

Integration Testing of Components Guided by Incremental State Machine
Learning

Keqin Li
CNRS LSR-IMAG
Keqin.Li@imag.fr

Roland Groz
INPG LSR-IMAG

Roland.Groz@imag.fr

Muzammil Shahbaz
France Télécom

Muhammad.MuzammilShahbaz
@orange-ft.com

Abstract

The design of complex systems, e.g., telecom

services, is nowadays usually based on the integration
of components (COTS), loosely coupled in distributed
architectures. When components come from third party
sources, their internal structure is usually unknown
and the documentation is insufficient. Therefore, the
system integrator faces the problem of providing a
required system assembling COTS whose behaviour is
barely specified and for which no model is usually
available.

In this paper, we address the problem of integration
testing of COTS. It combines test generation
techniques with machine learning algorithms. State-
based models of components are built from observed
behaviours. The models are alternatively used to
generate tests and extended to take into account
observed behaviour. This process is iterated until a
satisfactory level of confidence in testing is achieved.

1. Introduction

The design of software systems, typically new
services offered on the Internet, is more and more
based on the integration of components from third
party sources (COTS), loosely coupled in a distributed
architecture. The system integrator is in charge of
providing a new service based on the integration of
such components, with minimal development of
interfacing software (often nicknamed as “glue”). The
integrator faces the problem of providing a required
system assembling COTS of which he (she) has a
limited knowledge.

Since components come from third party, their
internal structure is usually unknown and the
documentation is not sufficient to work out all the
details of their interactions with other components.
Therefore, the integrator would typically first test each
component to learn its behaviour on typical requests it
would have to serve in the assembly, and then test the

integrated system based on variations of system use
cases.

Due to the lack of formal models of components, in
order to design test cases for the components and the
integrated system, the integrator has to rely on his
intuitions. Currently, there are not many tools that can
help him in test generation.

At the same time, use cases are often provided by
domain experts (including system users). The use cases
might be informal and obtained in an ad hoc way, and
thus are hardly sufficient to check that the components
will interact correctly in any combination of requests.

On the other hand, test generation tools for formal
specifications based on state machines [5] could offer
some help in system integration; thus, formal models
of components are needed.

Our work addresses this key issue of providing a
support to component integration in this context. In
order to systematically develop tests with a satisfactory
level of confidence, we use test generation techniques
based on formal models. Since formal models cannot
be expected to be delivered with COTS, we shall infer
models from the observed behaviours during tests. This
is the key point in our approach. Our basic assumptions
are as follows.
• Components will be seen as black boxes. Their

interfaces are known. This means that we know at
least partial input and output types.

• All internal and external interfaces can be
observed in integration testing, but only external
(non-integrated) interfaces are controllable, i.e.,
we can send input sequences through these
interfaces to test the components.

• Inputs from the environment will only be provided
on stable states of the system, viz. when the system
is waiting for external stimuli and will not make
any internal move. This corresponds to the
assumption of slow environment in system
verification and testing. We are assuming that the
system has a reactive semantics.

• Some test scenarios can be provided by domain
experts as a guideline for the system integration.
Test scenarios are expressed in terms of externally
observable actions of the integrated system.

In the absence of formal models for components,
model inference from scenarios is a key point. We
propose an extension of Angluin’s algorithm [1] that
fits into that framework. The original algorithm has
been proposed for Deterministic Finite-State Acceptors
(DFAs) as language acceptors. Most uses of this
algorithm for I/O machines have reused the algorithm
with a simple mapping from inputs and outputs to
single letters into a DFA’s alphabet A: either by taking
inputs and outputs as letters: A=I∪O as in [2][4], or by
considering couples of inputs and outputs as letters:
A=I×O [7]. Our extension uses only inputs as letters of
the alphabet A of Angluin’s algorithm, and outputs are
used in the cells of the table instead of booleans
indicating the membership. Finally, the trickiest
ingredient of the initial algorithm, namely the
equivalence query, finds a practical implementation in
our framework. Contrary to requirements engineering
approaches such as [7] or [8], the equivalence query is
not provided by an expert, but by testing the system
which acts as an oracle.

The overview of the integration testing
methodology is as follows.
1. In the first step, an input alphabet is defined for

each component C starting with those from use
cases defined for the system.

