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Abstract. We investigate the use of parameterized state machine mod-
els to drive integration testing, in the case where the models of compo-
nents are not available beforehand. Therefore, observations from tests
are used to learn partial models of components, from which further tests
can be derived for integration. We have extended previous algorithms to
the case of finite state models with predicates on input parameters and
observable non-determinism. We also propose a new strategy where inte-
gration tests can be derived from the data collected during the learning
process. Our work typically addresses the problem of assembling telecom-
munication services from black box COTS.

1 Introduction

Model based testing has gained momentum in many industrial fields, in partic-
ular in the domain of testing complex systems, e.g., telecom services, which
are composed of various components developed independently. It is not un-
common for these components to be collected from different sources as COTS
(Commercial-off-the-shelf), their formal models are not always available and no
detailed technical corpora is provided with the components. Therefore, engineers
find difficulty in providing a required system integration if they have limited
knowledge of the behaviors of the components, which they use in the system.

To address this problem, we propose to generate formal models directly from
the components through testing. These models are generated as state machine
models so that rigorous techniques of model based integration testing could
readily be applied. This provides us room to investigate methods of state ma-
chine inference from black box components, i.e., the components whose internal
structure is unknown. Among various such methods, Angluin’s algorithm [1] is
well-known that learns a deterministic automata in a polynomial time. This work
has yielded positive results in applied research [14], [7] etc., where real problems
were put under case-studies. However there remained less explicit emphasis in
these works on learning expressive models.
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In our particular case of integration of a variety of components, we have ob-
served that the nature of components integration elicit potential interoperability
problems due to exchange of data values from arbitrarily complex domains. In
this case, learning DFA models for such components would be inadequate and
impractical due to the chance of state-explosion and loss of genericity of the
model. Therefore, we need to advance from simple state-machine inference to
the inference of more expressive models that can maintain the fine granularity
of complex systems, i.e., parametric details and also some notion of nondetermin-
ism. Also, as the size of input data is directly proportional to the testing effort,
there is a good argument to model expressive forms that can detail the intended
behaviors of the component in a compact form and can be learnt through less
number of test cases. We have proposed techniques based on Angluin’s algorithm
to adapt it for more expressive models than DFA, starting from Mealy machines
[9] to simple parameterized models [10].

In this paper, we enrich our model to incorporate parameterized predicates
on transitions with observable nondeterminism. This model is more expressive
compared to the models proposed in the previous works of automata inference
[1], [7], [9], [10], [2] in terms of parameterized inputs/outputs, infinite domain of
parameter values, predicates on input parameters and observable nondetermin-
ism when interacting with input parameter values. Compared to usual EFSM
models [13], [12], we stop short of including variables in the model, because when
we learn a black box, we cannot distinguish in its internal structure what would
be encoded as (control) state and what would be encoded in variables. All state
information in our model is encoded in the state machine structure.

We propose an algorithm to infer such parameterized models based on An-
gluin’s algorithm. We also have significantly improved the algorithm in two ways.
The basic algorithm and all its adaptations stated above check for certain con-
cepts in order to make a conjecture of the model. Inspired by [14], we reduced
one of these concepts, called consistency and hence reduced the number of test
cases needed to perform this concept. Furthermore, the algorithm assumes an
oracle that provides a counterexample when the conjecture is wrong. In the
context of industrial applications where this oracle assumption is quite unreal-
istic, we propose a technique to find potential counterexamples from the models
taking advantage of our integration testing strategy. The counterexamples are
provided back to the learning procedure to refine the learned model, thus making
it an iterative process [9]. We also consider former approaches, e.g., property-
based testing [11] and scenario-based testing [10] and propose a new integration
testing technique which is illustrated with the help of an example of integrat-
ing two parameterized components. The organization of the paper is as follows.
The formal definition of the parameterized model is given in section 2 and its
learning algorithm is described in section 3. The integration testing strategy
and related discussion is covered in section 4 and finally section 5 concludes the
paper.
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2 Parameterized Model

A Parameterized Finite State Machine (PFSM) M is a tuple M = (Q, I, O, DI ,
DO, Γ, q0), where

– Q is a finite set of states
– I is a finite set of input symbols
– O is a finite set of output symbols
– DI is a set of input parameter values
– DO is a set of output parameter values
– q0 is an initial state
– Γ is a set of transitions

A transition t ∈ Γ is described as: t = (q, q′, i, o, p, f), where q ∈ Q is a source
state, q′ ∈ Q is a target state, i ∈ I is an input symbol, o ∈ O is an output
symbol, p ⊆ DI is a predicate on input parameter values and f : p −→ DO is
an output parameter function. We consider that the model is restricted with the
following three properties.

Property 1 (Input Enabled). The model is input enabled, i.e., ∀q ∈ Q, ∀i ∈ I and
∀x ∈ DI , ∃t ∈ Γ such that t = (q, q′, i, o, p, f), in which x ∈ p.

