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Abstract 

 
The design of complex systems, e.g., telecom 

services, is nowadays usually based on the integration 
of components (COTS), loosely coupled in distributed 
architectures. When components come from third party 
sources, their internal structure is usually unknown 
and the documentation is insufficient. Therefore, the 
system integrator faces the problem of providing a 
required system assembling COTS whose behaviour is 
barely specified and for which no model is usually 
available. 

In this paper, we address the problem of integration 
testing of COTS. It combines test generation 
techniques with machine learning algorithms. State-
based models of components are built from observed 
behaviours. The models are alternatively used to 
generate tests and extended to take into account 
observed behaviour. This process is iterated until a 
satisfactory level of confidence in testing is achieved. 
 
1. Introduction 
 

The design of software systems, typically new 
services offered on the Internet, is more and more 
based on the integration of components from third 
party sources (COTS), loosely coupled in a distributed 
architecture. The system integrator is in charge of 
providing a new service based on the integration of 
such components, with minimal development of 
interfacing software (often nicknamed as “glue”). The 
integrator faces the problem of providing a required 
system assembling COTS of which he (she) has a 
limited knowledge. 

Since components come from third party, their 
internal structure is usually unknown and the 
documentation is not sufficient to work out all the 
details of their interactions with other components. 
Therefore, the integrator would typically first test each 
component to learn its behaviour on typical requests it 
would have to serve in the assembly, and then test the 

integrated system based on variations of system use 
cases. 

Due to the lack of formal models of components, in 
order to design test cases for the components and the 
integrated system, the integrator has to rely on his 
intuitions. Currently, there are not many tools that can 
help him in test generation. 

At the same time, use cases are often provided by 
domain experts (including system users). The use cases 
might be informal and obtained in an ad hoc way, and 
thus are hardly sufficient to check that the components 
will interact correctly in any combination of requests. 

On the other hand, test generation tools for formal 
specifications based on state machines [5] could offer 
some help in system integration; thus, formal models 
of components are needed. 

Our work addresses this key issue of providing a 
support to component integration in this context. In 
order to systematically develop tests with a satisfactory 
level of confidence, we use test generation techniques 
based on formal models. Since formal models cannot 
be expected to be delivered with COTS, we shall infer 
models from the observed behaviours during tests. This 
is the key point in our approach. Our basic assumptions 
are as follows. 
• Components will be seen as black boxes. Their 

interfaces are known. This means that we know at 
least partial input and output types. 

• All internal and external interfaces can be 
observed in integration testing, but only external 
(non-integrated) interfaces are controllable, i.e., 
we can send input sequences through these 
interfaces to test the components. 

• Inputs from the environment will only be provided 
on stable states of the system, viz. when the system 
is waiting for external stimuli and will not make 
any internal move. This corresponds to the 
assumption of slow environment in system 
verification and testing. We are assuming that the 
system has a reactive semantics. 



  

• Some test scenarios can be provided by domain 
experts as a guideline for the system integration. 
Test scenarios are expressed in terms of externally 
observable actions of the integrated system. 

In the absence of formal models for components, 
model inference from scenarios is a key point. We 
propose an extension of Angluin’s algorithm [1] that 
fits into that framework. The original algorithm has 
been proposed for Deterministic Finite-State Acceptors 
(DFAs) as language acceptors. Most uses of this 
algorithm for I/O machines have reused the algorithm 
with a simple mapping from inputs and outputs to 
single letters into a DFA’s alphabet A: either by taking 
inputs and outputs as letters: A=I∪O as in [2][4], or by 
considering couples of inputs and outputs as letters: 
A=I×O [7]. Our extension uses only inputs as letters of 
the alphabet A of Angluin’s algorithm, and outputs are 
used in the cells of the table instead of booleans 
indicating the membership. Finally, the trickiest 
ingredient of the initial algorithm, namely the 
equivalence query, finds a practical implementation in 
our framework. Contrary to requirements engineering 
approaches such as [7] or [8], the equivalence query is 
not provided by an expert, but by testing the system 
which acts as an oracle. 

The overview of the integration testing 
methodology is as follows. 
1. In the first step, an input alphabet is defined for 

each component C starting with those from use 
cases defined for the system. 

