usual, except that the constraints must be taken into account;
in particular, it is necessary to make sure that the constraints of the redundant c-clause include
those of the considered c-clauses.

De�nition 3. A c-clause [C | X] is redundant w.r.t. a set of c-clauses S if either X is un-
satis�able or there exist c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n) such that ∀i ∈ {1 . . . n}C � Di,
∀i ∈ {1 . . . n}Yi ⊆ X and X ′, D1, . . . , Dn |= C, where X ′ denotes the set of literals in X that
are smaller than C.

The redundancy elimination rule removes a c-clause C from a set of c-clauses S (formally
S ∪ {C} → S) if C is redundant w.r.t. S \ {C}. For example, if X is unsatis�able, then any
clause [C | X] is redundant in any set. In practice, we use a stronger notion of redundancy,
based on the notion of E-subsumption4 [5] that is a generalization of the subsumption test to
equational clauses:

4The E in E-subsumption stands for Equational.

4

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

De�nition 4. A clause C E-subsumes a clause D (written C ≤E D) i� C�Dc ⊆ D↓. A c-
clause [C |X] E-subsumes a clause [D |Y] (written [C |X] ≤E [D |Y]) i� C � D, C ≤E D and
X ⊆ Y.

Proposition 5. If [C |X] ≤E [D |Y] then [D |Y] is redundant in {[C |X]}.

Proof. It su�ces to remark that if C ≤E D, then C |= D (a formal proof of this fact is provided
in [5]).

Note that both parts of the c-clauses are handled in di�erent ways: the inclusion relation
⊆ used to compare constraints is clearly stronger than the E-subsumption relation ≤E used
for clauses. For instance we have [a 6' b ∨ b ' d | >] ≤E [a 6' c ∨ b 6' c ∨ c ' d | >], but
[2 |a ' b ∧ b 6' d] 6≤E [2 |a ' c ∧ b ' c ∧ c 6' d].

Theorem 6. The constrained calculus is sound and deductive-complete.

The proof of this theorem is available in the appendix.

Implementation details. Testing redundancy by considering pairs of c-clauses one by one
is of course ine�cient. In practice, we adopt the following approach. First, c-clauses are
normalized by applying the Normalization rule up to irreducibility. It is easy to see that the
conclusion is always equivalent to the premise. Since it is also strictly smaller, the premise
becomes redundant and can be deleted after the rule is applied. Then the normalized (non-
tautological) clauses are stored in an index (called a clausal tree in [6, 5]) that is a special type
of trie, i.e. a tree with edges labeled by literals. Each branch represents a clause, de�ned as
the disjunction of the literals labeling the edges in the branch. Literals are ordered using the
following conventions:

1. In the clausal part, negative literals always occur before positive ones.

2. The other literals are ordered using �.

E�cient algorithms were devised in [5] to check that a clause is redundant w.r.t. existing clauses
in this data-structure, and to remove from the index clauses that are redundant w.r.t. a newly
generated clause. The data-structure and algorithms in [6, 5] only handle standard clauses and
compare them using the relation ≤E , hence it was necessary to slightly adapt these procedures.
This is done as follows. First, a test is added in order to verify that the clausal part of the
subsuming c-clause is indeed smaller than the subsumed one. Second, to handle the constraint
part of the c-clauses, we insert a trie data-structure at every leaf of the previous index in order
to store the constraints of the c-clauses. The above-mentioned algorithms can be combined in a
natural way with standard algorithms for membership tests, insertions and updates inside tries
(see for instance [7]).

Another index is used in parallel to accelerate the generation of new c-clauses. In this index,
the c-clauses are grouped according to the biggest constant in their selected literal and to its
sign. For example c-clauses where a ' b and a ' c are selected with a � b � c, are grouped
together while the c-clauses in which a 6' b is selected are stored separately. This permits the
recovery of all the clauses that can be used in an inference with a given clause without scanning
the whole list. This index allows the overall algorithm to be executed on average twice faster
than without it.

5

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

4 Restricting the Class of Implicates

The number of implicates of a given formula is usually huge, and it is important in practice to
be able to prune the search space by imposing additional restrictions5 on the implicates that
are searched for. This is possible if the considered class of implicates satis�es the following
condition.

