
Model Inference Approach for Detecting
Feature Interactions in Integrated Systems

Muzammil SHAHBAZ a,1, Benoît PARREAUX b and Francis KLAY b

a France Telecom R&D Meylan, France
b France Telecom R&D Lannion, France

Abstract.
Many of the formal techniques are orchestrated for interaction detection in a

complex integrated solution of hardware and software components. However, the
applicability of these techniques is in question, keeping in view time-to-market
delivery and scarcity of available resources. The situation is even more intractable
when little or no knowledge of components is provided.

We introduce a novel approach of using model inference methods in the domain.
We advocate that these methods can be used in detecting feature interactions among
components by putting the integrated system under a systematic testing effort and
extracting only “context-relevant” models. Our technique allows us to detect those
interactions in the system which are normally hidden while testing the components
in isolation. We apply our approach to an active problem we are facing in furnishing
mobile phone services.

Keywords. Feature Interaction, Model Inference, Mobile Services Framework,
Mobile Phone Integration

1. Introduction

1.1. Context

The feature interaction problem [8,19,7] has been widely studied since the last decade.
Basically, the problem is that modern software architectures cannot be monolithic and
static, rather they need to be modular and flexible for maintainability or economic reasons
such as time-to-market delivery. In order to support such a structure, the notion of feature
is defined. A feature is a software piece that adds some functionality in a system. In
general, a system includes a basic structure S, some features F1, F2,. . . , and is defined
as S × F1 × F2 × . . ., where × is a composition operator. Ideally the behavior of each
feature should be independent from others but unfortunately it is never the case, since
very often cooperative behaviors are required. This means that there are side effects
between features which are called interactions. Some of them are desirable while others
may lead to unexpected or unrequired system behaviors.

The handling of interaction problems is the ability to detect, understand, classify
and manage feature interactions in the system. Actually software interactions arise more

1Corresponding Author: muhammad.muzammilshahbaz@orange-ftgroup.com

in fields like web services, plugin software architectures, home appliance automation,
mobility, etc. There are mainly two approaches to solve this problem: either on-line or
off-line. With on-line techniques [22,24,14,4,6], the interactions are handled at system
runtime, which is well suited for quick time-to-market delivery and opens a multi-vendor
environment. The main disadvantage of this approach is the processing overhead and
the impossibility of getting finer interaction resolution. On the contrary, off-line tech-
niques are often a combination of software engineering methodologies [9,26,25] and for-
mal methods [11,17,1,23,12,13]. The software engineering methodologies define a ba-
sic structure with a feature integration process. The formal methods goal is to reach to
in-depth understanding of interactions by performing logical analysis on system specifi-
cations. The advantage of these techniques is to achieve finer interaction treatment. But
in order to efficiently applying these techniques, the problem space they are dealing with
must be reduced [20].

In this paper, we present a new automated approach to handle the feature interaction
problem, applying it to what we think is an original case study, i.e., mobile phones. There
are many features found in today’s mobile phones that offer many more capabilities than
just simple functions such as voice calls or text messaging. The main problem is that for
economic reasons in this context, this critical system needs to be open. For example, a
phone manufacturer provides a phone device with basic features, but a phone distributor
or a network operator would like to customize it with more features taking advantage of
its network services architecture. Finally, a third party, e.g., a game provider, would also
like to embed some additional features. In this respect, the phone is an integrated system
of multiple components providing required features, plus many others for the purpose of
reusability. Different systems may contain similar functionalities but their implementa-
tions and logics vary. Furthermore, the behaviors of components in the same system are
not independent. They are often assumed to communicate with each other and may in-
voke required/unrequired functions of each other when accessing critical resources such
as private data (e.g., address book) or communication functions (e.g., SMS). The real
goal is that once the system is integrated, the integrator wants to know the possible inter-
actions could occur between components.

