
Instantiation Schemes for Nested Theories

MNACHO ECHENIM

Grenoble INP-Ensimag/Laboratory of Informatics of Grenoble

and

NICOLAS PELTIER

CNRS/Laboratory of Informatics of Grenoble

This paper investigates under which conditions instantiation-based proof procedures can be com-

bined in a nested way, in order to mechanically construct new instantiation procedures for richer

theories. Interesting applications in the field of verification are emphasized, particularly for han-
dling extensions of the theory of arrays.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving

General Terms: Theory, Verification

Additional Key Words and Phrases: Instantiation-based Proof Procedures, Satisfiability Modulo
Theories, Combination of Theories

1. INTRODUCTION

Proving the satisfiability or unsatisfiability of a first-order formula (possibly modulo
some background theory) is an essential problem in computer science – in particular
for the automatic verification of complex systems, and instantiation schemes can be
used for this purpose. Such schemes can be viewed as functions Θ that map a set of
formulæ (or clauses) S to a set of ground (i.e. without variable) instances Θ(S) of S.
An instantiation scheme Θ is refutationally complete if for all sets of clauses S, Θ(S)
is satisfiable exactly when S is. Examples of refutationally complete instantiation
schemes include [Lee and Plaisted 1992; Plaisted and Zhu 2000; Ganzinger and
Korovin 2003; Baumgartner and Tinelli 2003]. It is clear that an instantiation
scheme that is refutationally complete does not always terminate, as Θ(S) may be
infinite, but schemes that are both complete and terminating can be defined for
specific classes of clause sets, that are thus decidable. A trivial and well-known
example is the Bernays-Schönfinkel class (i.e. the class of purely universal formulæ
without function symbols of arity distinct from 0, see, e.g., [Dreben and Goldfarb
1979]), since in this case the set of ground instances is finite. Other examples
include the class of stratified clause sets [Abadi et al. 2010] and many classes of
clause sets of the form G ∪ A, where G is a set of ground formulæ and A is the

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2012 ACM 1529-3785/2012/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012, Pages 1–0??.

2 · M. Echenim and N. Peltier

set of axioms of a specific theory1, such as the theory of arrays (see for example
[Bradley and Manna 2007]), the theory of pointer structures such as lists [Mcpeak
and Necula 2005], of sets with cardinalities [Ohlbach and Koehler 1999], a local
theory [Givan and Mcallester 1992] etc. For instance, [Mcpeak and Necula 2005]
provides an instantiation scheme for a language that describes properties of scalar
fields and pointers. As long as no disequalities between pointers are allowed, their
instantiation scheme is complete.

Instantiation schemes can also be defined for specific theories for which decision
procedures exist. Then, the theory is not axiomatized, but directly handled by an
external prover – used as a “black box”. In this case, the instantiation procedure
should preserve the validity of the formula modulo the considered theory. Such
procedures are appealing, because it is usually much easier to check the validity of
a ground set than that of a non-ground set (see for instance [Bradley et al. 2006]).

Frequently, one has to handle heterogeneous problems, defined on complex the-
ories for which no instantiation procedure exists. Such theories are frequently ob-
tained by combining simpler theories. For instance the theory describing a data-
structure (arrays, list, etc.) may be combined with the theory modeling the ele-
ments it contains (e.g., integers). Most systems rely on the Nelson-Oppen method
and its numerous refinements to reason on combination of theories. This scheme
allows one – under certain conditions – to combine independent decision procedures
(see, e.g., [Tinelli and Harandi 1996; Echenim and Peltier 2011]), but it is of no
use for reasoning on theories that include axioms containing function or predicate
symbols from both theories. As an example, consider the following formula:

∀i, j : nat, i ≤ j ⇒ select(t, i) ≤ select(t, j),

that states that an array t is sorted. This formula uses symbols from the theory of
integers (the predicate ≤) and from the theory of arrays (the function select, which
returns the value stored in a certain array at a certain index).

In this paper, we show how to construct automatically instantiation schemes for
such axioms, by combining existing instantiation schemes. More precisely, from
two complete instantiation procedures ΘN and ΘA for the theory of integers and
for the theory of arrays respectively, we construct a new procedure Θ which is
able to handle a particular class of “mixed” axioms, containing function symbols
from both theories (including for instance the axioms for sorted arrays and many
others). Θ will be complete and terminating if both ΘN and ΘA are (as proven
in Section 4). This approach is not restricted to specific theories such as ΘN and
ΘA; on the contrary it is generic and applies to a wide range of theories and some
examples are provided in Section 5. The conditions that must be satisfied by the
considered theories and by their instantiation procedures are identified in Section
3.2. They can be roughly summarized as follows. Firstly, the combination of
theories must be hierarchic, in the sense that the domains of the function symbols
of the first theory (called the base theory) must be distinct from the ranges of the
function symbols of the second theory (called the nesting theory). Second, the
instantiation procedure for the base theory must instantiate variables by ground
terms in a uniform way; and this set of ground terms must be invariant under some

1In this case, of course, only the axioms in A need to be instantiated.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 3

operations on the considered clause sets, such as disjunction and replacement of
variables by variables. Finally, the instantiation procedure for the nesting theory
must be monotonic and the instances cannot depend on the names of the base terms
occurring in the clauses.

Comparison with Related Work

There is an extensive amount of work on the combination of (usually disjoint)
theories, using mainly refinements or extensions of the Nelson-Oppen method (see,
e.g., [Nelson and Oppen 1979; Tinelli and Harandi 1996; Bruttomesso et al. 2009]).
For instance, [Fontaine 2009] shows that many decidable fragments of first-order
logic can be combined with any disjoint theory, even if these fragments do not
fulfill the stable infiniteness condition in general. A related result is presented in
[Fontaine et al. 2004] for the theory of lists (with a length function). However,
these results do not apply to non-disjoint theories such as those we consider in this
paper, and they cannot handle nested combinations of arbitrary theories.

Reasoning on the combination of theories with mixed axioms has been recognized
as an important problem and numerous solutions have been proposed in many
specific cases. Most existing work focuses on testing the satisfiability problem of
ground formulæ in combinations or extensions of existing theories. In contrast, our
method aims at reducing non-ground satisfiability to ground satisfiability tests, via
instantiation.

For instance, [Bradley et al. 2006; Bradley and Manna 2007] define a decision
procedure for extensions of the theory of arrays with integer elements, which is
able to handle axioms such as the one above for sorted arrays. As we shall see
in Section 5, our approach, when applied to these particular theories, permits to
handle a strictly more expressive class of quantified formulæ.

[Ghilardi et al. 2007a] focuses on arrays with integer indices and devises a method
to combine existing decision procedures (for Presburger arithmetic and for the
theory of arrays). This method is able to handle some important specific features
of arrays such as sortedness or array dimension. Similarly to our approach, theirs
is based on an instantiation of the axioms. As we shall see, some of its features can
be tackled with our method and others (such as Injectivity) are out of its scope.
However, our method is generic in the sense that it applies to a wide class of theories
and axioms (in particular, it applies to axioms that are not considered in [Ghilardi
et al. 2007a]). It is essentially syntactic, whereas that of [Ghilardi et al. 2007a] is
more of a semantic nature.

A logic devoted to reasoning with arrays of integers is presented in [Habermehl
et al. 2008] and the decidability of the satisfiability problem is established by re-
duction to the emptiness problem for counter automata. In Section 5 we shall show
that the expressive power of this logic is again incomparable with the one we obtain
with our approach.

Most approaches for handling quantified formulæ rely on the original work of
[Detlefs et al. 2005] on the Simplify prover, in which heuristics for quantifier in-
stantiation are devised (based on E-matching). Of course, these heuristics are not
complete in general, and the class for which completeness is ensured is not precisely
characterized. State-of-the-art techniques include [Ge et al. 2009; de Moura and
Bjørner 2007]. [Ge and de Moura 2009] proposes an instantiation scheme for sets of

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

4 · M. Echenim and N. Peltier

clauses possibly containing arithmetic literals, which can handle some of the axioms
we consider. However termination is not guaranteed for this scheme, in contrast to
ours.

Reduction functions are widely used tools allowing to reduce complex theories to
simple ones. The instantiation procedures considered in the present work can be
viewed as reduction procedures from quantified formulæ to ground sets. [Kapur and
Zarba 2005] identifies various reduction methods that are widely used in efficient
SMT-solver (e.g. from arrays to equality theory) and provides a general method
for combining existing reduction procedures. Unlike the present paper, arbitrary
combinations are allowed, but only ground formulæ are considered.

Slightly closer to our approach is the work described in [Sofronie-Stokkermans
2005; 2010], which defines the notion of the (stably) local extension of a theory and
shows that the satisfiability problem in a (stably) local extension of a theory A can
be reduced to a simple satisfiability test in A. The notion of a local extension is a
generalization of the notion of a local theory, originally defined for Horn clauses in
[Givan and Mcallester 1992; Givan 2000] and then generalized by allowing arbitrary
term orderings and full clauses in [Basin and Ganzinger 2001] (semantic criteria
based on saturation are proposed in [Ganzinger 2001b] for proving locality of a
theory). The idea is that, for testing the satisfiability of a ground formula G in the
local extension of a theory, it is sufficient to instantiate the variables occurring in the
new axioms by ground terms occurring either in G or in the axioms (in [Ihlemann
et al. 2008], the notion of locality is further generalized by considering a closure
operator Ψ which returns the set of terms that must instantiate the variables). The
previous condition holds for numerous useful extensions of base theories, including
for instance extensions with free functions, with selector functions for an injective
constructor, with monotone functions over integers or reals etc. Our approach
departs from these results because our goal is not to extend basic theories, but
rather to combine existing instantiation procedures. Locality (or Ψ-locality) is
a property of a set of axioms: there exists local and non-local presentation of a
given theory. However, it is essentially a semantic notion, in the sense that testing
whether a given presentation is local or whether there exists an equivalent local
presentation, is an undecidable problem. Thus, this property must be established
separately for every considered extension, although there exist decidable criteria
and automated methods for extending a non-local presentation into a local one
[Ganzinger 2001a; Basin and Ganzinger 2001]. Actually, our results can be viewed
as a general method for proving that a given theory extension is local (relatively to
some closure operator): if the theories B and N satisfy the conditions of Section
3.2 then any hierarchic expansion N [B] (see Definition 13) is Ψ-local (in the sense
of [Ihlemann et al. 2008]), where Ψ is the closure operator obtained by considering
the whole set of ground terms obtained by applying the instantiation procedure
ΘN [ΘB] defined in Definition 23.

In our approach we define conditions on the theories ensuring that they can
be safely combined. These conditions can be tested once and for all for each
theory, and then any combination is allowed. An important restriction of our
approach compared to [Sofronie-Stokkermans 2005; 2010] is that the theories must
be combined in a hierarchic way: intuitively there can be function symbols mapping

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 5

elements of the first theory B (the “base” theory) to elements of the second one N
(the “nesting” theory), but no function symbols are allowed from N to B.

Other methods based on the superposition calculus [Bachmair and Ganzinger
1994] have also been proposed. [Bonacina et al. 2011] investigates how to test the
satisfiability of formulæ involving quantifiers and decidable subtheories by tightly
coupling a general-purpose theorem prover based on the superposition calculus with
SMT solvers for the subtheories. Other extensions of the superposition calculus
have also been proposed to handle first-order extensions of a base theory (see for
example [Bachmair et al. 1994; Althaus et al. 2009]). The superposition calculus is
used to reason on the generic part of the formulæ whereas the theory-specific part
is handled by an external prover. These proof procedures can be used to reason on
some of the formulæ we consider in the present paper. However, we are not aware of
any termination result for these approaches (even completeness requires additional
restrictions that are not always satisfied in practice). [Ganzinger et al. 2006] devises
a superposition calculus for combinations of first-order theories involving total and
partial functions. Some termination and completeness results are presented. Our
approach uses an instantiation-based approach instead of superposition, and ensures
that termination is preserved by the combination, at the cost of much stronger
syntactic restrictions on the considered formulæ.

Organization of the Paper

The rest of the paper is structured as follows. Section 2 contains general definitions
and notations used throughout the present work. Most of them are standard, but
some are more particular, such as the notions of ω-clauses or specifications. Section
3 describes our procedure for the nested combination of instantiation schemes, and
introduces conditions to ensure that completeness is preserved. Section 5 shows
some interesting applications of these results for theories that are particularly useful
in the field of verification (especially for extensions of the theory of arrays). Section
6 concludes the paper and gives some lines of future work.

2. PRELIMINARIES

In this section, we first briefly review usual notions and notations about first-order
clausal logic. Then we introduce the rather nonstandard notion of an ω-clause (a
clause with infinitely many literals). We define the notion of specifications and
provide some examples showing how usual theories such as those for integers or
arrays can be encoded. Finally we introduce the notion of instantiation methods.

2.1 Syntax

Let S be a set of sort symbols and F be a set of function symbols together with a
ranking function rnk : F → S∗× S. For every f ∈ F , we write f : s1× · · ·× sn → s

if rnk(f) = s1, . . . , sn, s. If n = 0 then f is a constant symbol of sort s. We assume
that F contains at least one constant symbol of each sort. To every sort s ∈ S is
associated a countably infinite set Xs of variables of sort s, such that these sets are
pairwise disjoint. X =

⋃
s∈S Xs denotes the entire set of variables. For every s ∈ S,

the set of terms of sort s is denoted by Ts(X) and built inductively as usual on X
and F :

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

6 · M. Echenim and N. Peltier

—Xs
def

⊆ Ts(X).

—If f : s1 × . . . × sn → s and for all i ∈ [1, n], ti ∈ Tsi(X) then f(t1, . . . , tn)
def

∈
Ts(X).

The set of terms is defined by T(X)
def
=

⋃
s∈S Ts(X).

An atom is an equality t ' s between terms of the same sort. A literal is either
an atom or the negation of an atom (written t 6' s). If L is a literal, then Lc

denotes its complementary: (t ' s)c
def
= (t 6' s) and (t 6' s)c

def
= (t ' s). A clause is

a finite set (written as a disjunction) of literals. We assume that S contains a sort
bool and that F contains a constant symbol true of sort bool. For readability,
atoms of the form p ' true will be simply denoted by p (thus we write, e.g., a ≤ 2
instead of (a ≤ 2) ' true).

