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Abstract. We propose to detect isomorphisms of algebraic modular
specifications, by representing specifications as diagrams over a category
Co of base specifications and specification morphisms. We start with a
formulation of modular specifications as terms, which are interpreted as
diagrams. This representation has the advantage of being more abstract,
i.e. less dependent of one specific construction than terms. For that, we
define a category diagr (Co) of diagrams, which is a completion of Co with
finite colimits. The category diagr (Co) is finitely cocomplete, even if Cy is
not finitely cocomplete. We define a functor D[] : Term (Co) — diagr (Co)
which maps specifications to diagrams, and specification morphisms to
diagram morphisms. This interpretation is sound in that the colimit of
a diagram representing a specification is isomorphic to this specifica-
tion. The problem of isomorphisms of modular specifications is solved
by detecting isomorphisms of diagrams.

1 Introduction

The specification of large systems requires the use of modular specifications.
Small specifications are combined in a structured way to construct larger spec-
ifications. In this paper, we only consider specifications which are built with
colimits over a category Cy of fixed base specifications. Formally, this means
that we work in the category freely generated by finite colimits over Cy. If we
wish to add a new specification a posteriori in the category (for instance with
an enrichment or hiding), we need to work in a new category which contains the
already constructed specifications as well as the new defined specification.

The aim of this paper is to solve the problem of isomorphism of modular spec-
ifications in this setting of constructions with finite colimits. There are several
kinds of isomorphisms we could be interested in:

— “Isomorphism of name”. Two specifications are isomorphic if they have the
same name. This simple definition provides a very weak form of isomorphism.

— “Isomorphism of structure”. Two specifications are isomorphic if they have
been constructed the same way, independently of aliases which may have
been defined in the construction process. This isomorphism is slightly less
weak than the previous one, but still not very interesting.



— “Semantic isomorphism”. Two specifications are isomorphic if their associ-
ated classes of models (defined by the semantics) are the same. This isomor-
phism is very hard to treat, mainly because classes of algebras cannot be
manipulated easily.

— “Isomorphism in SPEC”. Two specifications are isomorphic if they are re-
lated by a bijective specification morphism. The difficulty here is first to
exhibit this morphism, and secondly to check that it is indeed a specification
morphism, i.e. that the equations of each specification hold in the other one.

— The isomorphisms we consider here are “construction isomorphisms”. Two
specifications are isomorphic if we can prove it using the general properties of
colimits. We think this kind of isomorphism is interesting because it not too
general in that it reflects the constructions of the modular specification. But
it is more general than the isomorphism of structure because the specific
steps chosen for the construction are abstracted. These isomorphisms do
not depend on the actual definition of the base specifications, they only
depend on how base specifications, related by base specification morphisms,
are combined. Of course if two base specifications are isomorphic, and if this
isomorphism is not part of Cp, then we will fail to find it.

Most existing specification languages give more importance to the construction
of a modular specification than to the result of the construction; for example
CLEAR [3, 4], ACTONE [6], ASL [14], OBJ2 [7], PLUSS [8, 2], LPG [1]. This
implies that the only tractable isomorphisms are isomorphisms of structure. We
propose to adopt a less syntactic view of modular specification, by representing
them as diagrams over the category of base specifications Cy. This representation
is more abstract than terms because irrelevant steps of the construction disap-
pear. We need of course to work in a category of diagrams, and so we associate
specification morphisms between modular specifications to diagram morphisms.
This approach is similar to that adopted to describe the semantics of CLEAR
[4]. Our diagrams correspond to based theories. We need a more general defini-
tion for arrows than that of based morphisms, because based morphisms only
correspond to inclusions of modular specifications, whereas we want a diagram
morphism to correspond to any specification morphism. So we define a category
of diagrams diagr (Cp), and “construction isomorphisms” of modular specifica-
tions then correspond to isomorphisms in the category diagr (Co).