1.2. Summary of the Approach

Our problem domain deals with two kinds of scenarios. The components may be
equipped with either extensible documentation listing all implemented features and in-
puts to the components, or with no technical/formal specifications at all. In both cases,
finding interactions between components in an integrated system is a difficult task. In the
former case, it is not wise and also may not be possible to exhaustively analyze the whole
specification, since only a subset of functions is used. For that purpose, extracting only
relevant abstractions from a complex technical corpus is a hard job. In the latter case,
the absence of any formal specifications or little knowledge about the component is an
obstacle in applying the majority of techniques. Therefore, we try to build our approach
to address both issues, which is shortly described as follows.

For each component to be integrated in the system, we extract only its context-
relevant model, i.e., the model that specifies only the required features, and then use it
to detect interactions in the system with systematic testing techniques. To extract the
models, we introduce the work in the machine inference domain [18,5,3,10] and apply

methods that can actively learn models out of black box machines with systematic testing
effort. Contrary to other feature learning work [24], we are not learning models through
general artificial learning techniques such as neural networks or rule based learning.
Rather, we use active machine learning approach to devise testing strategy through which
the model will be inferred incrementally.

Once the preliminary models of each component are extracted, we then integrate
the system to detect interactions. We take advantage of the testing performed on each
component during its inference and apply those tests to the integrated system. If the
component or the system globally does not behave in the same manner as in isolation,
then an interaction between two or more components is detected. After that, extracted
models are refined iteratively so that they capture new behaviors, and then new tests are
performed on the system. The procedure will end when the composite behavior of the
system conforms to the inferred models of each component.

Roughly speaking, our approach considers components as black boxes and uses an
incremental learning method to infer partial models. Thus, we are introducing machine
inference work in the domain of feature interaction detection. At the end of the approach,
we will have context-relevant models of each component representing the possible inter-
actions in the system and projecting the up-to-date picture of the system behavior.

The rest of the paper is organized as follows. First, we introduce as intuitively as
possible the general framework of our application, i.e., mobile phone system, in section
2. Later, we formally detail the inference technique of our method and its illustration on
our example in section 3. Then the application of our method to an instance of the mobile
phone system interaction problem is explained in section 4. Finally, section 5 concludes
the paper.

2. Mobile Services Framework

Our service framework is to create customized systems by acquiring one general plat-
form upon which components of-the-choice are integrated to build a required solution.
Consider a basic platform that helps in customizing mobile phone systems by plugging
available set of components from other parties. Such components usually conform to
some standard means of interfacing with other components for the purpose of enhancing
features in an integrated system. A typical example in mobile applications is a compo-
nent that is developed under the J2ME environment [15] and provides an interfacing API
adherent to some JSR specifications [16]. We describe an example of a system that is
built up of such components in Figure 1. The system is a calling system that consists of
four components, i.e., Call Screening C S, Address Book AB, Media Manager M M and
Call Controller CC .

These components offer a variety of functionalities in their respective areas and op-
tions to interface with other components. For this purpose, each of them is provided with
a very large set of inputs, in many of which we may have no interest. We are interested
only in certain functionalities offered by each component to be used in our customized
system. The exhaustive testing of the system for detecting possible component interac-
tions with all combinations of inputs is not possible and also not required. Therefore,
the goal of the integrator is to detect unknown interactions while keeping the scope of
analysis relevant to the context.

Figure 1. Calling System

In this example, our context of using components is for their prime tasks, which is
described as follows with their context-relevant input (CRI) and output (CRO) details:

• Call Screening C S: keeps a blacklist of phone numbers from which calls are not
accepted. The list is populated and managed by the user.
CRI: An input ′′no〈#〉

′′ is given to check whether a number is blacklisted, where
is the caller’s number.
CRO: The component responds with ′′O K ′′ if the specified number is not found
in the list, or ′′K O ′′ otherwise.