The machine can be made input enabled by adding loop back transitions on a
state for all those inputs (and associated predicate for parameter values) which
are not acceptable for that state. Such transitions contain a special symbol Ω in
O. Similarly, there exists transitions which do not take input parameter values
into account. Such transitions contain a special symbol ⊥ with the input symbol
that expresses the absence of parameter value. For the sake of simplicity, we do
not write this symbol while modeling a problem with PFSM.

Property 2 (Input Deterministic). The model is input deterministic, i.e., for
t1, t2 ∈ Γ such that t1 = (q1, q

′
1, i1, o1, p1, f1), t2 = (q2, q

′
2, i2, o2, p2, f2) and

t1 �= t2, if q1 = q2 ∧ i1 = i2 then p1 ∩ p2 = φ.

Property 3 (Observable). The model is observable, i.e., for t1, t2 ∈ Γ such that
t1 = (q1, q

′
1, i1, o1, p1, f1), t2 = (q2, q

′
2, i2, o2, p2, f2) and t1 �= t2, if q1 = q2∧i1 = i2

then o1 �= o2.

Property 3 ensures that two transitions having same source state and same
input symbol would generate different output symbols. This helps us determining
the target states that are possibly different for each transition in the learning
algorithm.

When M is in state q ∈ Q and receives an input i ∈ I along with the parameter
value x ∈ DI , then the target state q′, the output o and the output parameter
value function f are determined by the functions δ, λ and σ respectively, which
are described as follows:

– δ : Q × I × DI −→ Q is a target state function
– λ : Q × I × DI −→ O is an output function
– σ : Q × I −→ DO

DI is an output parameter function. DO
DI is the set of all

functions from DI to DO.
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The properties 1 and 2 ensure that δ and λ are mappings. For an input symbol
sequence ω = i1, . . . , ik and an input parameter value sequence α = x1, . . . , xk,
where each ij ∈ I, xj ∈ DI , 1 ≤ j ≤ k, we define a parameterized input sequence,
i.e., the association of ω and α as ω ⊗ α = i1(x1), ..., ik(xk), where each xj is
associated with ij and |ω| = |α|. The association of output symbol sequence and
output parameter value sequence is defined analogously. Then, for the state q1 ∈
Q, when applying a parameterized input sequence ω ⊗ α, M moves successively
from q1 to the states qj+1 = δ(qj , ij, xj), ∀1 ≤ j ≤ k. We extend the functions
from input symbols to parameterized input sequences as δ(q1, ω, α) = qk+1 to
denote the final state qk+1 and λ(q1, ω, α) = o1(y1), ..., ok(yk), where each oj =
λ(qj , ij, xj), yj = σ(qj , ij)(xj), ∀1 ≤ j ≤ k, to denote the complete parameterized
output sequence, when applying ω ⊗ α on q1.

An example of PFSM model is given in Figure 1, in which Q = {q0, q1, q2, q3,
q4, q5}, I = {a, u}, O = {s, t}, DI = DO = Z, the set of integers.

Fig. 1. Example of PFSM Model

3 Algorithm

Assume an unknown PFSM M = (Q, I, O, DI , DO, Γ, q0) with known input sym-
bols I and input parameter domain DI can be used to model a component C.
For any parameterized input sequence or a test case ω ⊗ α, (ω ∈ I∗, α ∈ D∗

I ) for
a component, we assume that λ(q0, ω, α) can be known from testing. We also
assume that C can be reset to its initial state before each test. The key part of
the learning algorithm is using observation table. We define the structure of the
table and related definitions in the section below and then the algorithm in the
subsequent section.

3.1 Observation Table

The observation table is used to generate test cases for an unknown component,
to organize the result of each test case and finally to make a PFSM conjecture
when certain properties on the table are satisfied. The rows and columns of the
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table are labelled by input strings which are associated with the input parameter
values in order to construct test cases. The result of a test case is organized in
the cells of the table in the form of a pair of input parameter value sequence and
parameterized output. After the table conforms to the properties, a conjecture
is made where some rows of the table are regarded as states and transitions are
derived from the observations recorded in the table. We shall describe the basic
structure and properties of the table in this section and rest of the explana-
tion regarding construction of test cases, organization of outputs and making a
conjecture out of the table will be explained in the next section.

Structure. Let U = {ω ⊗ α|ω ∈ I+, α ∈ DI
+} ∪ {ω|ω ∈ I∗} be the set of

parameterized input sequences and input symbol sequences. We define IS(u), u ∈
U , an input symbol sequence from u such that if u = ω or u = ω ⊗ α, ω ∈
I∗, α ∈ DI

∗, then IS(u) = ω. Also, pref (γ)k is the prefix of some sequence
γ ∈ I∗ ∪ O∗ ∪DI

∗ ∪DO
∗ of length k ≤ |γ|. For example, for γ = i1, ..., in, where

every ij ∈ I, 1 ≤ j ≤ n, pref(γ)k = i1, ..., ik, 1 ≤ k ≤ n. Similarly, suff (γ)k is the
suffix of γ of length k ≤ |γ|. Let P = {(α, � ⊗ β)|α ∈ DI

+, � ∈ O+, β ∈ DO
+}

be the set of the pair of input parameter value sequence and parameterized
output sequence.

