
Integration Testing of Distributed Components

Based on Learning Parameterized I/O Models

Keqin Li1, Roland Groz1, and Muzammil Shahbaz2

1 LSR - IMAG
BP 72, F-38402 St Martin D’Hères Cedex, France

{Keqin.Li, Roland.Groz}@imag.fr
2 France Telecom R&D

BP 98, 38243 Meylan Cedex, France
muhammad.muzammilshahbaz@orange-ft.com

Abstract. The design of complex systems, e.g., telecom services, is usu-
ally based on the integration of components (COTS). When components
come from third party sources, their internal structure is usually un-
known and the documentation is scant or inadequate.

Our work addresses the issue of providing a sound support to com-
ponent integration in the absence of formal models. We consider compo-
nents as black boxes and use an incremental learning approach to infer
partial models. At the same time, we are focusing on the richer models
that are more expressive in the designing of complex systems. There-
fore, we propose an I/O parameterized model and an algorithm to infer
it from a black box component. This is combined with interoperability
testing covering models of the components.

1 Introduction

The design of new software systems, such as telecom services, is more and more
based on the integration of components from third party sources (COTS), loosely
coupled in a distributed architecture (e.g., web services). Testing the behavior
of the assembly is important to build confidence in the system. In order to base
testing on a sound and systematic basis, it has become common to use models.
In reality, COTS are rarely provided with formal descriptions.

A general approach [4,2,3] is to generate formal models of COTS through
their incremental learning. In [6], we proposed an approach to learn I/O models
of COTS (using a slight modification of Angluin’s Algorithm [1]), and define an
Integration Testing Procedure based upon these models. Our current work ad-
dresses the issue of learning richer models that are more expressive in the design
of complex systems. The goal is to help the integrator in deriving systematic
tests to check component interactions. It is well known that typical interoper-
ability problems are often related to incompatibility of data values that did not
appear when components are tested in isolation, but are revealed by feeding the
outputs of one component as inputs to another component. This is why we con-
centrate on a model where parameter values are taken into account. From those

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 437–451, 2006.
c© IFIP International Federation for Information Processing 2006

438 K. Li, R. Groz, and M. Shahbaz

models, we compute systematic cross component interactions with classical test
generation techniques for collections of automata.

1.1 Assumptions

Our basic assumptions are as follows.

– The components we deal with are viewed as black boxes. Only their interfaces
are known, which means that we know at least their input types, although
the actual parameter values may depend on the behaviors exercised.

– Although no global specification of the system is available, the integrator
has a number of test scenarios for the global interaction of the system with
its environment. Additionally, sample parameter values are provided for all
interfaces of components.

– All internal and external interfaces can be observed in integration testing,
but only external (non-integrated) interfaces are controllable, i.e. we can
send input sequences through these interfaces to test the components. We
assume our test harness makes it possible to observe connected interfaces.

– Inputs from the environment will only be provided on stable states of the
system, viz. when all components are waiting for external stimuli and will
not make any internal move. This corresponds to the notion of slow environ-
ment in system verification or quiescence in testing theory. We also assume
that each input to a component triggers at most one output. Interaction be-
tween components is asynchronous, and at any time at most one “message
in transit” holds in the system.

– We shall not attempt to derive a complete model of the components. COTS
offer many functions. We shall just derive sub-models that correspond to the
behaviors exercised in the integrated system. Even for that restricted part
of the components, the models derived will be approximations in line with
the testing goals (i.e., the level of confidence required).

1.2 Our Approach

In the absence of formal models for components, model inference from observa-
tions is a key point. Angluin [1] has proposed an algorithm that infers a Deter-
ministic Finite Automaton (DFA) from observations of component’s behavior.
In [6], we proposed an extension of Angluin’s algorithm that works with I/O
automata. In this paper, we are dealing with a richer model that contains inputs
and outputs along with the parameter values. These models are more applicable
when the input set is typically very large. Then we can distinguish input types
and their possible parameter values and model into a compact finite state ma-
chine, which we call PFSM (Parameterized Finite State Machines). Since existing
algorithm for DFA inference uses number of queries, which grow polynomially
with the size of alphabet, they are not well-suited for this situation. If some pa-
rameters are irrelevant or never used, the algorithm should not be disturbed by
their presence. Certain adaptations of this algorithm have been tested for param-
eterized FSM e.g. in [2] but it does not cater for output parameters in the model.

Integration Testing of Distributed Components 439

Our approach is to further modify the above algorithms to conjecture a PFSM
model of a component and also find a practical source for getting counterexam-
ples when the conjecture is wrong or not suitable for integration. In requirements
engineering approaches [7,8], the equivalence query used to get counterexamples
is provided by an expert. Here we follow the approach used in [4,3] where the
query is implemented by testing the integrated system which acts as an oracle.
The outline of the integration methodology is as follows.

1. In the first step, an input alphabet is defined for each component C. This
corresponds to the invocations on external interfaces with all the parameter
values that are considered relevant (starting with those from scenarios or use
cases defined for the system or provided for internal interfaces).

