
Detecting Isomorphisms of ModularSpeci�cations with DiagramsCatherine OriatLGI { IMAG, BP 53, 38041 Grenoble Cedex 9, Francee-mail: Catherine.Oriat@imag.fr
Proceedings of AMAST'95, Fourth International Conference on Algebraic Methodology and Soft-ware Technology, Montr�eal, July 1995. LNCS 936, pages 184{198, 1995.

Abstract. We propose to detect isomorphisms of algebraic modularspeci�cations, by representing speci�cations as diagrams over a categoryC0 of base speci�cations and speci�cation morphisms. We start with aformulation of modular speci�cations as terms, which are interpreted asdiagrams. This representation has the advantage of being more abstract,i.e. less dependent of one speci�c construction than terms. For that, wede�ne a category diagr (C0) of diagrams, which is a completion of C0 with�nite colimits. The category diagr (C0) is �nitely cocomplete, even if C0 isnot �nitely cocomplete. We de�ne a functor D[[]] : Term (C0)! diagr (C0)which maps speci�cations to diagrams, and speci�cation morphisms todiagram morphisms. This interpretation is sound in that the colimit ofa diagram representing a speci�cation is isomorphic to this speci�ca-tion. The problem of isomorphisms of modular speci�cations is solvedby detecting isomorphisms of diagrams.1 IntroductionThe speci�cation of large systems requires the use of modular speci�cations.Small speci�cations are combined in a structured way to construct larger spec-i�cations. In this paper, we only consider speci�cations which are built withcolimits over a category C0 of �xed base speci�cations. Formally, this meansthat we work in the category freely generated by �nite colimits over C0. If wewish to add a new speci�cation a posteriori in the category (for instance withan enrichment or hiding), we need to work in a new category which contains thealready constructed speci�cations as well as the new de�ned speci�cation.The aim of this paper is to solve the problem of isomorphism of modular spec-i�cations in this setting of constructions with �nite colimits. There are severalkinds of isomorphisms we could be interested in:{ \Isomorphism of name". Two speci�cations are isomorphic if they have thesame name. This simple de�nition provides a very weak form of isomorphism.{ \Isomorphism of structure". Two speci�cations are isomorphic if they havebeen constructed the same way, independently of aliases which may havebeen de�ned in the construction process. This isomorphism is slightly lessweak than the previous one, but still not very interesting.

{ \Semantic isomorphism". Two speci�cations are isomorphic if their associ-ated classes of models (de�ned by the semantics) are the same. This isomor-phism is very hard to treat, mainly because classes of algebras cannot bemanipulated easily.{ \Isomorphism in SPEC". Two speci�cations are isomorphic if they are re-lated by a bijective speci�cation morphism. The di�culty here is �rst toexhibit this morphism, and secondly to check that it is indeed a speci�cationmorphism, i.e. that the equations of each speci�cation hold in the other one.{ The isomorphisms we consider here are \construction isomorphisms". Twospeci�cations are isomorphic if we can prove it using the general properties ofcolimits. We think this kind of isomorphism is interesting because it not toogeneral in that it re
ects the constructions of the modular speci�cation. Butit is more general than the isomorphism of structure because the speci�csteps chosen for the construction are abstracted. These isomorphisms donot depend on the actual de�nition of the base speci�cations, they onlydepend on how base speci�cations, related by base speci�cation morphisms,are combined. Of course if two base speci�cations are isomorphic, and if thisisomorphism is not part of C0, then we will fail to �nd it.Most existing speci�cation languages give more importance to the constructionof a modular speci�cation than to the result of the construction; for exampleCLEAR [3, 4], ACTONE [6], ASL [14], OBJ2 [7], PLUSS [8, 2], LPG [1]. Thisimplies that the only tractable isomorphisms are isomorphisms of structure. Wepropose to adopt a less syntactic view of modular speci�cation, by representingthem as diagrams over the category of base speci�cations C0. This representationis more abstract than terms because irrelevant steps of the construction disap-pear. We need of course to work in a category of diagrams, and so we associatespeci�cation morphisms between modular speci�cations to diagram morphisms.This approach is similar to that adopted to describe the semantics of CLEAR[4]. Our diagrams correspond to based theories. We need a more general de�ni-tion for arrows than that of based morphisms, because based morphisms onlycorrespond to inclusions of modular speci�cations, whereas we want a diagrammorphism to correspond to any speci�cation morphism. So we de�ne a categoryof diagrams diagr (C0), and \construction isomorphisms" of modular speci�ca-tions then correspond to isomorphisms in the category diagr (C0).This paper is organized as follows. In section 2, we present the categoryTerm (C0), which provides a syntax for modular speci�cations and speci�cationmorphisms. In section 3, we present examples of modular speci�cations to il-lustrate the syntax and motivate the de�nition of a category DIAGR (C0). Insection 4, we de�ne the categories DIAGR (C0) and diagr (C0) and present sometheoretical results. In section 5, we explain how terms denoting speci�cations orspeci�cation morphisms can be associated to diagrams and diagram morphisms.This mapping is described by a functor D[[]] : Term (C0) ! diagr (C0). In sec-tion 6, we present an algorithm to detect when two diagrams are isomorphic inthe category diagr (C0), when the base category C0 is �nite and has no cycle.