• Address Book AB: keeps contact records. The records are managed by the user.
CRI: An input ′′srch〈quer y〉

′′ is given to search a contact. A query can be either
a name or a number.
CRO: The component responds with the search result
′′rslt〈name, #, prof ile〈public, private〉〉′′ if the record is found, or null other-
wise.

• Media Manager M M: manages media files for two main purposes, i) to ring the
phone by playing a default tone when a call arrives ii) to play a specified media
file.
CRI: An input ′′ring〈#〉

′′ is given to invoke the default ring tone, where # is a
number that is not concerned with the basic functionality. An input ′′ play〈 f ile〉′′

is given to play a specified media file.
CRO: The component responds by giving command ′′start〈de f ault.wav〉

′′

to the internal phone media player for playing the default tone on the input
′′ring〈#〉

′′, or by giving ′′start〈 f ile〉′′ on the input ′′ play〈 f ile〉′′.
• Call Controller CC: controls the call related operations by using other compo-

nents.
CRI: An input ′′call〈#〉

′′ is given to invoke the call delivery function of the com-
ponent.
CRO: The component responds by sending ′′ring〈#〉

′′ to invoke M M as a call
incoming notification on receiving clearance of the caller’s number from C S, or
does nothing ′′silent ′′ otherwise.

3. Modeling the Components

3.1. Finite State Machine

The use of a finite state machine to model functional aspects of a component is well-
known from the telecom and distributed systems communities. Therefore, we are dealing
with systems that can be modeled by some finite state machine. Additionally, we are see-
ing a component as reactive, i.e., it receives an input from the environment and reacts by
providing an output and possibly changes its state. This vision leads us to take a machine
into account in which transitions can be labelled with inputs and outputs, also known as
a Mealy machine. Another assumption is that the states of the machine are stable, i.e.,
a machine cannot continue without a stimulus from its environment. Following is the
formal definition of our model we use in the approach.

Definition: A Finite State Machine M is a six-tuple M = {Q, I, O, σ, λ, q0}, where Q,
I and O are finite sets of states, input symbols and output symbols, respectively.
σ Q × I → Q is the state transition function, λ Q × I → O is the output
function, and q0 is the initial state.

When M is in the current (source) state q ∈ Q and receives i ∈ I , it moves to
the target state specified by σ(q, i) and produces an output given by λ(q, i). In order to
completely define our model, we require dom(σ) = dom(λ) = Q × I . For this purpose,
we add a loop-back transition on the state where the given input is invalid and add a
symbol � as the output.

3.2. Model Inference Method

We are interested in methods that can infer a component with no detailed knowledge
beforehand. This is due to the applicability of our approach to the components for which
no formal specifications are available. An algorithm that can conjecture a model, defined
in section 3.1, from a black box component is given in [21], adapted from [2]. In the
following, we provide a succinct description of the algorithm.

The basic requirement for the inference algorithm is to construct an input set through
which the algorithm performs testing on the component. The assumption to perform tests
on the component is the access to its interfaces, i.e., an input interface from where an
input can be sent and an output interface from where an output can be observed. Also, it
is assumed that the component can be reset before each test.

The algorithm starts by testing the component with different combinations of input
symbols and conjectures a model when a certain condition is satisfied. This condition
is helpful in order to elucidate conflicts in the conjecture. The test cases are constructed
automatically from an observation table T and the results of the test cases, i.e., the output
strings of the component for the given input strings, are also recorded back into T as a
partial mapping from I ∗ to O∗. The domain dom(T) of T is the set of input strings from
which the test cases are constructed.

To define the structure of the table, let S and E be two finite sets of finite strings
from I ∗, then S ∪ S · I makes the rows of the table and columns are made by E . Initially,
S contains an empty string ε and E = I , i.e., every input symbol makes one column in
the table.

