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1. Introduction
• Challenge of Information Retrieval:

– Content base access to documents that satisfy a users information 
need

Information
need

documents

relevance?

expression retrieval

visualization
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1. Introduction
• Probabilistic IR Models

– To capture the IR problem in a probabilistic framework
• First “classical” probabilistic model (Binary Independent 

Retrieval Model) by Robertson and Spark-Jones in 1976, 
leading to BM25

• Late 80s, Inference Networks
• Late 90s, emergence of language models, still hot topic in IR

– Question: “what is the probability for a document to be 
relevant to a query ?”

• several interpretations explored here

[Robertson & Spärk-Jones]

[Tutle & Croft]

[Croft][Hiemstra][Nie]
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1. Introduction

• Probabilistic Models of IR
– Different approaches of seeing a probabilistic approach 

for information retrieval
• Classical approach: probability to have the event Relevant

knowing one document and one query.
• Inference Networks approach: probability that the query is 

true after inference from the content of a document.
• Language Models approach: probability that a query is 

generated from a document.
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2. Binary Independant Retrieval 
Model 

• [Robertson & Spärk-Jones 1976]
– Computes the relevance of a document from the 

relevance known a priori from other documents. 

– Estimated by using the Bayes Theorem and a decision 
rule

– Relies on training data



Non Relevant Documents nonrel
R=r

Corpus

Relevant Documents rel
R=r
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2. BIR
• R: binary random variable

– R = r : relevant;     R = r : non relevant
– P(R=r | d, q): probability that R is r for the document d and the 

query q considered (P(R=r | d, q) is noted P(r | d, q))
- depends only on document and query

Corpus = rel È nonrel
rel Ç nonrel = Æ

Probability for the document d
belongs to the set of relevant
documents (rel) for q

P(r | d, q)
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2. BIR
• Matching function :

• Use of Bayes theorem

Probability that the document d
belongs to the set of relevant
documents of the query q.

Probability to obtain the description
d from observed relevance

Probability that the document d is
picked for q

Relevance probability: the chance of
randomly taking one document from
the corpus which is relevant for the
query q

),(
),().,(

),(
qdP

qrPqrdP
qdrP =
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2. BIR
Matching function

– Decision rule: document d retrieved if 

• P(r,q)/P(r,q) constant for a given query (constant): removed for IR
• In IR, it is more convenient to use logs to compute relevance status value rsv:

1
),().,(
),().,(

),(
),(

>=
qrPqrdP
qrPqrdP

qdrP
qdrP

)
),(
),(

log()(
qrdP
qrdP

drsv rank=
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2. BIR
• Each term t of d is characterized by a a binary variable wd

t, 
indicating the presence/absence of the term
– term weights are binary (d=(11…100…), wd

t=0 or wd
t= 1)

– P(wd
t = 1 | q, r): probability that t occurs in a relevant doc d for q.          

note: P(wd
t = 0 | q, r) =1 – P(wt = 1 | q, r) )

• Hypothesis of conditional independence between terms 
(Binary Independance) with weight wdt for term t in d:

P(d r,q) = P(d = (10...110...) r,q) = P(wd
t =1 r,q).

wt
d=1
∏ P(wd

t = 0 r,q)
wt
d=0
∏

P(d r,q) = P(d = (10...110...) r,q) = P(wd
t =1 r,q).

wt
d=1
∏ P(wd

t = 0 r,q)
wt
d=0
∏
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2. BIR

– Notations:

– Then:

– So 

rsv(d r,q) =rank log(
pt
qtwt

d=1
∏ )+ log( 1− pt

1− qtwt
d=0
∏ )

pt = P(wt =1 r,q)

qt = P(wt =1 r,q)
P(wt = 0 r,q) =1− pt P(wt = 0 r,q) =1− qt

rsv(d) =rank log(
P(d r,q)
P(d r,q)