2 Syntax for Modular Speci�cationsIn this section, we present a syntax for modular algebraic speci�cations con-structed with colimits. This syntax is formulated with the concept of dependenttypes as suggested by Cartmell [5]. Cartmell's generalized algebraic theories area generalization of many-sorted algebras, which allow to de�ne dependent types,i.e. types parameterized by terms. This approach has already been presentedin [10, 11, 12]. We suppose we have a category C0 of base speci�cations andspeci�cation morphisms.We have two types: the type of speci�cations Spec, and the type of speci-�cation morphisms Hom, which depends on two speci�cations. If A and B arespeci�cations, Hom (A;B) is the type of speci�cation morphisms from A to B.Spec is a type A;B : SpecHom (A;B) is a type (1; 2)We now de�ne terms of both types Spec and Hom, as well as axioms satis�ed bythese terms.Sp speci�cation of C0Sp : Spec p : Sp1 ! Sp2 speci�cation morphism of C0p : Hom (Sp1; Sp2) (3; 4)A;B;C : Spec ; f : Hom (A;B) ; g : Hom (B;C)g o f : Hom (A;C) (5)A;B;C;D : Spec ; f : Hom (A;B) ; g : Hom (B;C) ; h : Hom (C;D)(h o g) o f = h o (g o f) : Hom (A;D) (6)A : SpecidA : Hom (A;A) (7)A;B : Spec ; f : Hom (A;B)f o idA = f : Hom (A;B) A;B : Spec ; f : Hom (A;B)idB o f = f : Hom (A;B) (8; 9)An algebra which satis�es the generalized algebraic theory speci�ed by rules (1){(2) and (5){(9) is a category. We now give a syntax for colimit constructions.Here, for instance we give a syntax for an initial object and pushouts.; : Spec A : SpecjA : Hom (;; A) A : Spec ; f; g : Hom (;; A)f = g : Hom (;; A) (10; 11; 12)A;B;C : Spec ; f : Hom (A;B) ; g : Hom (A;C)push (A;B;C; f; g) : Spec (13)A;B;C : Spec ; f : Hom (A;B) ; g : Hom (A;C)&1(A;B;C; f; g) : Hom (B; push (A;B;C; f; g)) (14)