2. The components are integrated, which means that 
some of the outputs of one component will appear 
as inputs on the connected interface of another 
component. The behaviour of the integration 
system is tested according to test scenarios. If the 
test scenarios are not respected, the problematic 
component is identified and replaced. At the same 
time, the observed behaviour of each component 
C is recorded in its Observation Table TC. The 
procedure is referred as Scenario Testing in the 
following. 

3. Starting from its observation table, each 
component is tested separately using the learning 
algorithm until a closed and consistent table is 
found. The output alphabet is determined. This 
provides the first model C(1) for C. The procedure 
is referred as Unit Testing in the following. 

4. The components are integrated again, and the 
whole system is tested based on the models of the 
components according to a certain test generation 
strategy. A chosen strategy is built on some 
model coverage criterion. The actual outputs, 
both, internal and external, observed are recorded 
and compared to those provided by the models. 

Tests are performed until a discrepancy between 
predictions from the model and the observed 
outputs is found or the criterion is achieved. The 
procedure is referred as Integration Testing in the 
following. 

5. In case of discrepancy, the model has to be 
corrected, so we extend the models by relearning 
and iterate Step 4 with the new C(i+1) components.  

6. When the coverage criterion is achieved, domain 
experts check the component models and test 
results. In case unexpected behaviours have been 
identified, components may be replaced, and Unit 
Testing and Integration Testing are iterated. 

7. The process terminates after domain experts 
approve the results. 

This incremental approach is similar to the one 
presented in [3]. In this paper, we concentrate on the 
use of such an approach for component integration, and 
develop the necessary extensions to the learning 
algorithm. 

The rest of the paper is organized as follows. We 
present our basic model and data structure in the next 
section. After introducing integration testing 
architecture in Section 3, Scenario Testing, Unit 
Testing and Integration Testing are presented in 
Section 4, 5, and 6, respectively. An example is 
presented in Section 7. Finally, Section 8 concludes the 
paper and describes possible future works. 
 
2. Preliminary 
 
In this section, we give the definition of FSM, which is 
the basic model we use, and an observation table, 
which is the basic data structure, where the information 
observed in testing is recorded. 
 
2.1. Finite State Machine 
 

A Finite State Machine (FSM) M is a six-tuple 
M=(Q, I, O, δ, λ, q0), where Q, I, O are finite and 
nonempty sets of states, input symbols, and output 
symbols, respectively. δ:Q×I→Q is the state transition 
function. λ:Q×I→O is the output function. q0∈Q is the 
initial state. When the FSM is in a current state q in Q 
and receives an input a from I, it moves to the next 
state specified by δ(q,a), and produces an output given 
by λ(q,a). 

We extend the transition function δ and the output 
function λ from input symbols to strings as usual: for a 
state q1, an input sequence x=a1,…,ak takes the FSM 
successively to states qi+1=δ(qi,ai), i=1,…,k, with the 
final state δ(q1,x)=qk+1, and produces an output 
sequence λ(q1,x)=b1,…,bk, where bi=λ(qi,ai), i=1,…,k. 



  

We consider only input enabled FSM, that is when 
dom(δ)=dom(λ)=Q×I. A machine can be made input 
enabled by adding loopback transitions with a special 
output symbol “Ω”. “Ω” is an abstraction for an 
explicit invalid notification from the system. 
 
2.2. Observation Table 
 

In the work, we model a component C as an 
unknown FSM M=(Q, I, O, δ, λ, q0) with known input 
symbols I. Since we can submit any input sequence to 
the component and observe the corresponding output 
sequence, for any α∈I*, λ(q0, α) is known. We also 
assume that each component can be reset to its initial 
state before each test. 

In the testing procedure, the observed behaviour of 
the component C is recorded into its Observation 
Table, using a nonempty finite prefix-closed set S of 
input strings (representing potential states of the FSM), 
a nonempty finite suffix-closed set E of input 
sequences (separating potential states of the FSM) 
(ε∉E), and a finite function T mapping ((S∪S⋅I)×E)1 to 
O*. The observation table is denoted by (S, E, T). 