) = log(
pt

wt
d=1
∏ . 1− pt

wt
d=0
∏

qt
wt
d=1
∏ . 1− qt

wt
d=0
∏

) = log( pt
qtwt

d=1
∏ ×

1− pt
1− qtwt

d=0
∏ )

Prob. of the term t in doc, and doc relevant

Prob. of the term t in doc, and doc non-relevant



2. BIR
• We have:

• Hypothesis: pt=qt for all the terms t absent in the query, 
assuming no impact on the relevance of d for q

13

)
1
1log()log(),(

\
ÕÕ
ÎÇÎ -

-
+=

DQt t

t

QDt t

t
rank q

p
q
pqrdrsv

rsv(d r,q) =rank log(
pt
qtwt

d=1
∏ )+ log( 1− pt

1− qtwt
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2. BIR
– For “inverted files compatibility” (cf. previous lessons):

Finally ...

= log( pt (1− qt )
qt (1− pt )t∈D∩Q

∏ )− log( 1− pt
1− qtt∈Q

∏ )

rsv(d r,q) =rank log(
pt
qtt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )

=rank log(
pt
qtt∈D∩Q

∏ )− log( 1− pt
1− qtt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )+ log( 1− pt
1− qtt∈D∩Q

∏ )

=rank log(
pt
qtt∈D∩Q

∏ )+ log( 1− qt
1− ptt∈D∩Q

∏ )+ log( 1− pt
1− qtt∈Q\D

∏ )+ log( 1− pt
1− qtt∈D∩Q

∏ )

= log( pt (1− qt )
qt (1− pt )t∈D∩Q

∏ )

constant for a given query Q.

=rank



2. BIR

• Or:

• Question: how to estimate pt and qt ?
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2. BIR
• Estimation of pt and qt on a set of resolved queries

(queries for which we know the relevant answers in the corpus of 
N documents)

– With 
• rt: number of relevant documents for q containing the term t
• Rt: number of relevant documents for q that contains t
• N: number of documents in the corpus
• nt - rt: number of non relevant documents containing t

Relevant Non Relevant Total

term  t present rt nt - rt nt

term t absent Rt - rt N - nt - (Rt - rt ) N – nt

Total Rt N - Rt N
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2. BIR
• Estimation of pt and qt on a set of resolved queries
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2. BIR
• Global formula

• Modified to avoid “problems” with 0s:
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2. BIR

– Need set of resolved queries to estimate the 
probabilities

– Problem of initial probabilities
• For terms not in the resolved queries ?

– Limited to binary events (term present/absent)

=> Basic model binary and independent
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2. BIR => BM25
• Best Match [Robertson 1994]: BM25

– Weighted terms (queries and docs) without resoved
queries

– Lenght of documents

q
t

q
t

d
t

d
t

qdt t

t
rankBM wk

wk

w
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dlbbk

wk
n
nNqrdrsv
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Common values :

k1 in [1, 2]

b=0.75

k3 in [0, 1000] Pre-Neural State of the art results

∼ idf ∼ tfd ∼ tfq

dl: document length
avdl: average document lenght
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4. Language Models of IR

• Probability that a document generates the query
• Consider two dices d1 and d2 so that :

– for d1
– for d2

• Suppose we observe the sequence Q={1,3,3,2}.
• What dice, d1 or d2, is likely to have generated

this sequence ? 

P(1) = P(3) = P(5) = 1
3
−ε P(2) = P(4) = P(6) = ε

P(1) = P(3) = P(5) = ε P(2) = P(4) = P(6) = 1
3
−ε



4. Language Models of IR
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4. Language Models of IR

• Link with IR
– the documents are the dices

• we represent documents as "documents models"
– the query is the observed sequence
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4. Language Models of IR

Inspired from speech understanding theory

– Idea : Use of statistical techniques to estimate both 
document models and the matching score of document 
for a query

• Document model ?
– A document is a « bag of terms »
– A language model of a document is a probability function of its 

terms. The terms being part of the indexing vocabulary. 
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4. Language Models of IR
– Models