A;B;C : Spec ; f : Hom (A;B) ; g : Hom (A;C)&2(A;B;C; f; g) : Hom (C; push (A;B;C; f; g)) (15)A;B;C : Spec ; f : Hom (A;B) ; g : Hom (A;C)&1(A;B;C; f; g) o f = &2(A;B;C; f; g) o g : Hom (A; push (A;B;C; f; g)) (16)A;B;C;D : Spec ; f : Hom (A;B) ; g : Hom (A;C)f 0 : Hom (B;D) ; g0 : Hom (C;D) ; f 0 o f = g0 o g : Hom (A;D)up (A;B;C;D; f; g; f 0; g0) : Hom (push (A;B;C; f; g); D) (17)A;B;C;D : Spec ; f : Hom (A;B) ; g : Hom (A;C)f 0 : Hom (B;D) ; g0 : Hom (C;D) ; f 0 o f = g0 o g : Hom (A;D)up (A;B;C;D; f; g; f 0; g0) o&1(A;B;C; f; g) = f 0 : Hom (B;D) (18)A;B;C;D : Spec ; f : Hom (A;B) ; g : Hom (A;C)f 0 : Hom (B;D) ; g0 : Hom (C;D) ; f 0 o f = g0 o g : Hom (A;D)up (A;B;C;D; f; g; f 0; g0) o&2(A;B;C; f; g) = g0 : Hom (C;D) (19)A;B;C;D : Spec ; f : Hom (A;B) ; g : Hom (A;C)u; v : Hom (push (A;B;C; f; g); D)u o&k(A;B;C; f; g) = v o&k(A;B;C; f; g) ; (k = 1; 2)u = v : Hom (push (A;B;C; f; g); D) (20)An algebra which satis�es this speci�cation is a �nitely cocomplete category.We must note that this speci�cation is actually not a generalized algebraictheory, because the rules (17){(20) contain equalities in their premises. To writea proper generalized algebraic theory, one has to axiomatize equality in the typesystem with a predicate eq [5]. These equalities raise another problem: it maynot be decidable whether or not a term is well-formed. A rigorous constructionof the category freely generated by a chosen initial object and chosen pushoutsas a category of terms is under development.Let Term (C0) be the algebra freely generated on the speci�ed colimit con-structions. Let SPEC be the category of all speci�cations, with a chosen initialobject, and chosen pushouts. SPEC is therefore an algebra which satis�es theequations. C0 is a subcategory of SPEC, and of Term (C0). We note these inclu-sions i : C0 ! SPEC; e : C0 ! Term (C0)As Term (C0) is a free algebra, there exists a unique homomorphism (which isalso a functor) S[[]] : Term (C0)! SPECsuch that S[[]] � e = i. This functor associates to each term of type Spec thespeci�cation that it represents, and to each term of type Hom the speci�cationmorphism it represents. S[[]] is a \standard semantics" for terms.

3 ExampleThe aim of this section is �rst to give some examples of modular speci�cationswritten with the syntax presented in the previous section, and secondly to mo-tivate the de�nition of the category of diagrams presented in the next section.We present di�erent ways of specifying the theory of rings in the speci�cationlanguage LPG.S = property A-SORTsorts s B = property BIN-OPsorts soperators op : s,s -> ssatisfies A-SORT[s]S speci�es a single sort, B speci�es a binary operator and a speci�cation mor-phism s : S ! B, de�ned by the statement satisfies A-SORT[s] in B.
M = property MONOIDsorts soperators * : s,s -> s1 : -> sequations 1 * x == xx * 1 == x(x * y) * z == x * (y * z)satisfies BIN-OP[s,*] G = property ABEL-GROUPsorts soperators + : s,s -> s0 : -> si : s -> sequations x + y == y + xi(x) + x == 0satisfies MONOID[s,+,0]M speci�es a monoid, with a speci�cation morphism b : B ! M . G speci�esan Abelian group: we add to the speci�cation of monoids an inverse functioni and the commutativity of the binary operator. We also de�ne a speci�cationmorphism m : M ! G.D = property DISTRIBUTIVEsorts soperators +,* : s,s -> sequations x * (y + z) == (x * y) + (x * z)satisfies BIN-OP[s,+], BIN-OP[s,*]D speci�es two operators related by the distributive law, and two speci�cationmorphisms m+;m� : B ! D. m+ maps op to + and m� maps op to *.To summarize what we havede�ned so far, we work in thecategory C0 (Fig. 1). S B M GD-s -b -m??m+ m� Fig. 1. category C0We can now de�ne several modular speci�cations of rings with pushouts. InLPG, such speci�cations can be de�ned with the combines construction.

R1 = push (B;M; push (B;D;G;m+;m o b); b;&1(B;D;G;m+;m o b) om�)R01 = push (B; push (B;M;D; b;m�); G;&2(B;M;D; b;m�) om+;m o b)R1 and R01 are two speci�cations of rings. Here, the di�erence is somehow arti�-cially introduced by the syntactic construction push . Indeed both constructionsare a coding with pushouts of the colimit of the diagram �1 (Fig. 2).