2. The components are integrated, which means that
some of the outputs of one component will appear
as inputs on the connected interface of another
component. The behaviour of the integration
system is tested according to test scenarios. If the
test scenarios are not respected, the problematic
component is identified and replaced. At the same
time, the observed behaviour of each component
C is recorded in its Observation Table TC. The
procedure is referred as Scenario Testing in the
following.

3. Starting from its observation table, each
component is tested separately using the learning
algorithm until a closed and consistent table is
found. The output alphabet is determined. This
provides the first model C(1) for C. The procedure
is referred as Unit Testing in the following.

4. The components are integrated again, and the
whole system is tested based on the models of the
components according to a certain test generation
strategy. A chosen strategy is built on some
model coverage criterion. The actual outputs,
both, internal and external, observed are recorded
and compared to those provided by the models.

Tests are performed until a discrepancy between
predictions from the model and the observed
outputs is found or the criterion is achieved. The
procedure is referred as Integration Testing in the
following.

5. In case of discrepancy, the model has to be
corrected, so we extend the models by relearning
and iterate Step 4 with the new C(i+1) components.

6. When the coverage criterion is achieved, domain
experts check the component models and test
results. In case unexpected behaviours have been
identified, components may be replaced, and Unit
Testing and Integration Testing are iterated.

7. The process terminates after domain experts
approve the results.

This incremental approach is similar to the one
presented in [3]. In this paper, we concentrate on the
use of such an approach for component integration, and
develop the necessary extensions to the learning
algorithm.

The rest of the paper is organized as follows. We
present our basic model and data structure in the next
section. After introducing integration testing
architecture in Section 3, Scenario Testing, Unit
Testing and Integration Testing are presented in
Section 4, 5, and 6, respectively. An example is
presented in Section 7. Finally, Section 8 concludes the
paper and describes possible future works.

2. Preliminary

In this section, we give the definition of FSM, which is
the basic model we use, and an observation table,
which is the basic data structure, where the information
observed in testing is recorded.

2.1. Finite State Machine

A Finite State Machine (FSM) M is a six-tuple
M=(Q, I, O, δ, λ, q0), where Q, I, O are finite and
nonempty sets of states, input symbols, and output
symbols, respectively. δ:Q×I→Q is the state transition
function. λ:Q×I→O is the output function. q0∈Q is the
initial state. When the FSM is in a current state q in Q
and receives an input a from I, it moves to the next
state specified by δ(q,a), and produces an output given
by λ(q,a).

We extend the transition function δ and the output
function λ from input symbols to strings as usual: for a
state q1, an input sequence x=a1,…,ak takes the FSM
successively to states qi+1=δ(qi,ai), i=1,…,k, with the
final state δ(q1,x)=qk+1, and produces an output
sequence λ(q1,x)=b1,…,bk, where bi=λ(qi,ai), i=1,…,k.

We consider only input enabled FSM, that is when
dom(δ)=dom(λ)=Q×I. A machine can be made input
enabled by adding loopback transitions with a special
output symbol “Ω”. “Ω” is an abstraction for an
explicit invalid notification from the system.

2.2. Observation Table

In the work, we model a component C as an
unknown FSM M=(Q, I, O, δ, λ, q0) with known input
symbols I. Since we can submit any input sequence to
the component and observe the corresponding output
sequence, for any α∈I*, λ(q0, α) is known. We also
assume that each component can be reset to its initial
state before each test.

In the testing procedure, the observed behaviour of
the component C is recorded into its Observation
Table, using a nonempty finite prefix-closed set S of
input strings (representing potential states of the FSM),
a nonempty finite suffix-closed set E of input
sequences (separating potential states of the FSM)
(ε∉E), and a finite function T mapping ((S∪S⋅I)×E)1 to
O*. The observation table is denoted by (S, E, T).

In the observation table, for each σ∈(S∪S⋅I), µ∈E,
T(σ,µ)=β, β∈O*, such that |β|=|µ|, and λ(q0,
σ⋅µ)=λ(q0, σ)⋅β.

Initially S={ε} and E=I. These sets are updated
during the testing procedure.

An observation table can be visualized as a two–
dimensional array with rows labelled by elements of
(S∪S⋅I) and columns labelled by elements of E, with
the entry for row s and column e equal to T(s, e). If s is
an element of (S∪S⋅I), row(s) denotes the finite
function f from E to O* defined by f(e)=T(s, e). An
example of the observation table is given in Table 1. In
this observation table, I={a, b}, O={x, y}, S={ε, a, b},
E={a, b}.