The test cases are constructed by concatenating s ∈ S ∪ S · I and e ∈ E , as s · e. The
resultant output string of the test case is recorded as an entry in the table, as follows: If α
is the output string of the test case s · e, then T (s, e) = α′, where α′ is the suffix of α and
|α′

| = |e|. Let s, t ∈ S ∪ S · I , then we define an equivalence relation ≡ over S ∪ S · I
as follows: s ≡ t iff T (s, e) = T (t, e), ∀e ∈ E , i.e., when the rows s and t are same. We
denote by s the equivalence class of rows that also includes s. The algorithm stops testing
when the table is found closed2. A table is closed iff for each t ∈ S · I , there exists
s ∈ S, such that s ≡ t . In other words, the stoping condition for testing occurs when no
new output is observed in the component for longer sequence of test cases. Whenever
table is not closed, t is moved to S and T (t · i, e) is extended for all i ∈ I, e ∈ E .

Once the table is closed, a conjecture M = {Q, I, O, σ, λ, q0} is constructed as
follows:

• Q = {s|s ∈ S}

• q0 = ε
• σ(s, i) = s · i, ∀s ∈ S, i ∈ I
• λ(s, i) = T (s, i), ∀i ∈ I

3.3. Inference of the Calling System

We have described a method in section 3.2 to infer an FSM model given in section 3.1
from a component. In this section, we illustrate how to infer the individual preliminary
models of components in figure 1 using that method.

The starting point of the algorithm is to construct a set of abstract inputs for each
component. This is an important step in our approach which aims to approximate or
model only interesting aspects of a component. Therefore, we construct the set of inputs
that are relevant to our context. It is the same for the outputs, i.e., we record only the
relevant outputs in the observation table and brush aside all others. For example, we are
interested to model a behavior of the component CC when a call arrives in the presence
of C S. The basic relevant input for CC is call〈#〉. Also, CC is supposed to communicate
with C S to block/unblock a particular call. Therefore, we also include O K and K O (the
responses of C S) in its input set, which finally becomes ICC = {call〈#〉, O K , K O}. The
relevant outputs of CC are no〈#〉 when communicating to C S, silent when the arriving
call is blacklisted and ring〈#〉 to invoke M M when the call is acceptable.

The run of the inference method on CC takes two iterations shown in Table 1 and
Table 2 respectively, while Figure 2(a) shows the conjecture from the closed table, i.e.,
Table 2. Since we are interested in modeling only a single behavior of the component, we
eliminate loops and unfold conjecture as shown in Figure 2(b). Also, we do not show in
the conjecture the transitions labelled with invalid inputs for the sake of simplicity. This
can be seen in the observation table where the entries � against these inputs show their
invalidity on the respective states. We keep the representation of test cases in the table
and i/o behaviors on the conjecture symbolic. However, the run of test cases on actual
components requires concretization of symbolic inputs, e.g., # must be replaced by some
actual number in order to execute it on CC . If there is a behavioral difference between
any two numbers, then the numbers can be represented as two separate symbolic inputs,

2For the reader who is familiar with the original algorithm [2], the other concept called consistency has
been excluded in the optimized version of the algorithm (see [5]).

(a) Conjecture of CC from Table 2 (b) Conjecture of CC from Table 2
(unfolded)

Figure 2. Conjecture of CC from Table 2

i.e., #1 and #2, respectively, to maintain the deterministic property of the state machine.
The criteria for selecting concrete values can be guided through certain domain specific
policy, and hence not a part of the current approach.

Table 1. Not Closed Table for CC (First Iteration)

call〈#〉 O K K O

ε no〈#〉 � �

call〈#〉 � ring〈#〉 silent

O K � � �

K O � � �

Table 2. Closed Table for CC (Second Iteration)

call〈#〉 O K K O

ε no〈#〉 � �

call〈#〉 � ring〈#〉 silent

O K � � �

K O � � �

call〈#〉, call〈#〉 � � �

call〈#〉, O K no〈#〉 � �

call〈#〉, K O no〈#〉 � �

We construct the input set for C S as ICC = {no〈#〉 − cl, no〈#〉 − bl}, i.e., the input
when # is acceptable and the input when # is blacklisted, respectively. The relevant out-
puts are O K in the case when # is acceptable and K O , if blacklisted. The closed obser-
vation table for C S is given in Table 3 and the (folded/unfolded) conjecture is shown in
Figure 3.