 	
� �

rGr rD
r rMAAUm�b���m+AAUm����bBB �1
 	

� �
rGr rD
r rMAAUm�b���m+AAUm����bBBrS ���sAAUs�2
 	

� �
rGr rD
r rMAAUm�b���m+AAUm����brS BB�����b�s@@@@Rm�b�s �3
 	

� �rS rM
rG�����b�sAAAAUm�b�s�Fig. 2. diagrams �1, �2, �3 and �In the following, if p = push (x; y; z; u; v), we will write &i(p) for &i(x; y; z; u; v).More complicated cases may arise. We can for instance de�ne a \pseudo ring"i.e. a ring without distributivity either with the term P3, or P 03 as follows.P1 = push (S;B;B; s; s)P2 = push (B;M;P1; b;&1(P1))P3 = push (B;P2; G;&2(P2) o&2(P1);m o b)P 03 = push (S;M;G; b o s;m o b o s)(P 03 corresponds to the colimit of the diagram �.)Now we can \add the distributivity" on two di�erent ways and get two newspeci�cations of rings R2 and R3.R2 = push (push (;; B;B; jB ; jB); D; P3; up (;; B;B;D; jB ; jB ;m�;m+);up (;; B;B; P3; jB ; jB ;&1(P3) o&2(P2) o&1(P1);&1(P3) o&2(P2) o&2(P1)))R3 = push (push (;; B;B; jB ; jB); D; P 03; up (;; B;B;D; jB ; jB ;m�;m+);up (;; B;B; P 03; jB ; jB ;&1(P 03) o b;&2(P 03) om � b))We will see in section 5 that the speci�cations R2 and R3 correspond to thediagrams �2 and �3. It is possible to check that the colimits of �1, �2 and �3are all isomorphic. This comes from the equality m+ � s = m� � s in C0. Inother words, the fact that both binary operations are de�ned on the same set iscontained in the distributivity property D.

4 Categories of DiagramsIn the following, we assume the reader is familiar with basic notions of categorytheory. Vertices(��) and Edges(��) respectively denote the set of vertices andthe set of edges of a graph ��.4.1 The Category DIAGR (C0)De�nition 1 (Diagram). A diagram over a category C0 is a couple� = (��; � : �� ! C0);where �� is a graph and � : �� ! C0 is a graph morphism. A diagram is �nitewhen its underlying graph is �nite.To get a category of diagrams, we need to de�ne diagram morphisms. We couldconsider couples� : �! � = (�� : �� ! �� ; � : � �! � � ��)where �� is a graph morphism, and � a natural transformation. This de�nitionappears in [13] (it is the \
atten" category Funct (C0), page 244, example 4),and in a dual form in [9] (it is the \super-comma category", page 111, exercise5.b.) This de�nition is not general enough, because some speci�cation morphismshave no corresponding diagram morphisms. For instance, there is a morphismup (S;M;G;R1; b o s;m o b o s;&1(R1);&2(R1) o&2(B;D;G;m+;m o b))from P 03 to R1, which corresponds to an arrow from Colim� to Colim �1, becausem+ � s = m� � s. But there is no diagram morphism from � to �1 with thede�nition above (Fig. 3). We need a more general de�nition of arrows, and thusmust consider generalized graph morphisms, which associate a zigzag to each edgeof a graph, and generalized natural transformations. With this de�nition, we cande�ne an arrow � : �! �1, which consists of a generalized graph morphism ��and a generalized natural transformation �, de�ned for instance as follows:��(1) = 10, ��(2) = 20, ��(3) = 30; ��(a0) = zigzag from 10 to 20, ��(a1) =zigzag from 10 to 30; �1 = m� � s, �2 = idM , �3 = idG.De�nition 2 (Zigzag on a graph). Let �� be a graph. A zigzag on �� is a�nite linear sequence of edges of ��:Z = n0 a0�! n1 a1 � n2 � � � ak�1�! nk; noted Z : n0 �! nk;each edge is oriented either from left to right or from right to left.We get a graph Zigzag(��), with the same vertices as ��, and with edges thezigzags of ��.