2. Each component is (unit) tested separately using the learning algorithm
until balanced, closed and consistent observation tables for it are found. The
output alphabet is determined along with output parameters. This provides
the first model C(1) for C.

3. The components are integrated. This means that some of the outputs of
one component will appear as inputs on the connected interface of another
component. The assembly is tested in two stages.

4. In a first stage, we systematically test the provided system-wide scenarios
expected from the assembly. In that stage, scenarios act as oracles. Faults
can be detected, or a discrepancy with the inferred model may be identified,
leading to incremental refinement of the model.

5. In a second stage, we generate (interoperability) tests from the models of the
components. The actual outputs observed (both internal and to the environ-
ment) are recorded and compared to those provided by the models. Tests are
performed until a discrepancy between predictions from the model is found
or some coverage criteria on the model is achieved. Classifying discrepancies
as faults may require expert input.

6. In both stages, discrepancies can lead to model refinement. The counterex-
amples found are injected in the learning algorithm to extend the models
and the stage is iterated with the new C(i+1) components.

The rest of the paper is organized as follows. Section 2 presents unit testing
of components and Section 3 presents their integration testing. An example is
given in the Section 4. Finally, Section 5 concludes the paper.

2 Unit Testing

The first stage in our approach is unit testing, in which the components are
tested individually. For each component C, its inputs are modelled as a set of
input symbols I

(1)
C . This may be provided by the designer of the component,

or abstracted from the informal descriptions or some preliminary testing of the
component by the tester. With I

(1)
C , the tester performs unit testing using our

learning algorithm and builds an initial model C(1). The model is an extension

440 K. Li, R. Groz, and M. Shahbaz

of FSM which incorporates inputs and outputs along with the parameter values.
We call this model as Parameterized Finite State Machine (PFSM). At the same
time, this extension can be considered as a restricted form of Extended Finite
State Machine (EFSM), in the sense that all the context information are stored
in states without the help of variables, and the knowledge of state and input can
determine the transition. The next section describes PFSM formally and then
its inferring algorithm is presented.

2.1 PFSM Model

A Parameterized Finite State Machine (PFSM) M ={Q, I, O, Dx, Dy, δ, λ, σ, q0},
where

– Q is finite non-empty set of states,
– I is finite set of input symbols,
– O is finite set of output symbols,
– q0 ∈ Q is the initial state,
– Dx is a set of possible values of input parameters,
– Dy is a set of possible values of output parameters,
– δ : Q × I −→ Q is a next state function,
– λ : Q × I −→ O is an output function,
– σ : Q × I −→ Dy

Dx is an output parameter function. Dy
Dx is the set of all

functions from Dx to Dy.

When a PFSM model M is in the state q ∈ Q and receives an input i ∈ I
along with the parameter value x ∈ Dx, M moves to the next state given by
q′ = δ(q, i) ∈ Q, and produces an output given by o = λ(q, i) ∈ O, along with
the output parameter value given by f(x) = σ(q, i)(x).

In order to elaborate a complete parameterized output function for a state
q ∈ Q, i ∈ I and x ∈ Dx, we write λ(q, i(x)) = o(f(x)), where o ∈ O is
determined by λ(q, i) and f(x) is determined by σ(q, i)(x).

Then, we extend the functions from input symbols to sequences as usual: for
a state q1, an input sequence α = i1(x1), ..., ik(xk) takes M successively to the
states qj+1 = δ(qj , ij), j = 1, ..., k, with the final state δ(q1, α) = qk+1, and
produces an output sequence λ(q1, α) = o1(f1(x1)), ..., ok(fk(xk)), where each
oj(fj(xj)) = λ(qj , ij(xj)), j = 1, ..., k.

In the definition of PFSM M , in case Dx and Dy are obvious from context or
trial, they can be omitted.

For input string αi = i1, ..., ik(ij ∈ I, 1 ≤ j ≤ k), and input parameter string
αp = x1, ..., xk(xj ∈ Dx, 1 ≤ j ≤ k), we define their association as αi ⊗ αp =
i1(x1), ..., ik(xk). The association of output string and output parameter string
can be defined similarly.

We only consider input enabled PFSM, that is when dom(δ) = dom(λ) = Q×I.
A machine can be made input enabled by adding loop back transitions on a state
for all those inputs which are not acceptable for that state. Such transitions con-
tain a special symbol Ω in place of an output from O. There may be some

Integration Testing of Distributed Components 441

transitions in a PFSM model which contain no parameters, i.e., no input param-
eter value or output parameter value is associated with the respective inputs or
outputs on the transitions. An example of PFSM model is given in the Figure 1.

I = {a}, O = {b}, Dx = N, Dy = N

x ∈ Dx. f(x), g(x) ∈ Dy
f(x) = x + 1
g(x) = x + 2

a(x)/b(f(x))

q q′

a(x)/b(g(x))

Fig. 1. An example of PFSM model

2.2 Observation Tables

We assume that the reader is familiar with the original Angluin algorithm [1].
Here we explain our modifications with respect to PFSM inference.