In the observation table, for each σ∈(S∪S⋅I), µ∈E, 
T(σ,µ)=β, β∈O*, such that |β|=|µ|, and λ(q0, 
σ⋅µ)=λ(q0, σ)⋅β. 

Initially S={ε} and E=I. These sets are updated 
during the testing procedure. 

An observation table can be visualized as a two–
dimensional array with rows labelled by elements of 
(S∪S⋅I) and columns labelled by elements of E, with 
the entry for row s and column e equal to T(s, e). If s is 
an element of (S∪S⋅I), row(s) denotes the finite 
function f from E to O* defined by f(e)=T(s, e). An 
example of the observation table is given in Table 1. In 
this observation table, I={a, b}, O={x, y}, S={ε, a, b}, 
E={a, b}. 

An observation table is called closed provided that 
for each t in S⋅I there exists an s in S such that 
row(s)=row(t). An observation table is called 
consistent provided that whenever s1 and s2 are 
elements of S such that row(s1)=row(s2), for all a in I, 
row(s1⋅a)=row(s2⋅a). 

If (S, E, T) is a closed, consistent observation table, 
we define an FSM M(S,E,T)=(Q′, I, O, δ′, λ′, q′0) in 
which: 

Q′={row(s):s∈S}, 
q′0=row(ε), 
δ′ (row(s),a)=row(s⋅a), a∈I 
λ′ (row(s),a)=T(s, a), a∈I.  

                                                        
1 Empty sequence is denoted by ε. Concatenation of strings 

and their sets is denoted by “⋅”. 

For example, the observation table in Table 1 is 
closed and consistent. We depict the corresponding 
M(S, E, T) in Figure 1. In it, Q′={row(ε), row(a), 
row(b)}. 

 
Table 1. An 

example 
observation 

table 
 a b
ε x x
a x y
b y x
aa x y
ab y x
ba x y
bb y x 

row(ε)

row(b)row(a)

a/x b/x

b/y

a/y
a/x b/x

 
Figure 1. Conjecture 

machine 

 
For the FSM M(S, E, T), we have the following 

theorems: 
Theorem 1. Assume that (S, E, T) is a closed and 

consistent observation table, then the FSM M(S, E, T) 
is consistent with the finite function T. That is, for 
every s in (S∪S⋅I) and e in E, λ′(q′0, s⋅e)= λ′(q′0, s)⋅T(s, 
e). 

Theorem 2. Assume that (S, E, T) is a closed and 
consistent observation table, any other FSM consistent 
with T, but inequivalent to M(S, E, T) must have more 
states. 

The proof of these theorems follows Angluin’s [1], 
and is omitted here due to page limit. 

 
3. Integration Testing Architecture 

 

M N

Tester

 
Figure 2. Integration testing architecture�

 
The integration testing architecture for a system of 

two components M and N is illustrated in Figure 2: for 
each component, there are internal interfaces to 
connect it to another component, and external 
interfaces to connect it to the tester or the environment. 
Accordingly, the symbols transmitted through the two 
kinds of interfaces are called internal symbols and 
external symbols, respectively. For example, in the 
component M, IM can be divided into the set of external 



  

input symbols EIM and the set of internal input symbols 
IIM, i.e., IM=EIM∪IIM and EIM∩IIM=∅. 

Through the external interfaces, the tester submits 
external input symbols and observes external output 
symbols. At the same time, we assume that through the 
internal interfaces, the tester can observe the 
interactions between the components. Thus, the 
behaviour of any given component is observable. 

In the integration testing procedure, the external 
input is given to the integrated system only when no 
internal transition is possible. Moreover, we assume 
that the system has a single message in transit, i.e., for 
each component and each input, only one output is 
produced. Thus, a one place buffer between 
communicating components suffices. 

 
4. Scenario Testing 

 
In integration testing, normally we have some test 

scenarios which the integrated system is supposed to 
implement. A test scenario is an input/output sequence 
containing external inputs and outputs.�

For each test scenario, a test case is constructed. 
When executing a test case, we submit an external 
input symbol to the integrated system, observe the 
external output symbol. At the same time, by observing 
the internal interfaces, we also obtain input/output 
sequences of every component in the system.�

After executing the test case, we check whether the 
test scenario has been respected. If not, we identify the 
problematic component (that provides the first 
diverging output), replace it and start all over again. 