Table 3. Closed Table for C S

no〈#〉 − bl no〈#〉 − cl

ε K O O K

no〈#〉 − bl K O O K

no〈#〉 − cl K O O K

Similarly, the input set for AB is simply IAB = {srch〈query〉} and the relevant
output is a query result. For M M , the input set is IM M = {ring〈#〉, play〈 f ile〉} and
the relevant outputs are ringing a default tone and playing a media file. The preliminary
(unfolded) models of AB and M M are given in Figures 4 and 5 respectively.

Figure 3. Conjecture of C S from Table 3 (left) and the unfolded version (right)

4. Detecting Interactions

We have explained in the previous section how the preliminary context-relevant models
can be inferred from the individual components. In this section, we focus on the method
of interaction detection between components after their integration into a system.

Our understanding of the concept of detecting interactions is due to the known prob-
lem when composing a system from individual components. The assumption that a com-
ponent behaves in an integrated system the same as in isolation is not valid. This is be-
cause of the fact that components exchange data during the process which may lead to
some unexpected behaviors. This exchange of data is actually an underlying interaction
between components which we want to detect after the system is integrated. Therefore,
we define the approach for detecting interaction as follows.

The integrated system must exhibit the same behavior as prescribed by the inferred models
of each component in the system, for all those test cases that are performed during their
inferences. Failure of this indicates the underlying interaction(s) between components.

The collection of test cases performed during the inference of each component will
be executed on the integrated system. The observed behaviors of the system as a result of
these test cases will be compared to the expected ones, i.e., shown in the inferred models
of the components. If there is any divergence found, we narrow down our focus to the
i/o interfaces of the components which are involved in the test. If there is a component A
whose output stimulates any other component B, the output will be treated as an interac-
tion between A and B. This stimulus may not be seen in the preliminary inferred models
of A and B as an output and an input respectively. Therefore, we update these models
according to the new context by re-inferring them using the inference method. This can
be done by recording the new observations in the observation tables of A and B, and then
generating test cases until the tables are closed before making the new conjectures.

Figure 4. Conjecture of AB (unfolded) Figure 5. Conjecture of M M (unfolded)

Table 4. Closed Table for C S after fixing new observations

no〈#〉 − bl no〈#〉 − cl rslt〈. . .〉 null

ε srch〈query〉 O K � �

no〈#〉 − bl � � O K K O

no〈#〉 − cl srch〈query〉 O K � �

rslt〈. . .〉 � � � �

null � � � �

no〈#〉 − bl, no〈#〉 − bl � � � �

no〈#〉 − bl, no〈#〉 − cl � � � �

no〈#〉 − bl, rslt〈. . .〉 srch〈query〉 O K � �

no〈#〉 − bl, null srch〈query〉 O K � �

We apply the procedure explained above to the system in Figure 1. The models of
each component are already inferred, as described in section 3. Now, we apply test cases
of each component on the system. Let the test case call〈#〉 has been executed on CC ,
where # is blacklisted. The expected behavior of CC is to remain silent (as seen in its
inferred model in Figure 2(b)) after receiving K O from C S. When the same test case is
executed on the integrated system, it starts playing a media file. This divergence leads to
investigate the involving components, i.e., CC and C S, according to the models.