This paper is organized as follows. In section 2, we present the category
Term (Cp), which provides a syntax for modular specifications and specification
morphisms. In section 3, we present examples of modular specifications to il-
lustrate the syntax and motivate the definition of a category DIAGR (Cp). In
section 4, we define the categories DIAGR (Cp) and diagr (Cp) and present some
theoretical results. In section 5, we explain how terms denoting specifications or
specification morphisms can be associated to diagrams and diagram morphisms.
This mapping is described by a functor D[] : Term (Cy) — diagr (Cp). In sec-
tion 6, we present an algorithm to detect when two diagrams are isomorphic in
the category diagr (Cp), when the base category Cp is finite and has no cycle.



2 Syntax for Modular Specifications

In this section, we present a syntax for modular algebraic specifications con-
structed with colimits. This syntax is formulated with the concept of dependent
types as suggested by Cartmell [5]. Cartmell’s generalized algebraic theories are
a generalization of many-sorted algebras, which allow to define dependent types,
i.e. types parameterized by terms. This approach has already been presented
in [10, 11, 12]. We suppose we have a category Cy of base specifications and
specification morphisms.

We have two types: the type of specifications Spec, and the type of speci-
fication morphisms Hom, which depends on two specifications. If A and B are
specifications, Hom (A4, B) is the type of specification morphisms from A to B.

A, B : Spec
Spec is a type Hom (A, B) is a type

(1,2)

We now define terms of both types Spec and Hom, as well as axioms satisfied by
these terms.

Sp specification of Cy p: Sp1 — Sps specification morphism of Cy

4
Sp : Spec p : Hom (Spy, Sp2) (3,4)
A,B,C :Spec ; f:Hom(A4,B) ; g:Hom(B,C) (5)

go f:Hom(A,C)
A,B,C,D :Spec ; f:Hom(A,B) ; g:Hom(B,C) ; h:Hom(C,D) (6)

(hog)of =ho(gof):Hom(A,D)
A : Spec

id 4 : Hom (4, A) @
A,B :Spec ; f:Hom(A,B) A,B :Spec ; f:Hom(A,B) (8,9)

foida = f : Hom (A, B) idpof = f:Hom(A4,B)

An algebra which satisfies the generalized algebraic theory specified by rules (1)
(2) and (5)—(9) is a category. We now give a syntax for colimit constructions.
Here, for instance we give a syntax for an initial object and pushouts.

A : Spec A :Spec ; f,g:Hom (D, A)
10,11,12
() : Spec ja : Hom (0, A) f=g:Hom ((), A) ( )
A,B,C :Spec ; f:Hom(A4,B) ; g:Hom(A4,C) (13)
push (A, B,C, f,g) : Spec
A,B,C :Spec ; f:Hom(A4,B) ; g:Hom(A,C) (14)

&1(A7B7 C7 f7 g) : Hom (B7 pUSh (A7B7 C7 f7 g))



A,B,C :Spec ; f:Hom(A,B) ; g:Hom(A4,C)

1
&(4,B.C. f.g) : Hom (C, push (4, B.C. 1.4)) 19)
A,B,C :Spec ; f:Hom(A,B) ; g:Hom(A,C) (16)
&1(A,B,C,f,g)of=&Z(A,B,C’,f,g)og:Hom(A,push (A,B,C,f,g))

A,B,C,D :Spec ; f:Hom(A,B) ; g:Hom(A4,C)
f':Hom(B,D) ; ¢':Hom(C,D) ; f'of =g'og:Hom(A,D) (17)

up(A7B7C7D7f7g7fl7g,):Hom(pUSh(A7B7C7f7g)7D)

A,B,C,D :Spec ; f:Hom(A,B) ; g:Hom(A4,C)
f':Hom(B,D) ; ¢':Hom(C,D) ; f'of =g¢g'og:Hom(A,D) (18)
up(4,B,C, D, f,g,f",9") 081 (A, B,C, f,g) = f' : Hom (B, D)