An observation table is called closed provided that
for each t in S⋅I there exists an s in S such that
row(s)=row(t). An observation table is called
consistent provided that whenever s1 and s2 are
elements of S such that row(s1)=row(s2), for all a in I,
row(s1⋅a)=row(s2⋅a).

If (S, E, T) is a closed, consistent observation table,
we define an FSM M(S,E,T)=(Q′, I, O, δ′, λ′, q′0) in
which:

Q′={row(s):s∈S},
q′0=row(ε),
δ′ (row(s),a)=row(s⋅a), a∈I
λ′ (row(s),a)=T(s, a), a∈I.

1 Empty sequence is denoted by ε. Concatenation of strings

and their sets is denoted by “⋅”.

For example, the observation table in Table 1 is
closed and consistent. We depict the corresponding
M(S, E, T) in Figure 1. In it, Q′={row(ε), row(a),
row(b)}.

Table 1. An

example
observation

table
 a b
ε x x
a x y
b y x
aa x y
ab y x
ba x y
bb y x

row(ε)

row(b)row(a)

a/x b/x

b/y

a/y
a/x b/x

Figure 1. Conjecture

machine

For the FSM M(S, E, T), we have the following

theorems:
Theorem 1. Assume that (S, E, T) is a closed and

consistent observation table, then the FSM M(S, E, T)
is consistent with the finite function T. That is, for
every s in (S∪S⋅I) and e in E, λ′(q′0, s⋅e)= λ′(q′0, s)⋅T(s,
e).

Theorem 2. Assume that (S, E, T) is a closed and
consistent observation table, any other FSM consistent
with T, but inequivalent to M(S, E, T) must have more
states.

The proof of these theorems follows Angluin’s [1],
and is omitted here due to page limit.

3. Integration Testing Architecture

M N

Tester

Figure 2. Integration testing architecture�

The integration testing architecture for a system of

two components M and N is illustrated in Figure 2: for
each component, there are internal interfaces to
connect it to another component, and external
interfaces to connect it to the tester or the environment.
Accordingly, the symbols transmitted through the two
kinds of interfaces are called internal symbols and
external symbols, respectively. For example, in the
component M, IM can be divided into the set of external

input symbols EIM and the set of internal input symbols
IIM, i.e., IM=EIM∪IIM and EIM∩IIM=∅.

Through the external interfaces, the tester submits
external input symbols and observes external output
symbols. At the same time, we assume that through the
internal interfaces, the tester can observe the
interactions between the components. Thus, the
behaviour of any given component is observable.

In the integration testing procedure, the external
input is given to the integrated system only when no
internal transition is possible. Moreover, we assume
that the system has a single message in transit, i.e., for
each component and each input, only one output is
produced. Thus, a one place buffer between
communicating components suffices.

4. Scenario Testing

In integration testing, normally we have some test

scenarios which the integrated system is supposed to
implement. A test scenario is an input/output sequence
containing external inputs and outputs.�

For each test scenario, a test case is constructed.
When executing a test case, we submit an external
input symbol to the integrated system, observe the
external output symbol. At the same time, by observing
the internal interfaces, we also obtain input/output
sequences of every component in the system.�

After executing the test case, we check whether the
test scenario has been respected. If not, we identify the
problematic component (that provides the first
diverging output), replace it and start all over again.

For the observed behaviour of a single component,
e.g., M, we record the information in its observation
table TM. Suppose the input sequence is α=i1,i2,…,ik,
ij∈IM (1≤j≤k), and the corresponding output sequence
is β=o1,o2,…,ok, oj∈OM (1≤j≤k). We add all the
prefixes of α to the set S, and record oj (1≤j≤k) in the
corresponding cells of the observation table, i.e.,
T(i1,i2,…,ij-1, ij)= oj.

Table 2. Observation table

 a b
ε x
a x
ab y
abb

As an example, assume that IM={a,b}, OM={x, y},

the input sequence is abb, and the corresponding
output sequence is xxy. The corresponding observation
table TM is shown in Table 2.

The observation tables of all components are filled
based on observations made during testing all
scenarios.

5. Unit Testing

After the scenario testing, for each component C,
some cells have been filled in its observation table TC.
Then we begin the unit testing in which each
component is tested and learned individually.

