
Journal of Artificial Intelligence Research 60 (2017) 827-880 Submitted 02/17; published 12/17

Prime Implicate Generation in Equational Logic

Mnacho Echenim mnacho.echenim@univ-grenoble-alpes.fr
Nicolas Peltier nicolas.peltier@univ-grenoble-alpes.fr
Univ. Grenoble Alpes, CNRS,
Grenoble INP, LIG,
F-38000 Grenoble France

Sophie Tourret sophie.tourret@mpi-inf.mpg.de

Max-Planck-Institut für Informatik,

Saarland Informatics Campus,

Campus E1 4, 66123 Saarbrücken, Germany

Abstract

We present an algorithm for the generation of prime implicates in equational logic,
that is, of the most general consequences of formulæ containing equations and disequations
between first-order terms. This algorithm is defined by a calculus that is proved to be
correct and complete. We then focus on the case where the considered clause set is ground,
i.e., contains no variables, and devise a specialized tree data structure that is designed
to efficiently detect and delete redundant implicates. The corresponding algorithms are
presented along with their termination and correctness proofs. Finally, an experimental
evaluation of this prime implicate generation method is conducted in the ground case,
including a comparison with state-of-the-art propositional and first-order prime implicate
generation tools.

1. Introduction

We tackle the problem of generating the prime implicates of an equational formula. For-
mally, an implicate of a formula (or set of clauses) φ is a clause C that is a logical consequence
of φ, written φ |= C. This implicate is prime if for all implicates D such that D |= C, we
have C |= D. In other words, prime implicates are the most general clausal consequences
of a formula and in particular, 2 is an implicate of φ if and only if φ is unsatisfiable.

Prime implicate generation is a more difficult problem than satisfiability checking, and
has many natural applications in artificial intelligence and system verification, such as diag-
nosis (De Kleer, 1992), debugging (Echenim & Peltier, 2012) or knowledge representation
(Darwiche & Marquis, 2002). In propositional logic, the computation of prime implicates
plays a central role in the minimization of boolean functions (Quine, 1955). Such a relation
does not exist in more expressive logics, but prime implicate computation also has numerous
applications related to abductive reasoning. Indeed, the negation of an implicate I of a for-
mula φ can be viewed as a sufficient condition ensuring that φ is false. If φ = KB ∧¬Conc,
where KB is a knowledge base and Conc is a conclusion to be proven, then ¬I can be seen
as a sufficient condition ensuring that Conc holds, or as a set of “missing hypotheses” that
can be used to derive Conc from the axioms in KB . In particular, abductive reasoning can
be very useful for debugging verification problems. Indeed, mistakes frequently arise when
writing logical specifications, ranging from obvious (but annoying) typing errors, to forgot-

c©2017 AI Access Foundation. All rights reserved.

Echenim, Peltier & Tourret

ten cases or more fundamental issues. The effect of these errors is usually that the prover
fails to find a proof, leaving to the user the burden of understanding where the problem
comes from. In some cases, counter-examples can be automatically computed, and these
counter-examples can then be analyzed to locate the source of the error. However, when
dealing with very expressive logics, such counter-examples may not be very informative,
because they are too complex and not focused enough on the relevant part of the problem.
In some cases, they can even be impossible to find, for instance if the considered knowledge
base has no finite models. On the other hand, pointing out missing hypotheses may allow
the user to quickly grasp where the problem comes from, and may even suggest hints to
correct the specification.

1.1 Roadmap

The rest of the paper is structured in the following way. In Section 2, usual definitions in
first-order equational logic are briefly reviewed. In Section 3, a representation of ground1

equational clauses up to equivalence modulo equality is defined and techniques are devised
for testing logical entailment efficiently (by duality, the results also apply to sets of unit
ground equational clauses). In Section 4, a calculus is presented to generate implicates
of equational clauses. For the sake of generality, this calculus is defined for non-ground
clauses, although the following sections focus on ground clauses. The defined calculus is an
extension of the Superposition calculus (Bachmair & Ganzinger, 1994), which is the most
advanced and successful proof procedure for first-order logic with equality. The underlying
idea behind this calculus is based on so-called Assertion rules that add new hypotheses
into the considered set on demand, in a controlled way. These hypotheses are collected and
attached to the clauses as constraints; if the empty clause is generated, then its constraint
corresponds to the negation of an implicate of the original formula. The use of constraints
also permits to control the class of implicates that are generated: for example, it is possible
to use this calculus to generate implicates up to a fixed size, or to generate only the positive
implicates. This is a crucial feature in practice since the number of prime implicates is
usually huge. In Section 5, data structures are defined to store sets of ground constrained
clauses efficiently. We devise algorithms based on the results of Section 3 for detecting
redundant constrained clauses, i.e., for checking whether a newly generated clause is re-
dundant and to remove all the previously generated clauses it entails, and we prove that
these algorithms are sound and complete. In Section 6, experimental comparisons with all
available systems for generating implicates in propositional and first-order logic are pro-
vided, showing evidence of the relevance of our approach. Finally, in Section 7, potential
applications and relevant related work are discussed, and lines of future work are suggested.

The present paper is a thoroughly expanded version of a conference paper (Echenim,
Peltier, & Tourret, 2015). The procedure and the completeness proof have been revised and
extended in order to handle arbitrary first-order clauses, whereas only ground clauses were
considered in the conference paper. Furthermore, the procedure is now parameterized by
a set of constraints, denoting abducible hypotheses, and deductive completeness is directly
established w.r.t. this set of constraints. Finally, detailed proofs of the correction of the
redundancy detection algorithms are now provided. Note that, while the calculus and the

1. I.e., without variables.

828

Prime Implicate Generation in Equational Logic

theoretical results handle arbitrary first-order clauses as input, the data-structures and
algorithms for efficient redundancy detection are defined only for ground clauses and the
experimental evaluation is performed only for such clauses.

2. Clausal First-Order Logic with Equality

This section contains definitions and notations related to first-order logic with equality.

2.1 Equational Clausal Logic

We introduce the standard syntax and semantics of equational clausal logic used in the
paper.

2.1.1 Syntax

In this section, we briefly review usual definitions on equational clausal logic. The definitions
are identical or very similar to those used in standard textbooks (see, e.g., Baader & Nipkow,
1998; Nieuwenhuis & Rubio, 2001).

We consider first-order logic with equality, in which formulæ admit equality (denoted by
') as a unique predicate2. For n ≥ 0, Σn denotes a signature of function symbols of arity

n, and we let Σ
def
=

∞⋃
n=0

Σn. The elements of Σ0 are constant symbols. Function symbols

of arity strictly greater than 0 are usually denoted by f or g and constant symbols by a,
b, c or d. Let V be a set of variables, usually denoted by x, y or z, disjoint from Σ. The
notation TV(Σ) stands for the set of terms over Σ, defined inductively as follows:

• V ∪ Σ0 ⊆ TV(Σ);

• if t1, . . . , tn ∈ TV(Σ), f ∈ Σn and n > 0 then f(t1, . . . , tn) ∈ TV(Σ).

Terms are usually denoted by s, t, u, v, w. A position is a (possibly empty) finite sequence of
natural numbers. The empty position is denoted by ε and the concatenation of two positions
p and q is denoted by p.q. For any term t ∈ TV(Σ), Pos(t) is the set of all positions in t,
inductively defined as follows: ε ∈ Pos(t), and if p ∈ Pos(ti) then i.p ∈ Pos(f(t1, . . . , tn)).
The subterm occurring at position p in a term t is denoted by t|p. It is defined inductively

by: t|ε
def
= t and f(t1, . . . , tn)|i.p

def
= ti|p. We denote by t[s]p the term obtained from t by

replacing the term occurring at position p by s, inductively defined as follows: t[s]ε
def
= s

and f(t1, . . . , tn)[s]i.p
def
= f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tn).

Example 2.1 Let Σ0 = {a, b}, Σ1 = {f}, Σ2 = {g}. The set of terms includes a, b, f(a),
f(f(b)), g(f(a), f(b)), etc. The set of positions in g(f(a), f(b)) is {ε, 1, 2, 1.1, 2.1}. The
term at position 1.1 in g(f(a), f(b) is a.

An atom is an expression of the form s ' t, where s, t ∈ TV(Σ). Atoms are considered
modulo commutativity of ', i.e. s ' t and t ' s are viewed as identical. A literal, usually
denoted by l or m, is either an atom s ' t (a positive literal, or a literal of positive polarity)

2. As usual non-equational predicates p(t1, . . . , tn) are encoded as equations p(t1, . . . , tn) ' >.

829

Echenim, Peltier & Tourret

or the negation of an atom s 6' t (a negative literal, or a literal of negative polarity). A
literal l will sometimes be written s ./ t, where the symbol ./ stands for ' or 6'. The literal
lc denotes the complement of l, i.e., lc is s 6' t (resp. s ' t) when l is s ' t (resp. s 6' t).

A clause is a finite multiset of literals, usually written as a disjunction. The symbol 2
denotes the empty clause. For every clause C, we define C+ def

= {l ∈ C | l is positive} and

C−
def
= {l ∈ C | l is negative}. A clause C is positive when C = C+, and it is negative when

C = C−. We denote by C\D the multiset difference of C and D, defined as usual, and we
may write C\l instead of C\ {l}. We denote by |C| the length of clause C, i.e. the number of

literals it contains. A clause is unit if |C| = 1. If C =
∨n
i=1 li then ¬C def

=
∧n
i=1 l

c
i . We often

identify sets of unit clauses with conjunctions; for example, given a set of clauses S, we may
write S ∪

∧n
i=1 li instead of S ∪{li | i ∈ [1, n]}, and instead of {l1, . . . , ln} ⊆ {l′1, . . . , l′m}, we

may write
∧n
i=1 li ⊆

∧m
i=1 l

′
i.

An expression (term, atom, literal or clause) E is ground if it contains no variable.
The notation T(Σ) denotes the set of ground terms and V(E) denotes the set of variables
occurring in E.

Example 2.2 Consider the clauses C = f(a) ' g(f(a), f(b)) ∨ a 6' b and D = g(x, y) '
g(y, x) ∨ f(x) ' f(y). Observe that C is ground but D is not (a, b are constant symbols
and x, y are variables). We have: C+ = f(a) ' g(f(a), f(b)), C− = a 6' b, D+ = D and
D− = 2.

A substitution is a function mapping variables to terms. The image of a variable x by a
substitution σ is denoted by xσ. Substitutions can be extended to any term, atom, literal,
or clause by induction: aσ

def
= a if a ∈ Σ0, f(t1, . . . , tn)σ

def
= f(t1σ, . . . , tnσ), (s ' t)σ def

= (sσ '
tσ), (

∨n
i=1 li)σ

def
=
∨n
i=1 liσ. The domain of a substitution σ is the set of variables x such

that xσ 6= x. A substitution σ is ground if xσ is ground for every x in the domain of σ. An
expression (term, atom, literal or clause) E is an instance of an expression E′ if there exists
a substitution σ such that E′σ = E. A substitution σ is more general than a substitution θ
if there exists a substitution η such that xση = xθ, for any variable x. A substitution σ is a
unifier of two terms t and s if tσ = sσ, in which case t and s are unifiable. It is well-known
(see for instance Jouannaud & Kirchner, 1991) that any unifiable pair of terms possesses a
(unique up to a renaming of variables) most general unifier, denoted by mgu(t, s).

Example 2.3 Let t = f(g(x), g(b)) and s = f(g(a), g(y)). The substitution σ : {x 7→
a, y 7→ b} is the (unique) unifier of t and s.

We consider a ground-total strict reduction order (see, e.g., Baader & Nipkow, 1998) ≺
on terms. Such an order satisfies the following properties: ≺ is total on ground terms, i.e.,
if t and s are distinct terms in T(Σ) then either t ≺ s or s ≺ t; ≺ is well-founded, i.e., there
is no infinite decreasing sequence t1 � t2 � · · · � tn � . . . ; ≺ is closed under substitution,
i.e., if t ≺ s then tσ ≺ sσ; and ≺ is closed under contextual embedding, i.e., if t ≺ s
then u[t]p ≺ u[s]p, for any term u. The order ≺ is extended to literals and clauses using
the Dershowitz-Manna multiset extension (Dershowitz & Manna, 1979). To this purpose, a
negative literal t 6' s is associated with the multiset {{t, s}} and a positive literal t ' s with
{{t} , {s}}. Examples of reduction orders include Knuth-Bendix orderings or path orderings
(see, e.g., Dershowitz, 1979).

830

Prime Implicate Generation in Equational Logic

Example 2.4 Let C = f(a) ' a∨a 6' b and D = g(f(a), f(b)) ' a. Since ≺ is well-founded
and closed under contextual embedding we necessarily have g(f(a), f(b)) � f(a) � a and
g(f(a), f(b)) � b; thus D � C.

We now recall some basic notions about rewrite systems (Baader & Nipkow, 1998). A
ground rewrite rule is a pair written t → s, where t and s are ground terms. A ground
rewrite system is a set of ground rewrite rules. If R is a ground rewrite system, and u and v
are ground terms, we write u→R v if there exists a position p such that u|p = t, v = u[s]p,
and t→ s ∈ R. The relation →∗R denotes the reflexive and transitive closure of →R.

A term s is a normal form of t if t→∗R s and there is no term s′ such that s→R s
′. A

rewrite system is orthogonal if there are no rules t→ s and t′ → s′ and no position p such
that t|p = t′. It is terminating if →R is well-founded, and convergent if every term t admits
a unique normal form.

A proof of the following result has been presented by Baader and Nipkow (1998).

Proposition 2.5 Every orthogonal and terminating rewrite system is convergent.

2.1.2 Semantics

An interpretation is a congruence relation on T(Σ). The notation s =I t is used as a
shorthand for (s, t) ∈ I. An interpretation I validates:

• a ground literal t ./ s if ./ is ' and s =I t, or ./ is 6' and s 6=I t;

• a ground clause C if I validates at least one literal in C;

• a non-ground clause C if I validates all ground instances of C;

• a clause set S if I validates all clauses in S.

We write I |= E and say that I is a model of E if the expression (literal, clause or clause
set) E is validated by I. For all expressions E, E′, we write E |= E′ if every model of
E is a model of E′. A tautology is a clause of which all interpretations are models and a
contradiction is a clause that has no model.

2.2 Prime Implicates

We introduce the central notion of a prime implicate, adapted from the corresponding notion
in propositional logic (see, e.g., Ngair, 1993).

Definition 2.6 A ground clause C is an implicate of a set of clauses S if S |= C; it is a
prime implicate of S if, moreover, C is not a tautology, and for every clause D such that
S |= D, we have either D 6|= C or C |= D.

Intuitively, the implicates of S are the clausal consequences of S. They are prime if they are
minimal w.r.t. logical entailment and not valid. From a practical point of view, it is clear
that implicates that are either valid or not minimal are redundant, hence we are interested
only in computing prime implicates.

831

Echenim, Peltier & Tourret

Example 2.7 Consider the clause set S:

1 a ' b ∨ d ' a 2 a ' c
3 f(c) 6' f(b) 4 c 6' e ∨ d ' e

The clause d ' a is an implicate of S, since Clauses 2 and 3 together entail f(a) 6' f(b),
which in turn entails a 6' b, which together with Clause 1 entail d ' a. The clause a 6'
e ∨ d ' e can be deduced from Clauses 4 and 2 and thus is also an implicate. But it is not
prime, since d ' a |= a 6' e ∨ d ' e (it is clear that d ' a, a ' e |= d ' e, by transitivity),
but a 6' e ∨ d ' e 6|= d ' a.

The following proposition restates the definition of unsatisfiability in terms of implicates.

Proposition 2.8 A clause set S is unsatisfiable iff 2 is an implicate of S.

Proof. If S is unsatisfiable then it has no model, thus every clause is an implicate of S.
Conversely, if I |= S, and 2 is an implicate of S then I |= 2, which is impossible, since by
definition 2 is false in all interpretations.

Generating all prime implicates is unfeasible in general, since there are infinitely many such
clauses. For instance the clause set {f(a) ' a, f(b) ' b, a 6' b} has an infinite number of
prime implicates, of the form fn(a) 6' fn(b), for every n ∈ N, and none of them are prime
(since fn+1(a) 6' fn+1(b) |= fn(a) 6' fn(n). In practice, additional restrictions have to be
added to control the form of the generated implicates (for instance to limit the length and
depth of the clauses). This yields the following definition:

Definition 2.9 A ground clause C is a prime implicate of a clause set S w.r.t. a class of
ground clauses C if C is an implicate of S, C is not a tautology, and for every clause D ∈ C
such that S |= D, we have either D 6|= C or C |= D.

Due to Proposition 2.8, since the satisfiability problem is undecidable in first-order logic,
checking whether a given ground clause is an implicate of a set of non-ground clauses S is
undecidable. If S is ground, then the problem is co-NP-complete, since it can be polynomialy
translated into a propositional entailment problem by flattening the terms and adding all
the relevant ground instances of the equality axioms. Similarly, checking whether a set of
ground clauses S has an implicate defined over a given set of ground terms is ΣP

2 -complete,
since it can be reduced to a ∀∗∃∗-QBF propositional formula (see Eiter & Gottlob, 1995,
for more details about the complexity of the abduction problem in propositional logic). In
particular, it follows from the results by Eiter and Gottlob (1995) that checking whether a
given ground clause is a prime implicate of a set of ground clauses is DP-hard.

The following proposition shows that focusing on the computation of ground implicates
is actually not restrictive.

Proposition 2.10 Let S be a set of clauses, C be a clause. Let σ be a substitution mapping
all variables in C to pairwise distinct constant symbols not occurring in S or C. Then S |= C
holds iff Cσ is an implicate of S.

832

Prime Implicate Generation in Equational Logic

Proof. The direct implication is trivial: if S |= C, then necessarily S |= Cσ (by definition
of the semantics of universal quantifiers), thus Cσ is an implicate of S, by definition of the
notion of an implicate. For the other direction, assume that S |= Cσ and S 6|= C. This
entails that there exist an interpretation I and a ground substitution θ of domain V(C)
such that I |= S and I 6|= Cθ. For every ground expression E (e.g., a literal, a clause. . .),
we denote by E′ the expression obtained from E by replacing all occurrences of the constant
symbols xσ (with x ∈ V(C)) by xθ. E′ is well defined since by hypothesis σ is injective on
V(C). Let J be the relation defined as follows: (t, s) ∈ J iff (t′, s′) ∈ I. It is easy to check
that J is a congruence, and that, for every clause D, J |= D iff I |= D′. Since C contains no
constant symbol of the form xσ, we have (Cσ)′ = Cθ; thus J |= Cσ ⇔ I |= Cθ. Therefore
J 6|= Cσ. Since S |= Cσ, this entails that J 6|= S, hence that there exist a substitution
η and a clause D ∈ S such that J 6|= Dη, i.e., such that I 6|= (Dη)′. Since S (hence D)

contains no constant symbol of the form xσ, we have (Dη)′ = Dη′, where xη′
def
= (xη)′, for

every x ∈ V(D). This entails that I 6|= Dη′, which contradicts the fact that I |= S.

Thanks to Proposition 2.10, non-ground implicates can be computed from ground impli-
cates, simply by replacing all constant symbols not occurring in the original clause set by
fresh variables3 (see also Remark 4.16).