• Probability P of occurrence of a word or a word sequence 
in one language

– Consider a sequence s composed of words : m1, m2, …, ml.
– The probability P(s) may be computed by

– For complexity reasons, consider only the n-1 preceding words 
of a word (ngram model)

Õ
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4. Language Models of IR
– Models

• Unigram

• Bigram

• Trigram

In IR, most approaches use unigrams
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4. Language Models of IR

• Basic idea :

meaning: 
what is the probability that a user, who finds the 

document d relevant, should use the query q (to 
retrieve d) ? 

Question: how to estimate ? 

)(),(),( dd qPnotedrRqPqdrRP qq ===

dq
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4. Language Models of IR
• Estimation of

– Ex.: Multinomial distribution
• example : one urn with several marbles of c colors, several

marbles of each color may appear. A sequence of colors
(marble picked and put back) is modelled by a multinomial 
law of probability:  

ex.:  p([c1, c2, c2])=p(c1)*p(c2)*p(c2)   with
• For documents [Song and Croft 1999]:

– the probability that the query terms get selected from the document
– with the vocabulary V (i.e. the set of all words):
– each word occurrence is independant

– Note:

dq

1)( =åc
cp

1)( =åÎVt dtp q

P(q θd ) =
q !
wt

q !( )
t∈V
∏

p(t θdt∈V∏ )wt
q

∝ p(t θdt∈V∏ )wt
q
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4. Language Models of IR
• How to estimate the parameters of the model?

– A simple solution: use the Maximum Likelihood Estimate
(MLE) to fit the statistical model to the data: We look for the 
p(t|qd) that maximize the probability to observe the document.

d
w

w
wtP

t
d

Vt

t
d

t
d

dML ==
å
Î

)( q with wt
d the count of t in d

Note, we have: 1)( ===
å

å Î

Î d
d

d

w
tP Vt

t
d

Vt
dML q
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4. Language Models of IR

• Is it done, so? Not really... consider
– a vocabulary V={"day", "night", "sky"}
– a document d so that qd={pML(day| qd)=0.67, pML(night| 
qd)=0.33, pML(sky| qd)=0}

– a query q="day sky"
– then: p(q| qd) µ pML(day| qd)1 * pML(sky| qd)1

=  0.67 * 0
= 0     …!

But d matches partially the query !!!
à not good for IR !
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4. Language Models of IR
• Problem: 

– we use only the document source to model the probability
distribution, 

– the document is not large enough to estimate accurately the 
probabilities

è pML alone is not sufficient for the language model of 
documents.

• Solution: to integrate data from a larger set
– What do we have ? => The collection of documents
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4. Language Models of IR
• Probability smoothing

– we smooth pML by a probability coming from the 
corpus

– the probability coming from the corpus is defined as

• Several smoothings exist, corresponding to several
ways to manage the integration between the data 
from the documents and the corpus



33

4. Language Models of IR
• Jelinek-Mercer smoothing

– fixed coefficient interpolation

– one l in [0, 1] for all the documents
– when l=0, Pl= PML (useless for IR, see before)
– when l=1, Pl=l.P(t|C): all document models are the 

same as the collection model. (useless)
– Optimization of l on one test collection (l≈0.15)
– simple to compute, good results

)(.)().1()ˆ( CtPtPtP dMLd lqlql +-=



34

4. Language Models of IR
• Implementation formula for one query q:

log(𝑃! 𝑞 '𝜃" ) ∝ ∑#∈%∩"
'!"

%
. log(()*!)