�

� �1S 2M

3G�
����b�s a0AAAAUm�b�s a1 �

� �
30 G50 10D40 20MAAUm�b���m+AAUm����bBB

-�2 = idM���������:b�s!!!!!!!!!!*s -aaaaaaaaaam��s= m+�s jsXXXXXXXXXzm�b�s -�3 = idG� �1-�Fig. 3. diagram morphism � : �! �1De�nition 3 (Generalized graph morphism). Let us consider two graphs�� and ��. A generalized graph morphism �� : �� �! �� from �� to �� isa graph morphism from �� to Zigzag(��). We can compose generalized graphmorphisms by joining zigzags.De�nition 4 (Connection relation).Let � = (��; � : �� ! C0) be a diagram. Two arrowsu : A! B and v : A! C of C0 are said to be connectedby the diagram � if and only if there exist a zigzag on��, Z = n0 a0�! n1 � � �nk�1 ak�1�! nk; and a set of arrowsin C0, fci : A! �(ni); i2f0; : : : ; kgg, such that:{ u = c0 (and thus �(n0) = B){ v = ck (and thus �(nk) = C){ 8i2f0; : : : ; k � 1g:�(ai) � ci = ci+1, if ai is oriented from ni to ni+1;�(ai) � ci+1 = ci, if ai is oriented from ni+1 to ni.We note u �� v; or u �� v [Z], if we want to specifythe zigzag Z.
 	
� �
rC n4 r n3r n2 r n1r n0B
���a3@@Ra2���a1
@@Ra0rA������3��������:-XXXXXXXXzQQQQQQs

u = c0c1 c2c3v = c4 �De�nition 5 (Category of �nite diagrams DIAGR (C0)).Let C0 be a category.{ An object � of DIAGR (C0) is a �nite diagram.{ Let � = (��; � : �� ! C0) and � = (��; � : �� ! C0) be two diagrams. Adiagram morphism from � to � is a couple� : �! � = (�� : �� �! ��; � : � � �! � � ��);where� �� : �� �! �� is a generalized graph morphism.� � : � � �! � � �� is a \generalized natural transformation" i.e. a set ofarrows �n : �(n)! �(��(n)); 8n2Vertices(��)such that 8a : m! n 2 Edges(��); �n � �(a) �� �m [��(a)]

Note that if �� is a graph morphism, then � is a natural transformation.{ Let us consider three diagrams and two diagram morphisms� = (��; � : �� ! C0); � = (��; � : �� ! C0);
 = (
�;
 :
� ! C0)� : �! � = (�� : �� �! ��; � : � � �! � � ��)� : � !
 = (�� : �� �!
�; � : � � �!
 � ��)The composition of � and � is the couple� � � : �!
 = (�� � �� : �� �!
�; � : � � �!
 � �� � ��),where �� ��� is a composition of generalized graph morphisms, and � is the\generalized natural transformation" de�ned by �n = ���(n) � �n.One can easily check that DIAGR (C0) is indeed a category.ColimitsThe category C0 can be embedded in DIAGR (C0) with a functor I : C0 !DIAGR (C0). Colimits can be de�ned as usual [9]. In our setting, a cone from adiagram � is a couple (C; � : �! I(C)) where C is an object of C0 and � isan arrow of DIAGR (C0).The cone (C; � : �! I(C)) is a colimiting cone from � if and only if for anycone (D; �0 : �! I(D)), there exists a unique arrow � : C ! D such thatI(�) �� = �0. C is called the colimit of �, and we note C = Colim�. Onediagram may have several colimits, which are then isomorphic. Writing C =Colim� means that we have chosen the object C for the colimit of �.A category is �nitely cocomplete when every �nite diagram has a colimit.Let � and � be two diagrams with colimiting cones(Colim�; �� : �! I(Colim�)) and (Colim�; �� : � ! I(Colim�)).Let � : �! � be a diagram morphism. Then there exists a unique arrowColim� : Colim�! Colim�, such that I(Colim�)��� = �� ��.Theorem 6. Let C0 be a �nitely cocomplete category. Then1. Colim : DIAGR (C0)! C0 is a functor.2. The mapping �, which associates to each diagram � the colimiting cone from� to I(Colim�) is a natural transformation � : IdDIAGR(C0) �! I � Colim.3. The functor Colim : DIAGR (C0) ! C0 is a left-adjoint for the functor I :C0 ! DIAGR (C0). The unit of the adjunction (Colim a I) is the naturaltransformation �.4.2 The Category diagr (C0)In the category DIAGR (C0), di�erent arrows may have equal colimits. For in-stance, for de�ning the arrow � from � to �1 (Fig. 3), we can associate thevertex 1 either to the vertex 20, 40, 10, 50 or 30. (Of course association of edgesto zigzags must be done accordingly). Those di�erent arrows have the same col-imit. The same way, non isomorphic objects may have isomorphic colimits inDIAGR (C0). For instance, �1 6�= �3, but Colim �1 �= Colim �3 (Fig. 2). The aimof this paragraph is to de�ne a category where equalities of colimiting arrowsand isomorphisms of colimit objects will be re
ected at the level of diagrams.