Table 1. Example of an Observation Table

E

a u
S ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)

R
a ((⊥, ⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)
u ((1, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)

An observation table is denoted as (S, R, E, T ). S and R are nonempty finite
sets of input strings and make the rows of the table. S is used to identify potential
states in the conjecture and R is used to satisfy properties on the table. In PFSM,
states are not only determined by input symbol sequence but also by parameter
value sequence, thus formally, S ⊆ U is a set of input symbol sequences and
parameterized input sequences, and R ⊆ U extends the rows such that for all
r ∈ R, there exists s ∈ S, e ∈ E and IS(r) = IS(s) · e. Whenever, a sequence
s is added to S, R is extended in the following way: i) if s = ω, ω ∈ I∗ an
input symbol sequence, then R will be extended by ω · i, for all i ∈ I. ii) if
s = ω ⊗ α, ω ∈ I+, α ∈ DI

+ a parameterized input sequence, then R will be
extended by ω · i ⊗ α · x, for all i ∈ I, where x is selected from DI . The selection
policy for parameter values is up to the system’s specific requirements, however
a general idea is given in section 4.

E ⊆ I+ is a nonempty finite set of input symbol sequences that make the
columns of the table and separate the different states of the conjecture. The
elements of (S ∪ R) × E are used to construct test cases in the algorithm
which are associated with parameter value sequences from DI

+, and their results
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(observations) are organized in the table with the help of a function T mapping
from (S∪R)×E to 2P . For example, a parameterized output of a test case derived
from s ∈ S∪R, e ∈ E and associated with parameter value sequence α ∈ DI

+ will
be organized in T (s, e) in the form of a pair of input parameter value sequence
and parameterized output sequence, i.e., (α, �⊗β), α ∈ DI

+, � ∈ O+, β ∈ DO
+.

The observations from T (s, e) are used to identify potential transitions in the
conjecture and label them with input/output and parameter values. Table 1 is
an example of an observation table, in which S contains only one row ε and R
contains two rows a and u, whereas E contains two columns a and u respectively.

Properties. Each test case driven from s ∈ S ∪ R, e ∈ E may generate dif-
ferent parameterized output sequences depending upon the selection of different
input parameter value sequences from DI

+. Thus, there may exist (α1, �1 ⊗
β1), (α2, �2⊗β2) ∈ T (s, e) such that �1 �= �2, i.e, T (s, e) contains pairs in which
the output sequences are different. Let η(T (s, e)) be the number of different out-
put sequences contained by T (s, e), then we can divide T (s, e) into η(T (s, e))

distinguishing subsets, i.e., T (s, e) =
η(T (s,e))⋃

k=1
dk(s, e), where in each dk(s, e) =

{(α1
(k), �1

(k) ⊗ β1
(k)), . . . , (αm

(k), �m
(k) ⊗ βm

(k))} ⊆ T (s, e), m = |dk(s, e)|,
�1 = . . . = �m, the output sequences are same. Let OS(dk(s, e)) = �1

(k) =
. . . = �m

(k) be the output sequence from dk(s, e), then for any d1(s, e), d2(s, e) ⊂
T (s, e), OS(d1(s, e)) �= OS(d2(s, e)) and d1(s, e)∩d2(s, e) = ∅. For every dk(s, e),
we define ρ(dk(s, e)) = {α1

(k), . . . , αm
(k)}, a set of distinguishing parameter

value sequence from dk(s, e), and PS(dk(s, e)) = {(suff (α1
(k))|e|, β1

(k)), . . . ,
(suff (αm

(k))|e|, βm
(k))}, the set of pairs of i/o parameter value sequences from

dk(s, e).
Since T (s, e), s ∈ S ∪ R, e ∈ E represents a possible transition in the con-

jecture, if T (s, e) contains many distinguishing subsets then each subset may
represent a different transition. Therefore, we call such s a disputed row. For-
mally, s ∈ S is disputed iff for any e ∈ E, η(T (s, e)) > 1, i.e., T (s, e) contains
more than one distinguishing subsets. The table must contain additional rows
to treat disputed rows. A disputed row s is treated iff for every distinguishing
subset dk(s, e) ⊂ T (s, e), 1 ≤ k ≤ η(T (s, e)), there exists t ∈ S ∪ R such that
t = IS(s) · e ⊗ α, α ∈ ρ(dk(s · e)). The table is called dispute − free iff all the
disputed rows s ∈ S are treated.

For any s1, s2 ∈ S∪R, s1 and s2 are comparable with the help of the following
definitions.

– s1 and s2 are compatible, denoted by s1 ≡ s2, iff ∀e ∈ E, ∀(α1, �1 ⊗ β1) ∈
T (s1, e), ∀(α2, �2 ⊗ β2) ∈ T (s2, e), if suff (α1 )|e| = suff (α2 )|e|, then �1 ⊗
β1 = �2 ⊗β2. This means that common input parameters produce the same
output parameters.