A,B,C,D :Spec ; f:Hom(A,B) ; g:Hom(A4,C)
f':Hom(B,D) ; ¢':Hom(C,D) ; f'of =g'og:Hom(A,D) (19)
up(4,B,C,D, f,g,f',9') o&2(A, B,C, f,g) = ¢' : Hom (C, D)

A,B,C,D :Spec ; f:Hom(A,B) ; g:Hom(A4,C)
u,v : Hom (push (A, B, C, f,g), D)

u = v : Hom (push (4, B,C, f,g), D)
An algebra which satisfies this specification is a finitely cocomplete category.

We must note that this specification is actually not a generalized algebraic
theory, because the rules (17)—(20) contain equalities in their premises. To write
a proper generalized algebraic theory, one has to axiomatize equality in the type
system with a predicate eq [5]. These equalities raise another problem: it may
not be decidable whether or not a term is well-formed. A rigorous construction
of the category freely generated by a chosen initial object and chosen pushouts
as a category of terms is under development.

Let Term (Cp) be the algebra freely generated on the specified colimit con-
structions. Let SPEC be the category of all specifications, with a chosen initial
object, and chosen pushouts. SPEC is therefore an algebra which satisfies the
equations. Cy is a subcategory of SPEC, and of Term (Cp). We note these inclu-
sions

i:Co — SPEC, e:Co— Term (Co)

As Term (Cp) is a free algebra, there exists a unique homomorphism (which is
also a functor)
S[] : Term (Cy) — SPEC

such that S[] o e = i. This functor associates to each term of type Spec the
specification that it represents, and to each term of type Hom the specification
morphism it represents. S[]| is a “standard semantics” for terms.



3 Example

The aim of this section is first to give some examples of modular specifications
written with the syntax presented in the previous section, and secondly to mo-
tivate the definition of the category of diagrams presented in the next section.

We present different ways of specifying the theory of rings in the specification
language LPG.

property BIN-0P
property A-SORT sorts s

sorts s operatorsop : s,s -> s
satisfies A-SORT[s]

S =

S specifies a single sort, B specifies a binary operator and a specification mor-
phism s : S — B, defined by the statement satisfies A-SORT[s] in B.

property MONOID property ABEL-GROUP
sorts s sorts s
operators * : s,s -> 8 operators+ : s,s -> s
M= - 1:->s G = 0 t > s

equations 1 * x == x 1:8 ->s8

x *x 1 ==x equationsx + y ==y + X
(x xy) *z==x % (y x z) i(x) + x ==
satisfies BIN-0P[s, *] satisfies MONOID[s,+,0]

M specifies a monoid, with a specification morphism b : B — M. G specifies
an Abelian group: we add to the specification of monoids an inverse function
i and the commutativity of the binary operator. We also define a specification
morphism m : M — G.

property DISTRIBUTIVE

sorts s
D = | operators +,* : s,s -> s
equationsx * (y + z) == (x * y) + (x * 2)

satisfies BIN-OP[s,+], BIN-OP[s,*]

D specifies two operators related by the distributive law, and two specification
morphisms my,m, : B = D. m; maps op to + and m, maps op to *.

§—Sep—bopym.g
To summarize what we have
defined so far, we work in the M |17
category Co (Fig. 1). D Fig. 1. category Co

We can now define several modular specifications of rings with pushouts. In
LPG, such specifications can be defined with the combines construction.