In this work, an unknown PFSM M = (Q, I, O, Dx, Dy, δ, λ, σ, q0) with known
input symbols I is used to model a component C. Since we can submit any input
sequence with parameters to the component and observe the corresponding out-
put sequence with parameters, for any input sequence α = i1(x1), ..., ik(xk)(ij ∈
I, 1 ≤ j ≤ k), λ(q0, α) is known. We also assume that each component can be
reset to its initial state before each test.

Basic Structure of Observation Tables. In the testing procedure, the ob-
served behavior of the component C is recorded into two Observation Tables Pri-
mary Table (PT) and Auxiliary Table (AT), denoted by (S, E, T) and (S, E, T ′)
respectively. The original Angluin’s observation table is reflected in the Primary
Table after being adapted in the way proposed in [6], the Auxiliary Table will
record information on parameters. S is a nonempty finite prefix-closed set of in-
put strings (representing potential states of the PFSM). E is a nonempty finite
suffix-closed set of input strings (separating potential states of the PFSM), but
the suffix ε does not belong to E. T is a finite function mapping ((S∪S ·I)×E) to
O∗. T ′ is a finite function mapping ((S ∪S · I)×E) to 2{(αp,βp)|αp∈Dx

+,βp∈Dy
+}.

In PT , for each s ∈ (S ∪ S · I) and e ∈ E, T (s, e) = t, t ∈ O∗, such that
|t| = |e|, and λ(q0, s · e) = λ(q0, s) · t.

In AT , for each s ∈ (S∪S ·I) and e ∈ E, if (αp, βp) ∈ T ′(s, e), αp ∈ Dx
+, βp ∈

Dy
+, then |αp| = |βp| = |e|, and ∀γp ∈ Dx

|s|, λ(q0, (s · e)⊗ (γp ·αp)) = λ(q0, s⊗
γp) · (T (s, e) ⊗ βp).

Initially S = {ε} and E = I. These sets are updated during the testing
procedure.

Each table can be visualized as a two-dimensional array with rows labelled
by the elements of S ∪ S · I and columns labelled by the elements of E, with
the entry for row s and column e equal to T (s, e) and T ′(s, e) respectively. For
s ∈ S∪S ·I, rowPT (s) denotes the finite function f in PT from E to O+ defined
by f(e) = T (s · e), rowAT (s) denotes the finite function f ′ in AT from E to
2{(αp,βp)|αp∈Dx+,βp∈Dy+} defined by f ′(e) = T ′(s · e).

442 K. Li, R. Groz, and M. Shahbaz

Properties of Observation Tables. In the original Angluin’s algorithm, the
strings in S represent candidate states of the automaton being learned. The rows
in observation table are compared to differentiate the states in the conjecture.
In this work, we follow the principle of Angluin’s algorithm and adapt it.

In order to differentiate states in the conjecture, in addition to comparing rows
in PT , we need to compare rows in AT . Since T ′(s, e) is a set of parameter string
pairs, compatibility, rather than equality, is used in comparing rows in AT . Let
s1, s2 ∈ S∪S ·I and e ∈ E, we say two sets T ′(s1 ·e) and T ′(s2 ·e) are compatible,
denoted as T ′(s1 · e) ≡ T ′(s2 · e) iff ∀ (αp, βp) ∈ T ′(s1 · e), ∀ (α′

p, β
′
p) ∈ T ′(s2 · e),

if αp = α′
p then βp = β′

p. Two rows in AT are compatible, i.e., rowAT (s1) ≡
rowAT (s2) iff T ′(s1 · e) ≡ T ′(s2 · e), ∀e ∈ E. We write T ′(s1 · e) 	≡ T ′(s2 · e)
and rowAT (s1) 	≡ rowAT (s2) as sets and rows are incompatible. For example,
{(1, 2), (2, 3)} ≡ {(5, 6), (2, 3)}, but {(1, 2), (2, 3)} 	≡ {(2, 4), (3, 5)}.

we define s1
∼= s2, iff rowPT (s1) = rowPT (s2) ∧ rowAT (s1) ≡ rowAT (s2).

Let us consider the following example: s1, s2, s3 ∈ S ∪ S · I, E = {e}, and
T (s1, e)=T (s2, e)=T (s3, e). T ′(s1, e)={(1, 2), (2, 3)}, T ′(s2, e)={(2, 4), (3, 5)},
and T ′(s3, e) = {(5, 6)}. So, we have s1

∼= s3, s2
∼= s3, but s1 	∼= s2. In this

case, when deriving states from strings in S, we know s1 and s2 correspond to
different states, e.g., q1 and q2, but we do not know which state s3 corresponds
to. This is because in T ′(s3, e) there is not any element in the form of (2, y).

Based on this observation, we introduce the concept of balanced observation
tables. The observations tables are called balanced provided that ∀s1, s2, s3 ∈
S ∪ S · I and e ∈ E, such that T (s1, e) = T (s2, e) = T (s3, e), if ∃αp ∈ Dx

+,
βp1, βp2 ∈ Dy

+, s.t., (αp, βp1) ∈ T ′(s1, e), (αp, βp2) ∈ T ′(s2, e), and βp1 	=
βp2, then ∃βp3 ∈ Dy

+, s.t., (αp, βp3) ∈ T ′(s3, e). In this previous example, if
T ′(s3, e) = {(5, 6), (2, 3)}, the observation tables are balanced, and s1

∼= s3,
s2 	∼= s3, and s1 	∼= s2.