The set of variables occurring in an expression (term, atom, literal or clause) E
is denoted by Var(E), and E is ground iff Var(E) = ∅. The set of ground terms of

sort s is denoted by Ts and the set of ground terms by T
def
=

⋃
s∈S Ts.

A substitution is a function that maps every variable to a term of the same sort.
The image of a variable x by a substitution σ is denoted by xσ. The domain of a

substitution σ is the set2 dom(σ)
def
= {x ∈ X | xσ 6= x}, and its co-domain is the set

of elements the variables in the domain are mapped to. Substitutions are extended

to terms, atoms, literals and clauses as usual: f(t1, . . . , tn)σ
def
= f(t1σ, . . . , tnσ),

(t ' s)σ def
= (tσ ' sσ), (¬L)σ

def
= ¬(Lσ) and (

∨n
i=1 Li)σ

def
=

∨n
i=1 Liσ. A substitution

σ is ground if ∀x ∈ dom(σ), Var(xσ) = ∅. A ground instance of an expression E is
an expression of the form Eσ, where σ is a ground substitution of domain Var(E).

Definition 1. A substitution σ is pure iff for all x ∈ X , xσ ∈ X . In this case, for
any term t, tσ is a pure instance of t. A substitution σ is a renaming if it is pure
and injective. 3

A substitution σ is a unifier of a set of pairs {(ti, si) | i ∈ [1, n]} iff ∀i ∈
[1, n], tiσ = siσ. It is well-known that all unifiable sets have a most general unifier
(mgu), which is unique up to a renaming.

2.2 Semantics

An interpretation I is a function mapping:

—All sort symbols s ∈ S to nonempty disjoint sets sI .

—Every function symbol f : s1× . . .×sn → s ∈ F to a function f I : sI1× . . .×sIn →
sI .

DI denotes the domain of I, i.e., the set
⋃

s∈S s
I . As usual, the valuation function

E 7→ [E]I maps every ground expression E to a value defined as follows:

—[f(t1, . . . , tn)]I
def
= f I([t1]I , . . . , [tn]I),

—[t ' s]I = true iff [t]I = [s]I ,

—[t 6' s]I = true iff [t ' s]I 6= true,

—[
∨n
i=1 Li]I

def
= true iff ∃i ∈ [1, n], [Li]I = true.

2for technical convenience we do not assume that dom(σ) is finite.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 7

An interpretation I satisfies a clause C if for every ground instance Cσ of C we
have [Cσ]I = true. A set of clauses S is satisfied by I if I satisfies every clause in
S. If this is the case, then I is a model of S and we write I |= S. A set of clauses
S is satisfiable if it has a model; two sets of clauses are equisatisfiable if they are
both satisfiable or both unsatisfiable.

In the sequel, we restrict ourselves, w.l.o.g., to interpretations such that, for every
s ∈ S, sI = {[t]I | t ∈ Ts}.

2.3 ω-Clauses

For technical convenience, we extend the usual notion of a clause by allowing infinite
disjunctions of literals:

Definition 2. An ω-clause is a possibly infinite set of literals. 3

The notion of instance extends straightforwardly to ω-clauses: if C is an ω-clause
then Cσ denotes the ω-clause {Lσ | L ∈ C} (recall that the domain of σ may
be infinite). Similarly, the semantics of ω-clauses is identical to that of standard

clauses: if C is a ground ω-clause, then [C]I
def
= true iff there exists an L ∈ C such

that [L]I = true. If C is a non-ground ω-clause, then I |= C iff for every ground
substitution of domain Var(C), [Cσ]I = true. The notions of satisfiability, models
etc. are extended accordingly. If S, S′ are two sets of ω-clauses, we write S E S′ if
for every ω-clause C ′ ∈ S′ there exists an ω-clause C ∈ S such that C ⊆ C ′.

Proposition 3. If S E S′ then S′ is a logical consequence of S.

Of course, most of the usual properties of first-order logic such as semi-
decidability or compactness fail if ω-clauses are considered. For instance, if C

stands for the ω-clause {b ' f i(a) | i ∈ N} and Dj
def
= {b 6' f j(a)} for j ∈ N,

then S
def
= {Dj | j ∈ N} ∪ {C} is unsatisfiable, although every finite subset of S is

satisfiable.

2.4 Specifications

Usually, theories are defined by sets of axioms and are closed under logical conse-
quence. In our setting, we will restrict either the class of interpretations (e.g., by
fixing the interpretation of a sort int to the natural numbers) or the class of clause
sets (e.g., by considering only clause sets belonging to some decidable fragments or
containing certain axioms). This is why we introduce the (slightly unusual) notion
of specifications, of which we provide examples in the following section:

Definition 4. A specification A is a pair (I,C), where I is a set of interpretations
and C is a class of clause sets. A clause set S ∈ C is A-satisfiable if there exists
an I ∈ I such that I |= S (I is an A-model of S). S and S′ are A-equisatisfiable
if they are both A-satisfiable or both A-unsatisfiable. We write S |=A S′ iff every
A-model of S is also an A-model of S′. 3

For the sake of readability, if A is clear from the context, we will say that a set of
clauses is satisfiable, instead of A-satisfiable. We write (I,C) ⊆ (I ′,C′) iff I = I ′
and C ⊆ C′. By a slight abuse of language, we say that C occurs in A if there exists
a set S ∈ C such that C ∈ S.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

8 · M. Echenim and N. Peltier

In many cases, I will simply be the set of all interpretations, which we denote
by Ifol. But our results also apply to domain-specific instantiation schemes such as
those for Presburger arithmetic. Of course, restricting the form of the clause sets
in C is necessary in many cases for defining instantiation schemes that are both
terminating and refutationally complete. This is why we do not assume that C
contains every clause set. We shall simply assume that C is closed under inclusion
and ground instantiations, i.e., for all S ∈ C if S′ ⊆ S and S′′ only contains ground
instances of clauses in S, then S′, S′′ ∈ C. All the classes of clause sets considered
in this paper satisfy these requirements.

We shall restrict ourselves to a particular class of specifications: those with a set
of interpretations that can be defined by a set of ω-clauses.

Definition 5. A specification A = (I,C) is ω-definable iff there exists a (possibly
infinite) set of ω-clauses Ax(I) such that I = {I | I |= Ax(I)}. 3

Assumption 6. From now on, we assume that all the considered specifications are
ω-definable.

In most cases, the axioms of the considered specifications will be standard clauses.
Infinite axioms are useful mainly to encode the domain of the specification, for
instance for the natural numbers: ∀x,

∨
i∈N x ' si(0). Of course, it could be

possible to avoid having to consider such infinite disjunctions by adding further
restrictions on the considered interpretations (e.g. by explicitly restricting their
domains). However, it would then be necessary to add additional conditions on the
interpretations in order to ensure that the combination is feasible; in our setting,
the condition is straightforward: it suffices to assume that these axioms are defined
over disjoint signatures.

2.5 Examples

Example 7. The specification of first-order logic is defined by Afol
def
= (Ifol,Cfol)

where:

—Ifol is the set of all interpretations (i.e. Ax(Ifol)
def
= ∅).

—Cfol is the set of all clause sets on the considered signature.

Example 8. The specification of Presburger arithmetic is defined as follows: AZ
def
=

(IZ,CZ) where:

—Ax(IZ) contains the domain axiom:
∨
k∈N(x ' sk(0)∨x ' −sk(0)) and the usual

axioms for the function symbols 0 : int, − : int→ int, s : int→ int, p : int→
int, + : int× int→ int, and for the predicate symbols 'k: int× int→ bool

(for every k ∈ N) ≤: int× int→ bool and <: int× int→ bool:

0 + x ' x s(x) + y ' s(x+ y)
p(x) + y ' p(x+ y) p(s(x)) ' x

s(p(x)) ' x sk(0) 'k 0
−0 ' 0 −s(x) ' p(−x)

−p(x) ' s(−x) x 6'k y ∨ sk(x) 'k y
x 6'k y ∨ pk(x) 'k y x < y ⇔ s(x) < s(y)
x 6< y ∨ x < s(y) x ≤ y ⇔ (x < y ∨ x ' y)

x < s(x)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 9

'k denotes equality modulo k (which will be used in Section 5.1.1); x, y denote
variables of sort int and k is any natural number. Note that the domain axiom
is an infinite ω-clause, while the other axioms can be viewed as standard clauses.

—CZ is the class of clause sets built on the previous set of function and predicate
symbols.

In the sequel, the terms sk(0) and pk(0) will be written k and −k respectively.

Example 9. The specification of arrays is AA
def
= (IA,CA) where:

—Ax(IA)
def
= {select(store(x, z, v), z) ' v, z′ ' z ∨ select(store(x, z, v), z′) '

select(x, z′)}, where select and store are respectively of profile: array × ind →
elem and array × ind × elem → array (x is a variable of sort array, z, z′ are
variables of sort ind and v is a variable of sort elem).

—CA is the class of ground clause sets built on select, store and a set of constant
symbols.

It should be noted that reals can be also handled by using any axiomatization of
real closed fields, which are elementarily equivalent to the real numbers (in this case
the axioms are standard clauses: there is no need for an infinite domain axiom).

2.6 Instantiation Procedures

An instantiation procedure is a function that reduces the A-satisfiability problem
for any set of A-clauses to that of a (possibly infinite) set of ground A-clauses.

Definition 10. Let A = (I,C) be a specification. An instantiation procedure for
A is a function Θ from C to C such that for every S ∈ C, Θ(S) is a set of ground
instances of clauses in S. Θ is complete for A if for every finite clause set S ∈ C,
S and Θ(S) are A-equisatisfiable. It is terminating if Θ(S) is finite for every finite
clause set S ∈ C. 3

If Θ is complete and terminating, and if there exists a decision procedure for
checking whether a ground (finite) clause set is satisfiable in I, then the A-
satisfiability problem is clearly decidable. Several examples of complete instan-
tiation procedures are available in the literature. Some of them are general (hence
non-terminating) methods handling full first-order logic [Plaisted and Zhu 2000;
Ganzinger and Korovin 2003; Baumgartner and Tinelli 2003; Bonacina et al. 2011],
other focus on or some decidable subclasses [Abadi et al. 2010; Echenim and Peltier
2010a]. Several techniques have been devised for handling specific theories, by pro-
viding ways of instantiating axioms in such a way that satisfiability is preserved
[Loos and Weispfenning 1993; Bradley et al. 2006; Echenim and Peltier 2010b;
Sofronie-Stokkermans 2010; Goel et al. 2008]. Our goal in this paper is to provide
a general mechanism for constructing new complete instantiation procedures by
combining existing ones.

3. NESTED COMBINATION OF SPECIFICATIONS

3.1 Definition

Theories are usually combined by considering their (in general disjoint) union. De-
cision procedures for disjoint theories can be combined (under certain conditions)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

10 · M. Echenim and N. Peltier

by different methods, including the Nelson-Oppen method [Tinelli and Harandi
1996] or its refinements. In this section we consider a different way of combining
specifications. The idea is to combine them in a “hierarchic” way, i.e., by consider-
ing the formulæ of the first specification as constraints on the formulæ of the second
one.

For instance, if AZ is the specification of Presburger arithmetic and AA is the
specification of arrays, then:

—0 ≤ x ≤ n is a formula of AZ (x denotes a variable and n denotes a constant
symbol of sort int).

—select(t, x) ' a is a formula of AA (stating that t is a constant array).

—0 ≤ x ≤ n ⇒ select(t, x) ' a (stating that t is a constant on the interval [0, n])
is a formula obtained by combining AZ and AA hierarchically.

Such a combination cannot be viewed as a union of disjoint specifications, since
the axioms contain function symbols from both specifications.

More formally, we assume that the set of sorts S is divided into two disjoint sets
SB and SN such that for every function f : s1 × . . . × sn → s, if s ∈ SB , then
s1, . . . , sn ∈ SB . A term is a base term if it is of a sort s ∈ SB and a nesting term
if it is of a sort s ∈ SN and contains no non-variable base term. Any clause will be
divided into two disjoint parts, a base part, containing only base terms, and a nesting
part, containing only nesting terms. By definition, no nesting term can occur in a
base term and the only base terms occurring in nesting terms are variables. This
last condition is not by itself a serious restriction, because every non-variable base
term t can be replaced by a variable x by adding the inequation x 6' t in the base
part of the clause. The essential point (that also justifies the distinction between
the base specification and the nesting specification) is that function symbols from
SN to SB are not allowed, while there can be functions from SB to SN . Note that
since SB and SN are disjoint, the boolean sort cannot occur both in SB and SN .
However, this problem can easily be overcome by considering two copies of this sort
(bool and bool′).

In the sequel we let XB
def
=

⋃
s∈SB Xs (resp. XN

def
=

⋃
s∈SN Xs) be the set of base

variables (resp. nesting variables) and let FB (resp. FN) be the set of function
symbols whose co-domain is in SB (resp. SN). An SB-ground instance of an ex-
pression E is an expression of the form Eσ where σ is a ground substitution of
domain Var(E) ∩ XB . Intuitively, an SB-ground instance of E is obtained from E
by replacing every variable of a sort s ∈ SB (and only these variables) by a ground
term of the same sort.

Definition 11. ΩB denotes the set of ω-clauses C such that every term occurring
in C is a base term. ΩN denotes the set of ω-clauses C such that:

(1) Every non-variable term occurring in C is a nesting term.

(2) For every atom t ' s occurring in C, t and s are nesting terms. 3

Notice that it follows from the definition that ΩB ∩ΩN = ∅, since SB and SN are
disjoint.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 11

Definition 12. A specification (I,C) is a base specification if Ax(I) ⊆ ΩB and for
every S ∈ C, S is a finite subset of ΩB . It is a nesting specification if Ax(I) ⊆ ΩN
and for every S ∈ C, S ⊆ ΩN . 3

In the example at the beginning of the section, AZ is the base specification and
AA is the nesting specification.