For the observed behaviour of a single component, 
e.g., M, we record the information in its observation 
table TM. Suppose the input sequence is α=i1,i2,…,ik, 
ij∈IM (1≤j≤k), and the corresponding output sequence 
is β=o1,o2,…,ok, oj∈OM (1≤j≤k). We add all the 
prefixes of α to the set S, and record oj (1≤j≤k) in the 
corresponding cells of the observation table, i.e., 
T(i1,i2,…,ij-1, ij)= oj. 

 
Table 2. Observation table 

 a b 
ε x  
a  x 
ab  y 
abb   

 
As an example, assume that IM={a,b}, OM={x, y}, 

the input sequence is abb, and the corresponding 
output sequence is xxy. The corresponding observation 
table TM is shown in Table 2. 

The observation tables of all components are filled 
based on observations made during testing all 
scenarios. 

 
5. Unit Testing 
 

After the scenario testing, for each component C, 
some cells have been filled in its observation table TC. 
Then we begin the unit testing in which each 
component is tested and learned individually. 

The first step in unit testing is to complete the initial 
observation table. For each s in S∪S⋅I, e in E, if T(s, e) 
is not yet known, we perform a test using s⋅e as the 
input sequence, and obtain the corresponding output 
sequence x⋅y∈O*, in which |x|=|s| and |y|=|e|. Thus, T(s, 
e)=y. 

We continue testing using the extended learning 
algorithm until the observation table is closed and 
consistent. Then a conjecture model C(1) is made. 

 
5.1. Extended Learning Algorithm 
 

Similar to Angluin’s learning algorithm, in unit 
testing, we check whether the observation table (S, E, 
T) is closed and consistent. 

If (S, E, T) is not closed, we find s1 in S and a in I 
such that for all s in S, row(s1⋅a)≠row(s). We add the 
string s1⋅a to S so that S becomes S′  and extend T to 
((S′ ∪S′ ⋅I)×E) by testing for missing elements. 

If (S, E, T) is not consistent, we finds s1 and s2 in S, 
e in E, and a in I such that row(s1)=row(s2), but 
T(s1⋅a⋅e)≠T(s2⋅a⋅e). We add the string a⋅e to E so that E 
becomes E′  and extend T to ((S∪S⋅I)×E′) by testing for 
missing elements. 

When the observation table is closed and consistent, 
the conjecture M(S, E, T) is made, and instead of 
equivalence query in Angluin’s algorithm, we finish 
the learning algorithm. 

This is a major difference from Angluin’s algorithm 
and the implementation of it in state model synthesis 
from scenarios [7]. We do not rely on an expert to 
answer this query. Instead, we use the black box 
system as an oracle: the equivalence query will be 
implemented by a testing strategy, which will provide 
counterexamples. In particular, we generate 
(conformance) tests using conjectured models and if 
the observed behaviour deviates from that of available 
models then we need to refine them. Note that this is 
also the converse of what is usually considered an 
oracle in model-based testing: here the oracle is the 
system, not the model. 

For the termination of the algorithm, we have the 
following theorem: 



  

Theorem 3. Let (S, E, T) be an observation table. 
Let n denote the number of different values of row(s) 
for s in S. Any FSM consistent with T must have at 
least n states. 

Suppose component C has n states, according to 
Theorem 3, the number of different values of row(s) 
for s in S in observation table TC cannot be more than 
n. Based on the operations used in the algorithm, we 
can prove that the number of different values of row(s) 
increases monotonically. So, similar to the original 
algorithm [1], the algorithm always eventually finds a 
closed and consistent observation table and makes a 
conjecture. 
 
5.2. Dealing with I/O Counterexample 
 

After a conjecture model M(S, E, T) is made for a 
component M, in the integration testing, we may find 
that for a certain input sequence, the output of M(S, E, 
T) may be different from the output of component M. 
The input sequence is considered as a counterexample. 

When a counterexample is found, it can be used to 
extend the observation table (S, E, T) and to make a 
new conjecture. We proceed as follows. 

For each counterexample t, t and all its prefixes are 
added to S, so that S becomes S′. Then the function T is 
extended to ((S′ ∪S′ ⋅I)×E) by testing for the missing 
elements. 