Now, we have the following lemma:

Lemma 1. In balanced observation tables, ∼= is an equivalence relationship.

The proof of the lemma can be found in [5].
For s1, s2 ∈ S ∪S · I, if s1

∼= s2 then s1 is in the equivalence class of s2. So we
can define [s], s ∈ S an equivalence class of rows where each row is equivalent to s.

Like in original Angluin’s algorithm, the observation tables PT and AT are
called closed if for each t in S · I there exists an s in S such that t ∼= s. The
observation tables PT and AT are called consistent if for every s1, s2 ∈ S, such
that s1

∼= s2, it holds that s1 · i ∼= s2 · i, for all i ∈ I.

Making Conjecture from Observation Tables. When the observation ta-
bles (S, E, T) and (S, E, T ′) are balanced, closed and consistent, a conjectured
PFSM M(S, E, T, T ′) = (Q, I, O, δ, λ, σ, q0) can be made from the tables as
follows:

– Q = {[s]|s ∈ S},
– q0 = [ε],
– δ([s], i) = [s · i],

Integration Testing of Distributed Components 443

– λ([s], i) = T (s · i),
– σ([s], i) =

⋃

t∈[s]

T ′(t · i).

The property of the conjecture is stated in a theorem below. A full proof of
the theorem can be seen in the technical report [5].

Theorem 1. If (S, E, T) and (S, E, T ′) are balanced, closed and consistent ob-
servation tables, then the PFSM M(S, E, T, T ′) is consistent with the primary
table (S, E, T) and auxiliary table (S, E, T ′). Any other PFSM consistent with
(S, E, T) and (S, E, T ′) but inequivalent to M(S, E, T, T ′) must have more states.

2.3 Unit Testing (Learning) Procedure

The unit testing (learning) procedure is described as follows:

1. Start with S = {ε} and E = I. All elements in PT are unknown, and all
elements in AT are empty sets.

2. Construct test cases for unknown elements in PT , and record the outputs
in PT and AT . For s = i1, ..., im ∈ S ∪ S · I and e = im+1...im+n ∈ E,
choose input parameter values from Dx to construct input parameter string
αp = x1, ..., xm+n(xj ∈ Dx, 1 ≤ j ≤ m+n), provide (s ·e)⊗αp to the compo-
nent as test case, and obtain the output o1(y1), ..., om(ym), ..., om+n(ym+n).
Set T (s, e) = om+1, ..., om+n, and include (xm+1, ..., xm+n, ym+1, ..., ym+n)
in T ′(s, e).

3. Make PT and AT balanced. Whenever they are not balanced, find s1, s2, s3 ∈
S∪S ·I, e ∈ E, T (s1 ·e) = T (s2 ·e) = T (s3 ·e), αp ∈ D+

x , βp1, βp2 ∈ D+
y , such

that (αp, βp1) ∈ T ′(s1 · e), (αp, βp2) ∈ T ′(s2 · e), βp1 	= βp2, but �(αp, βp3) ∈
T ′(s3 · e). Construct (s3 · e) ⊗ (γp · αp) as test case in which γp is any input
parameter string of length |s3|. Provide the test case to the component and
record the output in PT and AT .

4. Check whether PT and AT are closed. If not, find s1 in S and i in I such
that s1 · i 	∼= s for all s ∈ S. Add the string s1 · i to S in both tables and go
back to step 2 to fill missing elements.

5. Check whether PT and AT are consistent. If not, find s1 and s2 in S, e in
E, and i in I such that s1

∼= s2, but T (s1 · i · e) 	= T (s2 · i · e) or T ′(s1 · i · e) 	≡
T ′(s2 · i · e). Add the string i · e to E in both tables and go back to step 2 to
fill missing elements.

6. Now, PT and AT are balanced, closed and consistent. Make conjecture
PFSM M = (S, E, T, T ′).

Balanced, closed and consistent observation tables of the example in the Fig-
ure 1 are shown in the Figure 2. In the example, rowPT (ε) = rowPT (a) =
rowPT (aa) because of same output symbol in all rows. On the other hand,
rowAT (ε) 	≡ rowAT (a) because of αp = 2 that makes T ′(ε, a) 	≡ T ′(a, a). We
also have rowAT (aa) ≡ rowAT (ε) and rowAT (aa) 	≡ rowAT (a).

444 K. Li, R. Groz, and M. Shahbaz

PT

a

ε b
a b

aa b

AT

a

ε (1,2)(2,3)

a (2,4)(3,5)

aa (5,6)(2,3)

f ′(x) =

⎧
⎨

⎩

2, x = 1
3, x = 2
6, x = 5

, g′(x) =

{
4, x = 2
5, x = 3

Fig. 2. Balanced, closed and consistent observation tables of PFSM example in the
Figure 1 are shown (left). The learned output parameter functions f ′ and g′ are also
shown (right).