Throughout this section, B = (IB ,CB) will denote a base specification and N =
(IN ,CN) a nesting specification. Notice that the clause sets in CB are finite, but
that those in CN can be finite or infinite. Base and nesting specifications are
combined as follows:

Definition 13. The hierarchic expansion of N over B is the specification N [B] =
(I,C) defined as follows:

(1) Ax(I)
def
= Ax(IB) ∪Ax(IN).

(2) Every clause set in C is of the form {CBi ∨CNi | i ∈ N} where {CBi | i ∈ N} ∈ CB
and {CNi | i ∈ N} ∈ CN .

If C is a clause in C, then CB is the base part of the clause and CN is its nesting
part. If S is a set of clauses in C, then SB and SN respectively denote the sets
{CB | C ∈ S} and {CN | C ∈ S}, and are respectively called the base part and
nesting part of S. 3

It is easy to check that for every clause C occurring in a clause set in C, there
exist two unique clauses CB and CN such that C = CB ∨ CN .

Example 14. Consider the following clauses:

c1 {x 6≥ a ∨ select(t, x) ' b} (t is constant on [a,∞[)
c2 {x 6≥ a ∨ x 6≤ b ∨ select(t, x) ' select(t′, x)} (t and t′ coincide on [a, b])
c3 {select(t, i) ' select(t′, i+ 1)} (t and t′ coincide up to a shift)
c4 {x 6≤ y ∨ select(t, x) ≤ select(t, y)} (t is sorted)
c5 {select(t, x) ≤ x} (t is lower than the identity)

Clauses c1 and c2 occur in AA[AZ], and for instance, cN1 = (select(t, x) ' b) and
cB1 = (x 6≥ a). Clause c3 does not occur in AA[AZ] because the atom select(t′, i +
1) of the nesting specification contains the non-variable term i + 1 of the base
specification. However, c3 can be equivalently written as follows:

c′3 {j 6' i+ 1 ∨ select(t, i) ' select(t′, j)}

and c′3 is in AA[AZ]3. Clause c4 does not occur in AA[AZ], because select(t, x) ≤
select(t′, x) contains symbols from both AZ (namely ≤) and AA (select) which
contradicts Condition 2 of Definition 13. However, c4 can be handled in this setting
by considering a copy A′Z of AZ (with disjoint sorts and function symbols). In
this case, c4 belongs to (AA ∪ A′Z)[AZ], where AA ∪ A′Z denotes the union of the
specifications AA and A′Z. Of course A′Z can be replaced by any other specification
containing an ordering predicate symbol. The same transformation cannot be used

3However as we shall see in Section 5, our method cannot handle such axioms, except in some
very particular cases. In fact, adding axioms relating two consecutive elements of an array easily

yields undecidable specifications (as shown in [Bradley and Manna 2007]).

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

12 · M. Echenim and N. Peltier

on the clause c5, since (because of the literal select(t, x) ≤ x) the sort of the indices
cannot be separated from that of the elements. Again, this is not surprising because,
as shown in [Bradley and Manna 2007], such axioms (in which index variables occur
out of the scope of a select) easily make the theory undecidable. A natural and
potentially interesting line of research would be to identify classes of formulae that
can be automatically transformed into clause sets in AA[AZ] by duplicating some
elements of the signature, as done previously for the clause c4.

3.2 Nested Combination of Instantiation Schemes

The goal of this section is to investigate how instantiation schemes for B and N
can be combined in order to obtain an instantiation scheme for N [B]. For instance,
given two instantiation schemes for integers and arrays respectively, we want to au-
tomatically derive an instantiation scheme handling mixed axioms such as those in
Example 14. We begin by imposing conditions on the schemes under consideration.

3.2.1 Conditions on the Nesting Specification. First, we investigate what con-
ditions can be imposed on the instantiation procedure for the nesting specification
N . Note that having a complete instantiation procedure for N is not sufficient;
indeed, since by definition every term of a sort in SB occurring in CN is a variable,
such an instantiation would normally replace every such variable by an arbitrary
ground term (a constant, for example). This is not satisfactory because in the cur-
rent setting, the value of these variables can be constrained by the base part of the
clause. Thus we need to impose a stronger condition. We shall assume that the
considered procedure is complete for every clause set that is obtained from clauses
in CN by grounding the variables in XB , no matter the grounding instantiation.

Definition 15. An SB-mapping is a function α mapping ground base terms to
ground base terms. Such a mapping is extended straightforwardly into a function
from expressions to expressions: for every expression (term, atom, literal, clause or
set of clauses) E , α(E) denotes the expression obtained from E by replacing every
base term t occurring in E by α(t).

An instantiation procedure Θ is SB-invariant iff for every SB-mapping α, and
every clause C in a set S, C ∈ Θ(S)⇒ α(C) ∈ Θ(α(S)). 3

We may now define nesting-complete instantiation procedures. Intuitively, such
a procedure must be complete on those sets in which the only terms of a sort in SB
that occur are ground, the instances cannot depend on the names of the base terms
and the addition of information cannot make the procedure generate less instances
for a given clause set.

Definition 16. An instantiation procedure Θ is nesting-complete if the following
conditions hold:

(1) For all sets S ∈ CN and all set of clauses S′ such that every clause in S′ is an
SB-ground instance of a clause in S, S′ and Θ(S′) are N -equisatisfiable.

(2) Θ is SB-invariant.

(3) Θ is monotonic: S′ ⊆ S ⇒ Θ(S′) ⊆ Θ(S). 3

Notice that a nesting-complete instantiation procedure is necessarily complete
(for the nesting specification).

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 13

3.2.2 Conditions on the Base Specification. Second, we impose conditions on
the instantiation procedure for the base specification B. We need the following
definitions:

Definition 17. Let S be a set of clauses and let G be a set of terms. We denote
by S↓G the set of clauses of the form Cσ, where C ∈ S and σ maps every variable
in C to a term of the same sort in G. 3

Example 18. Let S = {p(x, n), f(x, y) ' c}, where x, y are variables of sort
s and n is a variable of sort nat. Let G = {a, b : s, 0 : nat}. Then S↓G =
{p(a, 0), p(b, 0), f(a, a) ' c, f(a, b) ' c, f(b, a) ' c, f(b, b) ' c}.

Definition 19. If S is a set of clauses, we denote by S?∨ the set of clauses of the form∨
i=1,...,n Ciσi such that for every i ∈ [1, n], Ci ∈ S and σi is a pure substitution.3

Example 20. Let S = {p(x, y)}. Then S?∨ contains among others the clauses
p(x, x), p(x, y), p(x, y) ∨ p(z, u), p(x, y) ∨ p(y, x), p(x, y) ∨ p(y, z) ∨ p(z, u), etc.

Definition 21. An instantiation procedure Θ for B is base-complete if for every
finite clause set S there exists a finite set of terms GS such that Θ(S) = S↓GS

and
the following conditions hold:

(1) For every S ∈ CB , S↓GS
and S are B-equisatisfiable.

(2) If S′ ⊆ S then GS′ ⊆ GS .

(3) For every clause set S ∈ C, GS?
∨ ⊆ GS (thus by 2, we have GS?

∨ = GS). 3

Obviously these conditions are much stronger than those of Definition 16. In-
formally, Definition 21 states that all variables must be instantiated in a uniform4

way by ground terms, and that:

(1) Satisfiability must be preserved.

(2) The instantiation procedure is monotonic.

(3) The considered set of ground terms does not change when new clauses are added
to S, provided that these clauses are obtained from clauses already occurring
in S by disjunction and pure instantiation only.

These conditions are somewhat similar to those on closure operators in [Ihlemann
et al. 2008]. Actually, the function mapping the set of terms in S to GS could be
viewed as a closure operator. The difference is that GS is defined on a set of clauses
S whereas closure operators are defined on the sets of ground terms occurring in S.
Since GS depends on the clause set and not on the terms it contains, Condition 3
is not necessarily fulfilled. Consider for instance an instantiation procedure based
on hyper-linking5 [Lee and Plaisted 1992]. Let S = {p(a),¬p(x), q(f(x)),¬q(x)}.
The only hyper-links are p(a),¬p(x) and q(f(x)),¬q(x), which yields the following
set of ground terms: {a, f(⊥)}. On the other hand, if the clause ¬p(x)∨ q(f(x)) is
considered, then the term f(a) must be added.

4Of course sort constraints must be taken into account.
5See Section 5.2.1. We assume that the variables are instantiated in a uniform way, so that the

conditions of Definition 21 hold.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

14 · M. Echenim and N. Peltier

3.2.3 Definition of the Combined Instantiation Scheme. We now define an in-
stantiation procedure for N [B]. Intuitively this procedure is defined as follows.

(1) First, the nesting part of each clause in S is extracted and all base variables
are instantiated by arbitrary constant symbols • (one for each base sort).

(2) The instantiation procedure for N is applied on the resulting clause set. This
instantiates all nesting variables (but not the base variables, since they have
already been instantiated at Step 1). The role of this step is essentially to
compute the nesting part of the instantiating substitutions. Notice that the
instantiation procedure is not applied to the clause set obtained after instanti-
ating base variables because this set may be very large.

(3) All the substitutions on nesting variables from Step 2 are applied to the initial
set of clauses. Notice that base variables are not instantiated. Furthermore,
the constant • can appear in the obtained clause set (it will the eliminated
during the next step).

(4) Assuming the instantiation procedure for B is base-complete, if this procedure
was applied to the base part of the clauses, then by Definition 21, the base
variables in the base part of the clauses would be uniformly instantiated by
some set of terms G. All base variables and all occurrences of constants •
(occurring in the co-domain of a substitution generated during the previous
step) are replaced by all possible terms in G. All occurrences of every variable
are mapped to the same term, which ensures that all the generated clauses are
instances of the original ones.

Example 22. Assume that B = AZ, N = Afol and that F contains the following
symbols: a : int, b : int, c : s and p : int × s → bool. Consider the set
S = {x 6≤ a ∨ p(x, y), u 6≤ b ∨ ¬p(u, c)}. The instantiation procedures for B and N
are assumed to be given (formal definitions and proofs will be given later).

(1) We compute the set SN = {p(x, y),¬p(u, c)} and replace every base variable
by •. This yields the set: {p(•, y),¬p(•, c)}.

(2) We apply an instantiation procedure forAfol
6. Obviously, this procedure should

instantiate the variable y by c, yielding {p(•, c),¬p(•, c)}.
(3) We apply the (unique in our case) substitution y 7→ c to the initial clauses:
{x 6≤ a ∨ p(x, c), u 6≤ b ∨ ¬p(u, c)}. Note that at this point all the remaining
variables are in XB .

(4) We compute the set of clauses SB = {x 6≤ a, u 6≤ b} and the set of terms GSB .
It should be intuitively clear7 that x must be instantiated by a and u by b,
yielding GSB = {a, b}.

(5) We thus replace all base variables by every term in {a, b} yielding the set
{a 6≤ a ∨ p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c), b 6≤ b ∨ ¬p(b, c)}, i.e., after
simplification, {p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c),¬p(b, c)}. It is straight-
forward to check that this set of clauses is unsatisfiable. Any SMT-solver capa-

6There exist several instantiation procedures for Afol, one such example is given in Section 5.2.1.
7A formal definition of an instantiation procedure for this fragment of Presburger arithmetic will

be given in Section 5.1.1.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 15

ble of handling arithmetic and propositional logic can be employed to test the
satisfiability of this set.

The formal definition of the procedure is given below. Let γ• be a substitution
mapping every variable of a sort s ∈ SB to an arbitrary constant symbol •s of sort
s.

Definition 23. Let ΘB be a base-complete instantiation procedure and ΘN be
a nesting-complete instantiation procedure. ΘN [ΘB](S) is defined as the set of
clauses of the form (CB ∨ CN)θ′σ where:

—C ∈ S.

—CNγ•θ ∈ ΘN (SNγ•).

—θ′ is obtained from θ by replacing every occurrence of a constant symbol •s in
the co-domain of θ by a fresh variable of the same sort.

—σ maps every variable in Cθ′ to a term of the same sort in GSB . 3

The following proposition is straightforward to prove and states the soundness
of this procedure:

Proposition 24. Let ΘB be a base-complete instantiation procedure and let ΘN

be a nesting-complete instantiation procedure. For every set of clauses S ∈ C,
ΘN [ΘB](S) is a set of ground instances of clauses in S. Thus if ΘN [ΘB](S) is
N [B]-unsatisfiable, then so is S.

Several examples of concrete instantiation procedures satisfying the conditions
of Definitions 16 and 21 are provided in Section 5.

In order to be applicable in practice, the described procedure has to be refined
and adapted so that the instances can be generated efficiently. Obviously, the set
of instances ΘN [ΘB](S) can be generated with only a minimal modification of the
base and nesting instantiation procedures ΘB and ΘN : we only have to make them
return the instantiating substitutions, rather than the corresponding clauses. Apart
from this, the procedures are used as black boxes. Thus our technique could be
integrated into existing systems without too drastic a change in the code. The
applications of the procedures ΘB and ΘN are completely independent and thus
can be run in parallel. Existing heuristics for guiding the choice of the most relevant
instances for the base and nesting theories (as for instance those described in [Detlefs
et al. 2005; Ge et al. 2009; de Moura and Bjørner 2007]) can also be applied to
the combined procedure. It is clear that the instances can be generated in an
incremental way: rather than generating the whole set of clauses ΘN (SNγ•), and
then – for each clause CNγ•θ occurring in this set – computing the corresponding
set of clauses (CB ∨ CN)θ′σ, it is obviously possible to generate these instances
on the fly and send them to a ground SMT-solver in a dynamic way: in case a
contradiction is found then the search can be stopped, otherwise one has to iterate
the process to generate new instances. This is particularly important if the set
ΘN (SNγ•) is infinite, or very large.

4. COMPLETENESS

This section is devoted to the proof of the main result of this paper, namely that
the procedure ΘN [ΘB] is complete for N [B]:

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

16 · M. Echenim and N. Peltier

Theorem 25. Let ΘB be a base-complete instantiation procedure (for B) and let
ΘN be a nesting-complete instantiation procedure (for N). Then ΘN [ΘB] is com-
plete for N [B]; furthermore, this procedure is monotonic and SB-invariant.

The rest of the section (up to Page 24) can be skipped entirely by readers not
interested in the more theoretical aspects of the work. The proof of this theorem
relies on a few intermediate results that are developed in what follows.