After that, following the procedure of the extended 
learning algorithm, the observation table (S, E, T) is 
made closed and consistent. Finally, a new conjecture 
is made based on it. 
 
5.3. Dealing with New Input Symbols 
 

Another motivation of extending observation table 
and making a new conjecture for a component is that 
some new input symbols could have been triggered 
during integration as a result of output from another 
component. Normally they could be discovered either 
when unit testing another component, or when 
integration provides a counterexample. But for the first 
case, we only need to take them into account when 
they are actually exercised in integration testing. 

When new input symbols have been identified, they 
are added to I to obtain I′. At the same time, they are 
added to E to obtain E′. Then the function T is 
extended to ((S∪S⋅I′)×E′) by testing for the missing 
elements. 

After that, following the procedure of the extended 
learning algorithm, the observation table (S, E, T) is 
made closed and consistent. Finally a new conjecture is 
made based on it. 
 

6. Integration Testing 
 

At the end of unit testing, a conjecture FSM is 
obtained for each component. Then the integration 
testing procedure begins. 

In this stage, the components are integrated, and 
their joint behaviour is tested. Normally, several 
components can be integrated. The integration testing 
procedure of two components is illustrated in the 
following. 

Suppose there are two components M and N. Their 
internal structures are not known, so they are 
considered as two black boxes. Initially, their sets of 
input symbols are known as IM and IN, respectively. 
After the unit testing (learning) of them, the initial 
models M=(QM, IM, OM, δM, λM, qM0) and N=(QN, IN, 
ON, δN, λN, qN0) are constructed. 
 
6.1. Integration Testing Procedure 
 

In integration testing, test cases are constructed 
according to some test generation strategy. A chosen 
strategy is usually built on some coverage criterion. 
The existing interoperability testing methods, e.g., [10], 
can be adapted here. In this work, we present an 
approach based on the composition machine of FSMs. 

Whenever a test case has been generated, we 
execute it. We check whether the observed behaviour 
conforms to the models of components, and go back to 
the unit testing procedure whenever a counterexample 
has been found. 

This stage and thus the integration testing procedure 
terminate when the chosen coverage criterion is 
satisfied and domain experts have approved the testing 
results. 

 
6.2. Test Generation based on Composition of 
FSMs 

 
In [12], the composition of FSMs is defined as 

follows. A system of two components includes 
interconnected FSMs M and N, and an environment E 
that submits a next external input to the system only 
after the system has produced an external output in 
response to the previous input. E is described by a 
Label Transition System (LTS) LE with two states. The 
behaviour of the closed system can be described by the 
LTS composition LM||LN||LE, where LM and LN are LTSs 
corresponding to FSMs M and N. 

Given the LTS LM||LN||LE without livelocks in the 
sense of [12], we determine the external projection of 
the LTS LM||LN||LE onto the external alphabets and 
transform the projection into an FSM, denoted M◊N, 
by pairing each input with a subsequent output and 



  

replacing the pair of corresponding transitions by a 
single transition.  

In [13] an algorithm is provided to compute M◊N. 
Each transition in M◊N is derived from either a 
transition of only one component or a combination of 
transitions of the two components. 

In [13], the purpose is to generate test sequences to 
test an embedded component (either M or N). 
Therefore, global transitions that include local 
transitions of the embedded component are considered. 

In our work, in order to test the interactions of two 
components, we ignore global transitions that are in 
fact single local transitions of a particular component, 
as they do not trigger any component interaction. We 
consider global transitions that are derived from a 
combination of transitions of the two components. 
Then, we assign colour to these global transitions, and 
use the algorithm proposed in [11] to find a (minimal) 
number of paths from the initial state of M◊N, where 
each path covers a maximum number of not covered 
yet colours. Each path is treated as one test, and the set 
of tests cover all the coloured transitions. 

In this way, a set of integration tests is generated 
and executed to uncover the behaviour of the system in 
addition to that prescribed by the given scenarios. 

 
6.3. Dealing with Discrepancy 
 

When executing integration tests, we observe the 
behaviour of each component and compare with its 
model to detect discrepancy. 