It is found that C S emits O K which CC interprets as the number is not blacklisted
and then sends ring〈#〉 to M M for call incoming notification. This means that CC is
behaving as expected by its inferred model, whereas C S is diverging. It is observed that
when receiving no〈#〉

3 from CC , C S emits an output srch〈query〉, where query is the
number # and stimulates another component AB. The expected behavior of AB is to give
out the result of the search query if the contact is found, or null otherwise. It turns out
that # is found in the address book and hence AB responds with rslt〈name, #, prof ile〉,
which changes the behavior of C S and generates O K instead of K O . This also discovers
the underlying implementation of C S that if the number is found in AB then it should
not be blocked. The new observation is recorded in the observation table of C S, shown
in Table 3 and the new (unfolded) conjecture is shown in Figure 6.

The expected behavior of M M on receiving input ring〈#〉 is to invoke a default tone
(as seen in the model in Figure 5), whereas the system behavior is noticed as playing a
media file. This divergence finds an interaction between M M and AB as follows. M M
searches the number (given in the ring command) in the address book. If the contact is
found, it picks the contact profile as public or private, and plays the respective media
file configured with the specific profile. Since the contact # is found in this case, M M
plays the media file configured to its profile by sending command start〈prof ile.wav〉

to media player. The new (unfolded) model of M M is shown in Figure 7.

5. Conclusion

We have presented a new approach for feature interaction detection in an integrated sys-
tem of components using a machine inference method. We built our approach so that it

3The interpretation of this input in the inferred model of C S in Figure 3 is: no〈#〉 − bl, since # is blacklisted
in this example

Figure 6. New Conjecture of C S (unfolded) Figure 7. New Conjecture of M M (unfolded)

could be applied in both scenarios, i.e., when the components are provided with complex
and huge formal specifications of the features but only few of them are required in the
system, and when the components are just seen as black boxes (no specifications are pro-
vided). We showed how the use of machine inference methods can cater both scenarios
by inferring only the context-relevant partial models of the components, and later how
the interactions can be detected automatically by comparing it with the inferred models
of the individual components. Our example lies in the framework of mobile phone sys-
tem customization, in which telecom industries are facing problems for detecting feature
interactions after the system is integrated.

There are several points under discussion in connection with the improvement of
the overall approach. We are studying techniques to incorporate domain knowledge in
the inference method that can guide more effective test cases. Also, the component in-
tegration requires some decision points about the way components are integrated. These
decision points can help in improving test stopping criteria for testing. Regarding scala-
bility, we are experimenting our technique on a kind of systems that typically consist of
large number of components. Various questions seem to us interesting. For example, how
efficient is our technique to compare a behavior of such system with the inferred partial
models of the large-scale components? Secondly, how can the models can be enriched
with parametric details of the components, so that they should not blow up in size? It
seems also interesting to use constraints defined on these parameters. Thirdly, how the
test cases of individual components can be combined as a basis for testing an integrated
system?

We believe that the proposed method is complementary to those currently being
studied. This new approach changes the way in which the problem is tackled, since the
specification of the component in use is limited to what is necessary.

References

[1] Marc Aiguier, Karim Berkani, and Pascale Le Gall. Feature specification and static analysis for interac-
tion resolution. In Proceedings of the Formal Methods Symposium, LNCS, pages 364–379, 2006.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation,
2:87–106, 1987.

[3] Dana Angluin. Queries revisited. Theor. Comput. Sci., 313(2):175–194, 2004.

[4] M. Arango, L. Bahler, P. Bates, M. Cochinwala, D. Cohrs, R. Fish, G. Gopal, N. Griffeth, G. E. Herman,
T. Hickey, K. C. Lee, W. E. Leland, C. Lowery, V. Mak, J. Patterson, L. Ruston, M. Segal, R. C. Sekar,
M. P. Vecchi, A. Weinrib, and S.-Y. Wuu. The touring machine system. Commun. ACM, 36(1):69–77,
1993.

[5] Jose L. Balcazar, Josep Diaz, and Ricard Gavalda. Algorithms for learning finite automata from queries:
A unified view. In Advances in Algorithms, Languages, and Complexity, pages 53–72, 1997.