3. Handling Ground Clauses Modulo Equality

In this section we focus on ground clauses and provide syntactic characterizations of equiv-
alence and logical entailment between clauses in equational logic. Various notions of redun-
dancy are used in different contexts. For instance complexity results about the computation
of minimal representations of CNF formulæ are presented by Liberatore (2005). In the Su-
perposition calculus (Bachmair & Ganzinger, 1994), a clause is considered to be redundant
if it is entailed by smaller clauses (w.r.t. the ordering ≺), and it is possible to show that such
clauses can safely be discarded without threatening refutational completeness. In our case,
since we are interested in computing all prime implicates of a formula, an implicate is con-
sidered redundant iff it is not prime, i.e., if it is a logical consequence of another implicate.
In propositional logic, detecting clauses that are entailed by other clauses is an easy task,
because a clause C is a logical consequence of D iff either C is a tautology or every literal
in D also occurs in C. It is clear that this can be checked in polynomial time w.r.t. the size
of C and D. Furthermore, the only tautologies are the clauses containing complementary
literals, which is straightforward to test, and two non-tautological clauses are equivalent iff
they are identical (up to AC). In equational logic, these properties do not hold anymore:
for example, a 6' b ∨ f(a) ' f(b) is a tautology, and e 6' b ∨ b 6' c ∨ f(a) ' f(b) is entailed
by e 6' c ∨ a ' c. Moreover, a clause may admit several (sometimes exponentially many)
equivalent forms, for example,

∨n
i=1 ai 6' bi ∨ f(a1, . . . , an) ' c is equivalent to any clause

of the form
∨n
i=1 ai 6' bi ∨ f(d1, . . . , dn) ' c, where for all i = 1 . . . , n, di ∈ {ai, bi}. In this

section, we devise a new criterion that generalizes subsumption to test logical entailment,
as well as a way to normalize clauses up to equivalence.

3. This requires that terms containing such constants must be allowed as implicates, which of course
increases the search space.

833

Echenim, Peltier & Tourret

3.1 Testing Logical Entailment Between Ground Equational Clauses

We associate each clause C with an equivalence relation ≡C on terms. Intuitively, two terms
t and s are in relation in ≡C iff the equation t ' s is a logical consequence of the negation
of C. The C-representative of a term t is then the smallest (according to the ordering ≺)
term that is equivalent to t. This notion extends to equations and clauses. Formally:

Definition 3.1 Given a ground clause C, we define the relation ≡C on terms as follows:
for all terms s, t ∈ T(Σ), s ≡C t iff ¬C |= s ' t. It is clear that ≡C is a congruence relation;
for any term s ∈ T(Σ), the ≡C-equivalence class of s is called the C-congruence class of s
and denoted by [s]C .

The C-representatives of a term s, literal l and clause l1∨· · ·∨ ln are respectively defined
by:

s�C
def
= min

≺
([s]C),

(s ./ t)�C
def
= s�C ./ t�C ,

(l1 ∨ · · · ∨ ln)�C
def
= l1�C ∨ · · · ∨ ln�C .

Example 3.2 Let C = a 6' b ∨ b 6' c. We have ¬C = a ' b ∧ b ' c, thus by transitivity
¬C |= a ' c. Consequently, a ≡C b ≡C c. The terms a, b, c are in the same equivalence
class. Assuming that c ≺ b ≺ a, we deduce that a�C = b�C = c�C = c.

Example 3.3 Let C = a 6' b ∨ f(c) 6' d ∨ f(b) ' f(c). Since ¬C |= a ' b, we also have
¬C |= f(a) ' f(b). Moreover ¬C |= f(c) ' d. Given the order d ≺ c ≺ b ≺ a ≺ f(c) ≺
f(b) ≺ f(a), we have a�C = b�C = b, f(a)�C = f(b)�C = f(b) and f(c)�C = d�C = d. Thus
(f(b) ' f(c))�C = f(b) ' d.

The following propositions are straightforward consequences of the previous definition.

Proposition 3.4 We have (s ≡C t) iff (s 6' t |= C) iff (¬C |= s ' t).

Proof. By definition of ≡C , s ≡C t holds iff ¬C |= s ' t. By contrapositive this is equivalent
to s 6' t |= C.

Proposition 3.5 Let s be a term, l be a literal and C and D be two clauses, then:

¬C |= s ' s�C , ¬C |= l⇔ l�C , and ¬C |= D ⇔ D�C .

Proof. By definition of the notion of a C-representative, we have s�C ∈ [s]C , hence s ≡C
s�C . By definition of ≡C , this means that ¬C |= s ' s�C . The literal l is of the form
s ./ t with ./∈ {', 6'}, and by definition l�C = (s�C ./ t�C). By the previous relation,
we have ¬C |= s ' s�C and ¬C |= t ' t�C , thus, ¬C |= (s ./ t) ⇔ (s�C ./ t�C), i.e.,
¬C |= l ⇔ l�C . The clause D is of the form l1 ∨ · · · ∨ ln, where l1, . . . , ln are literals.
By definition, D�C =

∨n
i=1 li�C . By the previous relation, ¬C |= li ⇔ li�C for all i, and

¬C |= D ⇔ D�C .

834

Prime Implicate Generation in Equational Logic

The next proposition states that it is possible to check that a positive ground clause C is a
logical consequence of a set of unit clauses S by testing every equation in C independently.
This property does not hold if the clause is not positive, for instance the empty clause set
entails the tautology (a ' b ∨ a 6' b) but entails neither a ' b nor a 6' b.

Proposition 3.6 Let S = {ui ' vi | i ∈ {1 . . . k}} be a set of unit positive clauses. If S |=∨n
i=1(ti ' si) where t1, . . . , tn, s1, . . . , sn are ground terms, then there exists j ∈ {1 . . . n}

such that S |= tj ' sj.

Proof. Assume that S |=
∨n
i=1(ti ' si). Let I be the interpretation such that t =I s iff

t =I′ s holds for every model I ′ of S. Note that I is a congruence, as it is an intersection
of congruences. By definition we have I |= ui ' vi for every i ∈ {1 . . . n}, thus I |= S |=∨n
i=1(ti ' si), and there exists j ∈ {1 . . . n} such that I |= tj ' sj . This entails that
I ′ |= tj ' sj for every model I ′ of S, thus S |= tj ' sj .

The next lemma shows that, unless C is a tautology, the relation ≡C depends only on the
negative literals in C (if C is a tautology then ¬C is unsatisfiable hence t ≡C s holds for
all terms t and s).

Lemma 3.7 Let C and D be two non-tautological ground clauses. The following properties
hold:

1. If C− = D− then ≡C and ≡D are identical; hence E�C = E�D holds for every expres-
sion E. In particular, ≡C and ≡C− are identical.

2. If C− = 2 then ≡C is the identity relation, thus E�C = E for every expression E.

3. The inclusion ≡D ⊆ ≡C holds iff every negative literal in D�C is a contradiction.

Proof. We prove that if C is not a tautology then ≡C and ≡C− are identical. Note that
¬C |= ¬C− thus ≡C− ⊆ ≡C , we now show that ≡C ⊆ ≡C− . Let t and s be two terms
such that t ≡C s. Then ¬C |= t ' s, thus ¬C− ∧ ¬C+ |= t ' s, i.e., ¬C− |= C+ ∨ t ' s.
By Proposition 3.6 we have either ¬C− |= C+ or ¬C− |= t ' s. In the former case C is a
tautology which contradicts our hypothesis. We deduce that ¬C− |= t ' s and t ≡C− s.

Item 1 follows immediately from the previous property. If C− = 2 then ≡C=≡2 and by
definition ≡2 is the identity relation. If ≡D ⊆ ≡C then for every negative literal t 6' s ∈ D,
we have t ≡D s hence t ≡C s and t�C = s�C . Conversely, assume that for every negative
literal t 6' s ∈ D, we have t�C = s�C . Then ¬C |= t ' s holds for all t 6' s ∈ D, thus
¬C |= ¬D−, and ≡D ⊆ ≡C .

We now define an adapted notion of subsumption for equational clauses.

Definition 3.8 Let C,D be two non-tautological ground clauses. The clause D e-subsumes
C, written D ≤e C, iff the two following conditions hold:

1. ≡D ⊆ ≡C ,

2. for every positive literal l ∈ D, there exists a positive literal m ∈ C such that m�C−∨lc
is a tautology.

835

Echenim, Peltier & Tourret

If S, S′ are sets of clauses, we write S ≤e C if there is a clause D ∈ S such that D ≤e C,
and we write S ≤e S

′ if ∀C ∈ S′, S ≤e C.

Intuitively, testing whether D |= C is performed by verifying that ¬C |= ¬D. To this
purpose, we first check that all equations in ¬D are entailed by ¬C, which can be done by
verifying that ≡D ⊆ ≡C holds. Then, we consider the negative literals t 6' s in ¬D. We
should have ¬C |= t 6' s, i.e., ¬C− ∧ t ' s |= C+, which is equivalent by Proposition 3.6 to
¬C− ∧ t ' s |= m for some m ∈ C+; and this is the case iff m�C−∨lc where l = t ' s is a
tautology. We provide an example illustrating both conditions.

Example 3.9 Let C = a 6' b ∨ b 6' c ∨ f(c) ' f(d), D = a 6' c ∨ c ' d, and assume
d ≺ c ≺ b ≺ a. By definition, we have a ≡C b ≡C c, hence ≡D ⊆ ≡C . Consider the literal
l = c ' d in D and let m = f(c) ' f(d). We have C− ∨ lc = a 6' b ∨ b 6' c ∨ c 6' d, hence
a, b, c, d are all equivalent w.r.t. ≡C−∨lc. Thus m�C−∨lc = f(d) ' f(d) is a tautology, and
D e-subsumes C.

Theorem 3.10 Let C and D be two non-tautological ground clauses. We have D |= C iff
D ≤e C.

Proof. First assume that D |= C. Consider a negative literal l = s 6' t in D. We have
¬C |= ¬D |= lc, thus t�C = s�C by Proposition 3.4, and l�C is a contradiction. By Lemma
3.7 (3), we deduce that ≡D ⊆ ≡C . Now consider a positive literal l ∈ D. By hypothesis
¬C |= lc, thus ¬C− ∧ ¬C+ |= lc and ¬C− ∧ l |= C+. By Proposition 3.6 we deduce that
there exists m ∈ C+ such that ¬C− ∧ l |= m, i.e., by Definition 3.1, m�C−∨lc is a tautology.

For the converse implication, we prove that every literal in D entails C. If s 6' t ∈ D,
then since s ≡D t, we deduce that s ≡C t and by Proposition 3.4, s 6' t |= C. If s ' t ∈ D,
then by hypothesis there is a literal u ' v ∈ C such that u�C−∨s 6't = v�C−∨s 6't. It follows
that ¬(C− ∨ s 6' t) |= u ' v, hence s ' t |= (C− ∨ u ' v) |= C.

Example 3.11 Given the order a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, let C = e 6' b ∨
b 6' c ∨ f(a) ' f(b), D = e 6' c ∨ a ' c, and let l = e 6' c and m = a ' c be the literals of
D. We have l�C = b 6' b because [b]C = {b, c, e} and min≺([b]C) = b. Moreover the literal
f(a) ' f(b) ∈ C is such that (f(a) ' f(b))�C∨mc = f(a) ' f(a), which, by Theorem 3.10,
proves that D |= C.

3.2 A Normal Form for Ground Equational Clauses

The following definition introduces the notion of a normalized clause, which in particular
permits to efficiently test whether a clause is tautological and whether two clauses are
equivalent. The intuition underlying this definition is that the relation ≡C can be defined
in a canonical way by stating that each term t is mapped to its normal form t�C , which is
expressed by the negative literal t 6' t�C when t 6= t�C . Afterwards, each positive literal can
be replaced by its normal form, and the literals that are redundant w.r.t. substitutivity can
be removed. For example, the literal a ' b is redundant in f(a) ' f(b) ∨ a ' b because
f(a) ' f(b) ≡ a ' b ∨ f(a) ' f(b).

Definition 3.12 A ground clause C is normalized if:

836

Prime Implicate Generation in Equational Logic

1. every literal l in C is such that l�C\l = l;

2. there are no two distinct positive literals l, m in C such that m�lc∨C− is a tautology;

3. C contains no literal of the form t 6' t.

Example 3.13 Using the ordering a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, the clause
C = c 6' b ∨ e 6' b ∨ f(b) ' f(a) is normalized.

Proposition 3.14 If C is a normalized clause, then each literal in C occur exactly once in
C.

Proof. This follows immediately from Item 1 of Definition 3.12 for negative literals and Item
2 for positive literals.

Proposition 3.15 A normalized clause C is a tautology iff C contains a tautological literal.

Proof. If C is a tautology, then ¬C− |= C+, hence by Proposition 3.6 there exists a literal
l of the form s ' t in C+ such that ¬C− |= l. By Proposition 3.4 we have s�C = t�C , and
since C is normalized, we deduce that l�C = l�C\l = l, and that the latter is a tautological
literal.

The proof that non-tautological normalized clauses that are equivalent are identical
relies on a ground rewriting system that is associated with normalizing clauses.

Definition 3.16 Let C be a normalized clause. The rewriting system RC associated with
C is defined by:

RC
def
= {t→ s | t 6' s ∈ C ∧ s ≺ t} .

The rules in RC are ordered according to the lexicographic extension of ≺.

By construction, since C is normalized, RC is orthogonal. Furthermore, if t →RC s then
t � s, which entails that RC is terminating, hence convergent by Proposition 2.5. We denote
by t�RC the RC-normal form of t; note that t�RC = t�C .

Proposition 3.17 Let C be a normalized clause and t be a term in T(Σ). The term t�RC
is obtained from t by using only rules of RC that have a left-hand side smaller or equal to t.

Proof. To compute t�RC , rewriting rules can only be applied on t or its subterms. All the
subterms of t are smaller than t by ≺ and by definition of RC , a rewriting step always
replaces a term by a smaller one.

Theorem 3.18 Two non-tautological equivalent and normalized clauses are identical. Fur-
thermore, for any non-tautological ground clause C, there exists a normalized clause equiv-
alent to C, and this clause is the smallest ground clause equivalent to C.

837

Echenim, Peltier & Tourret

Proof. Consider two non-tautological, equivalent and normalized clauses C1 and C2. Since
C1 and C2 are equivalent, ≡C1 and ≡C2 are identical.

We first show that C1
− = C2

−. We denote by R1 and R2 the rewriting systems as-
sociated with C1 and C2 respectively. If C1

− 6= C2
−, then R1 6= R2. We consider the

smallest rule t→ s that does not appear in both rewriting systems; w.l.o.g. we assume that
t → s ∈ R1 and t → s 6∈ R2, hence that t 6' s ∈ C1. Since C1 and C2 are equivalent and
t�R1 = s, we also have t�R2 = s. By Proposition 3.17, the left-hand sides of the rules used
to rewrite t are smaller or equal to t, and since t is eventually rewritten into s in R2, there
must be at least one rule u → v in R2 that can be applied to t; t is thus of the form t[u].
If u is a strict subterm of t, then u → v is smaller than t → s and by hypothesis, u → v
occurs in R1, so that u 6' v ∈ C1. But in this case, (t 6' s)�C1\t6's and t 6' s are distinct,
which contradicts Point 1 of Definition 3.12. Otherwise, we must have u = t and t � v � s.
But then t�R2 = v 6= s, a contradiction.

We now show that C1
+ = C2

+. By Theorem 3.10 we have C1 ≤e C2 and C2 ≤e C1.
Let l1 be a positive literal in C1. Since C1 ≤e C2, there exists a literal l2 in C2 such that
l2�l1c∨C2

− is a tautology, i.e., l1∧¬C2
− |= l2; hence l1 |= C2

− ∨ l2. Similarly, since C2 ≤e C1

and l2 ∈ C2, there is a positive literal m1 in C1 such that m1�l2c∨C1
− is a tautology, so that

l2 |= C1
− ∨ m1. We deduce that

l1 |= C2
− ∨ l2 |= C2

− ∨ C1
− ∨m1 ≡ C1

− ∨m1,

and therefore, ¬C1
−∧ l1 |= m1 and m1�C1

−∨l1c is a tautology. By Point 2 of Definition 3.12,

we must have m1 = l1. From l1 |= C2
− ∨ l2 and l2 |= C1

− ∨ l1, we deduce that l1�C1
|= l2�C1

and l2�C2
|= l1�C2

, i.e., l1�C1
≡ l2�C2

(because C1
− = C2

−) and so either l1�C1
and l2�C2

are
both tautological or l1�C1

= l2�C2
. But C1 and C2 are non-tautological, thus necessarily

l1 = l2. We conclude that C1
+ = C2

+.

Now, consider a non-tautological ground clause C that is not normalized. We show that
there exists a ground clause equivalent to C and strictly smaller than C (then the proof
follows by an immediate induction).

• If C contains two positive literals l and m such that mlc∨C− is a tautology, then
removing the literal l yields a smaller equivalent clause.

• If C contains a literal l such that l�C\l 6= l then replacing this literal with l�C\l yields
a smaller equivalent clause.

• Removing literals of the form t 6' t yields a smaller equivalent clause.

Definition 3.19 For every non tautological ground clause, we denote by C↓ the (unique)
normalized clause equivalent to C.

Example 3.20 The clause C = c 6' b ∨ e 6' b ∨ f(b) ' f(a) is normalized and equivalent
to the clauses c 6' b ∨ e 6' b ∨ f(c) ' f(a), c 6' b ∨ e 6' b ∨ f(e) ' f(a), c 6' e ∨ e 6' b ∨
f(b) ' f(a), etc.

838

Prime Implicate Generation in Equational Logic

4. An Abductive Superposition Calculus

We now present the calculus for generating implicates, named cSP. This calculus is based
on the Superposition Calculus SP (see Bachmair & Ganzinger, 1994), which is the most
efficient proof procedure for first-order logic with equality (see for instance Nieuwenhuis
& Rubio, 2001, or http://www.cs.miami.edu/~tptp/CASC/) and forms the basis of the
most powerful theorem provers currently available (McCune, 2010; Schulz, 2013; Voronkov,
1995; Weidenbach, Afshordel, Brahm, Cohrs, Engel, Keen, Theobalt, & Topic, 2001). The
calculus can be seen as a refinement of the well-known Resolution calculus (Robinson, 1965),
tuned to handle equations efficiently. The key inference rule is the Superposition rule, which
replaces equals by equals, and for efficiency, equations are oriented in such a way that a
term may be replaced only by smaller terms. The principle underlying cSP is to apply
the inference rules of SP to the set of clauses under consideration along with ground unit
clauses that are added during proof search and that act as hypotheses. The hypotheses
that permit the generation of the empty clause are extracted: they represent the negation
of an implicate. In order to keep track of the hypotheses that were used to derive the empty
clause, they are attached to standard clauses as constraints. Thus, cSP is an adaptation
of SP to so-called constrained clauses, along with inference rules that permit to generate
additional hypotheses.

Before introducing the formal definition of cSP, we provide an example that should give
an intuitive understanding of this calculus.