De�nition 7. A set of constraints X is ⊆-closed if for every X ∈ X and constraint Y, Y ⊆
X ⇒ Y ∈ X. The set X is normalized if every constraint X ∈ X is normalized.

Let X be a set of constraints. A set of c-clauses S is X-saturated if every c-clause [D | X]
such that X ∈ X that is deducible from S by applying one of the inference rules is redundant
w.r.t. S.

Theorem 8. Let X be a normalized and ⊆-closed set of satis�able constraints. Let S be a set
of standard clauses (i.e. c-clauses with empty constraint) and S? be a set of clauses obtained
from S by applying inference or redundancy deletion rules. If S? is X-saturated and S |= X c

for some X ∈ X, then there exists Y ⊆ X such that [2 |Y] ∈ S?.

Remark 9. The proof of Th. 8 derives from that of Th. 16 (in the Appendix) which is in
essence a simpli�ed variant of Th. 8.

Examples of ⊆-closed sets of constraints include positive (or negative) constraints, or con-
straints of size at most some �xed k ∈ N.

Simpli�cation of Equational Clause Sets. For any set of clauses S, the set of constraints
S such that X ∈ S if and only if there exists C ∈ S with X c |= C, is ⊆-closed. This remark
allows us to use our algorithm to e�ciently compute a minimal (up to redundancy) equivalent
representation of any set of clauses S. This is done as follows. First, S is S-saturated, and the
set I of clauses X c such that [2 |X] occurs in the saturated set is constructed. By Theorem 8,
I is the set of prime implicates of S that occur in S, i.e., that entail at least one clause in S.
Then, for each clause C ∈ S, an implicate C ′ ∈ I such that C ′ |= C is selected6. The obtained
clause set is equivalent to S and minimal in the sense that all the clauses are minimal w.r.t.
logical entailment (in particular no literal can be deleted without a�ecting the semantics). This
simpli�cation method departs from the one described in [4] in which formulæ are reduced by
removing literals occurring in them, provided they are useless in the context. For instance the
literal l can be removed in (l∨ψ)∧φ if φ,¬ψ |= l. Our technique allows for �ner simpli�cations,
taking into account equational axioms.

Example 10. Consider the clause set: S
def

= {a 6' c ∨ b 6' c ∨ d ' e, a ' c ∨ a ' f, b ' c ∨ a '
f, f 6' b}. It is easy to check that a 6' b∨d ' e is an implicate of S and this clause E-subsumes

a 6' c ∨ b 6' c ∨ d ' e. Our approach computes the clause set S′ def

= {a 6' b ∨ d ' e, a ' c ∨ a '
f, b ' c ∨ a ' f, f 6' b} that is equivalent to S and strictly smaller. In contrast, the approach
in [4] cannot simplify S since there is no useless literal.

5 Experiments

There are few prime implicate computation tools available. Most of them are designed for
propositional logic only [13, 19] and are not very e�cient in solving equational problems (con-

5These could be for instance syntactic restrictions.
6Such a clause necessarily exists since C itself is an implicate of S � albeit not necessarily minimal.

6

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

verted beforehand to propositional logic) [5, 6]. Others are not well suited for comparison
with our tool, either for lack of completeness [4] or because they do not handle equality [15].
This is why, to evaluate the e�ciency of the constrained calculus (CC), we integrated it in our
tool Kparam (see [5, 6]) and compared it7 with the calculus from [6] (Kp) on a thousand of
randomly generated benchmarks containing up to 6 clauses of maximum 5 literals made from
8 constants. Although the size of the initial formula is small, hundreds of thousand or even
millions of implicates are often generated, leading to hundreds of them being eventually kept
as prime.