The first step in unit testing is to complete the initial
observation table. For each s in S∪S⋅I, e in E, if T(s, e)
is not yet known, we perform a test using s⋅e as the
input sequence, and obtain the corresponding output
sequence x⋅y∈O*, in which |x|=|s| and |y|=|e|. Thus, T(s,
e)=y.

We continue testing using the extended learning
algorithm until the observation table is closed and
consistent. Then a conjecture model C(1) is made.

5.1. Extended Learning Algorithm

Similar to Angluin’s learning algorithm, in unit
testing, we check whether the observation table (S, E,
T) is closed and consistent.

If (S, E, T) is not closed, we find s1 in S and a in I
such that for all s in S, row(s1⋅a)≠row(s). We add the
string s1⋅a to S so that S becomes S′ and extend T to
((S′ ∪S′ ⋅I)×E) by testing for missing elements.

If (S, E, T) is not consistent, we finds s1 and s2 in S,
e in E, and a in I such that row(s1)=row(s2), but
T(s1⋅a⋅e)≠T(s2⋅a⋅e). We add the string a⋅e to E so that E
becomes E′ and extend T to ((S∪S⋅I)×E′) by testing for
missing elements.

When the observation table is closed and consistent,
the conjecture M(S, E, T) is made, and instead of
equivalence query in Angluin’s algorithm, we finish
the learning algorithm.

This is a major difference from Angluin’s algorithm
and the implementation of it in state model synthesis
from scenarios [7]. We do not rely on an expert to
answer this query. Instead, we use the black box
system as an oracle: the equivalence query will be
implemented by a testing strategy, which will provide
counterexamples. In particular, we generate
(conformance) tests using conjectured models and if
the observed behaviour deviates from that of available
models then we need to refine them. Note that this is
also the converse of what is usually considered an
oracle in model-based testing: here the oracle is the
system, not the model.

For the termination of the algorithm, we have the
following theorem:

Theorem 3. Let (S, E, T) be an observation table.
Let n denote the number of different values of row(s)
for s in S. Any FSM consistent with T must have at
least n states.

Suppose component C has n states, according to
Theorem 3, the number of different values of row(s)
for s in S in observation table TC cannot be more than
n. Based on the operations used in the algorithm, we
can prove that the number of different values of row(s)
increases monotonically. So, similar to the original
algorithm [1], the algorithm always eventually finds a
closed and consistent observation table and makes a
conjecture.

5.2. Dealing with I/O Counterexample

After a conjecture model M(S, E, T) is made for a
component M, in the integration testing, we may find
that for a certain input sequence, the output of M(S, E,
T) may be different from the output of component M.
The input sequence is considered as a counterexample.

When a counterexample is found, it can be used to
extend the observation table (S, E, T) and to make a
new conjecture. We proceed as follows.

For each counterexample t, t and all its prefixes are
added to S, so that S becomes S′. Then the function T is
extended to ((S′ ∪S′ ⋅I)×E) by testing for the missing
elements.

After that, following the procedure of the extended
learning algorithm, the observation table (S, E, T) is
made closed and consistent. Finally, a new conjecture
is made based on it.

5.3. Dealing with New Input Symbols

Another motivation of extending observation table
and making a new conjecture for a component is that
some new input symbols could have been triggered
during integration as a result of output from another
component. Normally they could be discovered either
when unit testing another component, or when
integration provides a counterexample. But for the first
case, we only need to take them into account when
they are actually exercised in integration testing.

When new input symbols have been identified, they
are added to I to obtain I′. At the same time, they are
added to E to obtain E′. Then the function T is
extended to ((S∪S⋅I′)×E′) by testing for the missing
elements.

After that, following the procedure of the extended
learning algorithm, the observation table (S, E, T) is
made closed and consistent. Finally a new conjecture is
made based on it.

6. Integration Testing

At the end of unit testing, a conjecture FSM is
obtained for each component. Then the integration
testing procedure begins.

In this stage, the components are integrated, and
their joint behaviour is tested. Normally, several
components can be integrated. The integration testing
procedure of two components is illustrated in the
following.

Suppose there are two components M and N. Their
internal structures are not known, so they are
considered as two black boxes. Initially, their sets of
input symbols are known as IM and IN, respectively.
After the unit testing (learning) of them, the initial
models M=(QM, IM, OM, δM, λM, qM0) and N=(QN, IN,
ON, δN, λN, qN0) are constructed.