Ry = push (B, M,push (B,D,G,my,mob),b,& (B,D,G, my,mob)om,)
R} = push (B, push (B, M, D,b,m ),G,&Z(B,M,D,b,m*)om+,mob)

R; and R] are two specifications of rings. Here, the difference is somehow artifi-
cially introduced by the syntactic construction push. Indeed both constructions
are a coding with pushouts of the colimit of the diagram 8, (Fig. 2).

e N e N e N
o [ o \[ o M
b b b
N ];\ Ve /
M M M
oD Se oD
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Be mobos \_® mobos
\mOb B \mOb mob
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(51 62 63 (83

Fig. 2. diagrams 61, 02, d3 and «

In the following, if p = push (x,y, z, u,v), we will write &;(p) for &;(z,y, z,u, v).
More complicated cases may arise. We can for instance define a “pseudo ring”
i.e. a ring without distributivity either with the term Ps, or Pj as follows.

P, =push (S, B, B, s, s)

P2 = push (B,M,Pl,b,&l(Pl))

P3 = push (B,Pg,G,&g(Pz)0&2(P1),mob)
Pj = push (S, M,G,bos,mobos)

(P4 corresponds to the colimit of the diagram «.)

Now we can “add the distributivity” on two different ways and get two new
specifications of rings R, and Rs.

RQZPUSh(pUSh (®7B7B7J-B7J-B) D7 3,up($ BaBaDajBajBam*7m+);
up (0, B, B, Ps,jp,ip, &1 (Ps) 0&:(P2) 0 & (P1),
&1(P3)0&2(P2)0&2(P1)))
R3 = pUSh (pUSh ($>B>B>JB>JB) é:up(w BaBavaBaijm*vm-i-):
up(@7B7B7P?:>jB7jB7 (P?:)O &2(P.‘)()omob))

We will see in section 5 that the specifications R, and R3 correspond to the
diagrams 5 and d3. It is possible to check that the colimits of 1, d2 and d3
are all isomorphic. This comes from the equality my o s = m, os in Cy. In
other words, the fact that both binary operations are defined on the same set is
contained in the distributivity property D.



4 Categories of Diagrams

In the following, we assume the reader is familiar with basic notions of category
theory. Vertices(a?) and Edges(a?) respectively denote the set of vertices and
the set of edges of a graph a?.

4.1 The Category DIAGR (Cp)

Definition 1 (Diagram). A diagram over a category Cy is a couple

(]

a=(a?, a:a? = (),

where o® is a graph and « : a® — Cp is a graph morphism. A diagram is finite
when its underlying graph is finite.

To get a category of diagrams, we need to define diagram morphisms. We could
consider couples
c:a—=PB=(0?:a?=p%;0:a3 Boo?)

where o? is a graph morphism, and ¢ a natural transformation. This definition
appears in [13] (it is the “flatten” category Funct (Cy), page 244, example 4),
and in a dual form in [9] (it is the “super-comma category”, page 111, exercise
5.b.) This definition is not general enough, because some specification morphisms
have no corresponding diagram morphisms. For instance, there is a morphism

up (S, M,G,Ry,bos,mobos, & (Ry),&2(R1)0&:(B,D,G, my,mob))

from Pj to Ry, which corresponds to an arrow from Colim a to Colim d;, because
m4 0§ = my o s. But there is no diagram morphism from a to §; with the
definition above (Fig. 3). We need a more general definition of arrows, and thus
must consider generalized graph morphisms, which associate a zigzag to each edge
of a graph, and generalized natural transformations. With this definition, we can
define an arrow o : @ — &,, which consists of a generalized graph morphism o®
and a generalized natural transformation o, defined for instance as follows:
o?(1) = 1, 02(2) = 2, 0?(3) = 3'; 0%(ag) = zigzag from 1’ to 2/, 0®(a1) =
zigzag from 1' to 3'; 01 = my 08, 09 = idyy, 03 = idg.

Definition 2 (Zigzag on a graph). Let a® be a graph. A zigzag on o? is a
finite linear sequence of edges of a?:

Z=ng 2 n, (a—lng---ak—_;nk, noted Z : ng ~— nyg,
each edge is oriented either from left to right or from right to left.