4.1 Overview of the Proof

We start by providing a general overview of the proof. Although it hides some
technicalities, this overview should help the reader understand the following sub-
sections. In all examples in this section a literal belongs to the nested specification
iff it is non-equational.

We consider an unsatisfiable clause set S and we prove that ΘN [ΘB](S) is un-
satisfiable.

(1) From S to S|I : For each interpretation I in the base specification, we define
(in Section 4.3) a clause set S|I , obtained by instantiating the base variables
of the clauses in S in all possible ways and by evaluating the base part of
each instantiated clause using the interpretation I. For instance, if S = {x 6'
0 ∨ a 6' x + 1 ∨ p(x, y)}, then S|I will either be ∅ (if I 6|= a ' 1) or p(0, y) (if
I |= a ' 1). The goal of this transformation is to make possible the application
of the instantiation procedure for the nesting specification. To accomplish this,
we first need to prove that any ground substitution can be decomposed into two
parts: a nesting substitution and a base substitution, which is done in Section
4.2. This ensures that every clause in S|I is obtained by instantiating a nesting
clause by a base substitution, which makes the procedure ΘN applicable on
S|I .

(2) S|I is unsatisfiable: We then remark in Lemma 31 that S|I is unsatisfiable
(for every interpretation I). Indeed, we prove that if S|I has a model J then it
can be transformed into a model of S by combining it with I in a rather natural
way, which yields a contradiction since S is unsatisfiable by hypothesis. Since
ΘN is complete, this entails that ΘN (S|I) is also unsatisfiable.

(3) If S|I is unsatisfiable for every I then ΘB(U) is unsatisfiable: By con-
struction, for every clause CNη ∈ ΘN (S|I), the set of ground instances of S
will contain a clause of the form (CB ∨ CN)η, where I 6|= CBη. Thus, since
ΘN (S|I) is contradictory, it follows that the disjunction of the clauses CBη,
where CNη ranges over the whole set ΘN (S|I), is a logical consequence of S,
and more precisely of the instances of S that are obtained by applying the
grounding substitutions generated by ΘN . For instance, if S = {0 + 1 6'
1 ∨ p(x), 0 ' 1 ∨ ¬p(a) ∨ p(y), ¬p(b)}, then S|I = {p(x), ¬p(a) ∨ p(y), ¬p(b)},
ΘN (S|I) = {p(a), ¬p(a) ∨ p(b), ¬p(b)}, and we have {0 + 1 6' 1 ∨ p(a), 0 '
1 ∨ ¬p(a) ∨ p(b), ¬p(b)} |= 0 + 1 6' 1 ∨ 0 ' 1.

Since ΘN (S|I) is infinite in general, this disjunction is not necessarily a clause:
it is an ω-clause, denoted by EI , and by construction EI is false in I. By
considering the set of all ω-clauses EI for every interpretation I in the base
specification, we thus obtain an unsatisfiable set U of ω-clauses. We then

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 17

apply the instantiation procedure ΘB on U , after proving that the former is
complete for sets of ω-clauses (not only for standard clauses), which is done in
Section 4.5. This shows that ΘB(U) is unsatisfiable.

(4) If ΘB(U) is unsatisfiable then ΘN [ΘB](S) is unsatisfiable: In order to
obtain the desired result, we finally show that ΘN [ΘB](S) |= ΘB(U). To this
purpose, we remark that the entailment S |= U only depends on the nesting
part of the clauses, hence holds for all possible values of the base terms, provided
the relations between these terms are preserved. To formalize this property,
we introduce a new notion of logical entailment, denoted by |=r, in which
the base variables are handled in a “rigid” way. This is done in Section 4.4.
This relation, together with the definition of ΘN [ΘB], enables us to prove that
ΘN [ΘB](S) |= ΘB(U), hence that ΘN [ΘB](S) is unsatisfiable.

We wish to emphasize the important role played by the notion of ω-clauses in this
proof. It allows us to handle non-compact specifications in a rather natural way.
Indeed, since we do not assume that the considered specifications are compact, the
“unsatisfiable core” of the set of instances that is generated by ΘN on the clause
sets S|I can be infinite. To propagate the information to the base procedure ΘB ,
it is necessary to consider an infinite disjunction of base clauses and to establish
completeness results of the instantiation procedure ΘB for these infinite disjunctions
(see Section 4.5). Without this notion, the scope of the results would have to be
restricted, either by assuming that N is compact or that ΘN is terminating.

4.2 Substitution Decomposition

Definition 26. A substitution σ is a base substitution iff dom(σ) ⊆ XB . It is a
nesting substitution iff dom(σ) ⊆ XN and for every x ∈ dom(σ), xσ contains no
non-variable base term. 3

We show that every ground substitution can be decomposed into two parts: a
nesting substitution and a base substitution. We begin by an example:

Example 27. Assume that B = AZ, N = Afol and that F contains the fol-
lowing symbols: f : s × int → s, c : s. Consider the ground substitution
σ = {x 7→ f(c, s(0)), y 7→ f(f(c, 0), 0), n 7→ s(0)}. We can extract from σ
a nesting substitution by replacing all base terms by variables8, thus obtaining
σN = {x 7→ f(c, n), y 7→ f(f(c,m),m)}, and then construct the base substitution
σB = {n 7→ s(0),m 7→ 0} such that σ = σNσB . Note that σN is not ground and
that dom(σB) 6⊆ dom(σ).

The following result generalizes this construction:

Proposition 28. Every ground substitution σ can be decomposed into a product
σ = (σNσB)|dom(σ)

where σN is a nesting substitution, σB is a base substitution,

and for all x ∈ dom(σB) \ dom(σ):

—∀y ∈ dom(σB) ∩ dom(σ), xσB 6= yσB,

—∀y ∈ dom(σB) \ dom(σ), yσ = xσ ⇒ x = y.

8Equal subterms may be replaced by the same variable.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

18 · M. Echenim and N. Peltier

Proof. Let E be the set of base terms occurring in an element of the co-domain
of σ (in the previous example, we get: E = {s(0), 0}). Let ν be a partial function
mapping every term t ∈ E to an arbitrarily chosen variable ν(t) such that ν(t)σ = t
(e.g. ν : {s(0) 7→ n}). This function ν is extended into a total function on E by
mapping all terms t for which ν(t) is undefined to pairwise distinct new variables,
not occurring in dom(σ) (continuing the previous example we can take: ν : {s(0) 7→
n, 0 7→ m}). Note that ν is injective by construction. The substitutions σB and σN
are defined as follows:

—dom(σN)
def
= dom(σ) ∩ XN and xσN is the term obtained by replacing every

occurrence of a term t ∈ E in xσ by ν(t);

—dom(σB)
def
= [dom(σ) ∩ XB] ∪ ν(E); if x = ν(t) for some term t ∈ E, then

xσB
def
= t; otherwise, xσB

def
= xσ. Note that σB is well-defined, since by definition

if ν(t) = ν(s) then t = s.

In the previous example, the reader can check that we obtain the substitutions
σN = {x 7→ f(c, n), y 7→ f(f(c,m,m))} and σB = {n 7→ s(0),m 7→ 0}. By con-
struction, σN is a nesting substitution and σB is a base substitution. Furthermore,
since ν(t)σB = t, xσNσB = xσ for every x ∈ dom(σ) ∩ XN . Similarly, for every
x ∈ dom(σ) ∩ XB , xσNσB = xσB = xσ and therefore σ = (σNσB)|dom(σ)

. Let

x ∈ dom(σB) \ dom(σ). By definition of σB , x is of the form ν(t) for some t ∈ E,
and there is no variable y ∈ dom(σ) such that yσ = t, since otherwise ν(t) would
have been defined as y. Thus ∀y ∈ dom(σB) ∩ dom(σ), xσB 6= yσ = yσB . Now if
y ∈ dom(σB) \ dom(σ) and xσB = yσB , then y is also of the form ν(s) for some
s ∈ E and we have xσB = t and yσB = s, hence t = s and x = y.

4.3 Partial Evaluations

Given a set of clauses S in N [B] and an interpretation I of B, we consider a set of
clauses S′ of N by selecting those ground instances of clauses in S whose base part
evaluates to false in I and adding their nesting part to S′. This will allow us to
apply the procedure ΘN on S′. More formally:

Definition 29. For every clause CB ∈ CB and for every interpretation I ∈ IB , we
denote by ΦI(C

B) the set of ground substitutions η of domain Var(CB) such that
I 6|= CBη. Then, for every S ∈ C we define:

S|I
def
= {CNη | C ∈ S, η ∈ ΦI(C

B)}.

Example 30. Let S = {x 6' a ∨ P (x), y < 2 ∨ Q(y, z)} be a set of clauses in
Afol[AZ], where x, y, a are of sort int and z is a variable of a sort distinct from
int. Let I be the interpretation of natural numbers such that aI = 1. Then
ΦI(x 6' a) = {x 7→ 1} and ΦI(y < 2) = {y 7→ k | k ∈ N, k ≥ 2}. Therefore
S|I = {P (1)} ∪ {Q(k, z) | k ∈ N, k ≥ 2}.

The following lemma shows that S|I is N -unsatisfiable when S is N [B]-
unsatisfiable.

Lemma 31. For every N [B]-unsatisfiable set of clauses S ∈ C and for every I ∈
IB, S|I is N -unsatisfiable.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 19

Proof. Let N [B] = (I,C). Assume that S|I is N -satisfiable, i.e. that there
exists an interpretation J ∈ IN validating S|I . W.l.o.g. we assume that the domain
of J is disjoint from that of I. We construct an interpretation K ∈ I satisfying S,
which will yield a contradiction since S is N [B]-unsatisfiable by hypothesis.

For all sort symbols s ∈ SB and for all e ∈ sI , we denote by γ(e) an arbitrarily
chosen ground base term such that [γ(e)]I = e9. If E is a ground expression, we
denote by E↓γ the expression obtained from E by replacing every term t by γ([t]I);
by construction [E]I = [E↓γ]I . Let ψ : DI]DJ → DJ be the function defined for
every element e ∈ DI ∪DJ as follows:

—if e ∈ sI then ψ(e)
def
= [γ(e)]J ;

—otherwise ψ(e)
def
= e.

We define the interpretation K by combining I and J as follows:

—K coincides with I on SB and on every function symbol whose co-domain is in
SB .

—K coincides with J on SN .

—For all function symbols f ∈ FN of arity n, fK(e1, . . . , en)
def
=

fJ(ψ(e1), . . . , ψ(en)). Note that fK is well-defined since by definition of ψ, if
e ∈ sK then ψ(e) ∈ sJ .

Let E be a ground expression (term, atom, literal, clause or ω-clause) such that
E↓γ= E . Assume that E is a ground instance of an expression occurring in a clause
in ΩN . We prove by structural induction on E that [E]J = ψ([E]K).

—If E is a term of a sort in SB then since I and K coincide on SB ∪ FB , we have
[E]K = [E]I . By hypothesis E ↓γ= E , thus γ([E]I) = E and by definition of ψ,
ψ([E]K) = ψ([E]I) = [γ(E)]J = [E]J .

—If E is of the form f(t1, . . . , tn) where f ∈ FN , then by definition [E]J =
fJ([t1]J , . . . , [tn]J) and by the induction hypothesis, [ti]J = ψ([ti]K) for i ∈ [1, n].
Again by definition, [E]K = fJ(ψ([t1]K), . . . , ψ([tn]K)) = fJ([t1]J , . . . , [tn]J) =
[E]J . Thus, since the domains of I and J are disjoint, [E]J 6∈ SIB , hence
ψ([E]J) = [E]J .

—If E is an atom of the form t1 ' t2 then t1, t2 6∈ SB . Indeed E occurs in a
ground instance of a clause C occurring in ΩN and by Definition 11, such clauses
cannot contain equalities between base terms. Thus we have ψ([ti]K) = [ti]K (for
i = 1, 2) and the proof is straightforward.

—The proof is immediate if E is a literal or a (possibly infinite) disjunction of
literals.

Since J |= S|I and all specifications are assumed to be ω-definable (see Definition
5), we deduce that K |= S|I∪Ax(IN). Indeed, for the sake of contradiction, assume
that there exists an ω-clause C ∈ S|I ∪ Ax(IN) and a ground substitution θ of
domain Var(C) such that K 6|= Cθ. Since K |= t ' t↓γ for every term t, necessarily

K 6|= Cθ′ where xθ′
def
= xθ↓γ . But then Cθ′↓γ= Cθ′ and since [E]J = ψ([E]K), we

9γ(e) always exists since we restricted ourselves to interpretations such that, for every s ∈ S,

sI = {[t]I | t ∈ Ts} (see Section 2.2).

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

20 · M. Echenim and N. Peltier

conclude that J 6|= Cθ′ which is impossible since by hypothesis J is an N -model of
S|I .

We now prove that K |= S. Let C ∈ S and η be a ground substitution of domain
Var(C). W.l.o.g. we assume that ∀x ∈ Var(C), xη↓γ= xη. Let ηB (resp. ηN) be
the restriction of η to the variables of a sort in SB (resp. in SN). If I |= CBηB
then K |= CBηB because K and I coincide on SB ∪FB , and consequently K |= Cη
(since Cη ⊇ CBηB). If I 6|= CBηB then ηB ∈ ΦI(C), hence CNηB ∈ S|I . Again
K |= CηB hence K |= Cη; therefore K |= S.

Finally, since K coincides with I on SB ∪FB we have K |= Ax(IB). This proves
that K is an N [B]-model of S, which is impossible.

4.4 Abstraction of Base Terms

Lemma 31 relates the N [B]-unsatisfiability of a set of clauses S to the N -
unsatisfiability of sets of the form S|I . By definition, S|I is of the form S′σ, for
some clause set S′ ∈ CN and for some ground base substitution σ. However, since
neither Ax(IN) nor CN contains symbols of a sort in SB , the interpretation of the
ground base terms of S′ in an interpretation of IN is arbitrary: changing the values
of these terms does not affect the N -satisfiability of the formula. Thus the actual
concrete values of the ground base terms does not matter: what is important is
only how these terms compare to each other.