De�nition 7. Let � and � be two diagrams. Let �; � : �! � be two arrowsof DIAGR (C0). We de�ne the relation � on arrows of DIAGR (C0) as follows:� � � , 8n2Vertices(��) : �n �� �nTheorem 8. The relation � is a congruenceDe�nition 9. As � is a congruence, we can consider the quotient categorydiagr (C0) = DIAGR (C0)=�Let [�] : DIAGR (C0)! diagr (C0) be the associated projection functor.Theorem 10. Let C0 be a �nitely cocomplete category. The functor Colim iscompatible with �. In other words, let �, � be two diagrams, and �; � : �! �two arrows of DIAGR (C0). We have: � � �) Colim� = Colim � .The category diagr (C0) is �nitely cocomplete. We have to show that everydiagram over diagr (C0) | i.e. every object of DIAGR (diagr (C0)) | has a colimitin diagr (C0). We �rst de�ne an operation of
attening� : DIAGR (DIAGR (C0))! DIAGR (C0)Intuitively,
attening the diagram of diagrams � consists in considering theunion of all subdiagrams of �, and in transforming every arrow of DIAGR (C0)into a set of arrows of C0.De�nition 11 (Flattening � : DIAGR (DIAGR (C0))! DIAGR (C0)).Let � = (��; � : �� ! DIAGR (C0)) be an object of DIAGR (DIAGR (C0)).We de�ne the diagram �(�) = � = (��; � : �� ! C0) as follows:{ �� is a graph, given by Vertices(��) and Edges(��).Vertices(��) = f (N;nN) ; N 2Vertices(��) ; nN 2Vertices(�(N)�) gEdges(��) = f (N; aN) : (N;nN)! (N;n0N) ;N 2Vertices(��) ; nN ; n0N 2Vertices(�(N)�) ;aN : nN ! n0N 2 Edges(�(N)�) g[f (A : N ! N 0; nN) : (N;nN)! (N 0; �(A)�(nN)) ;N;N 02Vertices(��) ; A : N ! N 0 2 Edges(��) ;nN 2Vertices(�(N)�) g{ � : �� ! C0 is a functor, given by its action on vertices and edges of ��.� Action on vertices: �(N;nN) is an object of C0, isomorphic to �(N)(nN).We call this isomorphism (JN)nN : �(N)(nN)! �(N;nN).� Action on edges: �(N; aN) = (JN)n0N ��(N)(a) � (JN)�1nN�(A; nN) = (JN 0)�(A)�(nN) ��(A)nN � (JN)�1nNTheorem 12. The category diagr (C0) is �nitely cocomplete.