Example 4.1 Consider the clause set: S = {f(a) ' c, f(b) ' d, c 6' d}. It easy to check
that a 6' b is an implicate of S. Indeed, by contradiction, for every interpretation I such
that I |= S and I |= a ' b, we have f(a) =I f(b), thus by the first two clauses we
deduce that c =I d, which contradicts the third clause. Consequently, S |= a 6' b. We now
show how this clause can be derived from S using the principles underlying cSP, assuming
d ≺ c ≺ b ≺ a. We first remark that, since b ≺ a, a can be rewritten to b in the clause
f(a) ' c, provided the equation a ' b is added as a new hypothesis. This is asserted by
deriving the constrained clause [f(b) ' c | a ' b], which is interpreted as an implication:
a ' b ⇒ f(b) ' c. Afterwards, the clause [d ' c | a ' b] can be derived by replacing f(b)
by d, using the second clause in S. We may use the equality d ' c to replace c by d in the
third clause in S, yielding [d 6' d |a ' b]. Note that the constraint a ' b is propagated from
the premise to the conclusion of the rule. Finally, the contradictory literal d 6' d can be
deleted, yielding the constrained clause [2 |a ' b]. This clause means that the empty clause
is derivable from S if a ' b is added as an hypothesis. By soundness, this implies that
S ∪ {a ' b} is unsatisfiable, hence that a 6' b is an implicate of S.

All the rules applied in the previous example are the usual inference rules of SP (adapted
to constrained clauses), except the first one which was used to assert a new hypothesis in
the constraint part of the clause – the corresponding rule is called Assertion. In this case,
the asserted hypothesis was positive: an equation a ' b was added as a hypothesis so that
a could be rewritten into b. We provide another example, showing that the assertion rule
may be applied also on negative literals.

Example 4.2 Consider the clause set: S = {a ' b, f(b) ' c}. It is clear that f(a) ' c is
an implicate of S (it suffices to replace b by a in the second clause). However, assuming that

839

Echenim, Peltier & Tourret

c ≺ b ≺ a, this clause cannot be derived by the rules of the Superposition calculus because
a is strictly greater than b. The implicate is generated as follows. By adding the hypothesis
f(a) 6' c to the clause a ' b, we may derive [f(b) 6' c |f(a) 6' c], meaning that f(b) 6' c can
be derived from f(a) 6' c and S. Note that this time, the replacement is compatible with
the ordering on terms. Afterwards, the term f(b) can be replaced by c by using the second
clause in S, yielding a contradiction. We thus obtain the constrained clause [2 |f(a) 6' c],
meaning that f(a) ' c is indeed an implicate of S.

4.1 Constrained Clauses

We begin by defining the syntax and semantics of constrained clauses.

Definition 4.3 A constraint is a set of ground literals, sometimes written as a conjunction.
The empty constraint is denoted by >. If X = {l1, . . . , ln} then X c denotes the clause∨n
i=1 l

c
i . We denote by X↓ the constraint ¬(X c

↓), and we say that X is normalized if
X↓ = X .

A constrained clause (or c-clause) is a pair [C | X] where C is a clause and X is a
constraint. The c-clause [C | >] is simply represented as C, and referred to as a standard
clause.

Example 4.4 The expression [f(a) ' b |a ' b, b ' c] is a constrained clause. If c ≺ b ≺ a
then (a 6' b ∨ b 6' c)↓ = a 6' c ∨ b 6' c, hence {a ' b, b ' c}↓ = {a ' c, b ' c}.

From a semantic point of view, a constrained clause [C | X] is equivalent to the standard
clause X c ∨ C. More specifically, the intended meaning of a c-clause [C | X] is that the
clause C can be inferred provided the literals in X are added as axioms to the considered
clause set.

Remark 4.5 Note that, as stated in Definition 4.3, the constraint part of a c-clause is
always ground. This is sufficient in our context: since implicates are universally quantified
formulæ, their negation is necessarily ground (after Skolemization). See also Proposition
2.10 and the following example.

Example 4.6 Consider the clause set: S = {p(x, y),¬p(x, y) ∨ q(x, y)}. It is clear that
the (non-ground) clause q(x, y) is an implicate of S. The negation of C is ¬∀x, y q(x, y) ≡
∃x, y ¬q(x, y) (since variables are implicitly universally quantified in clauses), and its Skolem-
ized normal form is ¬q(a, b), where a, b are new Skolem constants. The calculus cSP gen-
erates the constrained clause [2 | ¬q(a, b)], which can be transformed afterwards into the
implicate q(a, b) or, because a, b do not occur in S, ∀x, y q(x, y).

4.2 Inference Rules

The calculus cSP is defined by a set of inference rules that are represented in Figure 1.
The calculus is parameterized by the ordering � on terms and by a selection function sel
mapping every clause C to a subset of C, where sel(C) contains either all maximal literals
in C or at least one negative literal. A literal is selected in C if it occurs in sel(C).

The calculus is also parameterized by a set of constraints X satisfying the following
conditions:

840

Prime Implicate Generation in Equational Logic

1. X is not empty.

2. X is ⊆-closed, i.e., for every X ∈ X and constraint Y, if Y ⊆ X then Y ∈ X.

3. Every constraint in X is normalized.

Note that Conditions 1 and 2 together imply that > ∈ X. Condition 3 is not restrictive
since any constraint is equivalent to a normalized constraint. Moreover, if X is normalized
then any subset of X is also normalized.

Intuitively, the set X allows a user to control the form of the candidate implicates. For
instance the user may be interested only in positive implicates, or in implicates of small
size (i.e., of a size up to some fixed k ∈ N). Instead of filtering the implicates a posteriori,
it is more efficient to block the generation of clauses with constraints that do not fulfill the
required property. The condition on the implicates can also be of a semantic nature, for
example, the user may want to obtain all implicates that entail some formula (then X is the
set of constraints that are logical consequences of the negation of the considered formula).
All these conditions fulfill the above restrictions. It is also clear that filters can be freely
combined, i.e., if X1 and X2 fulfill Conditions 1-3 above, then so do X1 ∩ X2 and X1 ∪ X2.

The c-Superposition, c-Factoring and c-Reflection rules are straightforward adaptations
of the usual rules of SP to c-clauses: the constraints of the premises are added to the
conclusion. The Positive and Negative Assertion rules are the ones that permit the addition
of new hypotheses as constraints to c-clauses.

The standard Superposition calculus SP can be recovered from cSP by setting X to
{>}, in which case the Assertion rules never apply and all constraints are >.

We provide examples of applications of each rule.

Example 4.7 Consider the c-clauses:

1 [f(a, x) ' c |a ' b]
2 [f(y, b) ' d |a ' b]
3 [f(y, b) ' d |b ' c]
4 [f(a, x) 6' f(y, b) ∨ x 6' b |a ' b]
5 [f(a, x) ' b ∨ f(y, b) ' b |>]

We assume that d ≺ c ≺ b ≺ a, that sel(C) is the set of maximal literals in C and that X
is the entire set of normalized constraints.

The c-Superposition rule applies on c-clauses 1 and 2, with unifier σ = {x 7→ b, y 7→ a}
(since we have f(a, b) � a, b, c, d) and the c-clause [d ' c |a ' b] is derived. In contrast, the
rule does not apply on c-clauses 1 and 3. Indeed, the constraint {a ' b, b ' c} obtained by
taking the union of the constraints of 1 and 3 is not normalized hence does not occur in X.

The c-Reflection rule applies on c-clause 4, yielding: [b 6' b | a ' b]. Afterwards the
rule may be applied again on the literal b 6' b, yielding [2 | a ' b]. Note that the rule
does not apply on the literal x 6' b of the initial clause 4 because it is not maximal (since
f(a, x) � x, b).

The c-Factorization rule applies on c-clause 5, yielding: [f(a, b) ' b ∨ b 6' b |>].
The Positive Assertion rule applies on c-clause 1. Taking u = f(a, x), t = t′ = a and

s = b, we get [f(b, x) ' c |a ' b]. Note that we cannot apply the rule with a term s distinct

841

Echenim, Peltier & Tourret

from b because the obtained constraint {a ' b, a ' s} would not be normalized. For the same
reason the rule cannot be applied on the term f(a, x). It cannot be applied on x because this
term is a variable, or on c because the term is not maximal.

The Positive Assertion rule applies in several ways on c-clause 5, for instance, taking
u = f(a, x), t = t′ = a and t = c, we get: [f(c, x) ' b ∨ f(y, b) ' b |a ' c].

The Negative Assertion rule also applies on c-clause 5. For instance, taking u =
g(f(a, b)), v = d, t = f(a, x), t′ = f(a, b), and s = b, we obtain [g(b) 6' d ∨ f(y, b) ' b |
g(f(a, b)) 6' d].

Remark 4.8 The term s′ in the Positive Assertion and the term u in the Negative As-
sertion rules are arbitrary. There are infinitely many terms that can be used with these
inference rules. Let us consider for example the c-clause [b ' a | X], defined over a signa-
ture containing the unary function symbol f . In this case, any term of the form fn(b) for
n ∈ N can all be introduced in the Negative Assertion rule. This is why in practice it is
critical to limit the amout of usable terms by imposing restictions on the set X

4.3 Redundancy Criterion

An important feature of the Superposition calculus is the availability of a general criterion
for detecting redundant clauses. In this context, clauses are considered to be redundant if
they can be safely discarded without threatening refutational completeness. In the present
section, we adapt this criterion to cSP. The definition is similar to that by Bachmair and
Ganzinger (1994), except that the constraints must be taken into account. In SP, a clause is
redundant if it is entailed by smaller clauses. In cSP, it is also required that the constraints
of the entailing clauses are included in the constraint of the considered clause. Furthermore,
the literals occurring in this constraint can also be used in the entailment test, provided
they are smaller than the considered clause. Formally:

Definition 4.9 If X is a constraint and C is a clause, we denote by X|�C the set of literals
in X that are smaller than or equal to C.

A c-clause [C | X] is redundant w.r.t. a set of c-clauses S if either X is unsatisfiable
or for every ground substitution σ of the variables in C, there exist c-clauses [Di | Yi] ∈ S
(1 ≤ i ≤ n) and ground substitutions θi (1 ≤ i ≤ n) such that:

• ∀i ∈ {1 . . . n}, Cσ � Diθi and Yi ⊆ X ,

• X |�Cσ, D1θ1, . . . , Dnθn |= Cσ.

Example 4.10 Assume that d ≺ c ≺ b ≺ a. The c-clause [f(a, b) ' c ∨ a 6' b ∨ a 6' c |
c ' d ∧ a ' b] is redundant w.r.t. S = {[a 6' b ∨ b 6' c | c ' d]}. Indeed, it is clear that we
have a 6' b∨ b 6' c |= f(a, b) ' c∨ a 6' b∨ a 6' c, a 6' b∨ b 6' c ≺ f(a, b) ' c∨ a 6' b∨ a 6' c,
and {c ' d} ⊆ {c ' d, a ' b}. However, the c-clause [a 6' c ∨ b 6' c |c ' d] is not redundant
w.r.t. S, although a 6' b ∨ b 6' c |= a 6' c ∨ b 6' c, because a 6' b ∨ b 6' c � a 6' c ∨ b 6' c.
Similarly, [a 6' b ∨ b 6' c |>] is not redundant w.r.t. S, because {c ' d} 6⊆ >.

The c-clause [a ' b | a ' c ∧ b ' c] is redundant w.r.t. {[a ' d | a ' c], [b ' d | b ' c]},
because a ' d, b ' d |= a ' b; a ' d, b ' d ≺ a ' b and {a ' c} ∪ {b ' c} ⊆ {a ' c, b ' c}.

The c-clause [f(a) ' f(b) |a ' b] is redundant w.r.t. the empty c-clause [2 |>], because
a ' b|�f(a)'f(b) = (a ' b) |= (f(a) ' f(b)).

842

Prime Implicate Generation in Equational Logic

c-Superposition
[t ' s ∨ C |X] [u[t′] ./ v ∨D |Y]

[u[s] ./ v ∨ C ∨D |X ∪ Y]σ
(i), (ii), (iii),

c-Factoring
[t ' u ∨ t′ ' v ∨ C |X]

[t ' u ∨ u 6' v ∨ C |X]σ
(iv), (ix)

c-Reflection
[t 6' t′ ∨ C |X]

[C |X]σ
(v), (ix)

Positive Assertion
[u[t] ./ v ∨ C |X]

[u[s] ./ v ∨ C |X ∧ t′ ' s]σ
(vi), (vii)

Negative Assertion
[t ' s ∨ C |X]

[u[s] ./ v ∨ C |X ∧ u[t′] ./ v]σ
(ii), (viii), (x)

where the following conditions hold:

For all rules: σ = mgu(t, t′);

(i): (u[t′] ./ v)σ ∈ sel((u[t′] ./ v ∨D)σ) and vσ 6� u[t′]σ;

(ii): (t ' s)σ ∈ sel((t ' s ∨ C)σ) and sσ 6� tσ;

(iii): X ∪ Y ∈ X;

(iv): (t ' u)σ ∈ sel((C ∨ t ' u ∨ t′ ' v)σ);

(v): (t ' t′)σ ∈ sel((t ' t′ ∨ C)σ);

(vi): s ≺ t′, vσ 6� u[t]σ and (u[t] ./ v)σ ∈ sel((u[t] ./ v ∨ C)σ);

(vii): X ∧ t′ ' s ∈ X;

(viii): v ≺ u[t′];

(ix): X ∈ X;

(x): X ∧ u[t′] ./ v ∈ X.

Figure 1: Inference Rules for cSP.

Remark 4.11 Note that constraints are compared using set inclusion and not logical entail-
ment. For instance the c-clause [a ' b |f(c) ' f(d)] is not redundant w.r.t. the set {[a ' b |
c ' d]}, although c ' d |= f(c) ' f(d). Using logical entailment instead of set inclusion
would make the redundancy criterion more general (in the sense that more c-clauses would
be detected as redundant), unfortunately it would also make the calculus incomplete. More
precisely, this relaxed notion of redundancy is not compatible with the assumption that the
constraints in X are normalized. Experiments show that this assumption makes the calculus
more efficient, even with a more restrictive version of the redundancy elimination rule.

843

Echenim, Peltier & Tourret

Proposition 4.12 Let C be a ground clause. If C↓ is redundant w.r.t. S, then C is redun-
dant w.r.t. S.

Proof. This follows immediately from the fact that C � C↓ and C↓ |= C.

4.4 Soundness and Completeness of cSP

In this section, we establish the soundness and completeness of cSP. More precisely, we
prove that a clause C is a prime implicate of S iff the c-clause [2 |¬C] can be derived from
S using the rules in cSP. The redundancy criterion of Section 4.3 is taken into account.
We thus introduce the notion of a saturated set, and we show that saturated sets obtained
from S necessarily contain all prime implicates of S.

Definition 4.13 A set of c-clauses S is cSP-saturated if every c-clause deducible by the
rules of cSP (in one step) is redundant w.r.t. S. A cSP-saturation of a set of c-clauses S
is a set of c-clauses S∗ such that: (i) every c-clause in S is redundant w.r.t. S∗, (ii) every
c-clause in S∗ is obtained from those in S by a finite number of applications of the rules in
cSP, (iii) S∗ is cSP-saturated.

Lemma 4.14 Let [C |X] be a c-clause derived (in one step) from premises [Di |Yi], where
i ∈ {1 . . . n}. Then Yi ⊆ X for all i ∈ {1 . . . n}, X ⊆ X and {D1, . . . , Dn,X} |= C.

Proof. It is easy to verify that this property holds for each inference rule (using the fact
that, by the application conditions (iii), (vii), (ix), (x), in Figure 1, an inference is allowed
only if the constraint of the conclusion is in X).

Lemma 4.14 permits to deduce the following soundness result:

Lemma 4.15 Let S be a set of standard clauses and let S∗ be a cSP-saturation of S. For
every c-clause [C |X] ∈ S∗, we have S ∪ X |= C and X ∈ X. In particular, if C = 2, then
S |= ¬X , i.e., ¬X is an implicate of S.

Proof. The proof is a straightforward induction on the length of the derivation.

Remark 4.16 Recall that if C is an implicate of S, then, as shown in Proposition 2.10, the
non-ground clause D obtained from C by replacing each constant not occurring in S by a
new variable is also an implicate of S. This remark means that it is possible to use cSP to
compute non-ground implicates: it is sufficient for X to contain the Skolemized form of the
corresponding candidates (i.e., X should contain constraints with constants not occurring in
S).

We now prove that cSP is deductive-complete, i.e., that it permits to generate every
prime implicate of a given set of clauses. The proof relies on the following definition and
proposition.

Definition 4.17 For every set of c-clauses S and for every constraint X , we denote by S|X
the set of standard clauses D such that [D |Y] ∈ S and Y ⊆ X .

844

Prime Implicate Generation in Equational Logic

Proposition 4.18 Let S be a set of c-clauses and X be a satisfiable constraint. If a c-clause
[C |Y] is redundant w.r.t. S and Y ⊆ X , then C is redundant w.r.t. S|X ∪ X .

Proof. By definition of c-clause redundancy (Definition 4.9), there are two cases to consider.

• If Y is unsatisfiable, then since Y is a conjunction of literals and Y ⊆ X , the constraint
X is also unsatisfiable which contradicts the hypothesis of the lemma.

• Otherwise, for every ground substitution σ, there exist c-clauses [Di | Yi] ∈ S (1 ≤
i ≤ n) and ground substitutions θi (1 ≤ i ≤ n) such that ∀i ∈ {1 . . . n}, Diθi � Cσ,
Y1, . . . ,Yn ⊆ Y, and Y|�Cσ, D1θ1, . . . , Dnθn |= Cσ. Since Y ⊆ X , we deduce that
∀i ∈ {1 . . . n} , Yi ⊆ X , hence Di ∈ S|X . Thus, Y|�Cσ, D1θ1, . . . , Dnθn |= Cσ,
Y|�Cσ, D1θ1, . . . , Dnθn � Cσ and Y|�Cσ ∪{D1, . . . , Dn} ⊆ S|X ∪X ; we conclude that
C is redundant w.r.t. S|X ∪ X .

Theorem 4.19 Let X be a satisfiable constraint in X and let S be a set of standard clauses
such that S |= X c. If S∗ is a cSP-saturation of S, then there exists a constraint Y ⊆ X
such that [2 |Y] ∈ S∗.

Proof. Let S′ = S∗|X ∪ X . We remark that S′ is unsatisfiable: indeed, S∗|> |= S since all
the standard clauses in S must be redundant w.r.t. S∗|>; furthermore, S∗|> ⊆ S∗|X , so that
S′ |= S∗|> ∪ X |= S ∪ X |= {X c} ∪ X .

We now prove that S′ is saturated w.r.t. SP (assuming that the ordering ≺ is the same
for both calculi and that if l is selected in [C |X] for cSP, then l is selected in C for SP).
We only consider the case where the Superposition rule is applied, the proof for the other
inference rules is similar. Let C1 = t ' r∨P1 and C2 = u ./ v∨P2 be two clauses occurring
in S′, where t′ = u|p, σ = mgu(t, t′), rσ 6� tσ, vσ 6� uσ and (t ' r)σ and (u ./ v)σ are

selected in C1σ and C2σ respectively. Let D
def
= (u[r] ./ v∨P1∨P2)σ be the clause generated

by a Superposition inference from C1 and C2. We distinguish several cases.

• If both C1 and C2 occur in S∗|X , then S contains a c-clause of the form [t ' r ∨ P1 |
X1] and another of the form [u ./ v ∨ P2 | X2], where X1,X2 ⊆ X . It is clear that
the c-Superposition rule applies on these c-clauses, yielding [(u[r] ./ v ∨ P1 ∨ P2)σ |
X1 ∧ X2]. Since S∗ is a cSP-saturation of S by hypothesis, this c-clause is redundant
w.r.t. S∗, and we deduce by Proposition 4.18 that D is redundant w.r.t. S′.