Example 32. Assume that N = Afol, p : int × s → bool, a : s, and let S =
{p(x, z),¬p(y, a)}. Consider σ : {x 7→ 0, y 7→ 0}, clearly, Sσ |=N 2. But also
S{x 7→ s(0), y 7→ s(0)} |=N 2 and more generally S{x 7→ t, y 7→ t} |=N 2. On the
other hand, S{x 7→ 0, y 7→ s(0)} 6|=N 2 and more generally S{x 7→ t, y 7→ t′} 6|=N 2

if t, t′ are distinct integers.

Therefore, if Sσ |=N Cσ for some base substitution σ then actually Sθ |=N Cθ,
for every substitution θ such that xθ = yθ ⇔ xσ = yσ. This will be formalized
in the following definitions and lemma. We first introduce an unusual notion of
semantic entailment. The intuition is that variables in SB are considered as “rigid”
variables that must be instantiated by arbitrary ground terms:

Definition 33. Let S ∈ CN . We write S |=r C iff for every ground substitution of
domain XB , Sσ |=N Cσ. 3

Example 34. Assume that N = Afol. Let a : s, p : int×s→ bool and q : int→
bool, where int ∈ SB , s ∈ SN . Let S = {p(x, y),¬p(u, a)∨ q(u)}, where x, y, u are
variables. Then S |=r q(x), but S 6|=r q(0). Note that x denotes the same variable
in S and q(x) (the variables are not renamed).

Definition 35. For every substitution σ we denote by 〈σ〉 an arbitrarily chosen
pure substitution such that xσ = yσ ⇒ x〈σ〉 = y〈σ〉, for every x, y ∈ X . 3

Note that such a substitution always exists10. The next lemma can be viewed as
a generalization lemma: it shows that the values of the ground base terms can be
abstracted into variables.

10It suffices, e.g., to fix a total order among variables and to map every variable x to the least

variable y such that xσ = yσ.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 21

Lemma 36. Let S ∈ CN and σ be a base substitution. If Sσ |=N Cσ then S〈σ〉 |=r

C〈σ〉.
Proof. Let θ be a substitution of domain XB . We assume that there exists an

I ∈ IN such that I |= S〈σ〉θ and I 6|= C〈σ〉θ, and we show that a contradiction can
be derived.

For every ground term t, we denote by Γ(t) the ground term obtained from t by
replacing every ground subterm of the form xσ by x〈σ〉θ. Γ is well-defined: indeed,
if xσ = yσ, then by definition of 〈σ〉, x〈σ〉 = y〈σ〉 thus x〈σ〉θ = y〈σ〉θ. Let J be
the interpretation defined as follows11:

—If s ∈ SB then sJ
def
= Ts.

—If f is a symbol of rank s1 × . . . × sn → s where s1, . . . , sn, s ∈ SB then

fJ(t1, . . . , tn)
def
= f(t1, . . . , tn).

—If f is a symbol of rank s1 × . . . × sn → s where s 6∈ SB then fJ(t1, . . . , tn)
def
=

f I(t′1, . . . , t
′
n) where for every i ∈ [1, n], si ∈ SN ⇒ t′i = [ti]J and si ∈ SB ⇒ t′i =

[Γ(ti)]I .

By construction, [s]J = s for every ground base term s; we prove that for every
ground nesting term t, [t]J = [Γ(t)]I , by induction on t. If t = f(t1, . . . , tn),
then [t]J = f I(t′1, . . . , t

′
n) where for every i ∈ [1, n], si ∈ SN ⇒ t′i = [ti]J and

si ∈ SB ⇒ t′i = [Γ(ti)]I . By the induction hypothesis, si ∈ SN ⇒ t′i = [Γ(ti)]I .
Thus [t]J = f I([Γ(t1)]I , . . . , [Γ(tn)]I) = [Γ(t)]I .

Now let σ′ be a ground substitution with a domain in XN , and let θ′
def
= Γ ◦ σ′.

We prove that for every expression E occurring in S ∪ {C} that is not a base term,
[Eσσ′]J = [E〈σ〉θθ′]I .
—Assume that E is a variable x in XN . Then [Eσσ′]J = [xσ′]J , and by the previous

relation we get [Eσσ′]J = [Γ(xσ′)]I = [xθ′]I = [E〈σ〉θθ′]I .
—Assume that E is a nesting term of the form f(t1, . . . , tn). Then by the re-

sult above, [Eσσ′]J = [Γ(Eσσ′)]I . By definition of Γ we have Γ(Eσσ′) =
f(Γ(t1σσ

′), . . . ,Γ(tnσσ
′)), therefore, [Eσσ′]J = f I([Γ(t1σσ

′)]I , . . . , [Γ(tnσσ
′)]I).

For i ∈ [1, n], if ti is a nesting term then by the result above [Γ(tiσσ
′)]I =

[tiσσ
′]J and by the induction hypothesis, [Γ(tiσσ

′)]I = [ti〈σ〉θθ′]I . Otherwise,
ti is a base term, and must necessarily be a variable, thus Γ(tiσ) = ti〈σ〉θ.
Therefore Γ(tiσσ

′) = Γ(tiσ) = ti〈σ〉θ = ti〈σ〉θθ′. Therefore [Eσσ′]J =
f I([t1〈σ〉θθ′]I , . . . , [tn〈σ〉θθ′]I) = [E〈σ〉θθ′]I .

—The proof is similar if E is of the form t ' s, t 6' s of
∨n
i=1 li.

We thus conclude that for every clause D ∈ S ∪ {C} ∪ Ax(I), J |= Dσσ′ iff
I |= D〈σ〉θθ′. Since I |= S〈σ〉θ∪Ax(IN), we deduce that J |= Sσ ∪Ax(IN), which
proves that J ∈ IN . Since I 6|= C〈σ〉θ we have J 6|= Cσ, which is impossible because
J ∈ IN and Sσ |=N Cσ.

4.5 Completeness of ΘB for ω-Clauses

In this section, we prove that any procedure that is base-complete is also complete
for some classes of sets of possibly infinite ω-clauses – this is of course not the case

11Intuitively, J interprets every base term as itself and coincides with I on nesting terms.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

22 · M. Echenim and N. Peltier

in general. We first notice that the notation S?∨ of Definition 19 can be extended
to ω-clauses, by allowing infinite disjunctions:

Definition 37. Given a set of clauses, S, we denote by Sω∨ the set of ω-clauses12

of the form
⋃
{Ciσi | i ∈ N, Ci ∈ S, σi is a pure substitution}. 3

The notation S↓G also extends to ω-clauses: S↓G is the set of ω-clauses Cσ such
that C ∈ S and σ maps every variable in C to a term in G.

Proposition 38. Let S be a finite set of clauses and G be a finite set of terms.
Then Sω∨↓G is a finite set of clauses.

Proof. By definition, any literal occurring in Sω∨ is of the form Lσ where L is
a literal occurring in a clause C ∈ S and σ is a pure substitution. Thus any literal
occurring in Sω∨↓G is of the form Lσθ where L is literal occurring in a clause in S,
σ is pure and θ maps every variable to a term in G. Obviously, since G and S are
finite, there are finitely many literals of this form. Hence all the ω-clauses in Sω∨↓G
are actually finite, and there are only finitely many possible clauses.

Lemma 39. Let S be a finite set of clauses and S′ a set of ω-clauses with S′ ⊆ Sω∨ .
If G is a finite set of terms, then there exists a finite set of clauses S′′ E S′ such
that S′′↓G = S′↓G.

Proof. Let C be a clause in S′↓G; by Proposition 38, C is finite. By definition
there exists an ω-clause C ′ ∈ S′ such that C = C ′θ, where θ is a substitution
mapping all the variables in Var(C ′) to a term in G. Every literal in C ′ is of the
form Lγ, where literal L occurs in S and γ is a pure substitution of Var(L). Since
S and G are finite, there is a finite number of possible pairs (L, γθ). Thus there
exists a finite subset DC ⊆ C ′ such that for every literal Lγ occurring in C ′, there
exists a literal Lγ′ ∈ DC with γθ = γ′θ.

Every variable occurring in a literal Lγ of C ′ is of the form xγ, where x ∈ Var(L).
Let ηC be the substitution mapping every variable xγ ∈ Var(C ′ \ DC) to xγ′.
Then for every literal Lγ ∈ C ′, we have LγηC = Lγ′ ∈ DC . Thus C ′ηC = DC ;
furthermore, ηC is pure and DCηC = DC .

We define S′′ = {DC | C ∈ S′↓G}; obviously S′′ E S′ and by definition S′′↓G ⊇
S′↓G. Conversely, let E be a clause in S′′↓G, E is necessarily of the form DCθ where
C ∈ S′↓G and θ maps every variable to a term in G. But then E is of the form
C ′ηCθ, where C ′ ∈ S′, and ηCθ is a substitution mapping every variable in C ′ to a
term in G; thus E must occur in S′↓G.

The next lemma proves the completeness result for ω-clauses:

Lemma 40. Let Θ be a base-complete instantiation procedure (with Θ(S) = S↓GS
)

and S be a finite set of clauses. If S′ ⊆ Sω∨ then S′ and S′↓GS
are B-equisatisfiable.

Note that the clauses in S are finite, but those in S′ may be infinite.

Proof. S′↓GS
is a logical consequence of S′, thus if S′ is satisfiable then so is

S′↓GS
; we now prove the converse. Let I be an interpretation validating S′↓GS

. By
Lemma 39, there exists a set of clauses S′′ such that S′′ E S′ and S′↓GS

= S′′↓GS
.

12By definition, any clause is an ω-clause, thus Sω
∨ is a set of ω-clauses.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 23

Since I |= S′↓GS
, we deduce that S′′↓GS

is satisfiable, hence (since by Condition 1
in Definition 21, Θ is complete13) so is S′′. But S′′ E S′ therefore by Proposition
3, S′ is satisfiable.

Example 41. Assume for instance that CB is the specification of Bernays-
Schönfinkel clause sets (interpreted in the usual way). Then the procedure replac-
ing all variables by every constant symbol14 is base-complete. Lemma 40 proves
that this procedure is also complete for sets of infinite clauses constructed over
CB . For instance, the satisfiability of the set S = {¬p(xi, y) | i ∈ N} ∪ {p(a, b)}
can be decided by instantiating all variables xi, y by a and b. Although S con-
tains an infinite clause, the instantiated clauses are finite, since the number of con-
stants is finite. We get: {¬p(a, a),¬p(a, a) ∨ ¬p(b, a),¬p(b, a),¬p(a, b),¬p(a, b) ∨
¬p(b, b),¬p(b, b), p(a, b)}.

4.6 Main Proof

We are now in the position to give the proof of the main theorem. For the reader’s
convenience, this theorem is stated again below:

Theorem 25. Let ΘB be a base-complete instantiation procedure (for B) and
let ΘN be a nesting-complete instantiation procedure (for N). Then ΘN [ΘB] is
complete for N [B]; furthermore, this procedure is monotonic and SB-invariant.

Proof. Let Θ
def
= ΘN [ΘB] and let S be an unsatisfiable clause set in C. We prove

that Θ(S) is also unsatisfiable.
Let I ∈ IB , by Lemma 31, the set S|I = {CNη | C ∈ S, η ∈ ΦI(C)} is N -

unsatisfiable, and by completeness of ΘN , so is ΘN (S|I). We define

AI =
{
Cηθ | C ∈ S, CNηθ ∈ ΘN (S|I)

}
.

This set may be infinite, since no assumption was made on the decidability of N (for
instance, ifN is first-order logic, then obviously no complete instantiation procedure
can be terminating, thus ΘN (S|I) – and therefore also AI – can be infinite). Every
clause in AI is of the form Cηθ where I 6|= CBη,15 and by Proposition 28, Cηθ =
Cσσ′, where σ is a nesting substitution and σ′ is a base substitution. In particular,
since dom(σ) ⊆ XN , CBσσ′ = CBσ′ and I 6|= CBσ′.

By construction, the set {CNσσ′ | (CN ∨CB)σσ′ ∈ AI} is N -unsatisfiable. Thus
for every model J of AI , there exists a clause (CN ∨ CB)σσ′ ∈ AI such that
J 6|= CNσσ′, hence J |= CBσσ′ (since J |= AI we have J |= (CN ∨ CB)σσ′).
Since the CB cannot contain nesting variables, we have CBσσ′ = CBσ′. Hence
AI |=N

∨
Cσσ′∈AI

CBσ′. We let T = SB and define:

BI =
{
Cσ〈σ′〉 | Cσσ′ ∈ AI

}
and EI =

∨
Cσσ′∈AI

CB〈σ′〉.

Note that since AI may be infinite, EI is an ω-clause that belongs to Tω∨ . Lemma

13Recall that S′′ is a set of finite clauses.
14Assuming that the signature contains at least such constant.
15Recall that CBη = CBηθ, since η is a ground base substitution

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

24 · M. Echenim and N. Peltier

36 guarantees that BI |=r EI ; thus by definition, for all sets of ground base terms
G, BI↓G |=N EI↓G. This is in particular the case for G = GT .

Let U = {EI | I ∈ IB}; by construction, for all I ∈ IB , I 6|= U ; hence U
is B-unsatisfiable and since U ⊆ Tω∨ , by Lemma 40, U↓GT

is also B-unsatisfiable
(notice that T is finite, since the base theory only contains finite sets of clauses).
We have shown that BI↓G |=N EI↓G. This, together with the fact that U↓GT

=⋃
I∈IB EI↓GT

permits to deduce that
⋃
I∈IB BI↓GT

|=N U↓GT
. Since U↓GT

is B-
unsatisfiable (hence also N [B]-unsatisfiable),

⋃
I∈IB BI↓GT

is N [B]-unsatisfiable.
There remains to prove that

⋃
I∈IB BI↓GT

⊆ Θ(S) to obtain the result. Consider
the function α that maps every term of a sort s ∈ SB to •s; it is clear that
α(S|I) ⊆ SNγ•. In particular, if CNσσ′ ∈ ΘN (S|I), then by the SB-invariance
and monotonicity of ΘN ,

CNσ〈σ′〉γ• = α(CBσσ′) ∈ ΘN (α(S|I)) ⊆ ΘN (SNγ•).

Therefore, (Cσ〈σ′〉)↓GT
⊆ Θ(S), hence the result.

