
Using Invariant Detection Mechanism in Black Box Inference

Muzammil Shahbaz∗, Roland Groz∗∗

∗France Telecom R&D
Meylan, France

Muhammad.MuzammilShahbaz@orange-ftgroup.com
∗∗LIG, Computer Science Lab
Grenoble Universités, France

Roland.Groz@imag.fr

Abstract. The testing and formal verification of black box software components
is a challenging domain. The problem is even harder when specifications of
these components are not available. An approach to cope with this problem
is to combine testing with learning techniques, such that the learned models
of the components can be used to explore unknown implementation and thus
facilitate testing efforts. In recent years, we have contributed to this approach by
proposing techniques for learning parameterized state machine models and then
use them in the integration testing of black box components. The major problem
in this technique left unaddressed was the selection of parameter values during
the learning process. In this paper, we propose to use an invariant detection
mechanism to select values in the learning process, thus refining model inference
and testing approach. Initial experiments with small examples yielded positive
results.

1 Introduction

Although formal methods are a key element to automate a number of phases of software
development, very few software processes are actually fully based on formal methods and
associated tools. Typical problems arise when specifications are not formal or only a part of
the specifications is formalized. It is also often the case that formal models are not updated
consistently with software evolution.

One approach to alleviate this problem is to revert the usual rigid process that starts from
formal specifications. This flexible approach consists in introducing or re-introducing formal
models during the software process, typically by retrieving them from various sources, in-
cluding the code itself. The advantage is that formal methods and tools can be applied on
development steps where they can be justified as more efficient and therefore more acceptable
for integration in the development process of the company. This approach is commended es-
pecially in a testing phase which is a cost-intensive and a time consuming activity and thus
automation is highly desirable. Formal methods can support testing through test generation,
test interpretation, classification and diagnosis.



Invariant Detection and Black Box Inference

Black box testing is an important area where the application of formal methods is still a
novice. One view of the application on black box testing is to apply formal reverse engineering
methods that combine testing and learning algorithms. The key advantage of this approach is
to obtain an in depth knowledge of the internal design of a black box system which is hidden
from the user and also to rigorously test the system. The inference is done based upon the
observations of the system which can be obtained by stimulation. There are few works, e.g.,
Hungar et al. (2003); Elkind et al. (2006); Berg et al. (2006) that studied the practicality of
the algorithms in the domain of machine learning, esp. automata inference. In recent years,
we have also contributed in this domain by introducing methods for learning parameterized
finite state machine models and their use in the integration testing of black box systems. The
motivation behind introducing parameters is to encapsulate very large (or infinite) input set into
few key inputs and run the algorithm on the reduced set. Some efforts have been done in this
respect and a parameterized model which can be learnt in polynomial time is presented Berg
et al. (2006). However, our model is more expressive in the sense that parameter values can
be associated with inputs and outputs of the state transitions. We have developed a learning
algorithm Shahbaz et al. (2007) to learn such a model from a black box component. The
algorithm tests the component with different parameter values and conjectures a parameterized
model through observations of testing results. The procedure is iterative and requires several
iterations in which different parameter values are tested. The selection of parameter values is
intensively difficult with the motivation of exploring maximum behaviors of the component in
minimum iterations. In the algorithm Shahbaz et al. (2007), this selection is intuitive or guided
by domain experts.

In this paper, we propose to use an invariant detection mechanism for the selection of
parameter values in the learning algorithm. Invariants are basically properties of a program
in a white box scenario. They provide a relationship between program variables by observing
their values and their use in the program. However, we have noticed that invariant detection
methods can be applied to a black box system if there is enough observations collected from
the system. In our case, we have observations in terms of input and output parameter values
during an initial run of the learning algorithm. The likely invariants over those observations
can be inferred thus giving a meaningful relation between input and output parameters. This
relation or invariant can be used in selecting new parameter values for the next iterations of
the learning algorithm, thus making the learning process iterative and a more realistic model
of the black box system can be conjectured.

We organize the paper in the following way. Section 2 describes the learning methodology
in general and a brief sketch of the algorithm. Section 4 introduces the dynamic invariant
detection mechanism and the tool that we are using in our method. Section 5 illustrates the
use of the invariant detection method in our approach with the help of an example. Section 7
concludes the paper.

2 The Learning Methodology
Our approach to learn a black box component and to build its formal model is through

active learning techniques. In this technique, a component is tested with different combinations
of inputs and a model is learnt incrementally with the help of observations of testing results.
We assume that a basic input set through which the component is exercised is known and the



M. Shahbaz and R. Groz

interfaces are accessible through which inputs can be sent and their corresponding outputs from
the component can be observed. The components in the system communicate with each other
by means of message passing and exchange enormous amounts of data in the form of input
and output parameters. Testing and learning of such components is hard because regardless
of the finite behavioral spectrum of the component, the i/o parameter domain is infinite. It is
not known that which values will suddenly change the behavior of the component altogether
leading the complete system to an unexpected state. Realistically, we can only learn partial
models of a component. Therefore, we exercise some parameter values in in our learning
algorithm and conjecture the component behaviors in the form of a state machine model.