So, ε ∼= aa 	∼= a, i.e., [ε] and [a] are two different states. The conjecture from
the table corresponds to the PFSM model in the Figure 1. The learned output
parameter functions f ′ and g′ are in Figure 2, too.

In integration testing, counterexamples and new input symbols can be iden-
tified. The process of dealing with them is similar as described in [6].

3 Integration Testing

At the end of unit testing, a conjecture PFSM is obtained for each component.
Then the integration testing procedure begins. In this procedure, the components
are integrated, and their joint behaviors are tested. Normally, several compo-
nents can be integrated. The integration testing procedure of two components is
illustrated in the following.

Suppose there are two components M and N . Their internal structures are
not known, so they are considered as two black boxes. Initially, their sets of input
symbols are known as IM and IN , respectively. In the unit testing (learning) of
them, the initial models M (1) = (QM , IM , OM , δM , λM , σM , qM0) and N (1) =
(QN , IN , ON , δN , λN , σN , qN0) are constructed.

3.1 Integration Testing Procedure

In [6], the integration testing architecture and procedure are described in which
the model is Finite State Machine (FSM). In this paper, we follow the principle
of [6] and adapt to the PFSM model.

For PFSM M = (QM , IM , OM , δM , λM , σM , qM0), we define the projection
operator ↓, which projects M to an FSM M ↓ = (QM , IM , OM , δM , λM , qM0).
It can be proved that if M is input deterministic and input enabled, M ↓ is
input deterministic and input enabled, too.

In integration testing, a test case is a sequence of tuples in which external
input symbol and parameter value, and the expected external output symbol
and parameter value are specified. According to the architecture described in [6],
when we execute a test case, the external interfaces can be controlled, and all the
interfaces can be observed. Thus in addition to comparing the external output
symbols and parameter values with expected ones, we also obtain the input and
output sequences with parameter values of the two components respectively.

Integration Testing of Distributed Components 445

The integration testing procedure can be divided into two stages.
The first stage is similar to Scenario Testing in [6], in which test cases are

constructed according to test scenarios. In this work, since a range of input
parameters and constraints on output parameter values are specified in test
scenarios, the input parameter values are selected according to the ranges during
constructing test cases.

In executing the test case, in addition to checking whether the test scenario
has been respected, we check whether the observed behaviors conform to the
models of components. If there is a discrepancy between the observed behavior
of one component and its model, we go back to the unit testing procedure to
refine the model with the input sequence as counterexample.

In order to achieve a certain coverage of the ranges specified in test scenarios,
each test scenario can yield several test cases. When all the test cases have
successfully been executed, we begin the second stage.

In the second stage, test cases are constructed one by one according to a cer-
tain test generation strategy. First, following the Integration Testing procedure
for FSMs specified in [6], test cases are generated based on M (1) ↓ and N (1) ↓.
Then, input parameters are selected according to a certain policy to form a
complete test case.

Whenever one test case has been generated, we execute it. We check whether
the observed behaviors conform to the models of components, and go back to
unit testing procedure if counterexample has been found.

This stage and thus the integration testing procedure terminate when the
coverage criterion chosen by the test generation strategy is satisfied.

In both stages of the integration testing procedure, after executing a test case
and obtaining the real parameterized output string, there are several possibilities:

– The real parameterized output string is exactly the expected one. In this
case, we continue to construct and execute the next test case.

– The real parameterized output string is the expected one except for some
transitions the executed input parameter values have not been specified in
the models. In this case, we record these input/output parameter value pairs
in the corresponding cells in AT , and update the corresponding output pa-
rameter functions in the models. Then, we continue to construct and execute
the next test case.

– The real output symbols are the expected ones, but there are some output
parameters which are different from expected ones. In this case, we have
found a parameter counterexample. We record these input/output parameter
value pairs in the corresponding cells in AT , go back to unit testing to make
the observation tables balanced, closed and consistent, and make another
conjecture.

– The real output symbols are different from expected ones. In this case, we
have found an I/O counterexample. Or For a certain component, some new
input symbols have been produced by other components. For the two cases,
we go back to unit testing and follow the process specified in [6].

446 K. Li, R. Groz, and M. Shahbaz

3.2 The Relationship Between Unit Testing and Integration Testing

In unit testing, some input sequences have been executed on a component. Based
on the output sequences observed, the closed and consistent observation table
has been constructed, and a conjecture of the PFSM has been made.

In integration testing, from the point of view of the component, e.g. M , more
input sequences are checked. There are several possibilities to introduce “new”
information into these sequence:

– Symbols produced by the other component. When being integrated, some
outputs of component N are given to component M as inputs. And these
symbols may have not been included in IM . So, new input symbols are
identified. In our approach, this “mismatch” is identified during integration
testing, rather than comparing ON and IM directly. Thus, only those symbols
which appear in the interaction are considered.

– Parameter values produced by the other component. These values are gen-
erated in the integration, and may have not been tried in unit testing.

– Test scenario. In a test scenario, along with the pairs of input and output
symbols, the parameter values being interested are provided. And some of
the values may have not been used in unit testing.

– The second stage of integration testing. In this stage, more new parameter
values are used to uncover the behaviors of the integrated system.