– s1 and s2 are balanced, denoted by s1 ↔ s2, iff ∀e ∈ E, ∀(α1, �1 ⊗ β1) ∈
T (s1, e), ∃(α2, �2 ⊗ β2) ∈ T (s2, e) such that suff (α1 )|e| = suff (α2 )|e| and
∀(α2, �2 ⊗ β2) ∈ T (s2, e), ∃(α1, �1 ⊗ β1) ∈ T (s1, e) such that suff (α2 )|e| =
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suff (α1 )|e|. This means any input parameter combination on one has been
tested on the other.

– s1 and s2 are equivalent, denoted by s1 ∼= s2, iff s1 ↔ s2 and s1 ≡ s2, i.e.,
s1 and s2 are balanced and they remain compatible.

A table is balanced iff for every s, t ∈ S ∪ R such that s ≡ t, s ↔ t. The table
is called closed iff for each t ∈ R, there exists s ∈ S such that s ∼= t. A closed
table makes sure that no row in R is different from the rows in S that gives out
the potential states of the conjecture.

3.2 Algorithm

The algorithm starts by initializing (S, R, E, T ) with E = I and S = R = ∅, i.e.,
each input symbol makes one column and there are no rows initially. The first step
is to add ε to S, where ε is an empty string. Thus, R will be extended by adding
ε · i, for all i ∈ I. Table 1 shows the extensions of S, R and E, where I = {a, u}.

The test cases are constructed by the elements of (S∪R)×E. Since S∪R con-
tains the input symbol sequences as well as the parameterized input sequences,
the test cases in each case are constructed in the following way:

i) if s = ω ∈ S ∪ R an input symbol sequence and e ∈ E, then a test case is
constructed as ω · e ⊗ α1 · α2, where α1 and α2 are selected from DI

∗ such that
|ω| = |α1| and |e| = |α2|.

ii) If s = (ω ⊗ α1) ∈ S ∪ R a parameterized input sequence and e ∈ E, then
a test case is constructed as ω · e ⊗ α1 · α2, where α2 will be selected from DI

+

such that |e| = |α2|.
The result of each test case is organized in the table by just filling the cells

with output sequences, and does not lead to the extension of rows or columns.
Let ω ⊗ α be a test case, where ω ∈ I+, α ∈ DI

+, generating a parameterized
output sequence λ(q0, ω, α) = � ⊗ β, � ∈ O+, β ∈ DO

+, then the table will be
filled as follows:

i) if there exists s = ω1 ∈ S ∪ R, e = ω2 ∈ E such that ω1 · ω2 is a prefix of ω
or
ii) if there exists s = ω1 ⊗ α1 ∈ S ∪ R and e = ω2 ∈ E such that ω1 · ω2 is a

prefix of ω and α1 is a prefix of α,
then there is a prefix αp = pref (α)|ω1 ·ω2 |, βp = pref (β)|ω1 ·ω2 |, �p =

pref (�)|ω1 ·ω2 | and T (s, e) will be appended by (αp, �
′ ⊗ β′), where �′ =

suff (�p)|ω2 |, β = suff (βp)|ω2 |.
The table is made balanced after every test case performed. Whenever it is

not balanced, find s, t ∈ S ∪ R, e ∈ E, (α1, �1 ⊗ β1) ∈ T (s, e) such that s ≡ t
and there does not exist (α2, �2 ⊗ β2) ∈ T (t, e) where suff (α1 )|e| = suff (α2 )|e|,
then construct test case IS(t) · e⊗ pref (α)|α|−|e| · suff (α1 )|e| where α is selected
from ρ(dk(t, e)), for any dk(t, e) ⊆ T (t, e), 1 ≤ k ≤ η(T (s, e)).

The table is made dispute − free after balancing. Let s ∈ S be disputed
then find e ∈ E such that η(T (t, e)) > 1. Then, for every distinguishing subset
dk(t, e) ⊂ T (t, e), 1 ≤ k ≤ η(T (t, e)), add IS(s) · e ⊗ α to R where α is selected
from ρ(dk(t, e)). Remove the original row s · e ∈ S ∪ R if it exists. Construct
additional test cases for the missing elements of the table.
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When the table is made balanced and dispute − free, it is made closed.
Whenever it is not closed, find t ∈ R such that s � t, ∀s ∈ S and move t
to S and extend R accordingly. Construct additional test cases for the missing
elements of the table.