We get a graph Zigzag(a?®), with the same vertices as a®, and with edges the
zigzags of a?.
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Definition 3 (Generalized graph morphism). Let us consider two graphs
a® and B®. A generalized graph morphism o® : a® ~— B% from a? to B2 is
a graph morphism from o to Zigzag(3?). We can compose generalized graph

morphisms by joining zigzags.

Definition 4 (Connection relation).

Let § = (6%, §: 0% — Cp) be a diagram. Two arrows ( )
u:A— Bandv: A — C of Cy are said to be connected ?Tlo

by the diagram ¢ if and only if there exist a zigzag on

6. 7 =ng 2% ny - np_1 == ny,, and a set of arrows

in Co, {c; : A — d(ny); 1€{0,...,k}}, such that: A s
— u = ¢y (and thus d(ng) = B) N
— v = ¢ (and thus d(ng) = C) 8T, na
- Vie{0,...,k—1}: v=c \a}/

0(a;) o ¢; = ¢iy1, if a; is oriented from n; to mi41; (}"4
0(a;) o cit1 = ¢, if a; is oriented from n;y1 to n;.

We note u ~;5 v; or u ~5 v [Z], if we want to specify
the zigzag Z.

Definition 5 (Category of finite diagrams DIAGR ((y)).
Let Cop be a category.
— An object 6 of DIAGR (Cp) is a finite diagram.
— Let a = (a?, a:a® = Cy) and B = (8%, B: 8% — Cp) be two diagrams. A
diagram morphism from a to 3 is a couple

T:a—=8=>0%:a®~p% 10~ Bor?),

where
e 7% :a® ~ 3% is a generalized graph morphism.
o 7:a~% Bor? is a “generalized natural transformation” i.e. a set of
arrows 7, : a(n) = B(r%(n)), Vn € Vertices(a?)
such that Va:m — n € Edges(a?), 7,0a(a) ~5 7 [1%(a)]



Note that if 7% is a graph morphism, then 7 is a natural transformation.
— Let us consider three diagrams and two diagram morphisms

az(a457 a:OéQ_)CO); Iaz(ﬂ457 ﬁ:ﬁQ_)CO); 72(745) 7:7¢_>CO)

o:a—B=0%:a?~p% 0c:a~>Booc?)

T:B—=7=0%:82 >t 7: 8~ y01?)

The composition of o and 7 is the couple

Too:a—y=(1P00%:a®? ~>1? A:ia~ y07?00?),

where 7% 0 0® is a composition of generalized graph morphisms, and A is the
“generalized natural transformation” defined by A, = 7,2,y 0 .

One can easily check that DIAGR (Cp) is indeed a category.

Colimits

The category Cp can be embedded in DIAGR (Cp) with a functor I : Cyp —
DIAGR (Cp). Colimits can be defined as usual [9]. In our setting, a cone from a
diagram o is a couple (C, A : o — I(C)) where C is an object of Cyp and A is
an arrow of DIAGR (Cy).

The cone (C, A : a — I(C)) is a colimiting cone from « if and only if for any
cone (D, X : a — I(D)), there exists a unique arrow ¢ : C — D such that
I(¢)oX = X. C is called the colimit of o, and we note C = Colima. One
diagram may have several colimits, which are then isomorphic. Writing C' =
Colim @ means that we have chosen the object C for the colimit of .

A category is finitely cocomplete when every finite diagram has a colimit.

Let a and 3 be two diagrams with colimiting cones

(Colim ¢, Mo : @ — I(Colim ex)) and (Colim 3, ng : B — I(Colim 3)).

Let o0 : « — B be a diagram morphism. Then there exists a unique arrow
Colim o : Colim ¢ — Colim 3, such that I(Colimo)omne = ngoo.

Theorem 6. Let Cy be a finitely cocomplete category. Then

1. Colim : DIAGR (Cy) — Cy is a functor.

2. The mapping n, which associates to each diagram o the colimiting cone from
a to I(Colim ) is a natural transformation m : Idpraar(cy) — I © Colim.