• If C1 occurs in S∗|X and C2 occurs in X , then C2 = u ./ v and S∗ contains a c-clause
of the form [C1 | X1] where X1 ⊆ X . Then the Negative Assertion rule generates
[(u[r] ./ v ∨ P1) | X1 ∧ u ./ v]σ, and since S∗ is a cSP-saturation of S, this clause is
redundant w.r.t. S∗. Since X1 ∧ u ./ v ⊆ X , by Proposition 4.18, we deduce that
(u[r] ./ v ∨ P1)σ is redundant w.r.t. S′.

• If C1 occurs in X and C2 occurs in S∗|X , then the proof is similar to the previous
case, this time using the Positive Assertion rule.

• If both C1 and C2 occur in X , then X cannot be a normalized constraint, since by
Definition 3.1, (u ./ v)c

�X c\(u./v)c � (u[r] ./ v)c ≺ (u ./ v)c, which contradicts Point 1
of Definition 3.12.

845

Echenim, Peltier & Tourret

Since S′ is unsatisfiable and saturated, this set necessarily contains 2 by refutational com-
pleteness of SP, which entails that 2 ∈ S∗|X , hence the result.

The following theorem states the soundness and deductive completeness of cSP, w.r.t.
the set of implicates with a Skolemized negated form in X.

Theorem 4.20 Let S be a set of standard clauses and S∗ be a cSP-saturation of S. For
every X ∈ X, X c is an implicate of S iff S∗ contains a c-clause of the form [2 | X ′] with
X ′ ⊆ X .

Proof. If X c is an implicate of S then S |= X c and Theorem 4.19 gives the required result.
Conversely, if S∗ contains a c-clause [2 | X ′] where X ′ ⊆ X then the result is obtained by
using Lemma 4.15.

Remark 4.21 Note that the fact that every constraint in X is assumed to be normalized
strongly restricts the search space. For instance, when a � b � c � d � e, no rule will apply
on [a ' b | c ' d] and [a 6' b | c ' e] because the obtained constraint c ' d ∧ c ' e is not
normalized.

Example 4.22 The following example shows how to derive the implicate D = a 6' d ∨
f(c) ' f(b) from {c ' d, f(a) ' f(b)}, given the term ordering d ≺ c ≺ b ≺ a ≺ f(d) ≺
f(c) ≺ f(b) ≺ f(a).

1 [f(a) ' f(b) |>] (hyp)
2 [f(d) ' f(b) |a ' d] (Pos. AR, 1)
3 [f(d) 6' f(c) |a ' d ∧ f(c) 6' f(b)] (Neg. AR, 2)
4 [c ' d |>] (hyp)
5 [f(d) 6' f(d) |a ' d ∧ f(c) 6' f(b)] (Sup. 3, 4)
6 [2 |a ' d ∧ f(c) 6' f(b)] (Ref. 5)

The negation of the constraint of the last c-clause a ' d ∧ f(c) 6' f(b) is the implicate D.

5. Practical Algorithms for Redundancy Detection

In Section 4.3, an abstract criterion was introduced to characterize c-clauses that are re-
dundant in cSP, i.e., that are useless for deriving implicates. While such a criterion is
useful from a theoretical point of view, it does not provide any efficient way for storing the
derived sets of c-clauses and for detecting redundant c-clauses. In the present section, we
focus on ground clauses and we provide data-structures and algorithms for performing these
tasks. It is important to notice that these algorithms may be used for different purposes,
associated with slightly different (albeit strongly related) notions of redundancy.

• First, they can be used to store the generated implicates. Here, the stored objects
are clauses (without constraints) and redundant clauses are exactly those clauses that
are not prime or not normalized. A clause C is stored when the c-clause with empty
clausal part [2 |¬C] is derived.

846

Prime Implicate Generation in Equational Logic

• Second, they can be used to store constrained clauses generated during proof search.
A c-clause is then considered redundant if it satisfies the conditions of Definition 5.2
below. In particular, both the clause part and constraint must be stored and the
ordering restrictions must be taken into account.

In the remainder of the section, all the considered terms, clauses etc. are ground, unless
specified otherwise.

Remark 5.1 The well-known Herbrand theorem states that a set of first-order clauses S
is unsatisfiable if and only if there exists a finite set Sg of ground instances of clauses in S
that is unsatisfiable. There exist many algorithms to compute such a set Sg efficiently, effec-
tively reducing first-order satisfiability to ground satisfiability4. These algorithms range from
heuristic approaches (De Moura & Bjorner, 2007), used by SMT solvers with great practical
success, to refutationally complete procedures (see, e.g., Ganzinger & Korovin, 2003; Ge &
Moura, 2009), possibly for specific theories (Echenim & Peltier, 2012). Since Sg is a logical
consequence of S, every implicate of Sg is also an implicate of S, and these procedures can
be used also to generate implicates, at the cost of losing deductive-completeness (generating
complete sets of implicates is infeasible in first-order logic anyway, as explained in Section
2).

5.1 Constrained Clausal Trees

Instead of using the general notion of redundancy of Definition 4.9, which is hard to test
efficiently in practice, we employ a one-to-one redundancy criterion which can be seen as a
generalization of subsumption:

Definition 5.2 A c-clause [C |X] c-subsumes a c-clause [D |Y], written [C |X] ≤c [D |Y],
if C ≤e D, C � D and X ⊆ Y.5

Proposition 5.3 If [C |X] ≤c [D |Y] then [D |Y] is redundant with respect to {[C |X]}.

Proof. Since C ≤e D, by Theorem 3.10 we have C |= D; hence the result.

Note that, again, both parts of the c-clauses are handled in different ways: the inclusion
relation ⊆ used to compare constraints is clearly stronger than the e-subsumption relation
≤e used for clauses, even enriched with an ordering constraint. For instance, assuming
that d ≺ c ≺ b ≺ a, we have [d 6' c ∨ c ' a | >] ≤c [d 6' b ∨ c 6' b ∨ b ' a | >], but
[2 | d ' c ∧ c 6' a] 6≤c [2 | d ' b ∧ c ' b ∧ b 6' a]. As explained in Remark 4.11, comparing
constraints using logical entailment would make the calculus incomplete.

Since all considered clauses are ground, they can systematically be replaced by the
equivalent, normalized clauses; i.e., each c-clause [C |X] can be replaced by [C↓ |X]. This is
justified by the fact that C↓ is equivalent to and smaller than C, thus [C↓ |X] c-subsumes
[C | X]. We therefore assume that all the considered c-clauses are normalized and devise
data-structures and algorithms for storing and retrieving them efficiently.

Definition 5.4 We define a total ordering <π on literals as follows:

4. Due to usual theoretical limitations, the generated set of clauses is infinite in general.
5. See Definition 4.9 for the abstract redundancy criterion and Definition 3.8 for the definition of ≤e.

847

Echenim, Peltier & Tourret

• positive literals are all greater than negative ones;

• if l1 and l2 are literals with the same polarity then l1 <π l2 iff l1 ≺ l2.

Sets of constraints are stored in a trie data structure (Fredkin, 1960), formally defined as
follows.

Definition 5.5 A constraint tree is inductively defined as follows:

• > is a constraint tree.

• A given set of pairs {(li, Ti) | i ∈ {1 . . . n}}, such that l1, . . . , ln are pairwise distinct
ground literals and T1, . . . , Tn are constraint trees, is a constraint tree if, for every
i = 1, . . . , n, each time Ti contains a pair (l′, T ′), we have li <π l

′.

The set of constraints represented by a constraint tree T is denoted by C(T) and defined
inductively as follows:

C(T)
def
=

{
{>} if T = >,

{l ∧D | (l, T ′) ∈ T ∧D ∈ C(T ′)} otherwise.

Remark 5.6 Employing the ordering <π to constrain the order in which literals occur along
the branches of the trees has two uses:

• it limits the number of repetitions of the same literal,

• it simplifies the application of the redundancy elimination algorithms presented in
Section 5.2.

The first point can be enforced by using any total ordering on literals, but to ensure the
second point, the use of <π is a necessity.

Note that by definition C(∅) = ∅. As implied by the definition, leaves of constraint trees
can be either > or ∅, but in practice if a leaf is ∅ then the corresponding branch is irrelevant,
because by definition two constraint trees that only differ by branches with leaves that are
∅ represent the same sets of constraints. In other words, a pair (l, ∅) can be deleted from
the tree T without affecting C(T). The only exception is the empty tree, for which the root
is labeled with ∅.

The storage of constrained clauses is also based on a trie data-structure. It is similar to
that of constraints, except that at each leaf of the tree storing the clauses, a constraint tree
is appended to store the corresponding constraints.

Definition 5.7 A constrained clausal tree or c-tree is inductively defined as follows:

• If T is a constraint tree then the set {(�, T)} is a c-tree.

• If l is a literal and T is a c-tree then the set {(l, T)} is a c-tree when for all (l′, T ′) ∈ T ,
l <π l

′.

• If T1, T2 are c-trees such that every time (l, T ′1) ∈ T1 (resp. (�, T ′1) ∈ T1) and (l, T ′2) ∈
T2 (resp. (�, T ′2) ∈ T2) we have T ′1 = T ′2, then T1 ∪ T2 is a c-tree.

848

Prime Implicate Generation in Equational Logic

The set of c-clauses represented by a c-tree T is denoted by Cc(T) and defined inductively
as follows:

Cc(T) =

∅ if T = ∅{

[2 |X] | X ∈ C(T ′)
}

if T =
{

(�, T ′)
}{

[l ∨ C |X] | [C |X] ∈ Cc(T ′)
}

if T =
{

(l, T ′)
}

Cc(T1) ∪ Cc(T2) if T = T1 ∪ T2, T1 6= ∅ and T2 6= ∅.

A c-tree T is normalized if all the c-clauses in C(T) are normalized and non-tautological.

Example 5.8 The structure T in Figure 2 is a c-tree with the term order a ≺ b ≺ c ≺
g(c) ≺ g(e) ≺ f(c) ≺ f(d). For readability, the labels are associated with the nodes rather
than with the edges leading to them. Dotted lines denote the edges of the constraint trees
occurring inside the c-tree.

T

b ' a

�

f(a) ' c

g(b) 6' a

�

f(d) 6' f(c)

g(e) ' cc ' a

f(a) ' c

�

The clauses in Cc(T) are:

[g(b) 6' a ∨ f(a) ' c |>]
[g(b) 6' a |f(d) 6' f(c) ∧ c ' a]
[g(b) 6' a |f(d) 6' f(c) ∧ g(e) ' c]
[b ' a |f(a) ' c]

Figure 2: A Constrained Clausal Tree

Definition 5.9 Let T be a c-tree or a constraint tree.

size(T)
def
=

0 if T =

{
(�, T ′)

}
or T = {>},∑

(l,T ′)∈T

1 + size(T ′) otherwise.

Definition 5.10 Let T be a c-tree and let C be a clause. Assume that l <π l
′ holds for

all literals l and l′ occurring in C and T respectively. Then C.T is defined inductively as

follows: 2.T def
= T and (l ∨ C).T

def
= {(l, (C.T))} if l = min<π(l ∨ C).

5.2 Constrained Clausal Tree Operations

There are three main operations to perform on c-trees. The first one, called forward c-
subsumption, consists in checking whether a new c-clause is c-subsumed by a c-clause al-
ready stored in a c-tree. The second one, called backward c-subsumption, removes from a
c-tree all c-clauses that are c-subsumed by a given c-clause. The last one is the insertion
of a new c-clause into a c-tree. This last operation is straightforward and thus will not be
described here.

849

Echenim, Peltier & Tourret

5.2.1 Forward c-Subsumption

The forward c-subsumption algorithm is called isEntailed (see Algorithm 2). The new
c-clause is [C | X], the c-tree is T and the input clause N (initially empty) contains the
literals occurring in the parent nodes in the recursive calls. It is also necessary to keep
track of the negative literals of C in recursive calls after having used them a first time to
rewrite literals in the c-tree. They are stored in the input clause M , which is also initially
empty. During the traversal of the c-tree T , each branch (l, T ′) is dealt with differently
depending on the relation between l and the considered c-clause C.

• If it is clear that l |= M ∨C, then the exploration of the branch continues on T ′. This
entailment condition is tested by checking that l�M is a contradiction (if l is negative)
or that C�M∨lc contains a tautological literal (if l is positive). Such branches are
respectively stored into the sets T1 and T3 at Lines 4 and 16.

• If the relation between l and M ∨ C is not currently determined (because l is <π-
greater than the literal currently considered in C and thus may entail literals that
remain to be examined), then the minimal literal of C is added to M before restarting
the exploration of the branch. Such branches are grouped in T2 at Line 13.

• Lastly, if it is clear that l 6|= C, which is the case e.g. when l is ≤π-smaller than all
the literals in C, then the exploration of the branch is halted.

Note that the �-test is reduced to a simple comparison between standard clauses (since
the corresponding tree branch has already been explored), hence we do not detail the
corresponding algorithm. In contrast, the ⊆-test requires going through the constraint tree
associated with the clausal branch that has just been explored. This test is performed by
the isIncluded routine, which is detailed in Algorithm 1. This algorithm is a lot simpler
than isEntailed but its principle is the same, a depth-first traversal of the tree with
recursive calls deleting the literals one after the other until the inclusion becomes obvious
(or obviously false). In this algorithm, the branches (l, T ′) ∈ T are grouped and dealt
with in accordance with their relationship to m1 = min

<π
{m ∈ X}. If l = m1 then only the

inclusion of a branch of T ′ in X \ {m1} is tested at Line 9. Otherwise if l <π m1 then
clearly no branch of l.T ′ is included in X , and if m1 <π l, then it is possible that one of
these branches is included in X \ {m1}, which is tested at Line 13.

Example 5.11 To illustrate the functioning of these two algorithms, let us consider the
c-tree T of Figure 2 and the two c-clauses [C1 | X1] = [f(b) ' f(a) | a 6' d ∧ f(a) ' c] and
[C2 | X2] = [g(b) 6' a | c ' a]. To test whether there are clauses in T that subsume [C1 | X1]
and/or [C2 | X2], we call isEntailed([C1 | X1], T,2,2) and isEntailed([C2 | X2], T,2,2)
which return true and false respectively. The inner workings of these two calls are described
in Table 1 and 2 respectively (each line represents a recursive call).

The correctness and termination of isIncluded are stated in the following proposition.

Proposition 5.12 Let X be a constraint and let T be a constraint tree. The call to
isIncluded(X , T) terminates and isIncluded(X , T) = true iff there exists a constraint
Y ∈ C(T) such that Y ⊆ X .

850

Prime Implicate Generation in Equational Logic

Call Assignments & tests Next call(s)

isEntailed([C1 |X1], T,2,2) T1 ← ∅ line 17 (1)
m1 ← f(b) ' f(a)
T3 ← {(b ' a, Tβ)}

→ isEntailed([C1 |X1], Tβ,2, b ' a) (�, T ′β) ∈ Tβ Line 1

b ' a � f(b) ' f(a)

→→ isIncluded(X1, T
′
β) m1 ← a 6' d Line 13 (2)

T1 ← ∅
T2 ← T ′β

→→→ isIncluded(f(a) ' c, T ′β) m1 ← f(a) ' c Line 9

T1 ← T ′β
→→→→ isIncluded(>,>) returns true (3)

(Line 2)

Comments

(1) The left child of T is not used in recursive calls since g(b) 6' a does not entail C1

(line 16). Tβ is the subtree of T below b ' a.

(2) Since T1 is empty, there is no recursive call line 9. T ′β is the only child of Tβ.

(3) This value is propagated up to the initial call, that also returns true.

Table 1: Running of the Call isEntailed([C1 |X1], T,2,2)

Algorithm 1 isIncluded(X , T)

Require: T is a constraint tree, X is a constraint.
Ensure: isIncluded(X , T) = true iff ∃Y ∈ C(T), Y ⊆ X .

1: if T = > then
2: return true
3: end if
4: if X = > then
5: return false
6: end if
7: m1 ← min

<π
{m ∈ X}

8: T1 ← {(l, T ′) ∈ T | l = m1}
9: if

∨
(l,T ′)∈T1

isIncluded(X \ {m1} , T ′) then

10: return true
11: end if
12: T2 ← {(l, T ′) ∈ T |m1 <π l}
13: return

∨
(l,T ′)∈T2

isIncluded(X \ {m1} , l.T ′)

Proof. The termination of isIncluded(X , T) is due to the fact that |X | decreases at each
recursive call. To prove the equivalence property, we show each implication by induction
on |X |.

851

Echenim, Peltier & Tourret

Call Assignments & tests Next call(s)

isEntailed([C2 |X2], T,2,2) T1 ← ∅ Line 14 (×2) (1)
m1 ← g(b) 6' a
T2 ← T

→ isEntailed([2 |X2], {(g(b) 6' a, Tα)} , T1 ← {(g(b) 6' a, Tα)} Line 5 (2)
g(b) 6' a, ∅)

→→ isEntailed([2 |X2], Tα, g(b) 6' a, (�, T ′α) ∈ Tα Line 1 (3)
g(b) 6' a) g(b) 6' a � g(b) 6' a

→→→ isIncluded(X2, T
′
α) m1 ← c ' a returns false (4)

T1 ← ∅ (Line 13)
T2 ← ∅

→→ (continued) T1 ← ∅ returns false (5)
(Line 9)

→ (continued) returns false (6)
(Line 9)

→ isEntailed([2 |X2], {(b ' a, Tβ)} , T1 ← ∅ returns false (7)
g(b) 6' a, ∅) (Line 9)

Comments

(1) Since T has two children, there are two recursive calls performed line 14.

(2) Tα is the subtree of T below g(b) 6' a.

(3) T ′α is the child of Tα below �.

(4) This value is propagated up to the previous call.

(5) Since the call Line 1 returned false, Line 8 is triggered next. This value is propagated
up to the previous call.

(6) This value is propagated up to the main call.

(7) Tβ is the subtree of T below b ' a. The result is propagated up to the main call.

Table 2: Running of the Call isEntailed([C2 |X2], T,2,2)

Assume that isIncluded(X , T) = true. If T = > then C(T) = {>} and > ⊆ X .
Otherwise X cannot be empty or the instruction at Line 5 would be triggered. Let m1 =
min
<π
{m ∈ X}. If the call terminates at Line 10 then there exists a pair (l, T ′) ∈ T1 such

that isIncluded(X \ {m1} , T ′) returns true. By definition of T1, we must have l = m1,
and by the induction hypothesis there exists Y ∈ C(T ′) such that Y ⊆ X \ {m1}, hence
Y ∧m1 ⊆ X . If the call terminates at Line 13, then there exists a pair (l, T ′) ∈ T2 ⊆ T such
that isIncluded(X \ {m1} , l.T ′) returns true. By the induction hypothesis, there exists a
constraint Y ∈ C(l.T ′) such that Y ⊆ X \ {m1}, hence Y ∈ C(T) and Y ⊆ X .

For the converse implication, let us assume that T and X are such that there exists a
constraint Y ∈ C(T), where Y ⊆ X . If X = > then necessarily Y = >. By definition of a
constraint tree we must have T = >, and true is returned at Line 2. Otherwise X is not
empty and we let m1 = min

<π
{m ∈ X}. If T = >, then the return statement at Line 2 is

triggered again and we have the result. Otherwise, we define l1 = min
<π
{l ∈ Y}. Given the

852

Prime Implicate Generation in Equational Logic

ordering constraints imposed on constraint trees, there necessarily exists a pair (l1, T
′) ∈ T

such that Y \ {l1} ∈ C(T ′). We distinguish several cases.