When table is balanced, dispute− free and closed, a PFSM conjecture M ′ is
made from the table in the following way:

- Each s ∈ S is a state of the conjecture
- ε ∈ S is the initial state

For each s ∈ S, i ∈ I, there exists η(T (s, i)) transitions. Thus, each distin-
guishing subset dk(s, i) ⊆ T (s, i), 1 ≤ k ≤ η(T (s, i)), defines one transition
{s, s′, i, o, p, f}, in which p = {suff (α)1 , ∀α ∈ ρ(dk(s, i))}, f = σ(s, i) =
PS(dk(s, i)) and s′, i are determined by δ(s, i, x), λ(s, i, x), ∀x ∈ p, resp., in
the following way:

- δ(s, i, x) = t ∈ S|t ∼= (IS(s) · i ⊗ α) ∈ S ∪ R, α ∈ (ρ(dk(s, i))∗

- λ(s, i, x) = OS(dk(s, i))

The termination of the algorithm is guaranteed by the finite space of states and
transitions of the black box component modeled as PFSM. The operations which
keep the algorithm extending the table are two, i.e., disputed row treatment and
making the table closed.

A row is disputed if a row (or state) has more than one outputs (or possible
transitions) for the same input symbol but for different set of parameter values.
If a state in the actual component has m different transitions for an input symbol
and a parameter value for each transition has been tested during the process,
then there will be at most m rows added in the table for such state and input
symbol.

A table is not closed when a row r in R is not equivalent to any row in S. Then
by definition, r will be moved to S and will represent a state of the conjecture.
If there are n states in the actual component, then there will be at most n − 1
moves from R to S, since there is initially one row in S and there cannot be
more than n.

As to balancing the table, it is nothing more than recording output sequences
in the existing table for those input parameter values that are not recorded
previously. The number of test cases required for balancing the table is calculated
as follows. Let mr,e is the number of different input parameter values recorded
in T (r, e), r ∈ S ∪ R, e ∈ E, and ne is the number of different input parameter
values recorded in T (s, e), ∀s ∈ S ∪ R. Then, the number of test cases required
for balancing each T (r, e) is ne − mr,e.

3.3 Illustration

We illustrate the learning algorithm of PFSM model on the example given in
Figure 1. The summary of the algorithm is given below.
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Input: I, DI

Output: Conjecture M ′

begin
Initialize (S, R, E, T ) by E = I, S = ε, R = ε · i, ∀i ∈ I ;
Construct the test cases from (S ∪ R) × E ;
Organize result in the table accordingly ;
while table is not balanced or not dispute − free or not closed do

Make the table balanced such that for every s, t ∈ S ∪ R|s ≡ t,
s ↔ t ;
Make the table dispute − free such that for all s ∈ S, e ∈ E, where
η(T (s, e)) > 1, s is treated ;
Make the table closed such that for every t ∈ R, there exists s ∈ S
such that s ∼= t ;

end
Make a conjecture M ′ from the table.

end

Algorithm 1. Summary of the Learning Algorithm

We start by initializing (S, R, E, T ) with the input symbols from I = {a, u}
and construct test cases to fill the table, shown in Table 1. In the test cases, we
associate parameter values 1 and 5 and balance the table accordingly. Thus, the
row ε becomes disputed, since η(T (ε, u)) > 1.

Table 2. Table is not closed

a u

ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)
a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

Table 3. Table is not dispute − free

a u
ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)
a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

aa ((⊥,⊥, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1), s ⊗ ⊥), ((⊥, ⊥, 5), t ⊗ 25)
au ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25)

We add two parameterized sequences u⊗ 1 and u⊗ 5 to R and refill the table
by constructing test cases for new rows and balance it respectively, shown in
Table 2. The table is not closed, since row a in R is not equivalent to any row in
S (that contains only one row ε and a � ε). Thus, we move a to S and extend
R accordingly, shown in table 3. Balancing the table makes the row a disputed,
as η(T (a, u)) > 1. Hence, we add two more parameterized sequences in R and
construct test cases to fill new rows. Table 4 is balanced, dispute − free and
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Table 4. Table is balanced, dispute − free and closed

a u
ε (⊥, s ⊗ ⊥) (1, s ⊗ ⊥), (5, t ⊗ 5)
a ((⊥,⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25)

u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25)
u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5)

aa ((⊥,⊥, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1), s ⊗ ⊥), ((⊥, ⊥, 5), t ⊗ 25)
(a, u) ⊗ (⊥, 1) ((⊥, 1, ⊥), s ⊗ ⊥) ((⊥, 1, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25)
(a, u) ⊗ (⊥, 5) ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 5, 5), t ⊗ 5)

closed. Figure 2 shows the conjecture from the current table. Note that we can
use arbitrary input parameter values every time we construct test cases, whereas
in the example, only 1 and 5 are used for sake of simplicity. However, using many
different parameter values is more likely to reveal interesting information.

Fig. 2. The first conjecture of the example

3.4 Dealing with Counterexamples

The original learning algorithm for DFA [1], its improvements [14], [7] and its
adaptations to more expressive models [9], [2], [10] performs an additional con-
cept on the observation table, i.e., the table must be consistent before making
the conjecture. The consistency concept can be described informally in the fol-
lowing way. If there are two equivalent rows s, t ∈ S, then all the subsequent
rows in S ∪ R, which extend s, t with some input symbol i ∈ I, must also be
equivalent. In other words, the two apparently similar states (i.e., rows in S)
must have same successive states for all inputs implied on those states. If the ta-
ble is found not consistent, then the corresponding input sequence (which makes
the successive states different) is added to E. This means that rows are extended
with longer input sequences and then new test cases are constructed to fill the
table. In this way, two apparently similar states in S become different.