With all these “new” information, more behaviors of the components and the
integrated system can be observed in the integration testing procedure.

3.3 Result of Integration Testing

At the end of integration testing, for each component, we have a model, which
is consistent with all the tests that have been passed. And as stated by Theorem
1, If the component and the model have the same numbers of states, they are
equivalent to each other. At the same time, the joint behavior of these com-
ponents have been systematically tested. Using the approach described in [6],
a transition coverage is achieved. Faults could be discovered during integration
test execution.

4 Example

We illustrate our component integration strategy using a simple example. Sup-
pose an integrator is developing a travel agency web application, in which two
components have been identified, i.e., Room Reservation and Travel Agent.

4.1 Room Reservation Component

The simplified behavior of the component Room Reservation is as follows. The
component starts working when a name of the place is given from the exter-
nal enviornment. It provides a list of residences depending upon the place it is

Integration Testing of Distributed Components 447

given. The residence can be either a Hotel or a Guest House. Then it takes one
residence as input and outputs a list of room types particular for that residence.
When one of the room types is given, the component responds with the list of
luxury types offered with the room. When one of the luxury type is provided,
the components gives out its corresponding price. Finally, it confirms reservation
upon an OK signal.

The component can be described as a PFSM model. The inputs, outputs and
associated parameter functions are shown in Figure 3. For simplicity, not all
the transitions are shown. For each state, if there is no transition for certain
input, the machine outputs Ω and stays in the state. Also, Dx and Dy may
be infinite but the figure shows some of the possible input parameter values
and their corresponding output parameter values. The abbreviations used in the
example are also given in the figure.

j(x5): List of Luxury Types for Hotel Room Type x5 as {Std,Dlx,Exe,...}

g(x2): List of Room Types for Hotel x2 as {Sgl,Dbl,...}

h(x3): List of Room Types for Guest House x3 as {Sgl,Dbl,Dor,...}

i(x4): List of Luxury Types for Guest House Room Type x4 as {Std,Dlx,Stu,...}

k(x6): Cost for Guest House Luxury Type x7 as 50$,60$,...

l(x7): Cost for Hotel Luxury Type x7 as 50$,60$,...

f(x1): List of Residencies for place x1 as {Htn,Sh,YR,Vil,...}

x3: Guest House Names as YR, Vil ...

x4: Guest House Room Type as Sgl, Dor, ...

x5: Hotel Room Type as Sgl, Dbl, ...

x6: Guest House Luxury Type as Std, Dlx, Stu, ...

x7: Hotel Luxury Type as Std, Dlx, Exe, ...

x2: Hotel Name as Htn, Sh, ...

x1: Place Name as PAR, LDN, ...

P: Place, H: Hotel, G: Guest House, RT: Room Type, LT: Luxury Type, OK: OK, RL:
Residence List, RT’: Room Types, LT’: Luxury Types, PH: Price for Hotel, PG: Price for
Guest House, CR: Confirm Reservation, PAR: Paris, LDN: London, Htn: Hilton Hotel, Sh:
Sherton Hotel, YR: Youth Residence (Guest House), Vil: Villa (Guest House), Sgl: Single,
Dbl: Double, Std: Standard, Dlx: Delux, Exe: Executive, Stu: Studio, Dor: Dormitory.

P (x1)/RL(f(x1))

H(x2)/RT ′
(g(x2))

OK/CR

OK/CR

G(x3)/RT
′ (h(x3))

RT (x5)/LT ′(j(x5)) LT (x7)/PH(l(x7))

RT (x4)/LT ′(i(x4)) LT (x6)/PG(k(x6))

Fig. 3. PFSM model of Room Reservation Component

4.2 Unit Testing of Room Reservation Component

In the unit testing procedure, the component Room Reservation is considered as
a black box and I

(1)
M is known as {P, H, G, RT, LT, OK}. The Learner constructs

tables PT and AT for the component. Initially S = {ε}, E = I
(1)
M . The tester

execute several test cases with different input parameter values from Dx to fill the
tables. Finally when the observation tables are balanced, closed and consistent,
a conjecture is made. The Figure 4 shows PT for Room Reservation component.
The corresponding AT is shown in the Figure 5. For sake of simplicity, the rows
which contain Ω in all columns of the table are omitted. The figure 6 (right)
shows the conjecture accompanied by the input and output parameter values
used during the unit testing.