[6] R. Buhr, M. Amyot, D. Elammari, T. Quesnel, and S. Gray. Feature-interaction visualization and reso-
lution in an agent environment.

[7] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature interaction: a
critical review and considered forecast. Comput. Networks, 41(1):115–141, 2003.

[8] E. Cameron. A feature interaction benchmark for in and beyond, 1994.
[9] Jane Cameron, Kong Cheng, Sean Gallagher, Fuchun Joseph Lin, Peter Russo, and Daniel Sobirk. Next

generation service creation: Process, methodology, and tool integration. In Kristofer Kimbler and Wiet
Bouma, editors, Proc. 5th. Feature Interactions in Telecommunications and Software Systems, pages
299–304. IOS Press, Amsterdam, Netherlands, September 1998.

[10] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249, 1998.

[11] Lydie du Bousquet and Olivier Gaudoin. Telephony feature validation against eventuality properties and
interaction detection based on a statistical analysis of the time to service. In FIW, pages 78–95, 2005.

[12] Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict detection. In Feature
Interactions Workshop. IOS Press, 2000.

[13] J. Paul Gibson. Towards a feature interaction algebra. In Kristofer Kimbler and Wiet Bouma, editors,
Proc. 5th. Feature Interactions in Telecommunications and Software Systems, pages 217–231. IOS Press,
Amsterdam, Netherlands, September 1998.

[14] Seth Homayoon and Harmi Singh. Methods of addressing the interactions of intelligent network services
with embedded switch services. IEEE Communications Magazine, pages 42–47, December 1988.

[15] Java 2 Platform, Micro Edition - J2ME. http://java.sun.com/javame/index.jsp.
[16] Java Specification Requests. http://jcp.org/en/jsr/all.
[17] Hélène Jouve, Pascale Le Gall, and Sophie Coudert. An automatic off-line feature interaction detection

method by static analysis of specifications. In Proceedings of the 8th International Conference on
Feature Interactions in Telecommunications and Software Systems (FIW’05), pages 131–146. IOS Press,
2005.

[18] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational learning theory. MIT
Press, Cambridge, MA, USA, 1994.

[19] Dirk O. Keck and Paul J. Kuehn. The feature and service interaction problem in telecommunications
systems: A survey. IEEE Trans. Softw. Eng., 24(10):779–796, 1998.

[20] Kristofer Kimbler, Carla Capellmann, and Hugo Velthuijsen. Comprehensive approach to service inter-
action handling. Comput. Netw. ISDN Syst., 30(15):1363–1387, 1998.

[21] Keqin Li, Roland Groz, and Muzammil Shahbaz. Integration testing of components guided by incre-
mental state machine learning. In TAIC PART, pages 59–70. IEEE Computer Society, 2006.

[22] David Marples and Evan H. Magill. The use of rollback to prevent incorrect operation of features in
Intelligent Network based systems. In Kristofer Kimbler and Wiet Bouma, editors, Proc. 5th. Fea-
ture Interactions in Telecommunications and Software Systems, pages 115–134. IOS Press, Amsterdam,
Netherlands, September 1998.

[23] Malte Plath and Mark D. Ryan. The feature construct for SMV: Semantics. In Muffy H. Calder and
Evan H. Magill, editors, Proc. 6th. Feature Interactions in Telecommunications and Software Systems,
pages 129–144, Amsterdam, Netherlands, May 2000. IOS Press.

[24] S. Tsang and E. Magill. Behaviour based run-time feature interaction detection and resolution ap-
proaches for intelligent networks, 1997.

[25] Greg Utas. A pattern language of feature interaction. In Kristofer Kimbler and Wiet Bouma, editors,
Proc. 5th. Feature Interactions in Telecommunications and Software Systems, pages 98–114. IOS Press,
Amsterdam, Netherlands, September 1998.

[26] Pamela Zave and Michael Jackson. A component-based approach to telecommunication software. IEEE
Softw., 15(5):70–78, 1998.