The fact that ΘN [ΘB] is SB-invariant and monotonic follows immediately from
the definition and from the fact that ΘN is SB-invariant and that ΘB and ΘN are
monotonic.

5. APPLICATIONS

In this section, we show some examples of applications of Theorem 25 that are
particularly relevant in the context of program verification.

5.1 Examples of Base-Complete Specifications

5.1.1 Presburger Arithmetic. No base-complete instantiation procedure can be
defined for the specification AZ as defined in Section 2.5, as evidenced by the
following example.

Example 42. Assume that a base-complete procedure Θ exists, and consider the
clause set S = {x 6' y + 1, y 6' 0}. Since Θ is base-complete by hypothesis,
by Definition 21, Θ(S) = S↓GS

for some finite set of ground terms GS , and by
Condition 3, GS contains GS?

∨ . But S?∨ contains in particular the clause: Cn :∨n
i=1 xi 6' xi−1 + 1 ∨ x0 6' 0. Cn is obviously AZ-unsatisfiable (since the xi’s

denote universally quantified variables), but the only instance of Cn that is AZ-
unsatisfiable is: Cn{xi 7→ i | i ∈ [0, n]}. Consequently {i | i ∈ [0, n]} ⊆ GS hence
GS cannot be finite, thus contradicting Definition 21.

It is however possible to define base-complete procedures for less general specifi-
cations, that are still of a practical value.

Definition 43. Let χ be a special constant symbol of sort int, let m be a natural
number distinct from 0 and let TB be a set of ground terms of sort int not containing

χ. We denote by BZ the specification (I ′Z,C′Z) defined as follows. Ax(I ′Z)
def
= Ax(IZ)∪

{χ > t + m | t ∈ TB}, where Ax(IZ) is defined in Example 8 (Section 2.5). C′Z
contains every clause set S such that every non-ground literal occurring in a clause
in S is of one of the following forms:

—x 6≤ t or t 6≤ x for some variable x and for some ground term t ∈ TB ;

—x 6≤ y for some variables x, y;

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 25

—x 6'k t for some k ∈ N \ {0} that divides m, some ground term t ∈ TB and some
variable x. 3

Intuitively, the constant χ occurring in Ax(I ′Z) is meant to translate the fact that
the terms appearing in S admit an upper bound (namely χ). It is clear that if S is
an arbitrary set of arithmetic clauses (not containing the special constant χ), then
the set TB and the integer m can be computed so that S indeed belongs to C′Z.

Definition 44. For every set of clauses S ∈ C′Z, let BS be the set of ground
terms t such that either t = χ or S contains an atom of the form x ≤ t. We

define the instantiation procedure ΘZ by: ΘZ(S)
def
= S↓GZ

S
, where GZ

S is defined by:

GZ
S

def
= {t− l | t ∈ BS , 0 ≤ l < m}. 3

The two following propositions are straightforward consequences of the definition:

Proposition 45. If S ⊆ S′ then GZ
S ⊆ GZ

S′ .

Proposition 46. GZ
S = GZ

S?
∨

.

Proof. This is immediate because the set of ground terms occurring in S?∨ is
the same as that of S, since the atoms in S?∨ are pure instances of atoms in S. Thus
BS?

∨ = BS .

Theorem 47. ΘZ is base-complete if B = BZ.

Proof. We adopt the following notations for the proof: given a set of terms
W , we write x 6≤ W for

∨
t∈W x 6≤ t and x 6≥ W for

∨
t∈W x 6≥ t. Additionally,

if K is a set of pairs (k, t) ∈ N × Tint then we denote by ¬K(x) the disjunction∨
(k,t)∈K x 6'k t.
Let S ∈ C′Z and assume that S is BZ-unsatisfiable, we prove that ΘZ(S) is

also BZ-unsatisfiable. Let I ∈ I ′Z, then in particular, I |= {χ > t + m |
t is a ground term in S}. Let C be a clause in S such that I 6|= C. By defini-
tion of C′Z, C can be written as C = D ∨

∨n
i=1(xi 6≤ Ui ∨ xi 6≥ Li ∨¬Ki(xi)), where

D is ground and where the xi’s (1 ≤ i ≤ n) denotes distinct variables16. Since
I 6|= C, there exists a ground substitution θ such that I 6|= Cθ, i.e., for all i ∈ [1, n]:

—∀u ∈ Ui, [xiθ]I ≤ [u]I ;

—∀l ∈ Li, [l]I ≤ [xiθ]I ;

—∀(k, t) ∈ Ki, [xiθ]I 'k [t]I .

If [xiθ]I is such that [xiθ]I > [χ]I , then it is straightforward to verify that [xiθ]I−m
satisfies the same conditions, since for all terms t in Ui ∪ Li, [χ]I −m > [t]I , and
since m is a common multiple of every k occurring in Ki. We may therefore assume
that [xiθ]I ≤ [χ]I .

We denote by ui an element in Ui ∪ {χ} such that [ui]I is minimal in {[u]I |
u ∈ Ui ∪ {χ}}, and by mi the greatest integer such that mi ≤ [ui]I and for every
(k, t) ∈ Ki, mi 'k t holds; the existence of mi is guaranteed by what precedes and
[xiθ]I ≤ mi. We cannot have mi +m ≤ ui, because otherwise mi would not be the
greatest integer satisfying the conditions above. Thus, necessarily, mi > [ui]I −m,

16Note that the sets Ui, Li and Ki could be empty.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

26 · M. Echenim and N. Peltier

and there must exist a term vi ∈ GZ
S such that [vi]I = mi. Let σ

def
= {xi 7→ vi |

i ∈ [1, n]}, we deduce that I 6|= Cσ. Since Cσ ∈ S↓GZ
S
, we conclude that S↓GZ

S
is

BZ-unsatisfiable, hence the result.
We have shown that Condition 1 of Definition 21 is satisfied. By construction, GZ

S

is finite. By Propositions 45 and 46, Conditions 2 and 3 are satisfied, respectively,
which concludes the proof.

5.1.2 Term Algebra with Membership Constraints. We give a second example
of a specification for which a base-complete instantiation procedure can be defined.
We consider formulæ built over a signature containing:

—a set of free function symbols Σ;

—a set of constant symbols interpreted as ground terms built on Σ;

—a set of monadic predicate symbols P, each predicate p in P is interpreted as a
(fixed) set p̂ of ground terms built on Σ. We assume that the emptiness problem
is decidable for any finite intersection of these sets (for instance p̂ can be the
set of terms accepted by a regular tree automaton, see [Comon et al. 1997] for
details).

From a more formal point of view:

Definition 48. Let Σ ⊆ FB . We denote by T(Σ)s the set of ground terms of sort
s built on Σ. Let P be a finite set of unary predicate symbols, together with a
function p 7→ p̂ mapping every symbol p : s→ bool ∈ P to a subset of T(Σ)s.

We denote by A∈ the specification (I∈,C∈) where:

—Ax(I∈) contains the following axioms:∨
t∈T(Σ)s

x ' t for s ∈ SB , x ∈ XB ,

xi ' yi ∨ f(x1, . . . , xn) 6' f(y1, . . . , yn) if f ∈ Σ, i ∈ [1, n]
p(t) if p ∈ P, t ∈ p̂.
¬p(t) if p ∈ P, t 6∈ p̂.

—Every non-ground atom in C∈ is of the form ¬p(x), or of the form x 6' t for some
ground term t. 3

The axioms of Ax(I∈) entail the following property which is proved by a straight-
forward induction on the depth of the terms:

Proposition 49. For all interpretations I ∈ I∈ and all terms t, t′ occurring in a
clause in C∈, if [t]I = [t′]I then t = t′.

If the sets in {p̂ | p ∈ P} are regular then A∈ is well-known to be decidable, see,
e.g., [Comon and Delor 1994]. We define the following instantiation procedure for
A∈:

Definition 50. For every clause set S, Θ∈(S)
def
= S↓G∈

S
, where G∈S is the set of

ground terms containing:

—Every ground term t such that S contains an atom of the form x 6' t.
—An arbitrarily chosen ground term sP ∈

⋂
p∈P p̂, for each P ⊆ P such that⋂

p∈P p̂ 6= ∅ (recall that the emptiness problem is assumed to be decidable). 3

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 27

Theorem 51. Θ∈ is base-complete if B = A∈.

Proof. Let C be a clause in C∈, C is of the form
∨n
i=1 xi 6' ti∨

∨m
i=1 ¬pi(yi)∨D

where D is ground, xi and yj (i ∈ [1, n], j ∈ [1,m]) are variables, ti is a ground term
for i ∈ [1, n] and pj ∈ P for j ∈ [1,m]. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym};
note that these sets are not necessarily disjoint. For every variable y ∈ Y we denote

by Py the set of predicates pj (1 ≤ j ≤ m) such that yj = y and we let sy
def
= sPy

.
Consider the substitution σ of domain X ∪ Y such that:

—xiσ
def
= ti for every i ∈ [1, n];

—if y ∈ Y \X then yσ
def
= sy (notice that sy must be defined since y ∈ Y)

We prove that Cσ |=A∈ C.
Let I be an interpretation such that I |= Cσ and I 6|= C. Then there exists a

substitution θ such that I 6|= Cθ, which implies that for all i ∈ [1, n], [xiθ]I = [ti]I ,
and for all j ∈ [1,m], [yjθ]I ∈ [p̂j]I . Proposition 49 entails that xiθ = ti for all
i ∈ [1, n], and yjθ ∈ p̂j for all j ∈ [1,m]. Thus, in particular, for all x ∈ X, xσ = xθ,
and for all y ∈ Y \X,

⋂
p∈Py

p̂ 6= ∅.
Since I |= Cσ and xiσ = ti for all i ∈ [1, n], there must exist a j ∈ [1,m] such

that [yjσ]I 6∈ [p̂j]I ; and, again by Proposition 49, this is equivalent to yjσ /∈ p̂j . If
yj ∈ X, then yjθ = yjσ /∈ p̂j and I |= Cθ, which is impossible. Thus yj ∈ Y \X,
and since

⋂
p∈Pyj

p̂ 6= ∅, by construction, yjσ = syj ∈ p̂j ; this contradicts the

assumption that yjσ /∈ p̂j .
Since Cσ |=A∈ C, we deduce that for every clause C ∈ S, there exists a D ∈ S↓G∈

S

such that D |=A∈ C, and therefore, S ≡A∈ S↓G∈
S

. By construction, G∈S is finite,

G∈S = G∈S?
∨

and G∈S ⊆ G∈S′ if S ⊆ S′. Hence all the conditions of Definition 21 are
satisfied.

5.2 Combination of Specifications

Building on the results of the previous section, we now provide some concrete
applications of Theorem 25.

5.2.1 Combining First-order Logic without Equality and Presburger Arithmetic.
We begin with a simple example to illustrate how the method works, by showing
how to enrich the language of first-order predicate logic with some arithmetic con-
straints. We assume that F contains no function symbol of co-domain int other
than the usual symbols 0, s,+,− introduced in Section 2.5.

Let Nfol be the restriction of the specification Afol defined in Example 7 to
non-equational clause sets (i.e. to clause sets in which all atoms are of the form
t ' true). We consider the combination Nfol[BZ] of the specification BZ introduced
in Section 5.1.1 with Nfol. According to Theorem 47, ΘZ is base-complete for
BZ; thus, in order to apply Theorem 25, we only need to find a nesting-complete
instantiation procedure for Nfol. We will use an instantiation procedure based on
hyper-linking [Lee and Plaisted 1992]. It is defined by the following inference rule:∨n

i=1 li, m1 ∨ C1, . . . , mn ∨ Cn∨n
i=1 liσ

if σ is an mgu. of the (li,m
c
i)’s.

If S is a set of clauses, we denote by Θ′fol(S) the set of clauses that can be obtained
from S by applying the rule above (in any number of steps) and by Θfol(S) the set

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

28 · M. Echenim and N. Peltier

of clauses obtained from Θ′fol(S) by replacing all remaining variables of sort s by a
constant symbol ⊥s of the same sort.

Proposition 52. Θfol is nesting-complete for Nfol.

Proof. In [Lee and Plaisted 1992], it is proven that S and Θfol(S) are equisat-
isfiable, thus Condition 1 of Definition 16 holds; furthermore, by definition, Θfol is
monotonic. To verify that Θfol is SB-invariant, it suffices to remark that if a clause
D is deducible from a set of clauses S by the instantiation rule above, then for
every SB-mapping α, α(D) must be deducible from Θfol(α(S)), since the unifiers
are not affected by the replacement of ground terms: if an mgu maps a variable x
to a term t in S, then the corresponding mgu will map x to α(t) in α(S).

Theorem 25 guarantees that Θfol[ΘZ] is complete for Nfol[BZ]. Note that in
general, Θfol[ΘZ] (and Θfol) are not terminating. However, Θfol[ΘZ] is terminating
if the set of ground terms containing no subterm of sort int (and distinct from
•int) is finite (for instance if F contains no function symbol of arity greater than 0
and of a sort distinct from int).

Example 53. Consider the following set of clauses S, where i, j denote variables
of sort int, x, y denote variables of sort s, and F contains the following symbols:
a, b : int, c, d : s, p : int× s→ bool and q : int× s× s→ bool.