In the learning algorithm of PFSM, we do not perform this concept because
any two rows in S remain inequivalent during the whole process. Therefore in-
consistency does not occur in the first iteration of the learning process. If a
conjecture made from the table is not correct and there is a counterexample
(an input sequence) that rejects the conjecture (the output sequence differs
from the conjecture when applying counterexample to the component), then the
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Fig. 3. Example of a Composed System

counterexample is fixed back into the table in order to refine the conjecture,
which is considered as the next iteration of the learning process. In all above-
mentioned algorithms, a counterexample is fixed by adding all its prefixes in
S and hence new test cases are constructed for new rows. That is where the
inconsistency may occur while adding prefixes in S.

This concept can be avoided altogether if the method of fixing a counterex-
ample in the table is modified in such a way that instead of adding all prefixes
in S, we only add the relevant sequence in the table that results in difference
between the conjecture and the actual component. Furthermore, this addition
will not be reflected in S, so that no two rows in S become equivalent. A general
idea is discussed in [3], inspired by [14], applied on DFA algorithm. However, we
deal differently in our case which is described below.

Let c = ω ⊗ α, ω ∈ I+, α ∈ DI
+ be a counterexample for the current conjec-

ture. Then c will be fixed in the observation table as follows:
If there exists s ∈ S ∪ R such that IS(s) is the longest prefix of ω then add

e = suff (IS (c))|IS(c)|−|IS(s)| in E, if it is not already present. In case where
s = ω1 ⊗ α1 ∈ S ∪ R a parameterized input sequence and α1 is not a prefix of
α then add ω1 ⊗ pref (α)|ω1 | in R. Organize λ(q0, ω, α) in the table and make it
balanced, dispute − free and closed for a new PFSM conjecture.

We have observed that fixing the counterexample in this way actually gives the
same result as fixing the inconsistency in other algorithms. In other algorithms,
E is extended only when inconsistency is found, which is reflected after fixing
the counterexample. In our explanation, we extend E immediately while fixing
the counterexample which keeps the rows in S inequivalent.

4 Integration Testing

In [9], we described the overall testing procedure in which the model is Mealy
machine, with adaptations to a restricted form of PFSM in [10]. We suppose that
we are provided with a set of components and the architecture of communication
linking them. That is, we know for each component its interfaces. Each interface
is a set of input and output symbol types and the types of associated parame-
ters. Interface of two components can be pairwise connected, provided they are
complementary (inputs and outputs correspond, and parameter types match).
In an integrated architecture, non-connected interfaces will be considered as ex-
ternal interfaces to the environment. An example of a composed system of two
components M and N is shown in Figure 3.
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In order to associate PFSM models to components, we must provide a map-
ping from interfaces and parameter domains to sets I, O, DI , DO for each compo-
nent. In this mapping, we may omit unrelevant parameters: some expertise may
be needed there to identify which parts of the system are of interest. Some
high-level description of the integration (e.g. with component diagrams, use
cases...) could help in identifying relevant elements. We assume that through this
mapping, each machine can be modeled with a PFSM, i.e, all state information
will be captured in finite state. We also assume that typical parameter values to
be tested are provided for each input: those could be provided by scenarios (esp.
for external interfaces) or, failing that, chosen randomly. And for parameters
considered not relevant, there should be some mechanism to assign them a value
(either a default value, or some value linked to the values of other parameters,
e.g. observed values in similar type).

We first learn each component in isolation, using algorithm 1 up to the first
conjecture: we call this “unit testing”. Thus, we get a PFSM model for each
component. Actually, when the conjecture is made, some transitions will be la-
belled as “unchecked” as will be explained in section 4.2. From that point, we
proceed to integration testing, where we connect the actual components using
the specified architecture. We also connect the models of components: for this,
since PFSM are a restricted form of EFSM, we use the IF tool-set [4] to compute
interaction sequences. When we execute a test case, we submit external input
symbols along with external input parameter values to the integrated system,
observe the external output symbols and the external output parameter values.
At the same time, by observing the internal interfaces, we also obtain the input
and output sequences of the components. By using the mapping to the inputs
and output of the models, and running the corresponding sequences on the in-
tegrated model, we can detect any discrepancy between the observed behaviors
of components and that of their models. Those discrepancies can then be used
as counterexamples to refine the models.

In order to choose integration tests, we can first use some information pro-
vided as scenarios or properties of the system, as described below in section 4.1.
In any case, we shall be able to use the information from unit testing to derive
systematic integration test cases, as described in section 4.2. Additionally, ran-
dom walk on the model could provide a cheap test generation strategy: it could
also be related to a coverage of the “unchecked” transitions.