6.1. Integration Testing Procedure

In integration testing, test cases are constructed
according to some test generation strategy. A chosen
strategy is usually built on some coverage criterion.
The existing interoperability testing methods, e.g., [10],
can be adapted here. In this work, we present an
approach based on the composition machine of FSMs.

Whenever a test case has been generated, we
execute it. We check whether the observed behaviour
conforms to the models of components, and go back to
the unit testing procedure whenever a counterexample
has been found.

This stage and thus the integration testing procedure
terminate when the chosen coverage criterion is
satisfied and domain experts have approved the testing
results.

6.2. Test Generation based on Composition of
FSMs

In [12], the composition of FSMs is defined as

follows. A system of two components includes
interconnected FSMs M and N, and an environment E
that submits a next external input to the system only
after the system has produced an external output in
response to the previous input. E is described by a
Label Transition System (LTS) LE with two states. The
behaviour of the closed system can be described by the
LTS composition LM||LN||LE, where LM and LN are LTSs
corresponding to FSMs M and N.

Given the LTS LM||LN||LE without livelocks in the
sense of [12], we determine the external projection of
the LTS LM||LN||LE onto the external alphabets and
transform the projection into an FSM, denoted M◊N,
by pairing each input with a subsequent output and

replacing the pair of corresponding transitions by a
single transition.

In [13] an algorithm is provided to compute M◊N.
Each transition in M◊N is derived from either a
transition of only one component or a combination of
transitions of the two components.

In [13], the purpose is to generate test sequences to
test an embedded component (either M or N).
Therefore, global transitions that include local
transitions of the embedded component are considered.

In our work, in order to test the interactions of two
components, we ignore global transitions that are in
fact single local transitions of a particular component,
as they do not trigger any component interaction. We
consider global transitions that are derived from a
combination of transitions of the two components.
Then, we assign colour to these global transitions, and
use the algorithm proposed in [11] to find a (minimal)
number of paths from the initial state of M◊N, where
each path covers a maximum number of not covered
yet colours. Each path is treated as one test, and the set
of tests cover all the coloured transitions.

In this way, a set of integration tests is generated
and executed to uncover the behaviour of the system in
addition to that prescribed by the given scenarios.

6.3. Dealing with Discrepancy

When executing integration tests, we observe the
behaviour of each component and compare with its
model to detect discrepancy.

When discrepancy between a component and its
model, say M, has been found, the integration testing
stops.

 There are two possibilities of discrepancy:
• An input sequence x∈IM* produces an

unexpected output sequence.
• The other component N produces an output

symbol a∉IM as an unexpected input to M.
In the first case, x is a counterexample for M, we go

back to unit testing, and follow the process described
in Section 5.2.

In the second case, N produces a new input symbol
to M, we go back to unit testing, and follow the process
described in Section 5.3.

After the new round of unit testing, the observation
table and thus the model M are updated.

6.4. Consulting Domain Experts

At the end of integration testing, the models of

components and the test results for all the executed
tests are presented to domain experts. Based on this
information, domain experts may:

• Identify unexpected behaviours, either directly
from the models of components, or from test
scenarios that do not meet his/her expectations.

• Propose additional test scenarios, if it is
realized that some expected behaviours have
not been tested.

With the feedbacks from domain experts, the
components may need to be retested, the models
updated, and/or components may need to be replaced.

The whole process terminates when domain experts
are satisfied with the integration testing results. Note
that at this point we also have an objective assessment
of the quality of the tests based on the coverage
reached at the end of the process.

6.5. Result of Integration Testing

At the end of integration testing, for each
component, we have a state machine model, which is
consistent with all the tests that have been passed. As
stated in Theorem 2, if the component and the model
have the same numbers of states, they are equivalent.
At the same time, the joint behaviour of these
components has been systematically tested. Using the
approach based on composition of FSMs, a transition
coverage by tests is achieved.

Last, but not least, execution of integration tests
could reveal some faults related to individual
components or the way they are integrated. Starting
with a limited input from the designer (viz.
identification of interfaces plus a set of scenarios), our
approach systematically tests the combinations of
external inputs to the system to expose unintended
interactions.

7. Example

Assume the integrator is developing a travel agency
web application, in which two components are
identified: Hotel Reservation and User Interface.