3. The functor Colim : DIAGR (Cy) — Co is a left-adjoint for the functor I :
Co — DIAGR (Cy). The unit of the adjunction (Colim - I) is the natural
transformation n.

4.2 The Category diagr (Cop)

In the category DIAGR (Cp), different arrows may have equal colimits. For in-
stance, for defining the arrow o from « to d; (Fig. 3), we can associate the
vertex 1 either to the vertex 2', 4', 1', 5" or 3. (Of course association of edges
to zigzags must be done accordingly). Those different arrows have the same col-
imit. The same way, non isomorphic objects may have isomorphic colimits in
DIAGR (Cp). For instance, 81 % 43, but Colim d; 2 Colim d3 (Fig. 2). The aim
of this paragraph is to define a category where equalities of colimiting arrows
and isomorphisms of colimit objects will be reflected at the level of diagrams.



Definition 7. Let a and 3 be two diagrams. Let o, 7 : @« — 3 be two arrows
of DIAGR (Cp). We define the relation = on arrows of DIAGR (Cy) as follows:

o ~T & VneVertices(a®) : o, ~p 7,
Theorem 8. The relation = is a congruence
Definition 9. As = is a congruence, we can consider the quotient category
diagr (Co) = DIAGR (Cop)/ =
Let [-] : DIAGR (Cp) — diagr (Cp) be the associated projection functor.

Theorem 10. Let Cy be a finitely cocomplete category. The functor Colim is
compatible with =~. In other words, let o, B be two diagrams, and oy T : ¢ — 3
two arrows of DIAGR (Cy). We have: o = 7 = Colimo = ColimT.

The category diagr (Co) is finitely cocomplete. We have to show that every
diagram over diagr (Cy) — i.e. every object of DIAGR (diagr (Co)) — has a colimit
in diagr (Cp). We first define an operation of flattening

1 : DIAGR (DIAGR (Cy)) — DIAGR (Co)

Intuitively, flattening the diagram of diagrams A consists in considering the
union of all subdiagrams of A, and in transforming every arrow of DIAGR (Co)
into a set of arrows of Cy.

Definition 11 (Flattening . : DIAGR (DIAGR (C;)) — DIAGR (Cy)).
Let A = (A%, A : A? — DIAGR (Cp)) be an object of DIAGR (DIAGR (Cp)).
We define the diagram pu(A) = 6 = (6%, & : 62 — Cp) as follows:

— 8% is a graph, given by Vertices(d?) and Edges(§?).
Vertices(6%) = { (N,nn) ; N € Vertices(A?) ; ny € Vertices(A(N)?) }

Edges(0?) ={(N,an): (N,nn) — (N,n'y) ;
N € Vertices(A?) ; ny,n'y € Vertices(A(N)?) ;
an :nn — nly € Edges(A(N)?) }
U{(A:N = N' ny):(N,ny) = (N, A(A) % (ny)) ;
N, N' € Vertices(A?); A: N — N' € Edges(A?) ;
ny € Vertices(A(N)?) }

— 0:6% — (Cy is a functor, given by its action on vertices and edges of 6.
e Action on vertices: (N, ny) is an object of Co, isomorphic to A(N)(ny).
We call this isomorphism (Jn)ny : A(N)(ny) = §(N,ny).
e Action on edges: d(N,an) = (Jn)ny, © A(N)(a) o (JN);y
6(A,nn) = (IN') A(4)2 (ny) © A(A)ny © (IN)L

Theorem 12. The category diagr(Co) is finitely cocomplete.



Proof sketch. Let I' be an object of DIAGR (diagr (Cy)). We suppose we are
able to choose a representative for each equivalence class of arrows, i.e. we have
a graph morphism Rep : diagr (Cop) — DIAGR (Cy) which is the identity on
objects. We define a diagram A in DIAGR (DIAGR (Cp)) as

A=Repol = (I'", RepoI: I'* — DIAGR (Cy))

Let 6 = [pu(AQ)]. Let (n,)y = [Jn]- Then (6,n, : I' = I(d)) is a colimiting cone
from I'.