4.1 Test Generation by Scenario or Model Checking

In component integration, the integrator may have a number of test scenarios for
the global interaction of the system with its environment. Additionally, sample
parameter values are provided for all external interfaces of the system. For each
test scenario, a test case is constructed, in which the input parameter values are
selected according to the ranges specified in the test scenario. In executing the
test case, we check two properties:

– Whether the test scenario has been respected. If the test scenario has not
been respected, an error has been detected in the system of components.
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– Whether the observed behaviors conform to the models of components. If
there is a discrepancy between the observed behavior of one component and
its model, we go back to the unit testing procedure to refine the model with
the input sequence as counterexample.

Another source for test cases could come from property checking. If some
properties are specified for the system, then we can model-check those properties
on the composed model. Any counterexample for the property could then be run
on the system to check whether the actual system also includes a violation of
the property. This combination of model-checking with learned models has been
quite extensively studied in [5]. If no specific property is provided, we can still
check for generic properties. In particular, we could check for livelocks, since our
unit testing cannot guarantee that the models do not livelock when integrated
(deadlocks are a different matter since we make our models input-enabled).

4.2 Test Generation Using Information from Learning Procedure

In the unit testing procedure, in the step of making a conjecture, the set of
states is taken from S. When we want to define a transition from a state s for an
input symbol and a set of parameter value, we try to identify the corresponding
sequence s′ in S ∪ R, through observation recorded in T . If s′ is in S, the next
state of the transition is that sequence. If s′ is in R, we find the sequence t ∈ S
which is equivalent to s′.

In the first case, since the sequences s and s′ are all in S, they are not equiv-
alent to each other. So, we are sure that in the real model of the component,
the state reached by s and the state reached by s′ are different, and there must
exist such a transition from the state reached by s to the state reached by s′.

In the latter case, we cannot distinguish the state reached by s′ and the
state reached by t using the current set E of separating sequences. So, in the
conjecture, we assume these two states are the same, and there is a transition
from the state reached by s to the state reached by t.

But this conjecture may be wrong. In the real model of the component, the
state reached by s′ and the state reached by t can be different. These two states
can be distinguished by certain sequence. From the point of view of identifying
counterexamples for the conjecture, in the integration testing procedure, we
should try to separate these states by executing long sequences from them. Based
on this observation, we propose the following integration testing technique.

In making a conjecture in the unit testing procedure, for s ∈ S, i ∈ I, α ∈
(ρ(dk(s, i))∗, if t = (IS(s) · i⊗ α) ∈ R then we label the transition as unchecked,
and we record the sequence t with it and refer to it as the hidden sequence.

Our test generation strategy for integration testing will be specifically targeted
at covering unchecked transitions. For each unchecked transition, we extend its
hidden sequence with several parameterized input sequences whose lengths are
limited by a predefined threshold k to obtain a group of sequences. From all
these sequences obtained, we remove those sequences which have been executed
in unit testing, and those sequences in which there is not any interaction with
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another component. Those sequences are local to a given component, and should
be extended to a global test sequence. Therefore, we take rest of the sequences
as test purposes, and obtain a group of test cases which contain external in-
puts/outputs only using the method described in [8]: basically we search the
composed model for global sequences whose projections on the local component
match the test purpose. Actually, in a single search, we may compute the test
cases for several components. By executing these test cases, we may identify
counterexamples.

In the example of a composed system shown in Figure 3, componentM has IM =
{a, u} and OM = {s, t}, and component N has IN = {b} and ON = {u, r}, respec-
tively. The PFSM model of component M is shown in Figure 1. After unit testing,
the first conjecture M (1) of component M is learnt, shown in Figure 2. The PFSM
model of component N is shown in Figure 4. It is learnt exactly in its unit testing.

Fig. 4. PFSM Model of Component N

In M (1), among the 6 transitions, transitions tr1, tr2, tr3, tr4 and tr5 are
unchecked. For unchecked transition tr2, its hidden sequence is u(5). We extend
it to obtain u(5)·a·a, u(5)·a·u(5), u(5)·u(5)·a, and u(5)·u(5)·u(5). Among them,
using u(5) · a · u(5) as test purpose, we obtain a test case b(4)/r(4) · b(4)/t(5) ·
a/s · b(4)/t(25).

In executing this test case, the expected behavior of component M is
u(5)/t(5) ·a/s ·u(5)/t(25), and the observed behavior is u(5)/t(5) ·a/s ·u(5)/t(5).
This means that a counterexample u(5) · a · u(5) is identified.