The basic idea of the learning process is to systematically explore the component’s be-
haviors by means of testing different input sequences. The input symbols in the sequences are
associated with some parameter values from their respective domains. When it is observed that
“sufficiently consistent” behaviors have been explored, the algorithm stops testing and conjec-
tures a state machine model1 consistent with the observed behaviors, i.e., each transition from
each state of the model ends in a well-defined state and producing the same input/output rela-
tion as observed in the testing.

In this paper, we focus on the solution of selecting parameter values during the learning
procedure. We refer to our previous work Shahbaz et al. (2007) for the complete description
of the learning algorithm in order to avoid lengthy formal discussion in this paper.

3 A Simple Example

Consider a part of a global avionics system design that is related to controlling of ailerons
of a plane. The subsystem is designed to tolerate fault in the working components by means of
backup redundancy. There are two components C1 and C2 that are responsible for controlling
the ailerons and another component Ctrl monitors and controls the working of C1 and C2. In
a normal mode, C1 is active and sends a periodic signal s(1) to Ctrl where parameter value 1
indicating the activeness of C1. Ctrl replies with ack for every signal it receives. Whenever
Ctrl receives s(0) meaning C2 is down, it sends a request sc(1) to set a counter of failure.
The parameter value 1 indicates that failure has occurred. Ctrl periodically checks the counter
c(x), where x is the counter value, and increments the value every time. If the counter reaches
to a certain threshold then Ctrl sends a command Cmd to C2 to take charge of the ailerons.

The complete example of the aileron control system with details of other components is
given in Ermont and Boniol (2002). However, we have modified the original example by
replacing the timing notions used in the components simply to illustrate our approach. Here
we shall just focus on the component Ctrl and assume that its implementation is unknown. A
preliminary (partial) parameterized model is learnt, shown in Figure 1, after the first iteration
of our learning algorithm (roughly sketched in section 2). The input set used for Ctrl in the
algorithm is {s, sc, c}, where the input parameter domain for inputs s and sc is boolean, and
for input c is the set of positive integers. Note that the model is not learnt completely and it
lacks the information how Ctrl sends Cmd to C2 for activation. The counter c is tested with
parameter values between 1 and 4 in this iteration.

1A parameterized state machine model can be seen as a Mealy machine where inputs and outputs are associated
with parameters. The details and formal definitions can be seen in Shahbaz et al. (2007).



Invariant Detection and Black Box Inference

FIG. 1 – Preliminary model of Ctrl after the first iteration. The interpretation of labels on
transition, e.g., t2 : s(0)/sc(1) is as follows: t2 is the transition name, s(0) is the input, where
0 is the input parameter value and sc(1) is the output, where 1 is the output parameter value

4 Dynamic Invariant Detection
A program invariant is a property that holds at certain points in a program. For example,

variable x is non-zero (x 6= 0), being constant (e.g., x = 1), being in a range (e.g., 5 ≤ x ≤
10), linear relationships (e.g., y = 2x + 1), ordering (e.g., x ≤ y), etc. Dynamic detection
of likely invariants is a program analysis that infers invariants over variables in the scope by
observing their values during the program execution. A dynamic detector of program invariants
runs the program on a specific test suite and examines variable values captured during program
execution and reports properties and relationships that hold over those values. The basic use of
invariants is in program comprehension, in general, and also for the purpose of documentation
and maintenance tasks.

The Daikon System Ernst et al. (2006) is an implementation of the dynamic invariant de-
tection that infers invariants over scalar and structured variables from program execution. The
essential idea is to run the program over a test suite, collect traces from the program execution
and use a generate-and-check algorithm to test a set of potential invariants against the traces.
The algorithm initially assumes that all potential invariants over the variables of interest are
true and incrementally tests each invariant against the observed values of these variables from
the traces. At each step, the invariant is discarded if it is violated by the values to obtain a set of
positive invariants. The remaining invariants at the end of the process are reported describing
the relations as invariants on the set of values observed in the program behavior.

Daikon is enhanced with a number of optimizations that allows it to scale to both large
numbers of invariants and programs of non-trivial size. Currently, it checks over 70 invariants
and the list is extendible by the users to accommodate their own domain-specific invariants
and derived variables. Some of the invariants it detects that are useful typically for numeric
applications are as follows: constant value (x = a), small value set (x ∈ {a, b, c}), range limits
(x ≤ a), non-zero (x 6= 0), modulus (x ≡ a (mod b)), linear relationships (y = ax + b),
functional relationships (y = f(x)), comparisons (x > y, x = y, ...), polynomial relationships
(z = ax + by + c) and relationships over all elements of an array.