(1) ¬p(i, x) ∨ ¬q(i, y) ∨ r(i, x, y)
(2) p(a, c)
(3) j 6< b ∨ q(j, d)
(4) i 6'2 0 ∨ ¬r(i, x, y)

Clauses (2) and (3) are not in Nfol[BZ]. Indeed, the non-arithmetic atom p(a, c)
contains a non-variable arithmetic subterm a and (3) contains a literal j 6< b that
is not allowed in BZ (see Definition 43). Thus these clauses must be reformulated
as follows:

(2)’ i 6≤ a ∨ a 6≤ i ∨ p(i, c)
(3)’ j 6≤ b− 1 ∨ q(j, d)

To apply the procedure Θfol[ΘZ], we compute the set SN and replace every
arithmetic variable occurring in it by a special constant • of sort int:

SN =


¬p(•, x) ∨ ¬q(•, y) ∨ r(•, x, y)
p(•, c)
q(•, d)
¬r(•, x, y)

We apply the procedure Θfol. The reader can verify that we obtain the following
clause set:

Θfol(S
N) =



¬p(•,⊥) ∨ ¬q(•,⊥) ∨ r(•,⊥,⊥)
p(•, c)
q(•, d)
¬r(•,⊥,⊥)
¬p(•, c) ∨ ¬q(•, d) ∨ r(•, c, d)
¬r(•, c, d)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 29

Next we consider the clauses in SB : {i 6≤ a ∨ a 6≤ i, j 6≤ b − 1, i 6'2 0} and
compute the set GZ

SBZ , according to Definition 44. The terms occurring as the
right operands of a symbol ≤ are {a, b − 1}. The least common multiple of all
the natural numbers k such that SB contains a comparison modulo k is 2. Thus
GZ
SBZ = {a, b − 1, a − 1, b − 2}. To get the clause set Θ[ΘZ](S), the substitutions

generated by Θ are combined with all instantiations of integer variables by elements
of GZ

SBZ . This yields:

¬p(a,⊥) ∨ ¬q(a,⊥) ∨ r(a,⊥,⊥) p(a, c)
¬p(b− 1,⊥) ∨ ¬q(b− 1,⊥) ∨ r(b− 1,⊥,⊥) p(b− 1, c)
¬p(a− 1,⊥) ∨ ¬q(a− 1,⊥) ∨ r(a− 1,⊥,⊥) p(a− 1, c)
¬p(b− 2,⊥) ∨ ¬q(b− 2,⊥) ∨ r(b− 2,⊥,⊥) p(a− 2, c)
¬r(a,⊥,⊥) ¬r(a, c, d)
¬r(b− 1,⊥,⊥) ¬r(b− 1, c, d)
¬r(a− 1,⊥,⊥) ¬r(a− 1, c, d)
¬r(b− 2,⊥,⊥) ¬r(b− 2, c, d)
¬p(a, c) ∨ ¬q(a, d) ∨ r(a, c, d) q(a, d)
¬p(b− 1, c) ∨ ¬q(b− 1, d) ∨ r(b− 1, c, d) q(b− 1, d)
¬p(a− 1, c) ∨ ¬q(a− 1, d) ∨ r(a− 1, c, d) q(a− 1, d)
¬p(b− 2, c) ∨ ¬q(b− 2, d) ∨ r(b− 2, c, d) q(b− 2, d)

The resulting set of clauses is Nfol[BZ]-unsatisfiable, hence, so is S.

5.2.2 Arrays with Integer Indices and Uninterpreted Elements. The specifica-
tion of arrays with integer indices and uninterpreted elements can be defined as
a hierarchic expansion of the base specification BZ defined in Section 5.1.1 with a
simple specification NA = (Ifol,CA), where the clauses in CA are built on a set of
variables of sort int, on a signature containing only constant symbols of sort array
or elem and a function symbol select : array×int→ elem. We have assumed that
CA contains no occurrence of the function symbol store for convenience. There is
no loss of generality: indeed, every definition of the form s = store(t, i, a) where
s, t, i, a are ground terms can be written as the conjunction of the following clauses:

select(s, i) = v
i+ 1 6≤ z ∨ select(s, z) ' select(t, z)
z 6≤ i− 1 ∨ select(s, z) ' select(t, z)

It is simple to verify that these three clauses are in CA. Obviously, the last two
clauses are equivalent to z ' i ∨ select(s, z) ' select(t, z).

There exists a straightforward nesting-complete instantiation procedure for NA:

namely the identity function id(S)
def
= S. This is indeed an instantiation procedure

since all the variables occurring in CA are of type int; these variables will already
be instantiated by the instantiation procedure for BZ and the remaining clause set
will be ground. The following result is a direct consequence of Theorem 25:

Proposition 54. id[ΘZ] is complete for NA[BZ].

We provide some examples of properties that have been considered in [Bradley
and Manna 2007; Habermehl et al. 2008; Ghilardi et al. 2007b], and can be expressed
in NA[BZ] (t,t′ denotes constant symbols of sort array).

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

30 · M. Echenim and N. Peltier

(1) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ' v
t is constant on [a, b].
(2) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ' select(t′, i)
t and t′ coincide on [a, b].
(3) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ ∨c 6≤ j ∨ j 6≤ d ∨ select(t, i) 6' select(t′, j)
The restriction of t and t′ to [a, b] and [c, d] respectively are disjoint.
(4) ∀i, j, i 6'2 0 ∨ j 6'2 1 ∨ select(t, i) 6' select(t, j)
The values of t at even indices are disjoint from those at odd ones.
(5) ∀i, i 6'2 0 ∨ select(t, i) ' select(t′, i) ∨ select(t, i) ' select(t′′, i)
For every even index, the value of t is equal to the value of t′ or t′′.
(6) ∀i, i 6≥ 0 ∨ i 6≤ d ∨ select(t, i) 6' ⊥

∀i, i 6≥ succ(d) ∨ select(t, i) ' ⊥
Array t has dimension d.
(7) ∀i, select(map(f, t), i) ' f(select(t, i))
Array map(f, t) is obtained from t by iterating function f .

Arrays play a fundamental role in verification, and numerous techniques have
been considered for reasoning about them. For instance, Properties (1-3) can be
expressed in the Array property fragment (see [Bradley and Manna 2007]), but not
Property (4), because of condition i '2 0. Property (4) is expressible in the Logic for
Integer Arrays (LIA) introduced in [Habermehl et al. 2008], but not Property (5),
because there is a disjunction in the value formula. The combinatory array logic of
[de Moura and Bjørner 2009] allows one to reason on arrays built over a combination
of theories, enriched by new combinators that can express properties such as (1) and
(7), but does not consider quantified formulæ. [Ghilardi and Ranise 2010] contains
a decidability result for a very general class of formulæ with quantification on the
indices, provided the theory of indices satisfies some additional properties (which
do not hold for integers).

On the other hand, Properties such as Injectivity cannot be expressed in our
setting:

(8) ∀i, j, i ' j ∨ select(t, i) 6' select(t, j)
t is injective.
(9) ∀i, j, i ' j ∨ select(t, i) 6' select(t, j) ∨ select(t, i) ' ⊥
t is injective on its domain.

Indeed, the literal i ' j is not allowed in C′Z.

5.2.3 Arrays with Integer Indices and Interpreted Elements. Instead of using
the mere specification NA, one can combine the specification BZ with a richer
specification, with function and predicate symbols operating on the elements of
the arrays. For instance, consider the specification NR

A = (IR,CR
A), where Ax(IR)

is some axiomatization of real closed fields over a signature FR and the clauses
occurring in CR

A are built on a set of variables of sort int and on a signature
containing all function symbols in FR, constant symbols of sort array or real and
a function symbol select : array × int → real. Then NR

A [BZ] is the specification
of arrays with integer indices and real elements, and an immediate application of
Theorem 25 yields:

Proposition 55. id[ΘZ] is complete for NR
A [BZ].

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 31

To model arrays with integer indices and integer elements, it is necessary to use
a combination of the specification BZ with a specification containing the symbols
in BZ: 0 : int, s : int → int, ≤: int × int → bool, etc. However, this is not
permitted in our approach since the clause sets of the nesting specification would
then contain function symbols with co-domains of a sort of the base specification
(namely int), thus contradicting the conditions on SB and SN (see Section 3.1).
A solution is to use a copy of the sort int and of every symbol of co-domain
int. We denote by N Z

A the specification (I ′Z,CZ) where Ax(I ′Z) is the image of
Ax(IZ) by the previous transformation and where the clause sets in CZ

A are built
on a set of variables of sort int and on a signature containing all function symbols
0′, s′,≤′,. . . in Ax(I ′Z), constant symbols of sort array or int′ and a function symbol
select : array× int→ int′. Then N Z

A [BZ] is a specification of arrays with integer
indices and integer elements, and by Theorem 25, id[ΘZ] is complete for N Z

A [BZ].
Note however that, due to the fact that the sort symbols are renamed, equations

between integer elements and integer indices are not permitted: indices cannot be
stored into arrays and terms of the form select(t, select(t, i)) are forbidden. However,
the sharing of a constant symbol c between the two sorts int and int′ (as in
the equation: select(t, c) ' c) is possible, by adding ground axioms of the form:
k ' c ⇒ k′ ' c′, where c′ denotes the copy of c, k is any integer in int and k′

denotes its copy in int′. Let A denote this set of axioms; it is obvious that A
is countably infinite. It is clear that id[ΘZ](S ∪ A) = id[ΘZ](S) ∪ A, so that the
instantiation procedure is not affected by this addition. Thus these axioms can be
simply removed afterward by “merging” int and int′ and by replacing c′ by c (it
is straightforward to verify that this transformation preserves satisfiability).

We provide some examples. ≤′ and +′ are renaming of the symbols ≤ and +
respectively. Notice that the indices of the arrays are of sort int, whereas the
elements are of sort int′. The following properties can be expressed in N Z

A [BZ]:

(1) ∀i, j, i 6≤ j ∨ select(t, i) ≤′ select(t, j)
Array t is sorted.
(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ c 6≤ j ∨ j 6≤ c ∨ select(t, i) ≤′ select(t′, j)
The values of t at [a, b] are lower than those of t′ at [c, d].
(3) ∀i, i 6'2 0 ∨ i 6≤ n ∨ select(t, i) '′ select(t′, i) +′ select(t′′, i)
For every even index lower than n, t is the sum of t′ and t′′.

Here are some examples of properties that cannot be handled:

(4) ∀i, select(t, i) ' i
Array t is the identity.
(5) ∀i, select(t, i)− select(t, i+ 1) ≤ 2
The distance between the values at two consecutive index
is at most 2.

Property (4) is not in N Z
A [BZ] because there is an equation relating an element of

sort int (i.e. an index) to an element of sort int′ 6= int (an element). Property
(5) could be expressed in our setting as ∀i, j, j 6' i+ 1∨ select(t, i)− select(t, j) ≤ 2
but the atom j 6' i+ 1 is not in BZ. Property (5) can be expressed in the logic LIA
(see [Habermehl et al. 2008]). This shows that the expressive power of this logic is
not comparable to ours.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

32 · M. Echenim and N. Peltier

These results extend straightforwardly to multidimensional arrays.

5.2.4 Arrays with Translations on Arrays Indices. In some cases, properties
relating the value of an array at an index i to the value at index i + k for some
natural number k can be expressed by reformulations.

Definition 56. Let S be a clause set, containing clauses that are pairwise variable-
disjoint. Let λ be a function mapping every array constant to a ground term of
sort int. S is shiftable relatively to λ iff the following conditions hold:

(1) Every clause in S is of the form C ∨D, where D is a clause in N Z
A and every

literal in C is of one of the following form: i 6≤ j+ s, i 6≤ s, s 6≤ i, i 6'k s, where
i, j are variables of sort int, s is a ground term of sort int and k is a natural
number.

(2) For every clause C ∈ S and for every literal i 6≤ j + s occurring in C, where
i, j are variables and s is a term of sort int, C contains two terms of the form
select(t, i) and select(t′, j) where λ(t′)− λ(t) is equivalent to s.

(3) If C contains two terms of the form select(t, i) and select(t′, i) then λ(t) = λ(t′).

(4) If C contains a equation t ' t′ between arrays then λ(t) = λ(t′). 3

The existence of such a function λ is easy to determine: conditions (2-4) above
can immediately be translated into arithmetic constraints on the λ(t)’s, and the
satisfiability of this set of constraints can be tested by using any decision procedure
for Presburger arithmetic.

We define the following transformation of clause sets:

Definition 57. Let t 7→ t′ be an arbitrarily chosen function mapping all the con-
stants t of sort array to pairwise distinct fresh constants t′ of sort array. We
denote by shift(S) the clause set obtained from S by applying the following rules:

—every clause C containing a term of the form select(t, i) (where i is a variable) is
replaced by C{i 7→ i− λ(t)};

—then, every term of the form select(t, s) is replaced by select(t′, s+ λ(t)). 3

Lemma 58. Let S be a shiftable clause set. Then:

—shift(S) and S are equisatisfiable.

—shift(S) is in N Z
A [BZ].

Proof. It is clear that for every clause C in S, C ≡ C{i 7→ i−k}: since i ranges
over all integers, i and i−k range over the same set. The replacement of select(t, s)
by select(t′, s + λ(t)) obviously preserves sat-equivalence: it suffices to interpret t′

as the array defined by the relation: select(t′, i)
def
= select(t, i− λ(t)). Thus shift(S)

and S are equisatisfiable.
We prove that shift(S) is in N Z

A [BZ]. By Condition 3 of Definition 56, if a
clause C{i 7→ i − λ(t)} contains a term of the form select(s, i − λ(t)) then we
must have λ(s) = λ(t), thus this term is replaced by select(s′, i) when the second
rule above is applied. Consequently, the non-arithmetic part of the resulting clause
cannot contain any non-variable term of sort int. Now assume that C contains

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 33

an arithmetic literal of the form i ≤ j + s. Then by Condition 2, C also contains
terms of the form select(t, i) and select(t′, j), where λ(t′) − λ(t) is equivalent to
s. Hence, the clause in shift(S) corresponding to C contains the literal i − λ(t) ≤
j − λ(t′) + s ≡ i ≤ j − (λ(t′)− λ(t)) + s ≡ i ≤ j.

Lemma 58 shows that the satisfiability test for shiftable clause set can be reduced
to a satisfiability test for a clause set in N Z

A [BZ]. This does not imply that the
instantiation procedure id[ΘZ] is complete for shiftable clause set. We provide an
example in which this result applies.

Example 59. Consider for instance the following clause set:

S =



(1) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6' i− a ∨ select(s, i) ' select(t, j)
s is identical to t up to a shift of length a.
(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6' i− a ∨ select(u, i) ' select(s, j)
u is identical to s up to a shift of length a.
(3) c ≥ a+ a
(4) c ≤ b
(5) ∀i, j, i 6' c ∨ j 6' c− a− a ∨ select(u, c) 6' select(t, j)
u is not identical to t up to a shift of length a+ a.