• If l1 = m1 then (l1, T
′) ∈ T1 and Y \ {l1} ⊆ X \ {m1}. Hence by the induction

hypothesis isIncluded(X \ {m1} , T ′) returns true, the test at Line 9 succeeds and
isIncluded(X , T) also returns true.

• If l1 <π m1 then we cannot have Y ⊆ X , and this contradicts the initial hypothesis.

• If m1 <π l1 then (l1, T
′) ∈ T2 and we must have Y ⊆ X \ {m1}. By the induction hy-

pothesis isIncluded(X \{m1} , l1.T ′) returns true, and therefore, isIncluded(X , T)
returns true at Line 13.

Algorithm 2 isEntailed([C |X], T, M, N)

Require: T is a c-tree, M is negative, M ∨ C is a normalized non-tautological clause and
N |= M ∨ C

Ensure: isEntailed([C | X], T, M, N) = true iff there exists [D | Y] ∈ Cc(T) such that
[D ∨ N |Y] ≤c [M ∨ C |X]

1: if (�, T ′) ∈ T ∧ (N � (M ∨ C)) ∧ isIncluded(X , T ′) then
2: return true
3: end if
4: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
5: if

∨
(l,T ′)∈T1

isEntailed([C |X], T ′, M, N ∨ l) then

6: return true
7: end if
8: if C = 2 then
9: return false

10: end if
11: m1 ← min

<π
{m ∈ C}

12: if m1 is of the form u 6' v, with u � v then
13: T2 ← {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w � v)}
14: return

∨
(l,T ′)∈T2

isEntailed([C \ {m1}|X], l.T ′, M ∨ m1, N)

15: else
16: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
17: return

∨
(l,T ′)∈T3

isEntailed([C |X], T ′, M, N ∨ l)

18: end if

The correctness of isEntailed is stated in Theorem 5.16. The next propositions are
steps of this proof. Proposition 5.14 shows that all the candidate branches starting with a
negative literal are necessarily in T1∪T2, and for T2, Proposition 5.15 justifies the restriction
imposed on the form of the first literal of the selected branches. Both propositions are based
on the following result:

853

Echenim, Peltier & Tourret

Proposition 5.13 If C and D are clauses such that C ∨D is normalized, then C is also
normalized.

Proof. This is due to the fact that since ≡C⊆≡C∨D, if l ∈ C then l = l�C∨D\l � l�C\l = l,
and if l and m are such that m�lc∨C− is a tautology then necessarily m�lc∨C−∨D− is also a
tautology, which is impossible by definition.

Proposition 5.14 Let C be a non-empty clause such that M ∨ C is normalized. Let l be
a literal such that l�M |= M ∨ C, and let m1 = min

<π
{m ∈ C}. If l is a negative literal, then

either l�M is a contradiction or l�M 6<π m1.

Proof. Assume that l�M is of the form u 6' v and that l�M <π m1. Since l�M |= M ∨ C, by
Theorem 3.10, l�M ≤e M ∨ C, so that u ≡M∨C v and u�M∨C = v�M∨C .

• If m1 is of the form u 6' v′ where v′ ≺ u, then u�M∨C = v′ because M∨C is normalized,
hence we also have v�M∨C = v′, so that v′ � v. We deduce that m1 � l�M , which
contradicts the assumption that l�M <π m1.

• Otherwise, m1 is either a positive literal, or of the form s 6' t, where s � u and s � t.
Thus in both cases u�C = u and v�C = v (because the smallest term to be potentially
rewritten by the ground rewriting system associated6 with C, namely s, is greater
than u, see Proposition 3.17), thus u = u�M = u�M∨C = v�M∨C = v�M = v.

Proposition 5.15 Let M ∨ C be a normalized clause where M is negative, and assume
that m1 = min

<π
{m ∈ C} is a negative literal u 6' v with u � v. Let l be a literal such that

l�M 6<π m1 and l�M |= M ∨C. The literal l�M cannot be of the form u 6' w with u � w � v

Proof. Assume that l�M is of the form u 6' w with u � w � v. Then because M ∨ C
is normalized, u�M∨C = v. In addition, by Theorem 3.10, since l�M |= M ∨ C, we have
w�C∨M = u�C∨M , thus w�M∨C = v. Now by Proposition 3.17, since w ≺ u and all the
maximal terms in the literals of C− are strictly greater than w, the latter cannot be rewritten
by the rewriting system associated with C. We deduce that w�C∨M = w�M = w; hence
w = v, which contradicts the hypothesis that w � v.

Theorem 5.16 Given a c-clause [C | X] and a c-tree T , let M and N be clauses such
that M is negative, M ∨ C is normalized and N |= M ∨ C. The call isEntailed([C |
X], T, M, N) terminates. Furthermore, isEntailed([C | X], T, M, N) = true iff there
exists [D |Y] ∈ Cc(T) such that [D ∨ N |Y] ≤c [M ∨ C |X].

Proof. The termination proof is trivial, because at all recursive calls, the positive value
|C|+ size(T) strictly decreases.

The correction proof requires two inductions, one for each implication. For the left-to-
right direction, the proof consists in going through the different cases enumerated by the
algorithm to verify that the requirements of the recursive calls are indeed met and that it is
possible to derive the required property from its inductive children. In the other direction
the different cases that validate the right-hand side of the equivalence are considered and
matched with the different cases of the algorithm.

6. See Definition 3.16.

854

Prime Implicate Generation in Equational Logic

Left-to-Right Direction. If isEntailed([C | X], T,M,N) is true, then one of the re-
turn statements is triggered and returns true. We consider each of them in their order of
appearance.

1. Line 2, (�, T ′) ∈ T , N � M ∨ C and isIncluded(X , T ′) returns true. Since
isIncluded is correct by Proposition 5.12, we deduce that ∃Y ∈ C(T ′) such that
Y ⊆ X . In this case [2 | Y] ∈ Cc(T), and since N |= M ∨ C by hypothesis, the
property [N |Y] ≤c [M ∨ C |X] is verified.

2. Line 5, T1 is set to {(l, T ′) ∈ T | l�M is a contradiction} and true is returned by the
disjunction

∨
(l,T ′)∈T1

isEntailed([C | X], T ′,M,N ∨ l). Thus there exists a pair

(l, T ′) ∈ T1 such that isEntailed([C | X], T ′,M,N ∨ l) returns true and l�M is a
contradiction. By Theorem 3.10, l |= M , thus l |= M ∨ C. Moreover by hypothesis
N |= M ∨ C, hence these two properties ensure that the preconditions of the corre-
sponding recursive call are met. By induction there exists [D | Y] ∈ Cc(T ′) such that
[D ∨ l ∨ N |Y] ≤c [M ∨ C |X]. Since [l ∨ D |Y] ∈ Cc(T), the result holds.

3. Line 14, C 6= 2 and
∨

(l,T ′)∈T2
isEntailed([C \ m1 | X], l.T ′,M ∨ m1, N) returns

true, where m1 = min
<π
{m ∈ C} is of the form u 6' v with u � v and T2 is the

set {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)} . Thus there is a pair
(l, T ′) ∈ T such that l�M 6<π m1 and l�M is not of the form u 6' w with u � w, for which
isEntailed([C \m1 |X], l.T ′,M ∨ m1, N) returns true. By hypothesis N |= M ∨ C;
furthermore, M ∨ C = M ∨ m1 ∨ (C \ m1) and M ∨ m1 is negative. Therefore
the preconditions of this recursive call are satisfied. By induction, its returning true
entails that there exists [D | Y] ∈ Cc(l.T ′) such that D ∨ N ≤c M ∨ m1 ∨ C \m1.
Since Cc(l.T ′) ⊆ Cc(T), the c-clause [D |Y] also belongs to Cc(T), whence the result.

4. Line 17, m1 = min
<π
{m ∈ C} is of the form u ' v, l is positive and the disjunc-

tion
∨

(l,T ′)∈T3
isEntailed([C | X], T ′,M,N ∨ l) returns true, with T3 equal to the set

{(l, T ′) ∈ T | C�M∨lc contains a tautological literal}. In this case there exist (l, T ′) ∈ T
and m2 ∈ C such that m2�M∨lc is a tautology, thus, by Theorem 3.10, l |= M ∨ m2

and l |= M ∨ C. Since N |= M ∨ C, the preconditions of the corresponding recursive
call are met. Thus by the induction hypothesis [D ∨ l ∨ N | Y] ≤c [M ∨ C | X] and
[D |Y] ∈ Cc(T ′). Since [l ∨ D |Y] ∈ Cc(T), we have the result.

Right-to-Left Direction. Assume that there exists a c-clause [D |Y] in Cc(T) such that
[D ∨ N | Y] ≤c [M ∨ C | X], where C, T , M and N respect the preconditions of the
algorithm. We consider several cases.

• If D = 2 then (�, T ′) ∈ T and Line 2 is reached. Since [D ∨ N |Y] ≤c [M ∨ C |X] we
deduce that Y ⊆ X and N �M ∨C. Consequently, the tests N �M ∨ C is true and
isIncluded(X , T ′) is true by Proposition 5.12, thus isEntailed([C | X], T,M,N)
returns true.

• Otherwise D is of the form l ∨ D′, with (l, T ′) ∈ T and [D′ |Y] ∈ Cc(T ′).

855

Echenim, Peltier & Tourret

– If C = 2, then since [l ∨ D′ ∨ N |Y] ≤c [M |X], in particular l ∨ D′ ∨ N |= M .
Theorem 3.10 guarantees that ≡D⊆≡M , and since M is negative, D cannot
contain any positive literal by Condition 2 of Definition 3.8. This means that
l�M must be a contradiction, and thus (l, T ′) ∈ T1. It is straightforward to
verify that the preconditions of isEntailed(C, T ′,M,N ∨ l) at Line 5 are met,
thus by the induction hypothesis, this call returns true, and isEntailed([C |
X], T,M,N) also returns true at Line 6.

– If C is of the form m1 ∨ C ′ with m1 = min
<π
{m ∈ C} and l is a negative literal,

then since l |= M ∨ C and l ≡M∨C l�M by Proposition 3.5, we deduce that
l�M |= M ∨ C. By Proposition 5.14, either 1) l�M is a contradiction, or 2)
l�M 6<π m1.

1. If l�M is a contradiction then (l, T ′) ∈ T1 and since l ∨D′ ∨N |= M ∨ C by
hypothesis, we have N ∨ l |= M ∨ C; thus the recursive call isEntailed([C |
X], T ′,M,N ∨ l) at Line 6 returns true by the induction hypothesis.

2. If l�M 6<π m1 then m1 must be a negative literal by definition of <π, and
since N ∨ l ∨ D′ |= M ∨ C, we have N ∨ l ∨ D′ |= M ∨ m1 ∨ (C \m1). By
Proposition 5.15, (l, T ′) ∈ T2. Since M ∨ C is normalized, so is M ∨m1 ∨
(C \m1), thus the preconditions of isEntailed at Line 14 are met and the
call returns true by the induction hypothesis.

– Now assume that C = m1 ∨ C ′, where m1 = min
<π
{m ∈ C}, and that l is positive.

If m1 is negative then (l, T ′) ∈ T2, Line 14 is reached and returns true as in the
previous case. Otherwise by Theorem 3.10 there exists a positive literal m2 in
C such that m2�M∨C∨lc is a tautology. But since m1 is positive, by definition of
<π, C must be a positive clause and m2�M∨C∨lc = m2�M∨lc . This implies that
(l, T ′) ∈ T3. Since [N ∨ l ∨ D′ |Y] ≤c [M ∨ C |X], the preconditions for the call
to isEntailed([C | X], T ′,M,N ∨ l) at Line 17 are met and by the induction
hypothesis, this call returns true.

5.2.2 Backward c-Subsumption.

Backward c-Subsumption handles the removal from a c-tree T of all the c-clauses [D |
Y] ∈ Cc(T) that are c-subsumed by a given c-clause [C |X], under the assumption that [C |
X] itself is not c-subsumed by a c-clause stored in T . The principle of pruneEntailed
(Algorithm 5) is very similar to that of the isEntailed algorithm: it is a depth-first
traversal of T with a rewriting of literals. The main difference is that the roles of [C |
X] and T are reversed: the literals of a branch of T are rewritten using the negative literals
of C. When the c-subsumption test succeeds, the algorithm cuts the corresponding branch
in T before exploring the remaining branches. In this algorithm, the clause N stores the
already explored negative literals in the branch of T under investigation and several cases are
distinguished depending on the form of the minimum literal m1 in C. The branches ending
with ∅ are systematically deleted from the output tree. The role of algorithm pruneInf
(Algorithm 4) is to complete the exploration of each clausal branch of the c-tree so that
the �-comparison between these and C can be done (as explained in the previous section,

856

Prime Implicate Generation in Equational Logic

the incompatibility of <π and � prevents the �-test from being performed directly on the
tree). In practice, once the test C 6� N fails, it also fails in all the subsequent recursive calls.
Thus a sub-procedure containing only Lines 1 and 5 of pruneInf is used from this point on,
producing the same result more efficiently. Finally, algorithm pruneIncluded (Algorithm
3) can be seen as a simpler version of pruneEntailed, where inclusion is tested instead of
e-subsumption. It is the counterpart of algorithm isIncluded used in isEntailed, and is
based on the same principle but with a swap in the roles of the constraint and the constraint
tree.

Example 5.17 To illustrate how these three algorithms work, let us consider again the
c-tree T of Figure 2 and the c-clause [C2 | X2] = [g(b) 6' a | c ' a], which is such that
isEntailed([C2 | X2], T,2,2) = ⊥ as seen in Example 5.11. To remove the clauses in T
that are subsumed by [C2 | X2], we call pruneEntailed([C2 | X2], T,2,2). The result is
the c-tree T without the branch for the c-clause [g(b) 6' a | f(d) 6' f(c) ∨ c ' a], which is
the only c-clause in T that is redundant w.r.t. [C2 | X2]. The inner working of this call is
described in Table 3.

The correction of pruneEntailed is stated in Theorem 5.20. The intermediate termination
and correction results concerning pruneIncluded and pruneInf are stated respectively
in Proposition 5.18 and Proposition 5.19.

Algorithm 3 pruneIncluded(X , T)

Require: T is a constraint tree, X is a constraint.
Ensure: C(Tout) = {Y ∈ C(T)|X 6⊆ Y}, where Tout = pruneIncluded(X , T).

1: if X = > then
2: return ∅
3: end if
4: if T = > then
5: return T
6: end if
7: m1 ← min

<π
{m ∈ X}

8: T1 ← {(l, T ′) ∈ T | l = m1}
9: Tout1 ← {(l,pruneIncluded(X \ {m1} , T ′)) | (l, T ′) ∈ T1

∧ pruneIncluded(X \ {m1} , T ′) 6= ∅}
10: T2 ← {(l, T ′) ∈ T \ T1 | l <π m1}
11: Tout2 ← {(l,pruneIncluded(X , T ′)) | (l, T ′) ∈ T2

∧ pruneIncluded(X , T ′) 6= ∅}
12: return Tout1 ∪ Tout2 ∪ (T \ (T1 ∪ T2))

Proposition 5.18 Let T be a constraint tree and let X be a constraint. The algorithm call
pruneIncluded(X , T) terminates and if Tout = pruneIncluded(X , T), then C(Tout) =
{Y ∈ C(T) | X 6⊆ Y}.

Proof. The termination of pruneIncluded is the consequence of the strict decrease of
size(T) at each recursive call. Let Tout = pruneIncluded(X , T). If Tout = ∅ then C(Tout) =

857

Echenim, Peltier & Tourret

Call Assignments and tests Next call(s)

pruneEntailed([C2 |X2], T,2,2) m1 ← g(b) 6' a Line 10 (1)
T� ← ∅
T1 ← {(g(b) ' a, Tα)}

→ pruneEntailed([C2 |X2], Tα,2, m1 ← g(b) 6' a Line 6
g(b) 6' a)

→→ pruneEntailed([2 |X2], Tα, Line 2
g(b) 6' a, g(b) 6' a)

→→→ pruneInf([C2 |X2], Tα, g(b) 6' a) Line 1

→→→→ pruneInf([C2 |X2], Tγ , Tout1 ← ∅ Line 5 (2)
g(b) 6' a ∨ f(a) '

c)
C2 � g(b) 6' a ∨ f(a) ' c

→→→→→ pruneIncluded(X2,>) none (3)

→→→ (continued) Tout1 ← Tγ Line 5
C2 � g(b) 6' a

→→→→ pruneIncluded(X2, T
′
α) m1 ← c ' a Line 11 (4)

T1 ← ∅
T2 ← {(f(d) 6' f(c), T ′δ)}

→→→→→ pruneIncluded(X2, T
′
δ) m1 ← c ' a Line 9

T1 ← {(c ' a,>)}
→→→→→→ pruneIncluded(>,>) (5)

→→→→→ (continued) T2 ← ∅ (6)

Comments

(1) Tα is the subtree of T below the literal g(b) 6' a. The other child of T is not
modified.

(2) Tγ = (�,>) is the subtree of Tα below the rightmost literal f(a) ' c.
(3) The tree is not pruned since X2 6= >.

(4) (�, T ′α) ∈ Tα, T ′δ is the child of T ′α.

(5) This branch is pruned: ∅ is returned and discarded in the previous call.

(6) The branch containing g(e) ' c is left unchanged since it belongs to T ′δ \ (T1 ∪ T2).

Table 3: Running of the Call pruneEntailed([C2 |X2], T,2,2)

∅ and the proposition holds no matter the original values of T and X . Otherwise, if Tout =
{>} then C(Tout) = {>} and the proposition is true only if X 6= >. Since Line 2 is triggered
when X = > before anything else, necessarily Tout = ∅, a contradiction with the current
hypothesis.

In the general case, we consider the two inclusions separately.

Left-in-Right Inclusion. Let us consider the case C(Tout) ⊆ {Y ∈ C(T) | X 6⊆ Y}, by
taking Y ∈ C(Tout) such that Y = l ∨ Y ′, where (l, T ′out) ∈ Tout and Y ′ ∈ C(T ′out). This is
sufficient since the base cases are covered in the previous paragraph. Since Tout 6= ∅, we
know that X 6= > thus m1 = min<π {m ∈ X} exists. There are three cases to examine:

858

Prime Implicate Generation in Equational Logic

• If Y ∈ C(Tout1) then T ′out = pruneIncluded(X \ {m1} , T ′) where (l, T ′) ∈ T1,
hence l = m1. By the induction hypothesis Y ′ ∈ C(T ′) and X \ {m1} 6⊆ Y ′, thus
X 6⊆ m1 ∧ Y ′(= Y) and Y ∈ C(T1) ⊆ C(T).

• If Y ∈ C(Tout2) then T ′out = pruneIncluded(X , T ′) where (l, T ′) ∈ T2 thus l <π m1.
By the induction hypothesis Y ′ ∈ C(T ′) thus Y ∈ C(T) and X 6⊆ Y ′, thus in particular
m1 6∈ Y ′ hence m1 6∈ l ∨ Y ′ ensuring that X 6⊆ Y.

• If Y ∈ C(T \ (T1 ∪ T2)), then Y is of the form l ∧ Y, where (l, T ′) ∈ T \ (T1 ∪ T2)
and Y ′ ∈ C(T ′). By construction m1 <π l, hence for all l′ ∈ Y, m1 <π l

′ and it is
impossible to have X ⊆ Y.