As usual, colimits are defined up to isomorphisms. To define §, we made two
choices: p is defined up to isomorphisms on objects of Cy, and Rep contains a
choice of arrow to represent an equivalence class.

Theorem 13. Let C be a finitely cocomplete category. For every functor F :
Co — C there ezists a functor H : diagr(Co) — C, unique up to isomorphism,
such that H o [-] oI = F and for every diagram I' of DIAGR (diagr(Cy)),
Colim(H oI') = H(ColimI').

5 Representing Modular Specifications as Diagrams

We associate modular specifications to diagrams and specification morphisms
to diagram morphisms in diagr (Cp). As diagr (Cp) is finitely cocomplete, with
chosen colimits, there exists a unique homomorphism (which is also a functor)

D[] : Term (Cy) — diagr (Co)

such that D[] o e = [—] o I. D[] associates to each categorical construction in
Term (Cp) the corresponding construction in diagr (Co):

D[Spl =1[I(Sp)], if Sp is a specification of Cy

Dlpl =1L(p)], if p is a specification morphism of Cy

Dlgo f] = D[g] e D[f] (composition of arrows in diagr (Cop))

Dlida] = idppag (identity arrow of diagr (Co))

D] =0 (O is the empty diagram, initial object of diagr (Co))
Dlial =1ipp (unique arrow from the empty diagram to D[A])
D[push (4, B,C, f,g)] = push (D[A], D[B], D[C], D[f]. P[g])

D[&1(4, B, C, f,9)] = &1 (D[A], D[B], D[C], D[], Plg])

D[&2(A, B, C, f,9)] = &»(D[A], D[B], D[C], D[], Plgl)

Dlup (4, B,C, D, f,9,f',9")] = up (D[A], D[B], PIC], P[D], D[], - .-, Plg'l)

From Theorem 13, there exists a functor eval : diagr (Cy) — SPEC such that
evalo[—]oI = q. This functor maps each diagram to the specification it represents.

Theorem 14. There is a natural isomorphism eval o D[] =2 S]]



This theorem states that the calculus of diagrams is sound. The specification
associated to a diagram coincides with the specification given by the standard
semantics. More precisely, the colimit of a diagram representing a specification is
isomorphic to this specification. The calculus of diagrams is also complete, in the
sense that two isomorphic specifications in Term (Cp) correspond to isomorphic
diagrams in diagr (Cp). This comes from the fact that D[] is well defined, because
diagr (Cy) is finitely cocomplete.

Let us compute the diagram associated to the specification Rz of section 3.
Pj = push (S, M,G,bos,mobos)

R3 = pUSh (pUSh ($7B7B7jBajB)7D7Pf)(7 up ($7B7B7D7J-B7J.B;m*7m+)a
up(maBaBaPéajBajB’&l(Pé)Ob7&2(PZ;)omOb))

D[P;] = push(D[S], PD[M], D[G], D[b] o D[s], P[m] o D[b] o D[s])
DIS]=[1(9)]=(S) DMI=(M) DIGI=(G)
D[b] o D[s] = D[m] o D[b] o D[s] =
) M | D] = 0O

bo/ p[B] =
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6 Isomorphisms of Diagrams

We have seen how to associate specifications to diagrams. Now the problem
is to detect isomorphisms in diagr (Cp). In this section, we briefly describe an
algorithm allowing to detect isomorphisms of diagrams in the restricted case
when the base category Cy is finite and has no cycle. By “having no cycle” we
mean here that any arrow from an object A to itself is the identity.

We make this restriction because we have not solved the problem in the
general case. This restriction is compatible with the LPG language, because the
definition of cycling morphisms is syntactically forbidden.