0 0,03 0,3 3 30 300
0

0,03

0,3

3

30

300

Kp
(s)

CC (s)

Figure 1: Execution Time
Comparison

These formulæ are written using the TPTP cnf syntax [20].
The results are summarized in Fig.1, where each point represents
the intersection of the execution time (logarithmic scale) of a given
benchmark by CC (X axis) and by Kp (Y axis). Globally, 56% of
the benchmarks run faster using CC. The uppermost diagonal line
splits the diagram in two parts, over it are the tests for which CC
is at least 10 times faster than Kp. These benchmarks represent
roughly 25% of the results. Below the other diagonal are the tests
for which Kp is 10 times faster than CC. These benchmarks repre-
sent only 5% of the results. This analysis allows us to conclude that
CC is more e�cient on the considered benchmark. Still depending
on the chosen time limit, in case of failure by timeout from CC it is
reasonable to try to solve the problem using Kp before extending
the computation time or giving up. These results are encouraging,
especially given the fact that CC has some features that Kp is lacking (namely the ability to
impose restrictions on the implicates).

Testing satis�ability using CC. Some tests were conducted to evaluate the e�ciency of
CC for satis�ability testing, i.e., when constraining the implicates to size 0. In this case, CC
essentially coincides with the standard superposition calculus, except for the normalization step,
which is not performed by existing provers (as far as we are aware). Table 3 summarizes the
results of a comparison of our algorithm with E [18] on some small unsatis�able instances of the
pigeonhole problem (where there are too many pigeons and not enough holes to put them all)
in equational logic. The notation 'pigAxB' indicates that the considered problem involves A
pigeons and B holes. Without surprise, E outperforms CC as far as execution time is concerned
(this re�ects the limits of the our current implementation rather than those of the calculus).
Any other result would have been surprising considering that CC is implemented in a purely
high-level way, while E has bene�ted over the years of many carefully designed high- and low-
level re�nements. The other two columns of Table 3 contain much more satisfying results for
CC. They present the number of clauses generated and processed by both systems and in all
cases the results are of the same order of magnitude but in favor of CC. This phenomenon
is most probably explained by the normalization process used in CC, which prevents it from
considering several equivalent clauses. This observation suggests that it could be interesting to
integrate a normalization process into the tools dealing with equational logic (this normalization
step extends straightforwardly to �rst-order clauses).

7All tests were conducted on a machine equipped with an Intel core i5-3470 CPU and 4x2 GB of RAM, with

a timeout of 500 seconds

7

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

execution time number of clauses
generated

number of clauses
processed

pig5x4
CC 0.016s 162 74
E 0.014s 292 79

pig8x7
CC 5.780s 17198 833
E 0.621s 27248 1218

pig10x9
CC 492.791s 340442 4197
E 21.153s 542664 7038

Table 3: Comparison between E and the constrained calculus looking for implicates of size 0

5.1 Conclusion

This paper introduced a new and more e�cient way of computing the prime implicates of equa-
tional formulæ, with the possibility of restricting the results, without loss of the completeness
property (for the implicates to which the restriction applies). This feature is useful for example
to generate implicates up to a given size, or to compute minimal representations of a given
formula (by generating implicates �covering� all possible conjuncts). This work is a �rst step
toward scalable prime implicate generators in equational logic. Possibilities to further extend
this work include �nding more relevant benchmarks to evaluate the applicability of the calculus
to concrete problems and looking for other interesting restrictions preserving the completeness
of the calculus. In the longer term, an extension to more expressive logics, either directly or
using an approach in the spirit of DPLL(T) [16] will be considered.

References

[1] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simpli�cation. Journal of Logic and Computation, 3(4):217�247, 1994.

[2] M. Bienvenu. Prime implicates and prime implicants in modal logic. In Proceedings of the National
Conference on Arti�cial Intelligence, volume 22, page 379. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2007.

[3] J. De Kleer. An improved incremental algorithm for generating prime implicates. In Proceedings
of the National Conference on Arti�cial Intelligence, pages 780�780. John Wiley & Sons ltd, 1992.

[4] I. Dillig, T. Dillig, and A. Aiken. Small formulas for large programs: On-line constraint simpli�ca-
tion in scalable static analysis. In R. Cousot and M. Martel, editors, SAS, volume 6337 of Lecture
Notes in Computer Science, pages 236�252. Springer, 2010.

[5] M. Echenim, N. Peltier, and S. Tourret. An approach to abductive reasoning in equational logic.
In Proceedings of IJCAI'13 (International Conference on Arti�cial Intelligence), pages 3�9. AAAI,
2013.