5 Use of Daikon in Parameter Value Selection
Daikon collects all program executions in a large file called data trace file ’.dtrace’. It does

not use source code at all when inferring invariants. The inference engine reads data trace
files and runs invariant detection algorithm on the variable values collected in the files. This
functionality exactly matches our requirements. We do not have access to the source code but



M. Shahbaz and R. Groz

have observations from the black box system after its preliminary state machine model is learnt
through our learning algorithm. These observations include a (large) set of input and output
parameter values generated through testing during the learning phase. We want to pursue for
the next iterations of the algorithm in order to refine our models and also to test the system
behavior on the other set of parameter values which is never used in the previous iteration.
The question is how to select “intelligently” new values and when the iterative process should
terminate.

The idea to solve the above stated problems is to use invariants over observed data in the
previous iteration to select the new parameter values for the next iterations. The observations
in the previous iteration can be written in a data trace file to feed Daikon to detect invariants
over those observations. For example, if the values for the input parameter x are given as
{2, 4, 8} and the values for the corresponding output parameter y are observed as {4, 16, 64},
where x and y are integers, then Daikon will infer the relationship between x and y as y = x2.

This invariant is meaningful in order to steer the next iteration of the algorithm. The pur-
pose is to make sure that the system will behave according to the inferred invariant for any
value of x. To fulfill this purpose, one can select larger or smaller values of x in the next
iteration than that are used in the previous iterations. The new observed behavior of the next
iteration will be given again to Daikon to infer invariants on the new data. The difference
in the invariants of the current and the previous iterations will lead to further iteration of the
learning algorithm in which parameter values will be selected according to the new inferred
invariants. Otherwise, the procedure will terminate and the transitions of the state model will
be accumulated with the respective invariants. Figure 2 is the summary of the whole learning
procedure.

6 Experiment
The parameter values labelled on the transitions of the learned model of Ctrl, given in

Figure 1, will be provided to Daikon in the form of data trace files to infer invariants over those
values. A data trace file consists of execution records that list the variable values encountered
during the executions. We illustrate a data trace file for the transition t3 of the model where
the input parameter c is tested with values {1, 2, 3, 4} and the corresponding output parameter
values are observed as {2, 3, 4, 5} respectively. One input parameter value with its correspond-
ing output parameter value is written as one execution record in the file. Figure 3 explains an
execution record excerpted from the file.

The lines with ’#’ are comments. Daikon notes variable values before each procedure entry
and after exit for an execution record. We treat this phenomena in our case as input parameter
values before testing (vs before procedure entry) and output parameter values observed after
testing (vs after procedure exit). We name the procedure as Controller.aileron().
Lines 3 to 8 in Figure 3 declare procedure entry and set the value for input parameter c, renamed
as counter, as 2 (lines 6 and 7). Lines 10 to 18 declare procedure exit and set the value for
output parameter nc, renamed as new_counter, as 3 (lines 16 and 17). We run Daikon on the
data trace file and obtain the output shown in Figure 4.

The inferred invariants are written under Controller.aileron():::EXIT and the
most important invariant we learned is: counter + 1 = new_counter. This reveals
that Ctrl increments by one each time in the counter values which are given from 1 to 4.



Invariant Detection and Black Box Inference

Let Inv,NewInv be the sets where every invi ∈ Inv, ninvi ∈ NewInv is a set of1

invariants for a transition ti, 1 ≤ i ≤ n of a conjectured model M , where n is the
number of transitions in M ;

begin2

Initialize Inv = NewInv = ∅ ;3

Learn M using the learning algorithm Shahbaz et al. (2007)4

and select the parameter values intuitively ;5

for each transition ti of M do6

Write dtrace file for i/o parameters observed over ti ;7

Learn invariants invi for ti using Daikon ;8

Include invi in Inv ;9

end10

while Inv 6= NewInv do11

if it is not the first iteration then12

Inv = NewInv;13

NewInv = ∅ ;14

end15

Learn M again using the learning algorithm Shahbaz et al. (2007)16

and select the parameter values using invariants from Inv ;17

for each transition ti of M do18

Write dtrace file for i/o parameters observed over ti ;19

Learn new invariants ninvi for ti using Daikon ;20

Include ninvi in NewInv ;21

end22

end23

Output M ;24

end25

FIG. 2 – Summary of the learning procedure

1 # Execution record no. 110
2 # Before execution: counter = 2
3 Controller.aileron():::ENTER
4 this_invocation_nonce
5 110
6 counter
7 2
8 1