7.1. Component Hotel Reservation

The simplified working procedure of the component
Hotel Reservation is as follows: first, the user of the
component inputs his/her name, and the component
provides the user with a hotel list. After the user selects
one from two hotels, the component provides him/her
with the types of bedrooms: double or single. After the
user selects a type, a form for indicating a time period
is provided. When this is done, the corresponding price
is provided. At the end, the user selects OK to confirm,
or selects No to reselect.

The component can be described by an FSM
M=(QM, IM, OM, δM, λM, qM0), shown in Figure 4. For
simplicity, some transitions have not been depicted.
For each state, if there is no transition for some input in
Figure 4, the machine outputs Ω and remains in the
same state.

In this example, we start with empty test scenarios,
so we skip the first step (Scenario Testing).

7.2. Unit Testing of Component Hotel
Reservation

In the unit testing procedure, the component Hotel
reservation is considered as a black box, no initial
model is available, and IM is known as {N, H1, H2,
Dbl, Sgl, T, OK, No}. The learning procedure is
described as follows.

Initially S={ε}, E=IM. The tester applied several
input sequences to construct the initial observation
table which is not closed, since row(N) is not
equivalent to row(ε).

The tester adds N to S and executes more input
sequences to construct the observation table T2 which
is shown in Table 3.

This observation table is still not closed, since
row(N-H1) is not equivalent to any row(s) for s∈S. The
tester adds N-H1 to S and continues the unit testing
procedure until the observation table is closed and
consistent. Then, an FSM M(S, E, T) is conjectured,
which is shown in Figure 5.

7.3. Component User Interface

Now we consider the component of the web
application called User Interface, which is the front end
of the system. On one side, it accepts user input, such
as clicking button or selecting item from drop list,
converts the input to corresponding message, and sends
the message to back end. On the other side, it accepts
messages from back end, and presents their content in
a proper format, such as a static text or list, to the user.

The component user Interface is shown in Figure 3,
in which the symbols starting with “UI_” are inputs
from the user, and symbols starting with “UO_” are
outputs to the user. In this example, we assume that at
the end of unit testing of this component, the exact
model has been constructed.

7.4. Integration Testing

In the integration testing, the two components are
connected. In this case, all the inputs of the component
Hotel Reservation come from the component User

Interface. So test sequences are generated and executed
on User Interface.

In the procedure, the test sequence (UI_Name,
UI_H2, UI_Dbl, UI_T) is an input to User Interface.
The actual input sequence of the component Hotel
Reservation is (N, H2, Dbl, T), and the corresponding
output sequence is (HL, TL, F, PD2). But according to
the model of Hotel Reservation, the corresponding
output sequence should be (HL, TL, F, PD1). An
unexpected output sequence occurs. Then, (N, H2, Dbl,
T) is considered as a counterexample, and the model of
component Hotel Reservation is refined.

q0 UI_Name/N

q1

HL/UO_HL

UI_H1/H1
UI_H2/H2

q2

TL/UO_TL

UI_Dbl/Dbl
UI_Sgl/Sgl
UI_No/No

q3

F/UO_F

UI_T/T
UI_No/No

q4

PD1/UO_PD1
PS1/UO_PS1
PD2/UO_PD2
PS2/UO_PS2

UI_OK/OK
UI_No/No

F/UO_F

TL/UO_TL

HL/UO_HL

CD1/UO_CD1
CS1/UO_CS1
CD2/UO_CD2
CS2/UO_CS2

Figure 3: Component User Interface

When the observation table is closed and consistent,

the new conjecture of component Hotel Reservation is
equivalent to that in Figure 4. In the following
integration testing, no discrepancy is found. The
integration testing terminates.