[6] M. Echenim, N. Peltier, and S. Tourret. A Rewriting Strategy to Generate Prime Implicates in
Equational Logic. In Proceedings of the International Joint Conference on Automated Reasoning
(IJCAR'14). Springer, 2014.

[7] E. Fredkin. Trie memory. Commun. ACM, 3(9):490�499, 1960.

[8] P. Jackson. Computing prime implicates. In ACM Conference on Computer Science, pages 65�72,
1992.

[9] P. Jackson. Computing prime implicates incrementally. In Proceedings of the 11th International
Conference on Automated Deduction, pages 253�267. Springer-Verlag, 1992.

[10] E. Knill, P. Cox, and T. Pietrzykowski. Equality and abductive residua for horn clauses. Theoretical
Computer Science, 120:1�44, 1992.

8

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

[11] P. Marquis. Extending abduction from propositional to �rst-order logic. In P. Jorrand and J. Kele-
men, editors, Fundamentals of Arti�cial Intelligence Research, volume 535 of LNCS, pages 141�155.
Springer Berlin, 1991.

[12] A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Automated Reasoning with
Analytic Tableaux and Related Methods, pages 250�264, 2009.

[13] A. Matusiewicz, N. Murray, and E. Rosenthal. Tri-based set operations and selective computation
of prime implicates. Foundations of Intelligent Systems, pages 203�213, 2011.

[14] M. C. Mayer and F. Pirri. First order abduction via tableau and sequent calculi. Logic Journal of
the IGPL, 1(1):99�117, 1993.

[15] H. Nabeshima, K. Iwanuma, and K. Inoue. Solar: A consequence �nding system for advanced
reasoning. In M. C. Mayer and F. Pirri, editors, TABLEAUX, volume 2796 of Lecture Notes in
Computer Science, pages 257�263. Springer, 2003.

[16] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL (T). Journal of the ACM,
53(6):937�977, 2006.

[17] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages 371�443. Elsevier and MIT Press,
2001.

[18] S. Schulz. System Description: E 1.8. In K. McMillan, A. Middeldorp, and A. Voronkov, editors,
Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS. Springer, 2013.

[19] L. Simon and A. Del Val. E�cient consequence �nding. In Proceedings of the 17th International
Joint Conference on Arti�cial Intelligence, pages 359�370, 2001.

[20] G. Sutcli�e. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337�362, 2009.

9

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

Appendix: Soundness and Completeness

It is easy to check that the previous calculus is sound:

Lemma 11. Let [C |X] be a c-clause derived from n premises [Di |Yi] with i ∈ {1 . . . n}. Then
C is a logical consequence of D1, . . . , Dn,X and for all i, Yi ⊆ X .

Proof. It is easy to verify that this property holds for each inference rule, the result follows by
a straightforward induction on the length of the derivation.

Lemma 11 permits to deduce the following soundness result:

Corollary 12. For any c-clause [C | X] deducible from a set of clauses S (i.e. c-clauses with
empty constraint), C is a logical consequence of S ∪ X . In particular, if C = 2 then S |= X c.

We now prove that the calculus is deductive-complete, i.e., that it permits to generate every
prime implicate of a given set of clauses. The proof relies on the following de�nitions and
proposition.

De�nition 13. For every set of c-clauses S and for every constraint X , we denote by S|X the
set of clauses D (without constraint) such that [D |Y] ∈ S and Y ⊆ X .

The following proposition is an immediate consequence of the de�nition.

Proposition 14. Let S be a set of c-clauses and let X be a satis�able constraint. If a c-clause
[C |Y] is redundant in S and Y ⊆ X then C is redundant in S|X ∪ X .

Proof. By de�nition of the c-clause redundancy, there are two cases to consider.

• The �rst condition leading to redundancy is that Y is unsatis�able. In this case, since Y
is a conjunction of literals and Y ⊆ X , the constraint X is also unsatis�able.