448 K. Li, R. Groz, and M. Shahbaz

P H G RT LT OK

ε RL Ω Ω Ω Ω Ω
P Ω RT’ RT’ Ω Ω Ω

P-H Ω Ω LT’ Ω Ω
P-H-RT Ω Ω Ω Ω PH Ω

P-H-RT-LT Ω Ω Ω Ω Ω CR

P-G Ω Ω LT’ Ω Ω Ω
P-H-RT-LT-OK RL Ω Ω Ω Ω Ω

Fig. 4. Primary Table (PT) for Room Reservation Component

P H G RT LT OK

ε
(PAR,{Htn,YR}) Ω Ω Ω Ω Ω
(LDN,{Sh,Vil})

P Ω
(Htn,{Sgl}) (YR,

Ω Ω
(Sh,{Sgl,Dbl}) {Sgl,Dor})

P-H Ω Ω Ω
(Sgl,{Std,Dlx})

Ω Ω
(Dbl,{Std,Exe})

P-G Ω Ω Ω (Sgl,{Std,Dlx}) Ω Ω

P-H-RT Ω Ω Ω Ω
(Std,50$)

Ω
(Dlx,70$)

P-H-RT-LT Ω Ω Ω Ω Ω Ω

P-H-RT-LT-OK (PAR,{Htn,YR}) Ω Ω Ω Ω Ω

Fig. 5. Auxiliary Table (AT) corresponding to Primary Table in figure 4

4.3 Travel Agent Component

The component N of the web application is a Travel Agent. On one side, it
accepts inputs from the user and on the other side, it communicates with some
back end system. The simplified behavior of the Travel Agent component is as
follows. It takes a place name from user and transmits it to the back end. Later,
it takes the list of residences from the back end and displays it to the user.
The user inputs one of the residences, i.e., Hotel or Guest House, which is then
transmitted to the back end. The back end responds with the list of room types
for the provided residence. The component selects and resends one of the room
types to the back end which then provides the list of luxury types associated with
that room type. Once the luxury type is selected, the Travel Agent asks the back
end for its price. It shows the corresponding price to the user after increasing it by
10% for its commission. When the user selects OK, the component asks the back
end for confirmation, and finally the confirmation message is sent to the user.

The unit testing of Travel Agent component is performed with I
(1)
N =

{UI P, RL, UI H, UI G, RT ′, LT ′, PH, PG, UI OK, CR}. The symbols start-
ing with “UI ” are inputs from user, and symbols starting with “UO ” are out-
puts to user. A conjecture in the Figure 6 (left) is made when observation tables

Integration Testing of Distributed Components 449

of the component are found balanced, closed and consistent. The input parame-
ters used in the unit testing and their corresponding output parameters are also
given in the figure.

4.4 Integration Testing

In the integration testing, the two components are connected to each other. In
this case, all the inputs of component Room Reservation come from component
Travel Agent. The component Room Reservation is considered as a back end for
Travel Agent which also accepts the inputs from the user. The integration of the
learned models of the two components is shown in the Figure 6.

In the procedure, the test input P (LDN) is given to the component Travel
Agent, which transmits it to the component Room Reservation. The component
produces a list of residences as RL({Htn, Y R}) and sends back to Travel Agent
component, which shows the list to user. The user selects a guest house Y R from
the list and provides a second input to the integrated system. The component
Travel Agent then sends input G(Y R) to the component Room Reservation,
and it continues working according to the models in the Figure 6. According to
the real component of Room Reservation in the Figure 3, the output sequence
produced from an input sequence P (PAR) − G(Y R) − RT (Sgl) − LT (Std)
is RL({Htn, Y R}) − RT ′({Sgl, Dor}) − LT ′({Std, Dlx}) − PG(50$), but the
learned model does not show the output symbol PG. Hence, a divergence is
found between the real component and its conjecture. In this case, the above
input sequence is treated as a counterexample for Room Reservation component
which will be learned again with the help of unit testing. When the observa-
tion tables are found balanced, closed and consistent, a new conjecture is made
which is equivalent to that in the Figure 3. The conjecture is then integrated
with Travel Agent component to complete integration testing.

Apart from the counterexample explained above, the example has other coun-
terexamples with respect to the parameter values. For instance, the component
Travel Agent contains some parameter values which can be input from the com-
ponent Room Reservation, but the learned parameter functions of component
Room Reservation are unable to produce those values. As an example, the com-
ponent Travel Agent expects a guest house named V il from user, when the list of
residences from component Room Reservation is provided. The testing proceeds
with the list of room types provided from component Room Reservation, from
which RT (Dbl) is selected by the component Travel Agent. The response from
the actual component of Room Reservation can be RT ′({Std, Stu}), which is
seen in the output parameter function q of the learned model of Travel Agent
component, but function v of the learned model of Room Reservation compo-
nent is unable to produce. This is because, the component Room Reservation
is never tested with residence V il in its unit testing. Thus, the input sequence
P (LDN)−G(V il)−RT (Dbl) can be treated as a counterexample for this com-
ponent. In the following unit testing, observation tables will be updated and a
new conjecture will be made.