Right-in-Left Inclusion. To prove the right-in-left inclusion, we consider a constraint
Y = l ∨ Y ′ ∈ C(T) where (l, T ′) ∈ T and Y ′ ∈ C(T ′) such that X 6⊆ Y. Again, the base
cases are covered in the first paragraph of the proof. If X = > then X ⊆ Y, a contradiction.
Thus we can define m1 = min<π {m ∈ X} and distinguish three cases.

• If l = m1 then X \ {m1} 6⊆ Y ′ and (l, T ′) ∈ T1, thus by the induction hypothesis Y ′ ∈
C(T ′out) where T ′out = pruneIncluded(X \ {m1} , T ′) thus (l, T ′out) ∈ Tout1 ⊆ Tout.

• If l <π m1 then (l, T ′) ∈ T2. Since X 6⊆ Y ′, by the induction hypothesis Y ′ ∈ C(T ′out)
where T ′out = pruneIncluded(X ′, T ′). Thus (l, T ′out) ∈ Tout2 ⊆ Tout.

• If m1 <π l then (l, T ′) ∈ (T \ (T1 ∪ T2)) ⊆ Tout.

In all three cases, Y ∈ C(Tout).

Algorithm 4 pruneInf([C |X], T,N)

Require: N.T is a normalized c-tree, [C |X] is a normalized c-clause.
Ensure: Cc(Tout) = {[D |Y] ∈ Cc(T)|(C 6� D ∨ N) ∨ X 6⊆ Y},

where Tout = pruneInf([C |X], T,N).
1: Tout1 ← {(l,pruneInf([C |X], T ′, N ∨ l)) | (l, T ′) ∈ T

∧pruneInf([C |X], T ′, N ∨ l) 6= ∅}
2: if C 6� N then
3: return Tout1 ∪ {(�, T ′) | (�, T ′) ∈ T}
4: else
5: return Tout1 ∪ {(�,pruneIncluded(X , T ′)) | (�, T ′) ∈ T

∧pruneIncluded(X , T ′) 6= ∅}
6: end if

Proposition 5.19 Let [C | X] be a normalized c-clause, and N.T be a normalized c-tree.
The call pruneInf([C | X], T,N) terminates and the output c-tree Tout = pruneInf([C |
X], T,N) is such that:

Cc(Tout) = {[D |Y] ∈ Cc(T) | (C 6� D ∨ N) ∨ X 6⊆ Y}

Proof. We proceed by double inclusion and induction. Let [D |Y] ∈ Cc(Tout).

859

Echenim, Peltier & Tourret

• Assume first that D = 2. If C 6� N then Tout is returned at Line 3 thus [2 |
Y] ∈ Cc({(�, T ′)}) ⊆ Cc(T) and C 6� N ∨ D. Otherwise Tout is generated at Line 5
and [2 | Y] ∈ Cc({(�,pruneIncluded(X , T ′))}), with (�, T ′) ∈ T . By Proposition
5.18, Y ∈ C(T ′) and X 6⊆ Y, hence the result.

• Otherwise D is of the form l ∨ D′ where l = min<π(D) and [D | Y] ∈ Cc(Tout1), thus
[D′ | Y] ∈ Cc(pruneInf([C | X], T ′, N ∨ l)) for some (l, T ′) ∈ T . By the induction
hypothesis, we have [D′ |Y] ∈ Cc(T ′) (hence [D |Y] ∈ Cc(T)) and either C 6� D′ ∨ N ∨
l, i.e. C 6� D ∨ N , or X 6⊆ Y.

Now consider [D |Y] ∈ Cc(T) such that either C 6� D ∨ N or X 6⊆ Y.

• If D = 2 then [D |Y] ∈ Cc({(�, T ′)}) ⊆ Cc(T). If C � N then Line 5 is reached and by
hypothesis X 6⊆ Y, thus Y ∈ pruneIncluded(X , T ′) by Proposition 5.18, ensuring
that [D |Y] ∈ Cc(Tout). Otherwise Line 3 is reached and again [D |Y] ∈ Cc(Tout).

• Otherwise D is of the form l∨D′, where l = min<π(D) and (l, T ′) ∈ T . By hypothesis,
either C 6� D ∨ N in which case C 6� D′ ∨ N ∨ l, or X 6⊆ Y. In both cases
by the induction hypothesis [D′ | Y] ∈ Cc(pruneInf([C | X], T ′, N ∨ l)) thus [D |
Y] ∈ Cc(Tout1) ⊆ Cc(Tout).

Theorem 5.20 Let N.T be a normalized c-tree and let M ∨ C and N be normalized
clauses. If M |= N , m 6|= N for all m ∈ C+ and isEntailed([C ∨ M |X], N.T , 2, 2) =
false, then

Cc(Tout) = {[D |Y] ∈ Cc(T) | [C ∨M |X] 6≤c [D ∨ N |Y]} ,

where Tout = pruneEntailed([C |X], T, M, N).

Proof. The termination of this algorithm is ensured because for all recursive calls, the value
of |C|+ size(T) strictly decreases.

Left-in-Right Inclusion. We first prove that Cc(Tout) ⊆ {[D | Y] ∈ Cc(T)|[C ∨ M |
X] 6≤c [D ∨ N |Y]}. We consider a c-clause [D |Y] ∈ Cc(Tout) and distinguish several cases.

• If C = 2 then Tout is generated at Line 2. By Proposition 5.19, either M 6� D ∨N or
X 6⊆ Y, thus [M |X] 6≤c [D ∨N |Y] and we have the result.

• Otherwise C is of the formm1 ∨ C ′, wherem1 is such thatm1�N = min
<π
{m�N |m ∈ C}.

– Ifm1�N is a contradiction, then Tout is set to pruneEntailed([C\m1 |X], T, M ∨
m1, N) at Line 6, and m1 |= N by Theorem 3.10. Since m1 is negative,
(C \m1)+ = C+ thus the preconditions of the recursive call are straightforwardly
verified. By the induction hypothesis [(C \m1) ∨ m1 ∨ M | X] 6≤c [D ∨ N | Y],
thus [C ∨M |X] 6≤c [D ∨ N |Y].

– Otherwise, respectively by Theorem 3.10 and the hypothesis, m1 6|= N both
when m1 is negative and positive, hence C ∨ M 6|= N . If D = 2, then [D |
Y] ∈ Cc(T�), and [C ∨ M | X] 6≤c [N | Y]. Otherwise D is of the form l ∨ D′,
where (l, T ′out) ∈ Tout and [D′ |Y] ∈ Cc(T ′out), and one of the following holds:

860

Prime Implicate Generation in Equational Logic

Algorithm 5 pruneEntailed([C |X], T, M, N)

Require: N.T is a normalized c-tree, M ∨ C is a normalized non-tautological clause, M |=
N , m 6|= N for all literals m ∈ C+ and isEntailed([C ∨M |X], N.T , 2, 2) = false.

Ensure: Cc(Tout) = {[D |Y] ∈ Cc(T) | [C ∨M |X] 6≤c [D ∨ N |Y]},
where Tout = pruneEntailed([C |X], T, M, N).

1: if C = 2 then
2: return pruneInf([M |X], T, N)
3: end if
4: let m1 ∈ C such that m1�N = min

<π
{m�N |m ∈ C}

5: if m1�N is a contradiction then
6: return pruneEntailed([C \m1 |X], T, M ∨ m1, N)
7: end if
8: T� ← {(�, T ′) ∈ T}
9: T1 ←

{
(l, T ′) ∈ T | l is negative ∧m1�N � l

}
10: Tout1 ← {(l,pruneEntailed([C |X], T ′, M, N ∨ l)|

(l, T ′) ∈ T1 ∧ pruneEntailed([C |X], T ′, M, N ∨ l) 6= ∅}
11: if m1 is positive then
12: T2 ← T \ (T1 ∪ T�)
13: Tout2 ← {(l,pruneEntailed([C \ Ll |X], T ′, M ∨ Ll, N ∨ l))|

(l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨mc is tautological}∧
pruneEntailed([C \ Ll |X], T ′, M ∨ Ll, N ∨ l) 6= ∅}

14: return Tout1 ∪ Tout2 ∪ T�
15: else
16: return Tout1 ∪ (T \ T1)
17: end if

1. (l, T ′out) ∈ Tout1, in which case there exists (l, T ′) ∈ T such that l is negative,
m1�N � l and T ′out = pruneEntailed(C, T ′,M,N ∨ l). Since M |= N by
hypothesis, we have M |= N ∨ l. Furthermore, since N.T is a c-tree and l
occurs in T , we must have ∀l′ ∈ N , l′ <π l, hence, since l is negative, so is
N ∨ l by definition of the ordering <π. Thus for all m ∈ C+, m 6|= N ∨ l.
Now (N ∨ l).T ′ is a normalized c-tree because N.T is normalized, hence the
preconditions of the recursive call at Line 10 are all met, and [C ∨ M |
X] 6≤c [D′ ∨ l ∨ N |Y] = [D ∨N |Y] by the induction hypothesis.

2. (l, T ′out) ∈ Tout2, in which case m1 is a positive literal. By setting Ll =
{m ∈ C | l�N∨mc is tautological}, we then have T ′out = pruneEntailed(C \
Ll, T

′,M ∨ Ll, N ∨ l). By Theorem 3.10, M ∨ Ll |= N ∨ l. If there exists
an m ∈ (C \ Ll)+ such that m |= N ∨ l, then l�N∨mc is a tautology because
m 6|= N by the precondition of the algorithm. But by definition, such an m
should belong to Ll and we have a contradiction. Thus, the preconditions
of the recursive call at Line 13 are verified and by the induction hypothesis,
[M ∨ Ll ∨ (C \ Ll) |X] 6≤c [D′ ∨ l ∨ N |Y], i.e., [M ∨ C |X] 6≤c [D |Y].

861

Echenim, Peltier & Tourret

3. (l, T ′out) ∈ T \ Tout1 and Tout2 is not computed, in which case m1 is negative
and m1�N ≺ l. By Proposition 3.17 and Theorem 3.10, m1 6|= D thus
C 6|= N ∨ D.

Right-in-Left Inclusion. For the converse inclusion, let [D |Y] be a clause in Cc(T) such
that [C ∨M |X] 6≤c [D ∨ N |Y].

• If C = 2, then since M |= N , either M 6� D ∨ N or X 6⊆ Y. The tree Tout must be
generated at Line 2 and, by Proposition 5.19, [D |Y] ∈ Cc(Tout).

• Otherwise C is of the form m1 ∨ C ′ where m1 is such that m1�N = min
<π
{m�N |m ∈ C}.

– If m1�N is a contradiction then m1 |= N by Theorem 3.10 and Tout is returned
at Line 6. By the induction hypothesis [C \m1 ∨ m1 ∨ M | X] 6≤c [D ∨ N | Y],
and therefore [D |Y] ∈ Cc(Tout).

– Otherwise we may have either D = 2, in which case [D | Y] ∈ Cc(T�) and the
result is straightforward, or D is of the form l ∨D′ for some (l, T ′) ∈ T and [D′ |
Y] ∈ Cc(T ′).

1. If l is negative and m1�N � l, then (l, T ′) ∈ T1. In addition, T ′out1 is set to
pruneEntailed([C |X], T ′,M,N ∨ l) at Line 10. The preconditions of the
recursive call are all met for the same reason as in the first inclusion proof.
By the induction hypothesis [D′ |Y] ∈ Cc(T ′out1) thus [D |Y] ∈ Cc(Tout1).

2. If m1 is negative and either l is positive or m1�N ≺ l then (l, T ′) ∈ T \ T1

and Tout is set at Line 16, thus [D |Y] ∈ Cc(Tout).
3. If the previous conditions do not hold, then m1 is a positive literal. By

Theorem 3.10, the clause Ll = {m ∈ C|l�N∨mc is tautological} is such that
Ll |= N ∨ l, and since M |= N , we have M∨Ll |= N∨l. Moreover (N ∨ l).T ′
is a normalized c-tree and for all m occuring in (C \ Ll)+, m 6|= N ∨ l for
the same reason as in the previous inclusion. Hence the preconditions of the
recursive call pruneEntailed([C \ Ll | X], T ′,M ∨ Ll, N ∨ l) are verified.
Since [C \Ll ∨M ∨ Ll |X] 6≤c [D′ ∨ l ∨ N |Y], by the induction hypothesis,
[D′ |Y] ∈ Cc(T ′out2) and [D |Y] ∈ Cc(Tout2).

Remark 5.21 Note that sets of implicates generated by the main saturation algorithm (i.e.,
the clauses C such that the final c-tree contains a c-clause [2 | X] with X c = C) can
be eventually stored in c-trees with empty constraints. In this case, the �-condition can
be omitted when testing redundancy, since the goal is to remove all implicates that are
redundant w.r.t. logical entailment. The obtained algorithms are very similar to (and simpler
than) isEntailed and pruneEntailed. They are omitted for the sake of conciseness.

6. Experimental Results

In this section, we present the different tools and benchmarks used to conduct experiments,
as well as the results obtained from those experiments.

862

Prime Implicate Generation in Equational Logic

6.1 Implementation

Our prime implicate generation method has been implemented in a research prototype writ-
ten in OCaml7. The system, called cSP, is available at https://forge.imag.fr/docman/

?group_id=683. The input formulæ are sets of equational ground clauses in the TPTP
syntax v5.4.0.0 (Sutcliffe, 2009). Another version of the program, called cSP flat, imple-
ments additional refinements that only apply to flat clauses, i.e., to clauses not containing
function symbols of an arity greater than 0. The system for non-flat clauses is based on the
LogTk library (Cruanes, 2014) for the handling of term ordering and congruence closure.

There are several options available for controlling the form of the generated implicates:
-max-size, -max-neg and -max-depth limit the length of clause, the number of negative
literals and the depth of the terms, respectively; -cov accepts only implicates that entail one
of the clauses of the input formula (for generating a minimal cover of the input formula). To
ensure termination, a restriction must be added to the terms introduced by the Assertion
rules, since otherwise the rules are infinitely branching, see Section 4. By default, cSP

considers all the terms occurring in the initial formula. A finite set of terms can also be
provided by the user in a TPTP input file with the extension ’.conf’.

The order in which the c-clauses are processed is fixed by comparing the size of the
constraints and of the clausal parts, in lexicographic increasing order. A more detailed
description of the system was done by Tourret (2016).

6.2 Experimental Context

This section describes the reference tools and of the benchmarks used in the experiments.

6.2.1 Reference Tools.

Tools for the computation of prime implicates in propositional and first order logic directly
available from the web include only (to the best of our knowledge):

ritrie (Matusiewicz, Murray, & Rosenthal, 2009), a propositional tool that specializes in
fast querying of implicates8.

primer (Previti, Ignatiev, Morgado, & Marques-Silva, 2015), a prime implicate generation
tool based on satisfiability encoding9.

Mistral (Dillig & Dillig, 2013), an SMT solver which can be used for performing abductive
inferences10.

Thanks to the kindness of their respective authors, we also obtained two other tools:

Zres (Simon & Del Val, 2001), an implicate generation tool in propositional logic based on
Resolution,

SOLAR (Iwanuma, Nabeshima, & Inoue, 2009), a prime implicate generation tool for first
order logic, including equational logic, based on Semantic Tableaux.

7. http://ocaml.org

8. http://www.cs.albany.edu/ritries/prototype.html

9. http://logos.ucd.ie/web/doku.php?id=primer

10. http://www.cs.utexas.edu/~tdillig/mistral/index.html

863

Echenim, Peltier & Tourret

We compared cSP with all these systems except for ritrie and Mistral. The former is
because it was not efficient enough, which can be explained by the fact that it was built
to perform efficient querying of an already generated set of prime implicates, rather than
to compute efficiently the said set (which it can nevertheless do). The latter is because it
cannot be compared with our work, because its prime implicate generation is not complete.

We compared the systems on three sets of test problems, two of which are randomly
generated due to the lack of existing benchmark in the targeted logics. These benchmarks
are included in the archive containing the source code of cSP. In each case, the proposi-
tional equivalents of the problems were obtained by instantiating the transitivity axioms
for all constant symbols appearing in them – the reflexivity and commutativity axioms are
encoded directly in the transformation by orienting and simplifying the equations. Thus the
propositional tools have to handle much bigger inputs and they generate many more prime
implicates than their counterparts handling more expressive logics (for instance they also
compute the implicates of the transitivity instances). To recover the same results as the
other tools, it would be necessary to replace the propositional variables by the correspond-
ing equations and to remove all redundancies. This step is not performed here since it is
straightforward (although costly), but in an application case, it would have to be performed
to reach an intelligible result. Similarly, non-flat clause sets can also be flattened by adding
all relevant instances of the substitutivity axioms and unflattened in a post-processing step
that is omitted here.

6.2.2 Flat Random Benchmarks.

As far as we are aware, there are no benchmarks for ground flat (i.e., without function
symbols of an arity strictly greater than 0) equational logic. Our attempts with flattened
ground problems from the TPTP library did not succeed, because none of the available
tools can generate all the prime implicates of such large formulæ with reasonable time and
memory constraints. We thus created our own benchmark, made of a thousand randomly
generated formulæ of 6 clauses build on 8 constants and containing between 1 and 5 literals
(even such small formulæ can have very large set of prime implicates).

6.2.3 Non-Flat Random Benchmarks.

The formulæ in this benchmark contain function symbols and were generated using the
following parameters:

• a ∈ {1, 2}, is the maximal arity of the functions and a ∗ 5 is the size of the randomly
generated signature11,

• c ∈ {2, 3, 4} is the number of clauses in a formula,

• d ∈ {1, 2} is the maximal depth of the terms,

• l ∈ {2, 3} is the maximal number of literals in a clause (the minimum being 1),

The formulæ are stored in files that are named with the following convention: sa_d_c_l

(e.g. s1_2_4_2). In total, this benchmark contains 144 formulæ.

11. By design, the signature contains at least two literals of arity zero.

864

Prime Implicate Generation in Equational Logic

6.2.4 Other Benchmarks.

These benchmarks are extracted from the SMT-LIB database (Barrett, Fontaine, & Tinelli,
2015) in the logic QF AX, i.e. “closed quantifier-free formulas over the theory of arrays with
extensionality”12. These are synthetic benchmarks that model some properties of arrays
with extensionality, namely:

• the order in which the elements are stored in an array does not matter (storecomm
benchmarks),

• some swappings of elements between cells of an array are commutative (swap bench-
marks),

• swapping elements between identical cells of equal arrays generates equal arrays
(storeinv benchmarks)

The creators of these benchmarks slightly altered them to falsify these properties, thus
creating the benchmarks labeled with invalid13. Given that cSP cannot handle SMT-LIB
inputs or the theory of arrays, we preprocessed the benchmarks by first converting them
to TPTP and then applying the algorithm described by Bonacina and Echenim (2010). As
shown by Armando et al. (2009), these problems can be nontrivial to solve even for state-of-
the-art theorem provers like E (Schulz, 2013) and one cannot expect the entire set of prime
implicates to be generated in reasonable time. We use them mainly to evaluate the impact
of our redundancy-pruning technique on the number of Superposition inferences carried out
by blocking the Assertion rules inferences (i.e. applying a filter blocking all implicates apart
from the empty one), allowing the comparison of cSP with the E theorem prover.

6.3 Results

All of the experiments were run on a machine equipped with an Intel core i5-3470 CPU
and 4 × 2 GB of RAM running Ubuntu 14.04. In a first experiment we compare cSP with
cSP flat and primer on the random flat benchmark to observe the impact of the functional
term representation (LogTk) of cSP. Then we compare our tools to state-of-the-art solvers
on the non-flat benchmark. Finally, we observe the behavior of cSP on bigger formulæ.