When discrepancy between a component and its 
model, say M, has been found, the integration testing 
stops. 

 There are two possibilities of discrepancy: 
• An input sequence x∈IM* produces an 

unexpected output sequence. 
• The other component N produces an output 

symbol a∉IM as an unexpected input to M. 
In the first case, x is a counterexample for M, we go 

back to unit testing, and follow the process described 
in Section 5.2. 

In the second case, N produces a new input symbol 
to M, we go back to unit testing, and follow the process 
described in Section 5.3. 

After the new round of unit testing, the observation 
table and thus the model M are updated. 

 
6.4. Consulting Domain Experts 

 
At the end of integration testing, the models of 

components and the test results for all the executed 
tests are presented to domain experts. Based on this 
information, domain experts may: 

• Identify unexpected behaviours, either directly 
from the models of components, or from test 
scenarios that do not meet his/her expectations. 

• Propose additional test scenarios, if it is 
realized that some expected behaviours have 
not been tested. 

With the feedbacks from domain experts, the 
components may need to be retested, the models 
updated, and/or components may need to be replaced. 

The whole process terminates when domain experts 
are satisfied with the integration testing results. Note 
that at this point we also have an objective assessment 
of the quality of the tests based on the coverage 
reached at the end of the process. 

 
6.5. Result of Integration Testing 
 

At the end of integration testing, for each 
component, we have a state machine model, which is 
consistent with all the tests that have been passed. As 
stated in Theorem 2, if the component and the model 
have the same numbers of states, they are equivalent. 
At the same time, the joint behaviour of these 
components has been systematically tested. Using the 
approach based on composition of FSMs, a transition 
coverage by tests is achieved. 

Last, but not least, execution of integration tests 
could reveal some faults related to individual 
components or the way they are integrated. Starting 
with a limited input from the designer (viz. 
identification of interfaces plus a set of scenarios), our 
approach systematically tests the combinations of 
external inputs to the system to expose unintended 
interactions. 

 
7. Example 
 

Assume the integrator is developing a travel agency 
web application, in which two components are 
identified: Hotel Reservation and User Interface. 

 
7.1. Component Hotel Reservation 
 

The simplified working procedure of the component 
Hotel Reservation is as follows: first, the user of the 
component inputs his/her name, and the component 
provides the user with a hotel list. After the user selects 
one from two hotels, the component provides him/her 
with the types of bedrooms: double or single. After the 
user selects a type, a form for indicating a time period 
is provided. When this is done, the corresponding price 
is provided. At the end, the user selects OK to confirm, 
or selects No to reselect. 



  

The component can be described by an FSM 
M=(QM, IM, OM, δM, λM, qM0), shown in Figure 4. For 
simplicity, some transitions have not been depicted. 
For each state, if there is no transition for some input in 
Figure 4, the machine outputs Ω and remains in the 
same state. 

In this example, we start with empty test scenarios, 
so we skip the first step (Scenario Testing). 

 
7.2. Unit Testing of Component Hotel 
Reservation 
 

In the unit testing procedure, the component Hotel 
reservation is considered as a black box, no initial 
model is available, and IM is known as {N, H1, H2, 
Dbl, Sgl, T, OK, No}. The learning procedure is 
described as follows. 

Initially S={ε}, E=IM. The tester applied several 
input sequences to construct the initial observation 
table which is not closed, since row(N) is not 
equivalent to row(ε). 

The tester adds N to S and executes more input 
sequences to construct the observation table T2 which 
is shown in Table 3. 

This observation table is still not closed, since 
row(N-H1) is not equivalent to any row(s) for s∈S. The 
tester adds N-H1 to S and continues the unit testing 
procedure until the observation table is closed and 
consistent. Then, an FSM M(S, E, T) is conjectured, 
which is shown in Figure 5. 

 
7.3. Component User Interface 
  

Now we consider the component of the web 
application called User Interface, which is the front end 
of the system. On one side, it accepts user input, such 
as clicking button or selecting item from drop list, 
converts the input to corresponding message, and sends 
the message to back end. On the other side, it accepts 
messages from back end, and presents their content in 
a proper format, such as a static text or list, to the user. 