Table 5. Table is balanced, dispute− free and closed after fixing the counterexample

a u au
ε (⊥, s ⊗ ⊥) (⊥, s ⊗ ⊥), (5, t ⊗ 5) ((⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, 1), (s, s) ⊗ (⊥, ⊥))
a ((⊥, ⊥), s ⊗ ⊥) ((⊥, 1), s ⊗ ⊥), ((⊥, 5), t ⊗ 25) ((⊥,⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

u ⊗ 5 ((5, ⊥), s ⊗ ⊥) ((5, 1), s ⊗ ⊥), ((5, 5), t ⊗ 5) ((5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 1), (s, s) ⊗ (⊥,⊥))
u ⊗ 1 ((1, ⊥), s ⊗ ⊥) ((1, 1), s ⊗ ⊥), ((1, 5), t ⊗ 25) ((1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

aa ((⊥, ⊥, ⊥), s ⊗ ⊥) ((⊥,⊥, 1), s ⊗ ⊥), ((⊥,⊥, 5), t ⊗ 25) ((⊥, ⊥,⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(a, u) ⊗ (⊥, 1) ((⊥, 1, ⊥), s ⊗ ⊥) ((⊥, 1, 1), s ⊗ ⊥), ((⊥, 1, 5), t ⊗ 25) ((⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, 1, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(a, u) ⊗ (⊥, 5) ((⊥, 5, ⊥), s ⊗ ⊥) ((⊥, 5, 1), s ⊗ ⊥), ((⊥, 5, 5), t ⊗ 5) ((⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((⊥, 5, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(u, u) ⊗ (5, 1) ((5, 1, ⊥), s ⊗ ⊥) ((5, 1, 1), s ⊗ ⊥), ((5, 1, 5), t ⊗ 5) ((5, 1, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, 1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, u) ⊗ (5, 5) ((5, 5, ⊥), s ⊗ ⊥) ((5, 5, 1), s ⊗ ⊥), ((5, 5, 5), t ⊗ 5) ((5, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, a) ⊗ (5, ⊥) ((5, ⊥, ⊥), s ⊗ ⊥) ((5, ⊥, 1), s ⊗ ⊥), ((5, ⊥, 5), t ⊗ 5) ((5, ⊥, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, ⊥, 1), (s, s) ⊗ (⊥,⊥))

(a, a, u) ⊗ (⊥, ⊥, 5) ((⊥,⊥, 5, ⊥), s ⊗ ⊥) ((⊥, ⊥, 5, 1), s ⊗ ⊥), ((⊥,⊥, 5, 5), t ⊗ 5) ((⊥,⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((⊥,⊥, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(a, a, u) ⊗ (⊥, ⊥, 1) ((⊥,⊥, 1, ⊥), s ⊗ ⊥) ((⊥, ⊥, 1, 1), s ⊗ ⊥), ((⊥,⊥, 1, 5), t ⊗ 25) ((⊥, ⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 25)), ((⊥, ⊥, 1, ⊥, 1), (s, s) ⊗ (⊥,⊥))
(u, a, u) ⊗ (5, ⊥, 1) ((5, ⊥, 1, ⊥), s ⊗ ⊥) ((5, ⊥, 1, 1), s ⊗ ⊥), ((5, ⊥, 1, 5), t ⊗ 5) ((5, ⊥, 1, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 1, ⊥, 1), (s, s) ⊗ (⊥, ⊥))
(u, a, u) ⊗ (5, ⊥, 5) ((5, ⊥, 5, ⊥), s ⊗ ⊥) ((5, ⊥, 5, 1), s ⊗ ⊥), ((5, ⊥, 5, 5), t ⊗ 5) ((5, ⊥, 5, ⊥, 5), (s, t) ⊗ (⊥, 5)), ((5, ⊥, 5, ⊥, 1), (s, s) ⊗ (⊥, ⊥))

Going back to unit testing, we fix the counterexample in the observation table
by adding a · u in E and then making the table balanced, dispute − free and
closed, we obtain a new conjecture M (2) for component M . The table is shown
in Table 5 and Figure 5 is the conjecture. The new conjecture then will again be
put under integration testing with component N and new global test sequences
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will be generated according to the process described above. This may identify
new counterexamples or end the integration process if no discrepancy is found
[9]. In the former case, the conjecture will then be refined again through fixing
new counterexamples in the table.

Fig. 5. Conjecture M (2) of Component M

5 Conclusion

We have presented an approach that makes it possible to use model-based testing
techniques, in particular test generation for integration testing, in the absence of
initial models. We extend previous work done in this direction [7], [9], [5] to deal
with arbitrary data values, avoiding the complexity of expanding into DFA or
FSM models. The model is richer than the models used by [10] or [2]. We use an
incremental testing approach where new interoperability tests can be derived to
check systematically the models derived from previous observations. From those
tests, refined models of the system can be built, or faults in the system can be
identified, as explained in [9].

We are currently working on a tool, called RALT (Rich Automata Learning
and Testing), to run the approach on case studies to be provided by France
Telecom. We have already implemented the learning algorithms for DFA [1],
for Mealy machine [9] and for simple parameterized machine [10], and need to
interface to actual test drivers, so that we can compare them all.

We also consider research perspectives to deal with even more complex models.
In particular, we could try to move closer to EFSM models by incorporating vari-
ables. To circumvent the hidden nature of state structure in black boxes, we could
either rely on additional structure information provided by the integrator (moving
from black to some kind of grey box) or use some heuristics to differentiate con-
trol states from variables.Other direction is to consider sufficient information (e.g.,
parts of source code) and derive complex models, as performed in [6], [15]. We are
also investigating other types of test generation strategies for integration testing.
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