6.3.1 Impact of the Handling Functional Terms.

Handling functional terms is costly. This can be seen on Figure 3, that compares the
execution time of cSP on the random flat benchmark with that of cSP flat and primer.
As shown on Figure 3a, on average, cSP is ten times slower than cSP flat on the random
flat benchmark. This overhead induced by functional terms is easily explainable: the new
term representation must handle nested terms, which prevents the use of a simple integer
representation as is done in cSP flat. Moreover, the subsumption method is a bit more
involved which plays a role in slowing down cSP compared to cSP flat. Figure 3b compares
the execution time of cSP flat with that of primer on the same benchmark to illustrate
the performance of cSP flat in ground flat equational logic.

12. http://smtlib.cs.uiowa.edu/logics.shtml

13. For details on these benchmarks, we refer the interested reader to the paper by Armando, Bonacina,
Ranise, and Schulz (2009).

865

Echenim, Peltier & Tourret

0 150 300
cSP-flat (s)

0

150

300
cS

P
 (

s)

(a) cSP vs. cSP flat

0 150 300
cSP-flat (s)

0

150

300

p
ri

m
e
r

(s
)

(b) primer vs. cSP flat

0 150 300
cSP (s)

0

150

300

p
ri

m
e
r

(s
)

(c) primer vs. cSP

slower equal faster

cSP flat 12.3% 0% 87.7%

cSP 39.1% 0.4% 60.5%

(d) Proportion of formulæ that are
slower/equal/faster on cSP flat/cSP
than on primer

Figure 3: Time comparison of cSP, cSP flat and primer; random flat benchmark

6.3.2 Performance Comparisons on Random Non-Flat Benchmark.

The experiment presented below is a comparison of the prime implicate generation systems
Zres, primer and SOLAR with cSP flat and cSP on the random non-flat benchmark.

The results are summarized in Table 4. Each line corresponds to a system. The column
labeled ’successes’ indicates the percentage of tests that were completed before the 5 minute
timeout. The four columns under the label ’SOLAR successes’ summarize average results on
those tests on which SOLAR terminated before the timeout. The same goes for the columns
under ’Zres successes’, ’primer successes’, ’cSP flat successes’ and ’cSP successes’. Finally,
the ’timeout’ columns expose the mean results on all interrupted tests. Columns labeled
’fail’, ’time’, ’inf.’ and ’PIs’ respectively give the percentage of formulæ on which the system
timed out relative to this part of the benchmark, the mean execution time, mean number of

866

Prime Implicate Generation in Equational Logic

successes SOLAR successes Zres successes
fail. time(s) inf. PIs fail. time(s) inf. PIs

SOLAR 15% 0% 11.842 663190 506 74% 13.608 767160 455
Zres 52% 13% 0.695 X 2986 0% 12.474 X 13804

primer 53% 13% 0.794 X 2986 0% 3.770 X 13847
cSP flat 63% 4% 6.622 2275 74 2% 0.500 1737 159

cSP 76% 0% 0.042 99 21 2% 3.576 755 49

primer successes cSP flat successes
fail. time(s) inf. PIs fail. time(s) inf. PIs

SOLAR 75% 13.608 767160 455 76% 12.360 694523 460
Zres 2% 12.474 X 13804 19% 7.073 X 10405

primer 0% 8.016 X 18949 17% 7.590 X 15779
cSP flat 2% 1.480 2347 180 0% 14.290 6730 348

cSP 2% 4.296 851 49 3% 7.556 1004 62

cSP successes timeouts
fail. time(s) inf. PIs inf. PIs?

SOLAR 79% 11.842 663191 506 2452908 28152
Zres 33% 10.391 X 11338 X X

primer 31% 7.671 X 16687 X X
cSP flat 19% 8.795 5418 313 X X

cSP 0% 10.193 1209 79 14714 538

Table 4: Test results summary; random non-flat benchmark

slower equal faster

cSP flat 5.6% 41.7% 52.8%

cSP 23.6% 3.5% 72.9%

Table 5: Proportion of formulæ that are slower/equal/faster on cSP flat/cSP than on
primer

inferences and mean number of prime implicates found for each set of tests. The last column
under the ’timeout’ label is labeled ’PIs?’ because, due to the timeout, the implicates found
are not guaranteed to be prime. Cells labeled with an ’X’ indicate that the corresponding
data is not available.

As shown in the ’successes’ column, cSP is the obvious winner in terms of the number
of tests handled before timeout. The 15% of problems solved by SOLAR are the simplest of
the random formulæ. The results show that SOLAR’s approach is very costly both in terms
of time and space. The high number of prime implicates this tool generates compared
to those produced by cSP is due to the fact that SOLAR does not take into account the
equality axioms in its redundancy detection. Thus for example, any literal t ' s also
appears as s ' t, and f(s) ' f(t) is not detected as redundant w.r.t. s ' t. The huge

867

Echenim, Peltier & Tourret

number of prime implicates generated by Zres and primer stems directly from the lack
of post-processing (conversion of the results back to equational logic)14. This prevents the
detection of the purely equational redundancies, e.g. clauses redundant w.r.t. the transitivity
axiom. Although Zres and primer are faster than cSP on the problems they both solve,
they solve 52% and 53% of the benchmark respectively, while cSP solves 76% of them. The
results in the ’cSP successes’ and ’cSP flat successes’ columns are globally higher than
those in the ’Zres successes’ and ’primer successes’ columns, because the most difficult
formulæ are solved only by cSP and to a lesser extend by cSP flat. Since cSP solves more
problems than cSP flat and does so faster and with fewer clauses processed, cSP is clearly
better adapted to dealing with originally non-flat formulæ. Incidentally, note that the
overhead of cSP’s term handling compared to that of cSP flat’s (observed in the previous
experiment) is more than compensated by the direct handling of non-flat formulæ since on
the random non-flat benchmark cSP is faster than cSP flat. The number of inferences and
generated non-redundant implicates when the tool times out illustrates the heavy cost of
the cSP inferences and redundancy detection mechanism compared to that of SOLAR. It is a
price that seems partly unavoidable to eliminate all redundancies, since this requires costly
algorithms.

6.3.3 Impact of Normalization.

We also assessed the impact of the normalization mechanism on the QF-AX benchmark.
This was done by comparing cSP with the E theorem prover, running cSP with a filtering
option (-max-size 0) to block the generation of any implicate besides the empty clause,
effectively turning cSP into a Superposition theorem prover. This way the main differences
between cSP and E are the normalization of clauses and the redundancy pruning mechanism.
On the one hand, the redundancy pruning algorithm used by cSP is weaker because it does
not allow for equational simplification or other n-to-one redundancy pruning rules. On
the other hand, one-to-one redundancy testing is stronger since its uses logical entailment
together with the usual ordering condition instead of subsumption. The comparison of cSP
with the E theorem prover on these formulæ shows that the normalization approach can, in
some nontrivial cases, reduce the number of processed clauses by an order of magnitude.

Figure 4 presents the positive results of this experiment, i.e., the results of the storecomm
and swap formulæ. Among these, only the formulæ on which both E and cSP (without
Assertion rules) terminate before the timeout and without memory overflow were kept.
Light gray squares represent the invalid formulæ, i.e. the satisfiable ones, while dark gray
crosses mark the unsatisfiable ones. The line y = x is added in both plots. An interesting
observation is that for the largest invalid formulæ, cSP needs to process a smaller number
of clauses than E before terminating, even 10 times less in the case of the invalid swap

formulæ. In addition, the unsatisfiable swap formulæ were run with a timeout of 10 minutes
(the triangles in Plot (4b)) and the corresponding results hint that this phenomenon could
also be true for larger unsatisfiable problems. This suggests that the redundancy pruning
technique based on normalization and clausal trees could be profitably integrated into state-
of-the-art Superposition-based theorem-provers, at least for ground equational clause sets.

14. It should be noted that the mean number of prime implicates generated by Zres and primer sometimes
differ a lot. This is due to a bug in Zres which sometimes makes it incomplete.

868

Prime Implicate Generation in Equational Logic

700 800 900 1000
E (nb)

400

600

800

1000
cS

P
(n

b)

(a) storecomm formulæ

0 50000 100000
E (nb)

0

5000

10000

cS
P

(n
b)

(b) swap formulæ

Figure 4: Comparison of the number of processed clauses for E and cSP.

However, it might not always be useful, e.g. Figure 5, plotting the storeinv formulæ where
an opposite tendency is observed, although the storeinv formulæ on which neither cSP or
E timeout represent only a tenth of that of the other two families, for which the results are
positive.

0 1000 2000
E (nb)

0

2000

4000

6000

cS
P

(n
b)

Figure 5: storeinv formulæ - comparison of the number of processed clauses for E and cSP.

7. Discussion

In this section, we present potential applications of our work in AI, discuss related work,
and provide some lines of future research.

7.1 Summary

The present work comprises three main contributions:

869

Echenim, Peltier & Tourret

• The cSP calculus extends the classical Superposition calculus for first-order logic
with equality with two rules that allow the addition of abductive hypotheses to the
generated clauses.

• A clause storage data structure is defined, the constrained clausal tree. It signifi-
cantly reduces memory consumption and allows the efficient detection and removal of
redundant clauses.

• Two prototypes of prime implicate generation tools implement the calculi, storage
method and their variants, one that handles only ground flat terms and one that
handles arbitrary ground terms.

Our main results are the following. On the theoretical side, we proved the deductive-
completeness of the calculus for full equational logic and the termination and correctness
of the constrained clausal tree manipulation algorithms for ground equational logic. On
the practical side we conducted an experimental evaluation of our prototypes (on flat and
non-flat benchmarks). The different experiments presented in Section 6 allow us to draw
the following picture of our prime implicate generation algorithm:

1. cSP compares favorably with state-of-the-art prime implicate generation tools. As
indicated by the results in Table 4, cSP solves more problems (and more efficiently)
than all others available tools. Precisely, our best prototype is faster than the reference
tool (primer) in 87.7% of the benchmark in flat ground logic and 72.9% in non-flat
ground logic. However, none of the systems scale well: the formulæ for which complete
sets of prime implicates can be effectively computed are rather simple.

2. The normalization method used in our algorithms significantly reduces the number
of generated clauses compared to the state-of-the-art E theorem prover (although
our inference engine is far less efficient). This suggests that the integration of this
technique to Superposition-based theorem-provers could be beneficial.

3. Our experiments also suggest that it is always better to have a method tailored to
the input formulæ rather than to preprocess them by flattening and/or conversion to
propositional logic or to use a tool for a more expressive logic. For example, on flat
formulæ, cSP flat is the best choice over cSP, while on non-flat ones cSP gives the
best results.

7.2 Applications in Artificial Intelligence

When they terminate, usual proof procedures in first-order logic return a yes or no result,
together with a formal justification: either the input formula is valid, and in this case a
proof is provided; or it is not, and in some cases a counter-example can be constructed.
In contrast, the generation of prime implicates allows for “open” requests. It thus targets
situations when the possible answers are not known, but have to be constructed by the
program, as well as their justification. This makes the reasoning task much more complex
and significantly increases the search space, but also allows for a wider range of applications,
and for the conception of more “intelligent” programs, able to derive results that are not
necessarily expected by human users. So far the implicate generation problem has been

870

Prime Implicate Generation in Equational Logic

tackled mostly for propositional and related logics, although many applications require more
expressive logics for modeling systems or knowledge bases. Finding implicate generation
algorithms that are capable of handling expressive logics is thus a relevant and important
problem in Artificial Intelligence. In particular, being able to handle equalities efficiently
is a prerequisite, since adding equality axioms would be very inefficient. For instance the
OWL Web Ontology Language (Patel-Schneider, Hayes, Horrocks, et al., 2004) includes
atoms SameIndividual(a1, . . . , an) that assert that all of the individuals ai (for i ∈ [1, n])
are equal to each other. We provide below some concrete examples of applications.

7.2.1 Diagnosis

Diagnosis, defined as the design of techniques to determine whether the behavior of a system
is correct (i.e., fulfills its specification) and to generate suitable explanations if it is not,
is usually viewed as an important subdomain of AI. We target model-based diagnosis, in
which the behavior of the system and its properties are modeled by logical formulas. For
many applications, propositional logic is not expressive enough, and richer logics must be
used instead: for instance, many verification problems are based on ground equational logic
or can be reduced to it (see, e.g., Cimatti, Griggio, & Sebastiani, 2011). The generation of
prime implicates is useful in this context for explaining bad or unexpected behaviors of a
system. The idea is to determine what the additional (if possible minimal) hypotheses that
could be added to enforce the desired properties are. This allows one to identify missing
conditions (if the additional hypotheses are fulfilled) or to give a hint of why the system
does not behave as expected (if the additional hypotheses are false).

We provide an example coming from program verification. Consider a program that
assigns the pointers to the tails of two lists l1 and l2 as follows:

tail(l1)← l0; tail(l2)← l1

Assume we want to check that the relation tail(tail(l2)) = l0 holds after the execution
of the program. This problem can be naturally modeled in equational logic as follows. The
function tail is represented by a function tail : heap × list → list, and the redirection
operation is encoded by a function redir : heap × list × list → heap, together with the
following axioms:

tail(redir(h, x, y), x) ' y
% The tail of x is redirected to y

x′ 6' x⇒ tail(redir(h, x, y), x′) ' tail(h, x′)
% The tail of the other lists is not affected by the redirection

The conclusion to be proven is

h′0 ' redir(redir(h0, l1, l0), l2, l1)⇒ tail(h′0, tail(h′0, l2)) ' l0

where h0 and h′0 are constant symbols denoting the initial and final states of the heap.
Trying to prove this goal from the axioms actually fails, which may come as a surprise to
some users. Indeed, in the case where l1 = l2, the final list l2 loops to itself (the tail of l2
is l2), and l0 is no longer accessible. The property can be proven if l1 is distinct from l2,
which can be inferred by generating the prime implicate l1 ' l2 from the specification and
the negation of the conclusion.

871

Echenim, Peltier & Tourret

7.2.2 Computing Possible Explanations of Observations

Similarly, abductive reasoning also allows one to construct possible explanations of observed
behaviors. Given an ontology O and a knowledge base K, both modeled by a set of axioms
in first-order logic with equality (e.g., an OWL database), and an observation o, implicates
of O ∧K∧¬o correspond to negations of explanations of o. For example, given the axioms

blue-eyed(father(x)) ∧ blue-eyed(mother(x))⇒ blue-eyed(x)

the facts blue-eyed(alice) ∧ blue-eyed(bob) ∧ mother(carol) ' alice, and the observation
blue-eyed(carol), we may infer the hypothesis: father(carol) ' bob. This is done by gen-
erating the prime implicate father(carol) 6' bob from the above axioms and the negation
of the observation (assessing the actual plausibility of the assumption is out of the scope
of the present work, it may depend on heuristics or other observations). Formally, this
implicate is generated by the cSP calculus as follows (Resolution steps may be simulated
by Superposition inferences and reflection).

1 ¬blue-eyed(father(x)) ∨ ¬blue-eyed(mother(x)) ∨ blue-eyed(x) % axiom
2 ¬blue-eyed(carol) % neg. observ.
3 ¬blue-eyed(father(carol)) ∨ ¬blue-eyed(mother(carol)) % Res., 1, 2
4 mother(carol) ' alice % axiom
5 ¬blue-eyed(father(carol)) ∨ ¬blue-eyed(alice) % Sup., 3, 4
6 blue-eyed(alice) % axiom
7 ¬blue-eyed(father(carol)) % Res., 5, 6
8 [¬blue-eyed(bob) | father(carol) ' bob] % Ass., 7
9 blue-eyed(bob) % axiom
10 [2 | father(carol) ' bob] % Res., 8, 9

7.2.3 Extracting Relevant Consequences

Implicate generation can also be used to compute relevant consequences of a knowledge
base, in cases where such consequences are not known in advance. Consider for instance
the axiom

daughter(x, y)⇔ female(x) ∧ y ' mother(x)

The famous riddle “If Teresa’s daughter is my daughter’s mother, who am I to Teresa?”
can be answered by considering the formula daughter(s,Me)∧daughter(mother(s),Teresa)
and computing some of its prime implicates:

1 daughter(s,Me) % axiom
2 ¬daughter(x, y) ∨ y ' mother(x) % axiom
3 Me = mother(s) % Res., 1, 2
4 daughter(mother(s),Teresa) % axiom
5 Teresa = mother(mother(s)) % Res., 2, 4
6 Teresa = mother(Me) % Sup., 5, 3
7 [Teresa 6' Teresa |mother(Me) 6' Teresa] % Ass., 6
8 [2 |mother(Me) 6' Teresa] % Refl.

872

Prime Implicate Generation in Equational Logic

Clause 8 yields a first solution mother(Me) ' Teresa. But another (equivalent) solution
exists:

9 daughter(x, y) ∨ ¬female(x) ∨ y 6' mother(x) % axiom
10 [Teresa 6' mother(Me) ∨ ¬female(Me) |¬daughter(Me,Teresa)] % Ass., 9
11 [¬female(Me) |¬daughter(Me,Teresa)] % Res., 10, 6
12 ¬daughter(x, y) ∨ female(x) % axiom
13 female(mother(s)) % Res., 12, 4
14 female(Me) % Sup., 13, 3
15 [2 |¬daughter(Me,Teresa)] % Res., 14, 12

Note that the computed implicates should only refer to the relevant symbols Me, Teresa
and to the above relations, for example, they should not contain the auxiliary constant
s. This motivates the fact that we should be able to compute specific prime implicates
verifying user-specified criteria.

7.2.4 Dealing for Incomplete Information

Abducing equalities is also useful to deal with approximative, incomplete or even spurious
information. Assume we are given an ontology O and knowledge base K, and that we want
to check whether some property p holds. In some cases, property p will fail to be derived, due
to unreported synonyms (e.g., misspelled names, duplicate identifiers,. . .), aliases or missing
definitions. This problem, that commonly arises in practice, may be detected by computing
purely equational prime implicates of O ∧K∧¬p, effectively showing that p possibly holds
provided some simple equalities are added in the knowledge base. Afterwards, one could
seek confirmation from other sources and update the database if needed. For instance, given
the facts:

mother(alice) ' carol ∧mother(bob) ' carol

∧father(alice) ' dave ∧ father(bob) ' david

the axiom:

brother(x, y)⇔ (male(x) ∧mother(x) ' mother(y) ∧ father(x) ' father(y))

and the request: “who is the brother of Alice?”, we may compute the plausible answer
“Bob”, under the assumption that dave and david denote the same individual. This may be
done by deriving the implicate dave 6' david from the negation of the goal ¬brother(x, alice).
The variable x is unified with bob in the derivation, yielding the desired result. Similarly, if
the fact father(bob) ' david is deleted, then the above answer can still be returned, under
the condition that father(bob) ' dave.

In the spirit of the previous examples, the first-order prime implicate generation tool
SOLAR (Nabeshima, Iwanuma, Inoue, & Ray, 2010) is used in non-equational first-order
logic to abduce hypotheses for the completion of biological networks (Rougny, Yamamoto,
Nabeshima, Bourgne, Poupon, Inoue, & Froidevaux, 2015) and this technique is generalized
into a method to abduce logical reasoning called meta-level abduction by Inoue (2016).
Although the work presented in these papers does not rely on equational logic, its use could
make meta-level abduction more powerful by giving it the possibility of unifying seemingly
different objects to explain observations, which could be particularly useful when data comes
from several sources, as illustrated in the previous paragraph.