9 # After execution: new_counter = 3
10 Controller.aileron():::EXIT100
11 this_invocation_nonce
12 110
13 counter
14 2
15 0
16 new_counter
17 3
18 0

FIG. 3 – An execution record of the data trace file



M. Shahbaz and R. Groz

Daikon version 4.3.1, released August 2, 2007;
http://pag.csail.mit.edu/daikon.
Processing trace data; reading 1 dtrace file:
[15:14:39]: Finished reading aileron-counter.dtrace
===================================================
Controller.aileron():::ENTER
===================================================
Controller.aileron():::EXIT
counter one of { 1, 2, 3, 4 }
new_counter one of { 2, 3, 4, 5 }
counter == orig(counter)
counter - new_counter + 1 == 0
Exiting Daikon.

FIG. 4 – Daikon output for the data trace file of the transition t3

FIG. 5 – Refined model of Ctrl after the second iteration

In order to start the second iteration of the learning algorithm, we use this invariant to select
the values for counter that may change the behavior of Ctrl, since our preliminary model
is partial. Therefore, we select larger values than the ones given in the counter value set
{1, 2, 3, 4}. We start the next iteration and test counter with value 100, i.e., c(100). This
value is larger than the threshold limit of Ctrl upon which it sends Cmd to C2. Hence, we
find a different behavior of the component from the previous iteration. The refined model
is shown in Figure 5 conjectured from the second iteration of the learning algorithm. The
new observations will again be fed to Daikon for the update of invariants. The recalculated
invariants on the transition t3 are not different from the invariants of the previous iteration.
Hence, the learning process terminates.

7 Conclusion

We have extended our previous work of black box inference in which we have presented a
learning algorithm that tests and learns the component incrementally and conjectures a param-
eterized state machine model. The selection of parameter values in the algorithm is a difficult
task in order to observe maximum behaviors of the component in minimum iterations.



Invariant Detection and Black Box Inference

In this paper, we have presented an approach to use a dynamic invariant detection mecha-
nism to select the parameter values in the algorithm. A preliminary model of a component is
learnt after the first iteration of the algorithm in which parameter values are selected intuitively.
The observations in the first iteration are then used to infer invariants over the parameter values.
These invariants are helpful in selecting new parameter values for the subsequent iterations. We
use Daikon as an invariant detector and performed a simple experiment with it.

We have performed some additional experiments and found Daikon an efficient tool for
numeric applications. However, it has limitations for use in large sized applications where
complex formulas are used for computations. Currently, Daikon cannot infer invariants on
linear relationship on more than three variables. Moreover, it generates very few invariants
that are of any interest unless it is supplied with very large execution data. On the contrary, we
believe that even naive invariants of an unknown implementation are meaningful in our case.
A thorough evaluation of Daikon and its comparison with other approaches is done in Ernst
et al. (2001).

In future work, we intend to apply more formal approaches using invariants to derive effi-
cient test cases. Daikon is being used actively in testing and verification work. But very few
works Lorenzoli et al. (2006); Mariani and Pezzè (2005) used this tool in a black box testing
framework. Therefore, we continue exploring methods to use Daikon in this domain.

References
Berg, T., B. Jonsson, and H. Raffelt (2006). Regular inference for state machines with param-

eters. In FASE, Volume 3922 of Lecture Notes in Computer Science, pp. 107–121. Springer.
Elkind, E., B. Genest, D. Peled, and H. Qu (2006). Grey-box checking. In FORTE, pp. 420–

435.
Ermont, J. and F. Boniol (2002). Tpap: an algebra of preemptive processes for verifying real-

time systems with shared resources. Electr. Notes Theor. Comput. Sci. 65(6).
Ernst, M. D., J. Cockrell, W. G. Griswold, and D. Notkin (2001). Dynamically discovering

likely program invariants to support program evolution. IEEE Transactions on Software
Engineering 27(2), 99–123.

Ernst, M. D., J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao
(2006). The Daikon system for dynamic detection of likely invariants. Science of Computer
Programming.

Hungar, H., O. Niese, and B. Steffen (2003). Domain-specific optimization in automata learn-
ing. In CAV, Volume 2725 of Lecture Notes in Computer Science, pp. 315–327. Springer.

Lorenzoli, D., L. Mariani, and M. Pezzè (2006). Inferring state-based behavior models. In
WODA ’06: Proceedings of the 2006 international workshop on Dynamic systems analysis,
pp. 25–32. ACM Press.

Mariani, L. and M. Pezzè (2005). Behavior capture and test: Automated analysis of component
integration. ICECCS 0, 292–301.

Shahbaz, M., K. Li, and R. Groz (2007). Learning and integration of parameterized compo-
nents through testing. In TestCom/FATES, pp. 319–334.