!
.'#

"

"
. ∑#$%'#

"

∑#$% "
+ 1 )

compatible with inverted files
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4. Language Models of IR

• Dirichlet smoothing
– interpolation dependant of each document, with one 

parameter µ (supposingly better as it takes into account
a specificity of each document)

– considers that the corpus adds pseudo occurrences of 
terms (non integer), the same pseudo-occurrences for 
one term for all documents:

µ
µ

qµ +
+

=
d

CtPw
tP

t
d

d

)(
)ˆ(
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4. Language Models of IR

• Dirichlet smoothing follows multinomial 
distribution
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4. Language Models of IR
• Dirichlet smoothing

– link with Jelinek-Mercer smoothing

– long documents have less smoothing (because more 
data)

– Dirichlet smoothing: very good results (values around
1500 or greater)
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4. Language Models of IR
• Smoothing is linked to inverse document 

frequency (IDF) [Lafferty & Zhai 2001] 
– consider that a general smoothing is of the form
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ì
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4. Language Models of IR
• Smoothing linked to IDF

"similar" to TF.IDF

log 𝑃( |𝑞 (𝜃!) ="#$% ,
&∈(

log 𝑃( |𝑡 (𝜃!)

="#$% ∑&∈(∩! log 𝑝*( |𝑡 (𝜃!) + ∑&∈(∖! log 𝛼! 𝑝( |𝑡 𝐶)

="#$% ∑&∈(∩! log
,!( |& /0")
2" ,( |& 3)

+ ∑&∈( log 𝛼! 𝑝( |𝑡 𝐶)

- ∑&∈(∩! log 𝛼! 𝑝( |𝑡 𝐶) + ∑&∈(∩! log 𝛼! 𝑝( |𝑡 𝐶)trick

=!"#$ ∑%∈'∩) log( 𝑝* |𝑡 4𝜃) ∗ +
,! - |% /

) + |q|.log 𝛼! + ∑&∈( log 𝑝( |𝑡 𝐶)

Constant per doc.
Constant per query
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4. Language Models of IR

• Generalization of the original matching function, 
negative Kullback-Leibler divergence:

• KL divergence compares two probabilities
distributions 
– how to code one distribution with another one
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4. Language Models of IR

• KL divergence on multinomial distributions of 
query and document and MLE similar to original 
matching:
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4. Language Models of IR

• The KL divergence considers by definition
comparison of distributions, closer to the usual
meaning of matching in IR.

• KL is implemented as Language Model matching
in Terrier and Lemur.
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5. Conclusion
• Language models are pre-neural state of the art IR

– Multinomial
– Dirichlet smoothing
– Strong fundamentals, links to heuristics in IR (TF, IDF)

• Many extentions
– cluster-based smoothing
– other probability models (Poisson)
– other smoothings

• LM state of the art word-based, competing with BM25



44

Bibliography
• C. Zhai, Statistical Language Models for Information Retrieval, 

Morgan&Claypool, 2009
• Zhai&Lafferty, A Study of Smoothing Methods for Language 

Models Appplied to Ad Hoc Information Retrieval, ACM SIGIR 
2001, pp334-342

• F. Song and W.B. Croft. A general language model for information 
retrieval. In Proceedings of Eighth International Conference on 
Information and Knowledge Management (CIKM'99), 1999. 

• H. Turtle , W. B. Croft, Inference networks for document retrieval, 
Proceedings of the 13th annual international ACM SIGIR, p.1-24, 
September 05-07, 1990.

• J. Ponte and W.B. Croft, A Language Modeling Approach to 
Information Retrieval, ACM SIGIR 1998.



45

Bibliography
• S. Robertson and K. Spark Jones (1976), Relevance 

weighting of search terms. Journal of the American 
Society for Information Science. n°27. pp. 129-146.

• S. Robertson et al., Okapi at TREC-3, TREC-3 
conference, 1994.

• A. Singhal, Modern Information Retrieval: A Brief 
Overview, Bulletin of the IEEE Computer Society 
Technical Committee on Data Engineering, 2001.

• M. Boughanem, W. Kraaj an J.Y. Nie, Modèles de langue 
pour la recherche d'information, in les systèmes de 
recherche d'information : modèles conceptuels, Hermes 
2004.