It should be emphasized that the observed
interactions have served as counterexamples for
refining the models of individual components.

q0

q2

q4

q3

Input:
N: Name
H1: Hotel 1
H2: Hotel 2
Dbl: Double
Sgl: Single
T: Time
OK
No

Output:
HL: Hotel List
TL: Type List
F: Form to input time
PD1: Price of Double of Hotel 1
PD2: Price of Double of Hotel 2
PS1: Price of Single of Hotel 1
PS2: Price of Single of Hotel 2
CD1: Confirm of Double of Hotel 1
CD2: Confirm of Double of Hotel 2
CS1: Confirm of Single of Hotel 1
CS2: Confirm of Single of Hotel 2
Ω

q1

q5

q6

q7

q9

q8 q10

q11

N/HL

H1/TL

Dbl/F

Sgl/F

T/PD1

T/PS1
No/HL

No/TL

No/TL

No/F

No/F

OK/CD1

OK/CS1

H2/TL

Dbl/F

Sgl/F

No/TL

No/TL

T/PD2

T/PS2

No/F

No/FOK/CD2

OK/CS2

Figure 4: Component Hotel Reservation

Table 3. Observation table T2 after adding N to S
T2 N H1 H2 Dbl Sgl T OK No

ε HL Ω Ω Ω Ω Ω Ω Ω
N Ω TL TL Ω Ω Ω Ω Ω
H1 HL Ω Ω Ω Ω Ω Ω Ω
H2 HL Ω Ω Ω Ω Ω Ω Ω
Dbl HL Ω Ω Ω Ω Ω Ω Ω
Sgl HL Ω Ω Ω Ω Ω Ω Ω
T HL Ω Ω Ω Ω Ω Ω Ω
OK HL Ω Ω Ω Ω Ω Ω Ω
No HL Ω Ω Ω Ω Ω Ω Ω
N-N Ω TL TL Ω Ω Ω Ω Ω
N-H1 Ω Ω Ω F F Ω Ω HL
N-H2 Ω Ω Ω F F Ω Ω HL
N-Dbl Ω TL TL Ω Ω Ω Ω Ω
N-Sgl Ω TL TL Ω Ω Ω Ω Ω
N-T Ω TL TL Ω Ω Ω Ω Ω
N-OK Ω TL TL Ω Ω Ω Ω Ω
N-No Ω TL TL Ω Ω Ω Ω Ω

row(ε)

row(N-H1)

row(N-H1-S) row(N-H1-D)

row(N)

row(N-H1-D-T)row(N-H1-S-T)

N/HL

H1/TL

D/FS/F

T/PD1T/PS1

No/HL

No/TLNo/TL

No/FNo/F

OK/CD1OK/CS1

H2/TL

Figure 5. Conjecture of component Hotel

Reservation

8. Conclusion

We presented a global approach that combines
machine learning and model-based testing for the
integration of components whose structure and code is
unknown.

This approach reuses Angluin’s algorithm [1], while
the iterative refinement of models through testing is
similar to previous work done on testing
telecommunication systems [3], although with different
algorithms. Central to our approach is integration of
components that is a concern faced by most software
developers nowadays. We stop the learning procedure
when a conjecture model is made, and move forward to
integration testing. In this procedure, interactions
between components are tested, and from the point of
view of learning algorithm, counterexamples can be
found.

In our approach, the test designer just has to
concentrate on the abstraction of actual input and
output events to consider in the models of components.
It is a common observation that software designers can
readily identify interfaces and data values, and provide
some formal conceptualization or abstraction of them,
whereas the real difficulty lies in producing a formal
model for the behaviour. Our approach leaves the
easiest part (event abstraction from actual PDUs or
component interactions) to the test designer, and the
model is built automatically based on this provided
abstraction.

Actually, in our approach, formal models are just a
“by-product” which could be thrown away, or kept for
documentation purposes. Contrary to requirements
engineering or other approaches in retrieving models
from scenarios, such as [7][8][9], our goal is not to
build a complete model of the system. The model is
just used as a basis for the testing process to:

• Generate integration tests of components.
• Assess the coverage, hence the quality of the

integration testing process.

However, integrating our algorithms with other

scenario and state-based development environments
would provide a convenient link with global
engineering approaches.

So far, with a minimal input from the system
integrator, namely a preliminary definition of input
alphabets in unit testing, our approach provides a
sound method for generating integration tests with a
measurable level of confidence in testing results.

As other authors who rely on Angluin’s algorithm,

we have concentrated on FSM models. As the example

presented in Section 7 suggests, enumerating input
parameter values (such as name of hotels in the
example) can lead to replications in FSM structures. So
our next step will be to move towards a representation
of parameterized inputs and predicates on parameters,
i.e., we will work on Parameterized FSM [14]. As one
style to extend FSM, with the help of abstraction of
parameters, we can represent FSM in a compact way,
and with parameter having an infinite domain, we can
enrich the expressiveness of FSM. At the same time,
Parameterized FSM will pose new challenges on both
learning and testing. For example, in integration
testing, along with the same input symbol, parameter
values that have not been used in unit testing, will be
produced by other components in integration. How to
select parameters in test generation is another issue.