• In the second case, there exist n c-clauses [Di |Yi] ∈ S (1 ≤ i ≤ n) such that ∀i ∈ [1, n]C �
Di, ∀i ∈ [1, n]Yi ⊆ Y and Y ′, D1, . . . , Dn |= C, where Y ′ denotes the set of literals in Y that
are lower than C. Since Y ⊆ X we deduce that ∀i ∈ [1, n]Yi ⊆ X , hence ∀i ∈ [1, n]Di ∈
S|X . Since Y ′, D1, . . . , Dn |= C, X ′, D1, . . . , Dn � C and Y ′ ∪ {D1, . . . , Dn} ⊆ S|X ∪ X ,
C is redundant in S|X ∪ X .

De�nition 15. A set of c-clauses S is saturated w.r.t. a constraint X if every c-clause [C |Y]
such that Y ⊆ X that is deducible from S by applying once one of the inference rules is redundant
w.r.t. S.

Theorem 16. Let X be a normalized satis�able constraint. Let S be a set of standard clauses
and S? be the set obtained from saturating S by applying inference or redundancy deletion
rules. If S? is saturated w.r.t. X and S |= X c, then there exists a constraint Y ⊆ X such that
[2 |Y] ∈ S?.

Remark 17. Note that considering only normalized constraints is not restrictive since any
constraint is equivalent to a normalized one.

Proof. Let S′ = S?|X ∪X . We �rst remark that S′ is unsatis�able. Indeed, S?|> |= S since by
Proposition 14 all the standard clauses that are removed from S during the saturation process
must be redundant in S?|>; furthermore, S?|> ⊆ S?|X , so that S′ |= S?|>∪X |= S∪X |= X c∪X .
We now prove that S′ is saturated (in the standard way). We only consider the case where

10

Deductive-Complete Constrained Superposition Calculus Echenim, Peltier and Tourret

the Superposition rule is applied, the proof for the other rules is similar. Let l ' r ∨ P1 and
l ./ u ∨ P2 be two clauses occurring in S′, with l � r, u, and assume that l ' r and l ./ u are
selected in l ' r ∨ P1 and l ./ u ∨ P2 respectively. Let r ./ u ∨ P1 ∨ P2 be the clause deduced
by superposition from the two previous clauses. We distinguish several cases.

• If both l ' r ∨ P1 and l ./ u ∨ P2 occur in S?|X , then S contains two c-clauses of the
form [l ' r ∨ P1 | X1] and [l ./ u ∨ P2 | X2], where X1,X2 ⊆ X . It is clear than the
Superposition rule applies on these c-clauses, yielding [r ./ u ∨ P1 ∨ P2 | X1 ∧ X2]. Since
S? is saturated w.r.t. X , this c-clause is redundant w.r.t. S?, and since X1 ∧ X2 ⊆ X we
deduce by Proposition 14 that r ./ u ∨ P1 ∨ P2 is redundant w.r.t. S′.

• If l ' r ∨ P1 occurs in S?|X and l ./ u ∨ P2 occurs in X , then by de�nition P2 must be
empty, and S? contains a c-clause of the form [l ' r ∨ P1 |X1] with X1 ⊆ X . Assume that
./= 6'. Then the Negative Assertion rule applies on the latter clause, yielding [r 6' u∨P1 |
X1 ∧ l 6' u]. Since l 6' u ∈ X , this c-clause must be redundant in S, and Proposition
14 permits to deduce that r 6' u ∨ P1 is redundant in S|X . If ./=', then the Positive
Assertion rule applies on [l ' r ∨ P1 |X1], yielding [r ' u ∨ P1 |X1 ∧ l ' u] and the result
follows as in the previous case.

• If l ' r ∨ P1 occurs in X and l ./ u ∨ P2 occurs in S?|X , then the proof is similar to the
previous case (using only the Positive Assertion rule).

• If both l ' r ∨ P1 and l ./ u ∨ P2 occur in X , then X is not normalized since l occurs at
least twice in X , and also occurs as the maximal term of some equation, which contradicts
the hypotheses of the theorem.

Since S′ is unsatis�able and saturated, this set necessarily contains 2 by completeness of the
standard superposition calculus, which entails that 2 ∈ S?|X (since the clauses in X are unit
hence cannot be empty), hence the result.

11

	Introduction
	Preliminary Definitions
	A Calculus for Abductive Reasoning
	Redundancy Elimination Rule

	Restricting the Class of Implicates
	Experiments
	Conclusion