873

Echenim, Peltier & Tourret

7.3 Related Work

The prime implicate generation problem has been extensively investigated in the context
of propositional logic (see e.g., Marquis, 2000). Standard algorithms are based mainly on
refinements of the Resolution rule (Leitsch, 1997; Robinson, 1965), because unrestricted
Resolution permits to generate all the prime implicates of a set of clauses (Jackson, 1992;
Kean & Tsiknis, 1990; Quine, 1955; Tison, 1967). The proposed approaches then focus on
the definition of efficient strategies to generate saturated clause sets, by considering literals
incrementally, and on the definition of compact data structures for storing the generated
sets of implicates, e.g., using tries (De Kleer, 1992; Fredkin, 1960) or Z-BDDs (Mishchenko,
2001; Simon & Del Val, 2001). Other approaches use decomposition-based methods, in
the style of the DPLL procedure, for generating trie-based representations of sets of prime
implicates (Matusiewicz et al., 2009; Matusiewicz, Murray, & Rosenthal, 2011). Recently,
a new approach that outperforms previous algorithms has been proposed by Previti et al.
(2015); it is based on satisfiability solving and problem reformulation. The idea is to
associate each literal l with a variable xl indicating whether l occurs in the considered
implicate; using an adequate reformulation, the implicates correspond exactly to maximal
models of formulæ (iteratively) built on these variables.

There have been only very few approaches dealing with more expressive logics. Some
extensions have been considered in modal logics (see e.g., Bienvenu, 2007; Blackburn, Van
Benthem, & Wolter, 2007), and algorithms have been proposed for first-order formulæ.
Some of these approaches use unrestricted versions of the Resolution calculus (Knill, Cox,
& Pietrzykowski, 1993; Marquis, 1991). Other procedures extend the semantic tableau
method to search for hypotheses ensuring that all branches in the tableau can be closed
(Mayer & Pirri, 1993; Nabeshima et al., 2010). However, none of them handle equality
efficiently. More recently, algorithms were devised to generate sets of implicants of formulæ
interpreted in decidable theories (Dillig, Dillig, McMillan, & Aiken, 2012), by combining
quantifier-elimination for discarding useless variables, with model building to construct suf-
ficient conditions for satisfiability. The approach does not apply to equational formulæ with
(uninterpreted) function symbols since this would involve second-order quantifier elimina-
tion. For instance, generating the implicant a ' b from f(a) ' f(b) requires to solve the
second-order quantifier problem: ∀f (f(a) ' f(b)) in order to get rid of the symbol f .

Every existing prime implicate generation procedure in propositional logic can be em-
ployed to handle ground equational clauses by instantiating the variables occurring in the
equality axioms by the terms occurring in the input formula and considering equations as
propositional variables in the augmented formula. Systems designed to handle first-order
logic can also be used, simply by adding the equality axioms in the input clauses. In both
cases, however, the encoding introduces many redundancies, since the axioms of equality
will not be taken into account for redundancy testing. For instance, in both approaches,
all logical consequences of these axioms will be generated as implicates. Furthermore, as
explained in Section 3, an equational clause may possess many equivalent forms – possibly
exponentially many – and every such form will be considered if the transitivity and substi-
tutivity axioms are not taken into account15. Besides efficiency problems, a post-processing

15. It is clear that the commutativity and reflexivity axioms can be easy handled by the encoding, e.g., two
equations a ' b and b ' a can be mapped to the same propositional variable.

874

Prime Implicate Generation in Equational Logic

step is thus necessary in order to obtain sets of prime implicates in first-order logic with
equality. Note that the experimental comparison in Section 6 does not take the pre- and
post-processing steps into account.

The calculus presented in this paper is a form of Constrained Superposition calculus.
Other such calculi (see, e.g., Althaus, Kruglov, & Weidenbach, 2009; Bachmair, Ganzinger,
& Waldmann, 1994; Baumgartner & Waldmann, 2013) have been defined to handle het-
erogenous problems, i.e., problems involving a combination of standard first-order logical
reasoning with reasoning in specific theories such as arithmetic16. In these approaches, con-
straints are used to isolate the part of the formula belonging to the considered theory from
the first-order part which can be handled by the Superposition calculus. External systems
can be used afterwards to test the satisfiability of such constraints. Our work departs from
these approaches, because constraints are not used to postpone a part of the reasoning, but
rather to collect asserted hypotheses. In particular, the underlying theory and semantics of
the constraints are identical to those of the clauses, only the “operational meaning” differs.

It is worth comparing the present procedure with our earlier works (Echenim & Peltier,
2016; Echenim, Peltier, & Tourret, 2013, 2014). The procedures devised by Echenim et al.
(2013, 2014) only apply to formulæ that are ground and flat, i.e., when the only atoms are
equations between constant symbols. The inference rules used for deriving implicates depart
from those used in the present approach because there is no distinction between abduced
literals and standard ones. Both kinds of literals are handled in a completely uniform way,
and the same rules are used both to detect contradictions and to add new hypotheses. On the
one hand this may yield more compact representations of the clauses, but on the other hand
this results in a less efficient calculus, because most of the restrictions of the Superposition
calculus (e.g., ordering constraints) have to be dismissed to ensure deductive completeness.
The method described by Echenim and Peltier (2016) uses an explicit representation of
abducible literals as constraints, as in the present paper, however such abducible hypotheses
are generated in a completely different way. Instead of using specific assertion rules to
explicitly add new hypotheses in the derivations, this method works by considering residuals
of failed unification attempts as abductive hypotheses. Consider for instance the formula
f(a) 6' f(b). This method tries to unify f(a) and f(b) so that the Reflection rule can be
applied; it fails (a and b denote distinct constants), but generates in the process a residual
equation a ' b which cannot be solved. Adding this equation a ' b in the constraint allows
one to ensure that the inference is applicable, under this additional hypothesis. In contrast,
the present approach will first rewrite the constant b into a, adding the equation a ' b in
the constraint and then apply the Reflection rule on f(a) 6' f(a). The advantage of the
former method lies in the fact that it avoids any blind rewriting of the terms (in the above
example a could be rewritten to any ground term smaller than a, see the description of the
calculus in Section 4 and Remark 4.8 for more details). The use of unification failures allows
one to guide the discovery of the additional hypotheses that must be added to generate the
empty clause. The advantage of the latter approach is that all the usual restrictions of the
Superposition calculus are preserved. In the calculus by Echenim and Peltier (2016) these
restrictions must be relaxed to ensure completeness. There is a trade-off between these two

16. Which, usually, cannot be (efficiently) axiomatized.

875

Echenim, Peltier & Tourret

features. The experimental comparison shows that the latter approach seems to outperform
the first one, at least for ground flat clauses (see Echenim et al., 2015; Tourret, 2016).

7.4 Future Work

The most promising direction in which to pursue the work presented in this paper is to
implement a version of cSP based on a state-of-the-art equational theorem prover such as
the E theorem prover to benefit from all the clever improvements it contains. The extension
of the implementation to the non-ground case also deserves to be considered. Furthermore,
our redundancy detection algorithms could be extended to handle variables17.

Finally, the method could be extended to handle reasoning modulo theories. Two ap-
proaches can be considered. The first one consists in adding new axioms or inference rules
to handle the theory-specific symbols, as done by, e.g., Waldmann (2001) for totally ordered
divisible abelian groups. The other approach consists in handling theory reasoning within
the constraints, as done by, e.g., Althaus et al. (2009), Baumgartner and Waldmann (2013),
and using an external SMT solver to suggest simplifications, equivalences and abductive
hypotheses for the terms of the considered theory.

Acknowledgments

The authors would like to thank the reviewers, for their insightful comments, as well as the
creators of the external tools that were used during the experiments, for making them avail-
able. Sophie Tourret gratefully acknowledges financial support from the National Institute
of Informatics in Tokyo, Japan, at the time the paper was written, and from the University
Grenoble Alpes, LIG, in Grenoble, France, at the time the research was conducted.

References

Althaus, E., Kruglov, E., & Weidenbach, C. (2009). Superposition modulo linear arithmetic
SUP(LA). In Ghilardi, S., & Sebastiani, R. (Eds.), Proceedings of the 7th International
Symposium on Frontiers of Combining Systems, Vol. 5749 of Lecture Notes in Artificial
Intelligence, pp. 84–99. Springer.

Armando, A., Bonacina, M. P., Ranise, S., & Schulz, S. (2009). New results on rewrite-based
satisfiability procedures. ACM Transactions on Computational Logic, 10 (1), 1–51.

Baader, F., & Nipkow, T. (1998). Term Rewriting and All That. Cambridge University
Press.

Bachmair, L., & Ganzinger, H. (1994). Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 3 (4), 217–247.

Bachmair, L., Ganzinger, H., & Waldmann, U. (1994). Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication and
Computing, 5, 193–212.

17. Note however that the entailment relation is undecidable for non-ground clauses, even without equality
(Schmidt-Schauss, 1988).

876

Prime Implicate Generation in Equational Logic

Barrett, C., Fontaine, P., & Tinelli, C. (2015). The SMT-LIB standard: Version 2.5.
Tech. rep., Department of Computer Science, The University of Iowa. Available at
www.SMT-LIB.org.

Baumgartner, P., & Waldmann, U. (2013). Hierarchic superposition with weak abstrac-
tion. In Bonacina, M. P. (Ed.), Proceedings of the 24th International Conference on
Automated Deduction, Vol. 7898 of Lecture Notes in Computer Science, pp. 39–57.
Springer.

Bienvenu, M. (2007). Prime implicates and prime implicants in modal logic. In Proceedings
of the 22nd National Conference on Artificial Intelligence, Vol. 1, pp. 379–384. AAAI
Press.

Blackburn, P., Van Benthem, J., & Wolter, F. (2007). Handbook of Modal Logic. Studies in
logic and practical reasoning. Elsevier.

Bonacina, M. P., & Echenim, M. (2010). Theory decision by decomposition. Journal of
Symbolic Computation, 45 (2), 229–260.

Cimatti, A., Griggio, A., & Sebastiani, R. (2011). Computing small unsatisfiable cores in
Satisfiability Modulo Theories. Journal of Artificial Intelligence Research, 40, 701–
728.

Cruanes, S. (2014). Logtk: a logic toolkit for automated reasoning and its implementation.
In 4th Workshop on Practical Aspects of Automated Reasoning.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

De Kleer, J. (1992). An improved incremental algorithm for generating prime implicates. In
Proceedings of the National Conference on Artificial Intelligence, pp. 780–780. John
Wiley & Sons ltd.

De Moura, L. M., & Bjorner, N. (2007). Efficient E-matching for SMT solvers. In Pfenning,
F. (Ed.), Proceedings of the 21st International Conference on Automated Deduction,
Vol. 4603 of Lecture Notes in Computer Science, pp. 183–198. Springer.

Dershowitz, N. (1979). Orderings for term-rewriting systems. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, pp. 123–131, Washington,
DC, USA. IEEE Computer Society.

Dershowitz, N., & Manna, Z. (1979). Proving termination with multiset orderings. Com-
munications of the ACM, 22 (8), 465–476.

Dillig, I., & Dillig, T. (2013). Explain: a tool for performing abductive inference. In Pro-
ceedings of the 25th International Conference on Computer Aided Verification, Lecture
Notes in Computer Science, pp. 684–689. Springer.

Dillig, I., Dillig, T., McMillan, K. L., & Aiken, A. (2012). Minimum satisfying assignments
for SMT. In Madhusudan, P., & Seshia, S. A. (Eds.), Computer Aided Verification,
No. 7358 in Lecture Notes in Computer Science, pp. 394–409. Springer.

Echenim, M., & Peltier, N. (2012). A calculus for generating ground explanations. In
Proceedings of the 6th International Joint Conference on Automated Reasoning, Vol.
7364 of Lecture Notes in Computer Science, pp. 194–209. Springer.

877

Echenim, Peltier & Tourret

Echenim, M., Peltier, N., & Tourret, S. (2013). An approach to abductive reasoning in
equational logic. In Proceedings of the 23d International Joint Conference on Artificial
Intelligence, pp. 531–537. AAAI Press.

Echenim, M., & Peltier, N. (2012). An instantiation scheme for Satisfiability Modulo The-
ories. Journal of Automated Reasoning, 48 (3), 293–362.

Echenim, M., & Peltier, N. (2016). A Superposition calculus for abductive reasoning. Jour-
nal of Automated Reasoning, 57 (2), 97–134.

Echenim, M., Peltier, N., & Tourret, S. (2014). A rewriting strategy to generate prime
implicates in equational logic. In Proceedings of the 7th International Joint Conference
on Automated Reasoning, pp. 137–151. Springer.

Echenim, M., Peltier, N., & Tourret, S. (2015). Quantifier-free equational logic and prime
implicate generation. In Proceedings of the 25th International Conference on Auto-
mated Deduction, pp. 311–325. Springer.

Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the
ACM, 42 (1), 3–42.

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3 (9), 490–499.

Ganzinger, H., & Korovin, K. (2003). New directions in instantiation-based theorem
proving. In Proceedings of the 18th IEEE Symposium on Logic in Computer Sci-
ence,(LICS’03), pp. 55–64. IEEE Computer Society Press.

Ge, Y., & Moura, L. M. D. (2009). Complete instantiation for quantified formulas in
Satisfiability Modulo Theories. In Bouajjani, A., & Maler, O. (Eds.), Proceedings
of the 21st International Conference on Computer Aided Verification, Vol. 5643 of
Lecture Notes in Computer Science, pp. 306–320. Springer.

Inoue, K. (2016). Meta-level abduction. IfCoLog Journal of Logics and their Applications,
3 (1), 7–35.

Iwanuma, K., Nabeshima, H., & Inoue, K. (2009). Toward an efficient equality computation
in connection tableaux: a modification method without symmetry transformation—a
preliminary report—. Proceedings of the international workshop on First-order The-
orem Proving, 556, 19.

Jackson, P. (1992). Computing prime implicates incrementally. In Proceedings of the 11th
International Conference on Automated Deduction, pp. 253–267. Springer.

Jouannaud, J., & Kirchner, C. (1991). Solving equations in abstract algebras: a rule based
survey of unification. In Lassez, J.-L., & Plotkin, G. (Eds.), Essays in Honor of Alan
Robinson, pp. 91–99. The MIT-Press.

Kean, A., & Tsiknis, G. (1990). An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation, 9 (2), 185–206.

Knill, E., Cox, P. T., & Pietrzykowski, T. (1993). Equality and abductive residua for Horn
clauses. Theoretical Computer Science, 120 (1), 1–44.

Leitsch, A. (1997). The resolution calculus. Texts in Theoretical Computer Science.
Springer.

878

Prime Implicate Generation in Equational Logic

Liberatore, P. (2005). Redundancy in logic I: CNF propositional formulae. Artificial Intel-
ligence, 163 (2), 203–232.

Marquis, P. (1991). Extending abduction from propositional to first-order logic. In Pro-
ceedings of the International Workshop on Fundamentals of Artificial Intelligence Re-
search, pp. 141–155. Springer.

Marquis, P. (2000). Consequence finding algorithms. In Handbook of Defeasible Reasoning
and Uncertainty Management Systems, pp. 41–145. Springer.

Matusiewicz, A., Murray, N. V., & Rosenthal, E. (2009). Prime implicate tries. In Giese, M.,
& Waaler, A. (Eds.), Proceedings of the 18th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, pp. 250–264. Springer.

Matusiewicz, A., Murray, N. V., & Rosenthal, E. (2011). Tri-based set operations and se-
lective computation of prime implicates. In Kryszkiewicz, M., Rybinski, H., Skowron,
A., & Raś, Z. W. (Eds.), Proceedings of the 19th International Symposium on Method-
ologies for Intelligent Systems, pp. 203–213. Springer.

Mayer, M. C., & Pirri, F. (1993). First order abduction via tableau and sequent calculi.
Logic Journal of the IGPL, 1 (1), 99–117.

McCune, W. (2005–2010). Prover9 and Mace4. http://www.cs.unm.edu/~mccune/

prover9/.

Mishchenko, A. (2001). An introduction to zero-suppressed binary decision diagrams. Tech.
rep., In Proceedings of the 12th Symposium on the Integration of Symbolic Computa-
tion and Mechanized Reasoning.

Nabeshima, H., Iwanuma, K., Inoue, K., & Ray, O. (2010). SOLAR: an automated deduction
system for consequence finding. AI Communications, 23 (2), 183–203.

Ngair, T. (1993). A new algorithm for incremental prime implicate generation. In Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence, Vol. 1, pp.
46–51. Morgan Kaufmann Publishers Inc.

Nieuwenhuis, R., & Rubio, A. (2001). Paramodulation-based theorem proving. In Robinson,
J. A., & Voronkov, A. (Eds.), Handbook of Automated Reasoning, pp. 371–443. Elsevier
and MIT Press.

Patel-Schneider, P. F., Hayes, P., Horrocks, I., et al. (2004). OWL web ontology language
semantics and abstract syntax. W3C recommendation, 10.

Previti, A., Ignatiev, A., Morgado, A., & Marques-Silva, J. (2015). Prime compilation of
non-clausal formulae. In Proceedings of the 24th International Conference on Artificial
Intelligence, pp. 1980–1987. AAAI Press.

Quine, W. (1955). A way to simplify truth functions. The American Mathematical Monthly,
62 (9), 627–631.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12, 23–41.

Rougny, A., Yamamoto, Y., Nabeshima, H., Bourgne, G., Poupon, A., Inoue, K., & Froide-
vaux, C. (2015). Completing signaling networks by abductive reasoning with pertur-

879

Echenim, Peltier & Tourret

bation experiments. In Proceedings of the 25th International Conference on Inductive
Logic Programming.

Schmidt-Schauss, M. (1988). Implication of clauses is undecidable. Theoretical Computer
Science, 59 (3), 287 – 296.

Schulz, S. (2013). System Description: E 1.8. In McMillan, K., Middeldorp, A., & Voronkov,
A. (Eds.), Proceedings of the 19th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Stellenbosch, Vol. 8312 of Lecture Notes
in Computer Science, pp. 735–743. Springer.

Simon, L., & Del Val, A. (2001). Efficient consequence finding. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence, pp. 359–370.

Sutcliffe, G. (2009). The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. Journal of Automated Reasoning, 43 (4), 337–362.

Tison, P. (1967). Generalization of consensus theory and application to the minimization of
boolean functions. IEEE Transactions on Electronic Computers, EC-16 (4), 446–456.

Tourret, S. (2016). Prime Implicate Generation in Equational Logic. Ph.D. thesis, Ecole
Doctorale MSTII, Grenoble Alpes University.

Voronkov, A. (1995). The anatomy of Vampire: Implementing bottom-up procedures with
code trees. Journal of Atomated Reasoning, 15 (2), 237–265.

Waldmann, U. (2001). Superposition and chaining for totally ordered divisible abelian
groups. In Goré, R., Leitsch, A., & Nipkow, T. (Eds.), Proceedings of the 1st In-
ternational Joint Conference of Automated Reasoning, Vol. 2083 of Lecture Notes in
Computer Science, pp. 226–241. Springer.

Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C.,
& Topic, D. (2001). System description: SPASS version 1.0.0. In Proceedings of the
16th International Conference on Automated Deduction, Lecture Notes in Computer
Science, pp. 378–382. Springer.

880