The component user Interface is shown in Figure 3, 
in which the symbols starting with “UI_” are inputs 
from the user, and symbols starting with “UO_” are 
outputs to the user. In this example, we assume that at 
the end of unit testing of this component, the exact 
model has been constructed. 

 
7.4. Integration Testing 
 

In the integration testing, the two components are 
connected. In this case, all the inputs of the component 
Hotel Reservation come from the component User 

Interface. So test sequences are generated and executed 
on User Interface. 

In the procedure, the test sequence (UI_Name, 
UI_H2, UI_Dbl, UI_T) is an input to User Interface. 
The actual input sequence of the component Hotel 
Reservation is (N, H2, Dbl, T), and the corresponding 
output sequence is (HL, TL, F, PD2). But according to 
the model of Hotel Reservation, the corresponding 
output sequence should be (HL, TL, F, PD1). An 
unexpected output sequence occurs. Then, (N, H2, Dbl, 
T) is considered as a counterexample, and the model of 
component Hotel Reservation is refined. 

 

q0 UI_Name/N

q1

HL/UO_HL

UI_H1/H1
UI_H2/H2

q2

TL/UO_TL

UI_Dbl/Dbl
UI_Sgl/Sgl
UI_No/No

q3

F/UO_F

UI_T/T
UI_No/No

q4

PD1/UO_PD1
PS1/UO_PS1
PD2/UO_PD2
PS2/UO_PS2

UI_OK/OK
UI_No/No

F/UO_F

TL/UO_TL

HL/UO_HL

CD1/UO_CD1
CS1/UO_CS1
CD2/UO_CD2
CS2/UO_CS2

 
Figure 3: Component User Interface 

 
When the observation table is closed and consistent, 

the new conjecture of component Hotel Reservation is 
equivalent to that in Figure 4. In the following 
integration testing, no discrepancy is found. The 
integration testing terminates. 

It should be emphasized that the observed 
interactions have served as counterexamples for 
refining the models of individual components. 

 



  

q0

q2

q4

q3

Input:
N: Name
H1: Hotel 1
H2: Hotel 2
Dbl: Double
Sgl: Single
T: Time
OK
No

Output:
HL: Hotel List
TL: Type List
F: Form to input time
PD1: Price of Double of Hotel 1
PD2: Price of Double of Hotel 2
PS1: Price of Single of Hotel 1
PS2: Price of Single of Hotel 2
CD1: Confirm of Double of Hotel 1
CD2: Confirm of Double of Hotel 2
CS1: Confirm of Single of Hotel 1
CS2: Confirm of Single of Hotel 2
Ω

q1

q5

q6

q7

q9

q8 q10

q11

N/HL

H1/TL

Dbl/F

Sgl/F

T/PD1

T/PS1
No/HL

No/TL

No/TL

No/F

No/F

OK/CD1

OK/CS1

H2/TL

Dbl/F

Sgl/F

No/TL

No/TL

T/PD2

T/PS2

No/F

No/FOK/CD2

OK/CS2
 

Figure 4: Component Hotel Reservation 
 

Table 3. Observation table T2 after adding N to S 
T2 N H1 H2 Dbl Sgl T OK No

ε HL Ω Ω Ω Ω Ω Ω Ω
N Ω TL TL Ω Ω Ω Ω Ω
H1 HL Ω Ω Ω Ω Ω Ω Ω
H2 HL Ω Ω Ω Ω Ω Ω Ω
Dbl HL  Ω Ω Ω Ω Ω Ω Ω
Sgl HL Ω Ω Ω Ω Ω Ω Ω
T HL Ω Ω Ω Ω Ω Ω Ω
OK HL Ω Ω Ω Ω Ω Ω Ω
No HL Ω Ω Ω Ω Ω Ω Ω
N-N Ω TL TL Ω Ω Ω Ω Ω
N-H1 Ω Ω Ω F F Ω Ω HL
N-H2 Ω Ω Ω F F Ω Ω HL
N-Dbl Ω TL TL Ω Ω Ω Ω Ω
N-Sgl Ω TL TL Ω Ω Ω Ω Ω
N-T Ω TL TL Ω Ω Ω Ω Ω
N-OK Ω TL TL Ω Ω Ω Ω Ω
N-No Ω TL TL Ω Ω Ω Ω Ω 

row(ε)

row(N-H1)

row(N-H1-S) row(N-H1-D)

row(N)

row(N-H1-D-T)row(N-H1-S-T)

N/HL

H1/TL

D/FS/F

T/PD1T/PS1

No/HL

No/TLNo/TL

No/FNo/F

OK/CD1OK/CS1

H2/TL

 
Figure 5. Conjecture of component Hotel 

Reservation 
 



  

8. Conclusion 
 

We presented a global approach that combines 
machine learning and model-based testing for the 
integration of components whose structure and code is 
unknown. 