In order to simplify the presentation, we also suppose that there is no iso-
morphism between objects in the category Cy. So in Cy, A = B = A = B. The
algorithm is actually not much more complicated without this restriction.

e N e N
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7b 7o
bos /e bos,/ e
AN 4 B\™
S e oD Se s D
p [+ N8/
mobos \_® mobos \_®
\mOb \mOb
oG G
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d3 4

Fig. 4. the completion of diagram d3 is &%

The algorithm can be described in 3 steps:

1 Complete the diagram

For each pair of arrows f : A - B and g : C — B, if there exists an arrow
h: A — C such that go h = f in Cy, we add the arrow h to the diagram. If A is
the identity function id4, then we merge both vertices labeled by A.

For instance completing the diagram 43 gives the diagram &5 (Fig. 4). The dia-
grams 01, 02 and « are already complete.

2 Match the “terminating vertices”
A “terminating vertex” is a vertex where no edge starts from.

Lemma 15. If two diagrams o and B are complete and isomorphic, then for

every terminating verter m of o, there exists a terminating vertex n of 3 such
that a(m) = B(n).

Proof. use the fact that the diagrams are complete, and Cy has no cycle.

We can check that the diagrams 81, 2, and 85 have three terminating vertices,
labeled by M, D and G.



3 Match the “elementary zigzags”

An elementary zigzag of a diagram « is a zigzag n' don Ly of «, where f
and g may be compositions of arrows of Cy, and f # g.

Definition 16 (Ordering on elementary zigzags). Let a be a complete di-
agram. We define an ordering on elementary zigzags of « as follows.
Let Z = n{, «— n — n), be an elementary zigzag of a. Let Z' be a zigzag of
a, composed of the elementary zigzags Z1, ...Zy, with Z] =n}_; «— n; — nl.
— Z < Z}iff (u~q v [Z'] and Vi,n # n;).
- Z<Zift(Z=2Z"or Z < Z")

To prove that < is indeed an ordering, one has to use the fact that Cy has no
cycle, and that the vertices linked by an identity arrow have been merged in the
diagram .

For instance, in 8%, (and in &> as well)

M bos S mobos G
mob

<
< D& BRG

< is an ordering on a finite set, so there are maximal elements (maximal elemen-
tary zigzags). Intuitively, the maximal elementary zigzags are those which really
count. The others can be removed without changing the colimit of the diagram.

Lemma 17. If two diagrams o and 3 are complete and isomorphic, then there
ezists an isomorphism from o to 3 which associates every mazimal elementary
zigzag of a to a mazimal elementary zigzag of (3.

Finally, two diagrams are isomorphic if they have the same terminating ver-
tices, linked by the same maximal elementary zigzags. In particular, d;, d2 and
d3 are isomorphic.

7 Conclusion

We proposed to study “construction isomorphisms” of modular specifications. A
“construction isomorphism” is an isomorphism which comes from general prop-
erties of colimits. We think this isomorphism is interesting, because it relies on
the construction of a modular specification, without depending on the specific
steps chosen for the construction. We showed in this paper that these isomor-
phisms of modular specifications correspond to isomorphisms of diagrams in the
category diagr (Cp). The category diagr (Cp) is a completion with finite colim-
its of the category Cp of base specifications. In particular, diagr (Co) is finitely
cocomplete, even if Cy is not finitely cocomplete. We showed how specifications
can be associated to diagrams. We gave an algorithm to detect isomorphisms
in diagr (Co), which strongly relies on the assumption that Cy has no cycle. We
have not solved the problem in the general case, i.e. if there are cycles in Cy



(which may introduce cycles in the diagram while completing it). We think this
problem is much more difficult, because the number of arrows to consider may
be infinite. However, in the case of algebraic specification, arrows are specifica-
tion morphisms between finite signatures, so the number of arrows between two
specifications remains finite, which suggests that isomorphisms should still be

detectable.
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