450 K. Li, R. Groz, and M. Shahbaz

LT ′({Std, Dlx})

G(Y R)

P (PAR)

HL({Htn, Y R})

UI P (x1)/P (x1)

U
I

O
K

/
O

K
C

R
/
C

R
′

PG(x7)/UO PG(r(x7))

PH(x7)/UO PH(r(x7))

LT ′(x6)/LT (q(x6))

RL(x2)/UO RL(x2)

R
T

′ (
x
5
)/

R
T

(p
(x

5
))

R
T

(x
4
)/

L
T

′ (
v
(x

4
))

P (x1)/RL(s(x1))

LT (x5)/PH(w(x5))

G
(x

2
)/

R
T

′ (
t(

x
2
))

H
(x

3
)/

R
T

′ (
u
(x

3
))

O
K

/
C

R
Input Parameter Values tested on the
Component
x1 : {PAR, LDN}
x2 : {Y R}
x3 : {Htn, Sh}
x4 : {Sgl, Dbl}
x5 : {Std, Dlx, Exe}

Output Parameter Values corresponding
to the input parameter values

s(x1) =
{Htn, Y R}, x1=PAR
{Sh, V il}, x2=LDN

t(x2) = {{Sgl, Dor}, x2=YR

u(x3) =
{Sgl}, x3={Htn}
{Sgl, Dbl}, x3={Htn,Sh}

v(x4) =
{Std, Dlx}, x4=Sgl
{Std, Exe}, x4=Dbl

w(x5) =
50$, x5=Std
70$, x5=Dlx

U
I

G
(x

3
)/

G
(x

3
)

U
I

H
(x

4
)/

H
(x

4
)

Input Parameter Values tested on the
Component
x1 : {PAR, LDN}
x2 : {{Htn, Y R}, {Sh, V il}}
x3 : {Y R, V il}
x4 : {Htn, Sh}
x5 : {{Sgl, Dbl}, {Sgl, Dor}}
x6 : {{Std, Dlx}, {Std, Exe}}
x7 : {50$, 70$}

Output Parameter Values corresponding
to the input parameter values

p(x5) =
Sgl, x5={Sgl},{Sgl,Dor}
Dbl, x5={Sgl,Dbl}

q(x6) =
Std, x6={Std,Dlx}
Stu, x6={Std,Stu}

r(x7) =
55$, x7 = 50$
77$, x7 = 70$

LT (Std)

PG(50$)

UI P (PAR) UI OKUI G(Y R)

RT ′({Sgl, Dor})

RT (Sgl)

Fig. 6. Integration of PFSM Models of Travel Agent (left) and Room Reservation
(right) Components - The dotted line between the components shows missing output
from Room Reservation Component

5 Conclusion

In this paper, we propose to use automata learning algorithms as a means to alle-
viate the absence of models for components, in a model-based testing approach.
As in previous related work [3,4], we adapt Angluin’s algorithm [1] to a testing
context, in an incremental approach. Our contribution extends this approach
in two directions. First, we use the models to drive integration testing. Since
the models are derived from testing observations, they cannot by themselves

Integration Testing of Distributed Components 451

constitute oracles or a sound basis for the generation of tests for the compo-
nents learnt. But they are used to drive the tests of component interactions:
partial models learnt for isolated components provide a convenient abstraction
that can be used as a basis for covering the sequences of component interactions.
Secondly, we extend the learning algorithm to a model where we deal with pa-
rameterized inputs and outputs. This is motivated by the fact that actual values
exchanged during interactions are a major source of interoperability problems
between components.

[2] proposes an extension to Angluin’s algorithm where actions can also have
parameters, represented by a combination of boolean values. Our algorithm does
not include any bound on the domain of parameters, and we introduce the notion
of auxiliary table in the algorithm to deal with it without having to explore
all combinations. However, in contrast, our model does not include guards on
parameters. We are currently working on an extension to include predicates
on parameters to trigger different transitions. We are also working towards an
implementation of these algorithms to adapt to the practical problems of testing
telecommunication services which provided our framework.

Acknowledgement

We would like to thank Alexandre Petrenko (CRIM) for our fruitful discussions
on this topic.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 2:87–106, 1987.

2. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state ma-
chines with parameters. Lecture Notes in Computer Science, 3922:107–121, March
2006.

3. Edith Elkind, Blaise Genest, Doron Peled, and Hongyang Qu. Grey box checking.
In 26th IFIP WG 6.1 International Conference on Formal Models for Networked
and Distributed Systems (FORTE 2006), 2006.

4. Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-specific optimization in
automata learning. In CAV, pages 315–327, 2003.

5. Keqin Li, Roland Groz, and Muzammil Shahbaz. Inference of parameterized finite
state machine - technical report. Technical report, Laboratoire Logiciels Systèmes
Réseaux, http://www-lsr.imag.fr/Les.Groupes/VASCO/publi-2006.htm, 2006.

6. Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of components
guided by incremental state machine learning. In Testing: Academic & Industrial
Conference - Practice And Research Techniques (TAIC PART), 2006.

7. Erkki Mäkinen and Tarja Systä. Mas - an interactive synthesizer to support be-
havioral modelling in uml. In ICSE ’01: Proceedings of the 23rd International Con-
ference on Software Engineering, pages 15–24, Washington, DC, USA, 2001. IEEE
Computer Society.

8. Stephane S. Somé. Beyond scenarios: generating state models from use cases. In
Proceedings of SCESM’02, 2002.

	Introduction
	Assumptions
	Our Approach

	Unit Testing
	PFSM Model
	Observation Tables
	Unit Testing (Learning) Procedure

	Integration Testing
	Integration Testing Procedure
	The Relationship Between Unit Testing and Integration Testing
	Result of Integration Testing

	Example
	Room Reservation Component
	Unit Testing of Room Reservation Component
	Travel Agent Component
	Integration Testing

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