It is simple to check that S is shiftable relatively to the mapping: λ(u) = a + a,
λ(s) = a and λ(t) = 0. According to Definition 58, S is reformulated as follows:

shift(S) =


(1′) ∀i, j, 0 6≤ i ∨ i 6≤ b− a ∨ j 6' i ∨ select(s′, i) ' select(t′, j)
(2′) ∀i, j, 0 6≤ i ∨ i 6≤ b− a ∨ j 6' i ∨ select(u′, i) ' select(s′, j)
(3) c ≥ a+ a
(4) c ≤ b
(5) ∀i, j, i 6' c ∨ j 6' c− a− a ∨ select(u′, c) 6' select(t′, j)

shift(S) and S are equisatisfiable, and shift(S) belongs to N Z
A [BZ]. The unsatisfia-

bility of shift(S) can be proven by applying the procedure id[ΘZ].

5.2.5 Nested Arrays. An interesting feature of this approach is that it can be
applied recursively, using as base and/or nesting specifications some nested combi-
nation of other specifications. This idea is similar to the chains of (local) theory
extensions used in, e.g., [Ihlemann et al. 2008] to extend the array property frag-
ment.

We denote by B′Z a copy of the specification BZ in which the symbols int, 0,
s, ≤, . . . are renamed into int′, 0′, s′, ≤′, . . . We denote by Θ′Z the corresponding

instantiation procedure, as defined by Definition 44. Let N Z
A
′

be a copy of the
specification N Z

A , in which the symbols int′, 0′, s′, ≤′, select. . . are renamed into

int′′, 0′′, s′′, ≤′′, select′ . . . Let AZ3

def
= N Z

A
′
[B′Z][BZ].

Proposition 60. id[Θ′Z][ΘZ] is complete for AZ3
.

In AZ3
, the (integer) indices of an array t can themselves be stored into arrays

of integers, but of a different type than t.

Example 61. The following clause set is AZ3
-unsatisfiable (for the sake of read-

ability we use t 6' s as a shorthand for t 6≤ s ∨ t 6≤ s):
ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

34 · M. Echenim and N. Peltier

(1) i ≤ j ∨ select(t, i) ≤ select(t, j)
Array t is sorted.
(2) i′ ≤ j′ ∨ select′(t′, i′) ≤′ select′(t′, j′)
Array t′ is sorted.
(3) a ≤ b
(4) x 6' a ∨ y 6' b ∨ x′ 6' select(t, x) ∨ y′ 6' select(t, y)

∨select′(t′, x′) > select(t′, y′)
Array t′ ◦ t is not sorted.

We describe the way the procedure works on this very simple but illustrative
example. According to the definition of id[Θ′Z][ΘZ], the variables i, j, x and y are
replaced by a special symbol • and the instantiation procedure id[Θ′Z] is applied.
The variables i′, j′, x′, y′ are replaced by a constant symbol •′ and the procedure
id is applied on the resulting clause set (in a trivial way, since this set is ground).
Next, we apply the procedure Θ′Z. According to Definition 44, Θ′Z instantiates
the variables i′, j′, x′, y′ by select(t, •). This substitution is applied to the original
clause set and the procedure ΘZ is invoked. The variables i, j, x and y, and the
constant symbol • are replaced by {a, b}. After obvious simplifications, we obtain
the following set of instances:

a ≤ b ∨ select(t, a) ≤ select(t, b)
b ≤ a ∨ select(t, b) ≤ select(t, a)

select(t, a) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))
select(t, a) ≤ select(t, b) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, b) ∨ select′(t′, select(t, b)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))

a ≤ b
select′(t′, select(t, a)) > select′(t′, select(t, b))

At this point, ≤′ may be simply replaced by ≤ (this operation obviously preserves
equisatisfiability) and the resulting clause set can be refuted by any SMT-solver
handling ground equality and integer arithmetic.

Such nested array reads are outside the scope of the Array property fragment of
[Bradley and Manna 2007] and of the Logic LIA of [Habermehl et al. 2008]. They
are not subsumed either by the extensions of the theory of arrays considered in
[Ghilardi et al. 2007b]. Note that, due to the fact that we use distinct renamings of
the specification of integers, equations such as select(t′, select(t, a)) ' select(t′, a)
are forbidden (if arrays are viewed as heaps, this means that there can be no
equation between pointers and referenced values).

6. DISCUSSION

In this paper we have introduced a new combination method of instantiation
schemes and presented sufficient conditions that guarantee the completeness of
the resulting procedure. As evidenced by the examples provided in Section 5, this
combination method permits to obtain instantiation procedures for several theories
that are quite expressive, at almost no cost. One direct consequence of these results

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 35

is that it should be possible for developers of SMT solvers to focus on the design
of efficient decision procedures for a few basic theories, such as, e.g., the theory of
equality with uninterpreted function symbols (EUF) or Presburger arithmetic, and
obtain efficient SMT solvers for a large panel of theories.

This combination method may seem inefficient, since exponentially many ground
clauses may be generated, except for the trivial cases. An interesting line of research
is to investigate how incremental techniques can be implemented and the instanti-
ations controlled so that the (un)satisfiability of the clause set under consideration
can be detected before all clauses are instantiated in all possible ways. For instance,
we believe it is possible – but this will probably depend on B andN – to devise more
subtle strategies that first replace base variables with the constants •s and apply
the instantiation procedure for N , and then derive additional information from the
resulting set of ground clauses to avoid having to instantiate all base variables in all
possible ways. Further investigations into this line of work could lead to the design
of more powerful instantiation procedures that could enlarge the scope of modern
SMT solvers by making them able to handle efficiently more expressive classes of
quantified formulæ. The idea is to use the models constructed by the SMT-solvers
to guide the generation of new instances. Techniques such as those described in
[Plaisted and Zhu 2000; Ganzinger and Korovin 2003] (for first-order logic with
equality) and [Jacobs 2008; Sofronie-Stokkermans 2005] (for local reasoning) could
be used to that end, and we believe this to be a fruitful line of research.

Acknowledgments

The authors wish to thank the anonymous referees for their thorough reviews and
pertinent comments.

REFERENCES

Abadi, A., Rabinovich, A., and Sagiv, M. 2010. Decidable fragments of many-sorted logic.

Journal of Symbolic Computation 45, 2, 153 – 172.

Althaus, E., Kruglov, E., and Weidenbach, C. 2009. Superposition modulo linear arithmetic

sup(la). In FroCoS 2009, S. Ghilardi and R. Sebastiani, Eds. LNCS, vol. 5749. Springer, 84–99.

Bachmair, L. and Ganzinger, H. 1994. Rewrite-based equational theorem proving with selection

and simplification. Journal of Logic and Computation 3, 4, 217–247.

Bachmair, L., Ganzinger, H., and Waldmann, U. 1994. Refutational theorem proving for

hierachic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212.

Basin, D. and Ganzinger, H. 2001. Automated complexity analysis based on ordered resolution.
J. ACM 48, 70–109.

Baumgartner, P. and Tinelli, C. 2003. The Model Evolution Calculus. In CADE-19 – The 19th

International Conference on Automated Deduction, F. Baader, Ed. LNAI, vol. 2741. Springer,
350–364.

Bonacina, M. P., Lynch, C. A., and Moura, L. 2011. On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47, 161–189.

Bradley, A. R. and Manna, Z. 2007. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bradley, A. R., Manna, Z., and Sipma, H. B. 2006. What’s decidable about arrays? In Proc.
VMCAI-7, E. A. Emerson and K. S. Namjoshi, Eds. LNCS, vol. 3855. Springer, 427–442.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., and Sebastiani, R. 2009. Delayed

theory combination vs. nelson-oppen for satisfiability modulo theories: a comparative analysis.
Ann. Math. Artif. Intell. 55, 1-2, 63–99.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

36 · M. Echenim and N. Peltier

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

and Tommasi, M. 1997. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata.

Comon, H. and Delor, C. 1994. Equational formulae with membership constraints. Information

and Computation 112, 2 (August), 167–216.

de Moura, L. M. and Bjørner, N. 2007. Efficient E-Matching for SMT Solvers. In CADE-21,

F. Pfenning, Ed. LNCS, vol. 4603. Springer, 183–198.

de Moura, L. M. and Bjørner, N. 2009. Generalized, efficient array decision procedures. In
FMCAD. IEEE, 45–52.

Detlefs, D. L., Nelson, G., and Saxe, J. B. 2005. Simplify: a theorem prover for program

checking. Journal of the ACM 52, 3, 365–473.

Dreben, B. and Goldfarb, W. D. 1979. The Decision Problem, Solvable Classes of Quantifi-

cational Formulas. Addison-Wesley.

Echenim, M. and Peltier, N. 2010a. Instantiation of SMT problems modulo Integers. In AISC
2010 (10th International Conference on Artificial Intelligence and Symbolic Computation).

LNCS. Springer.

Echenim, M. and Peltier, N. 2010b. An instantiation scheme for satisfiability modulo theories.
Journal of Automated Reasoning.

Echenim, M. and Peltier, N. 2011. Modular instantiation schemes. Information Processing

Letters 111, 20, 989–993.

Fontaine, P. 2009. Combinations of theories for decidable fragments of first-order logic. In

FroCos, S. Ghilardi and R. Sebastiani, Eds. LNCS, vol. 5749. Springer, 263–278.

Fontaine, P., Ranise, S., and Zarba, C. G. 2004. Combining lists with non-stably infinite
theories. In LPAR. 51–66.

Ganzinger, H. 2001a. Relating semantic and proof-theoretic concepts for polynomial time de-

cidability of uniform word problems. In In Proceedings 16th IEEE Symposium on Logic in
Computer Science, LICS’2001. Society Press, 81–92.

Ganzinger, H. 2001b. Relating semantic and proof-theoretic concepts for polynominal time

decidability of uniform word problems. In LICS. 81–92.

Ganzinger, H. and Korovin, K. 2003. New directions in instantiation-based theorem proving.

In Proc. 18th IEEE Symposium on Logic in Computer Science,(LICS’03). IEEE Computer

Society Press, 55–64.

Ganzinger, H., Sofronie-Stokkermans, V., and Waldmann, U. 2006. Modular proof systems

for partial functions with evans equality. Inf. Comput. 204, 1453–1492.

Ge, Y., Barrett, C. W., and Tinelli, C. 2009. Solving quantified verification conditions using
satisfiability modulo theories. Annals of Mathematics and Artificial Intelligence 55, 1-2, 101–

122.

Ge, Y. and de Moura, L. M. 2009. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In CAV 2009, A. Bouajjani and O. Maler, Eds. LNCS, vol. 5643. Springer,

306–320.

Ghilardi, S., Nicolini, E., Ranise, S., and Zucchelli, D. 2007a. Decision procedures for
extensions of the theory of arrays. Annals of Mathematics and Artificial Intelligence 50, 231–

254. 10.1007/s10472-007-9078-x.

Ghilardi, S., Nicolini, E., Ranise, S., and Zucchelli, D. 2007b. Decision procedures for
extensions of the theory of arrays. Ann. Math. Artif. Intell. 50, 3-4, 231–254.

Ghilardi, S. and Ranise, S. 2010. Backward reachability of array-based systems by smt solving:
Termination and invariant synthesis. Logical Methods in Computer Science 6, 4.

Givan, R. 2000. Polynomial-time computation via local inference relations. ACM Trans. Comput.
Logic 3, 2002.

Givan, R. and Mcallester, D. 1992. New results on local inference relations. In In Principles of
Knolwedge Representation and Reasoning: Proceedings of the Third International Conference.

Morgan Kaufman Press, 403–412.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

Instantiation schemes for nested theories · 37

Goel, A., Krstić, S., and Fuchs, A. 2008. Deciding array formulas with frugal axiom instantia-

tion. In Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability
Modulo Theories and 1st International Workshop on Bit-Precise Reasoning. SMT ’08/BPR ’08.

ACM, New York, NY, USA, 12–17.

Habermehl, P., Iosif, R., and Vojnar, T. 2008. What else is decidable about integer arrays?

In FoSSaCS, R. M. Amadio, Ed. LNCS, vol. 4962. Springer, 474–489.

Ihlemann, C., Jacobs, S., and Sofronie-Stokkermans, V. 2008. On local reasoning in veri-

fication. In Proceedings of the Theory and practice of software, 14th international conference

on Tools and algorithms for the construction and analysis of systems. TACAS’08/ETAPS’08.
Springer-Verlag, Berlin, Heidelberg, 265–281.

Jacobs, S. 2008. Incremental instance generation in local reasoning. In Notes 1st CEDAR

Workshop, IJCAR 2008, F. Baader, S. Ghilardi, M. Hermann, U. Sattler, and V. Sofronie-

Stokkermans, Eds. 47–62.

Kapur, D. and Zarba, C. G. 2005. A reduction approach to decision procedures. Technical

report. Available at http://www.cs.unm.edu/ kapur/mypapers/reduction.pdf.

Lee, S. and Plaisted, D. A. 1992. Eliminating duplication with the hyper-linking strategy.

Journal of Automated Reasoning 9, 25–42.

Loos, R. and Weispfenning, V. 1993. Applying linear quantifier elimination. Comput. J. 36, 5,
450–462.

Mcpeak, S. and Necula, G. C. 2005. Data structure specifications via local equality axioms. In

In CAV. Springer, 476–490.

Nelson, G. and Oppen, D. C. 1979. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 245–257.

Ohlbach, H. J. and Koehler, J. 1999. Modal logics, description logics and arithmetic reasoning.

Artificial Intelligence 109, 1–31.

Plaisted, D. A. and Zhu, Y. 2000. Ordered semantic hyperlinking. Journal of Automated
Reasoning 25, 3 (October), 167–217.

Sofronie-Stokkermans, V. 2005. Hierarchic reasoning in local theory extensions. In CADE,

R. Nieuwenhuis, Ed. LNCS, vol. 3632. Springer, 219–234.

Sofronie-Stokkermans, V. 2010. Hierarchical reasoning for the verification of parametric sys-
tems. In IJCAR, J. Giesl and R. Hähnle, Eds. LNCS, vol. 6173. Springer, 171–187.

Tinelli, C. and Harandi, M. 1996. A new correctness proof of the Nelson-Oppen combination

procedure. In Frontiers of Combining Systems, volume 3 of Applied Logic Series. Kluwer

Academic Publishers, 103–120.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2012.