This approach reuses Angluin’s algorithm [1], while 
the iterative refinement of models through testing is 
similar to previous work done on testing 
telecommunication systems [3], although with different 
algorithms. Central to our approach is integration of 
components that is a concern faced by most software 
developers nowadays. We stop the learning procedure 
when a conjecture model is made, and move forward to 
integration testing. In this procedure, interactions 
between components are tested, and from the point of 
view of learning algorithm, counterexamples can be 
found. 

In our approach, the test designer just has to 
concentrate on the abstraction of actual input and 
output events to consider in the models of components. 
It is a common observation that software designers can 
readily identify interfaces and data values, and provide 
some formal conceptualization or abstraction of them, 
whereas the real difficulty lies in producing a formal 
model for the behaviour. Our approach leaves the 
easiest part (event abstraction from actual PDUs or 
component interactions) to the test designer, and the 
model is built automatically based on this provided 
abstraction. 

Actually, in our approach, formal models are just a 
“by-product” which could be thrown away, or kept for 
documentation purposes. Contrary to requirements 
engineering or other approaches in retrieving models 
from scenarios, such as [7][8][9], our goal is not to 
build a complete model of the system. The model is 
just used as a basis for the testing process to: 

 
• Generate integration tests of components. 
• Assess the coverage, hence the quality of the 

integration testing process. 
 
However, integrating our algorithms with other 

scenario and state-based development environments 
would provide a convenient link with global 
engineering approaches. 

So far, with a minimal input from the system 
integrator, namely a preliminary definition of input 
alphabets in unit testing, our approach provides a 
sound method for generating integration tests with a 
measurable level of confidence in testing results. 

 
As other authors who rely on Angluin’s algorithm, 

we have concentrated on FSM models. As the example 

presented in Section 7 suggests, enumerating input 
parameter values (such as name of hotels in the 
example) can lead to replications in FSM structures. So 
our next step will be to move towards a representation 
of parameterized inputs and predicates on parameters, 
i.e., we will work on Parameterized FSM [14]. As one 
style to extend FSM, with the help of abstraction of 
parameters, we can represent FSM in a compact way, 
and with parameter having an infinite domain, we can 
enrich the expressiveness of FSM. At the same time, 
Parameterized FSM will pose new challenges on both 
learning and testing. For example, in integration 
testing, along with the same input symbol, parameter 
values that have not been used in unit testing, will be 
produced by other components in integration. How to 
select parameters in test generation is another issue. 

There is another way to extend FSM, i.e., 
introducing variables into FSM. The combination of 
these two ways, and connecting to some sort of 
Extended Finite State Machines, which could be 
Statecharts [7] [8] [9] or some other adequate 
representation, is another work item. 

In all this, we are trying to adapt the level of 
abstraction of the inferred model so as to be able to 
generate completely instantiated tests for a real system, 
while keeping a limited size for the models. Of course, 
the task of inferring a fully accurate model would blow 
up any implementation of the approach. This is why 
we are inferring only abstractions, to fight complexity. 
Those abstractions correspond to an approximation of 
the actual system, yet this approximation is enough to 
test the system up to the required level (defined by the 
coverage and stopping criteria). 

 
One direction for future work will be to come up 

with a more precise identification of the type of 
approximation needed. 

We shall also be working on experiments and case 
studies on real size components and systems, e.g., web 
services, to assess the applicability of this proposed 
approach, and the types of abstractions needed or better 
suited to given types of applications. 

Another direction for future work is to revisit 
model-based test generation strategies and the 
corresponding coverage criteria that would be adapted 
to our integration approach. 
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