There is another way to extend FSM, i.e.,
introducing variables into FSM. The combination of
these two ways, and connecting to some sort of
Extended Finite State Machines, which could be
Statecharts [7] [8] [9] or some other adequate
representation, is another work item.

In all this, we are trying to adapt the level of
abstraction of the inferred model so as to be able to
generate completely instantiated tests for a real system,
while keeping a limited size for the models. Of course,
the task of inferring a fully accurate model would blow
up any implementation of the approach. This is why
we are inferring only abstractions, to fight complexity.
Those abstractions correspond to an approximation of
the actual system, yet this approximation is enough to
test the system up to the required level (defined by the
coverage and stopping criteria).

One direction for future work will be to come up

with a more precise identification of the type of
approximation needed.

We shall also be working on experiments and case
studies on real size components and systems, e.g., web
services, to assess the applicability of this proposed
approach, and the types of abstractions needed or better
suited to given types of applications.

Another direction for future work is to revisit
model-based test generation strategies and the
corresponding coverage criteria that would be adapted
to our integration approach.

9. Acknowledgement

We would like to thank Alexandre Petrenko (CRIM)
for our fruitful discussions on this topic. We would
also like to thank the anonymous reviewers for their
useful and detailed comments.

10. References

[1] D. Angluin, “Learning Regular Sets from Queries and
Counterexamples,” Information and Computation, 75 (1987),
pp. 87-106.

[2] A. Groce, D. Peled, and M. Yannakakis, “Adaptive
Model Checking,” Proceedings of TACAS 2002, 2002, pp.
357-370.

[3] A. Hagerer, H. Hungar, O. Niese, and B. Steffen, “Model
Generation by Moderated Regular Extrapolation,”
Proceedings of FASE 2002, LNCS 2306, 2002, pp. 80-95.

[4] H. Hungar, O. Niese, and B. Steffen, “Domain-Specific
Optimization in Automata Learning,” Proceedings of CAV
2003, LNCS 2725, 2003, pp. 315-327.

[5] D. Lee, M. Yannakakis, “Principles and Methods of
Testing Finite State Machines – a Survey,” Proceedings of
the IEEE, Vol. 84, No. 8, 1996, pp. 1090-1126.

[6] S. Leue, L. Mehrmann, M. Rezai, “Synthesizing ROOM
Models from Message Sequence Chart Specifications,”
Technical Report 98-06, University of Waterloo, Canada,
April 1998.

[7] E. Mäkinen, T. Systä, “MAS – an Interactive Synthesizer
to Support Behavioural Modelling in UML,” Proceedings of
ICSE 2001, 2001, pp. 15-24.

[8] S. Somé, “Beyond Scenarios: Generating State Models
from Use Cases,” Proceedings of SCESM 2002, 2002.

[9] J. Whittle, J. Schumann, “Generating Statechart Designs
from Scenarios,” Proceedings of ICSE 2000, 2000, pp. 314-
323.

[10] O. Koné, R. Castanet, “Test Generation for Interworking
Systems,” Computer Communications, 23, 2000, pp. 642-652.

[11] M. Kim, C. Besse, A. Cavalli, and F. Zaïdi, “Two
Methods for Interoperability Tests Generation: An
Application to the TCP/IP Protocol,” In Proceedings of
TestCom 2002, Berlin, 2002.

[12] A. Petrenko, N. Yevtushenko, “Solving Asynchronous
Equations,” In Proceedings of FORTE’98, the Eleventh IFIP
International Conference on Formal Description Techniques
for Distributed systems and Communications Protocols,
France, 1998

[13] L. Lima Jr., A. Cavalli, “A Pragmatic Approach to
Generating Test Sequences for Embedded Systems,” In
Proceedings of IWTCS’97, The 10th International IFIP
TC6/WG6.1 Workshop on Testing of Communication
Systems, Cheju Island, Korea, 8-10 September, 1997

[14] M. Shahbaz, “Incremental Inference of Black-Box
Components to Support Integration Testing,” In Testing:
Academic & Industrial Conference – Practice And Research
Techniques, (TAIC PART 2006), PhD Programme, Windsor,
UK, 2006