Proof sketch. Let � be an object of DIAGR (diagr (C0)). We suppose we areable to choose a representative for each equivalence class of arrows, i.e. we havea graph morphism Rep : diagr (C0) ! DIAGR (C0) which is the identity onobjects. We de�ne a diagram � in DIAGR (DIAGR (C0)) as� = Rep � � = (��; Rep � � : �� ! DIAGR (C0))Let � = [�(�)]. Let (��)N = [JN]. Then (�; �� : � ! I(�)) is a colimiting conefrom � .As usual, colimits are de�ned up to isomorphisms. To de�ne �, we made twochoices: � is de�ned up to isomorphisms on objects of C0, and Rep contains achoice of arrow to represent an equivalence class.Theorem 13. Let C be a �nitely cocomplete category. For every functor F :C0 ! C there exists a functor H : diagr (C0) ! C, unique up to isomorphism,such that H � [�] � I �= F and for every diagram � of DIAGR (diagr (C0)),Colim (H � �) �= H(Colim�).5 Representing Modular Speci�cations as DiagramsWe associate modular speci�cations to diagrams and speci�cation morphismsto diagram morphisms in diagr (C0). As diagr (C0) is �nitely cocomplete, withchosen colimits, there exists a unique homomorphism (which is also a functor)D[[]] : Term (C0)! diagr (C0)such that D[[]] � e = [�] � I . D[[]] associates to each categorical construction inTerm (C0) the corresponding construction in diagr (C0):D[[Sp]] = [I(Sp)], if Sp is a speci�cation of C0D[[p]] = [I(p)], if p is a speci�cation morphism of C0D[[g o f]] = D[[g]] � D[[f]] (composition of arrows in diagr (C0))D[[idA]] = idD[[A]] (identity arrow of diagr (C0))D[[;]] =
 (
 is the empty diagram, initial object of diagr (C0))D[[jA]] = jD[[A]] (unique arrow from the empty diagram to D[[A]])D[[push (A;B;C; f; g)]] = push (D[[A]];D[[B]];D[[C]];D[[f]];D[[g]])D[[&1(A;B;C; f; g)]] = &1(D[[A]];D[[B]];D[[C]];D[[f]];D[[g]])D[[&2(A;B;C; f; g)]] = &2(D[[A]];D[[B]];D[[C]];D[[f]];D[[g]])D[[up (A;B;C;D; f; g; f 0; g0)]] = up (D[[A]];D[[B]];D[[C]];D[[D]];D[[f]]; : : : ;D[[g0]])From Theorem 13, there exists a functor eval : diagr (C0) ! SPEC such thateval�[�]�I �= i. This functor maps each diagram to the speci�cation it represents.Theorem 14. There is a natural isomorphism eval � D[[]] �= S[[]]

This theorem states that the calculus of diagrams is sound. The speci�cationassociated to a diagram coincides with the speci�cation given by the standardsemantics. More precisely, the colimit of a diagram representing a speci�cation isisomorphic to this speci�cation. The calculus of diagrams is also complete, in thesense that two isomorphic speci�cations in Term (C0) correspond to isomorphicdiagrams in diagr (C0). This comes from the fact that D[[]] is well de�ned, becausediagr (C0) is �nitely cocomplete.Let us compute the diagram associated to the speci�cation R3 of section 3.P 03 = push (S;M;G; b o s;m o b o s)R3 = push (push (;; B;B; jB ; jB); D; P 03; up (;; B;B;D; jB ; jB ;m�;m+);up (;; B;B; P 03; jB ; jB ;&1(P 03) o b;&2(P 03) om o b))D[[P 03]] = push(D[[S]];D[[M]];D[[G]];D[[b]] � D[[s]];D[[m]] � D[[b]] � D[[s]])D[[S]] = [I(S)] = �� ��rS D[[M]] = �� ��rM D[[G]] = �� ��rGD[[b]] � D[[s]] = �� ��rS �� ��rM-b�s D[[m]] � D[[b]] � D[[s]] = �� ��rS �� ��rG-m�b�s
D[[P 03]] = Colim
 	

� �

 	
� ��� ��rS �� ��rM

�� ��rG�����b�sAAAAUm�b�s =
 	
� �rS rM

rG�����b�sAAAAUm�b�s D[[;]] =
D[[B]] = �� ��rBD[[jB]] =
! �� ��rBD[[D]] = �� ��rDD[[m�]] = �� ��rB �� ��rD-m�D[[m+]] = �� ��rB �� ��rD-m+D[[push (;; B;B; jB ; jB)]] = Colim
 	
� �

 	� ��� ��rB
�� ��rB =
 	� �rB rB

D[[R3]] = Colim

 	

� �

 	

� �

 	� �rB rB

 	
� �rS rM

rG�����b�sAAAAUm�b�s
�� ��rD@@@@@@@@R

������3HHHHHHHHj-
m�b bm+m�

=
 	
� �

rGr rD
r rMAAUm�b���m+AAUm����brS BB�����b�s@@@@Rm�b�s = �3

6 Isomorphisms of DiagramsWe have seen how to associate speci�cations to diagrams. Now the problemis to detect isomorphisms in diagr (C0). In this section, we brie
y describe analgorithm allowing to detect isomorphisms of diagrams in the restricted casewhen the base category C0 is �nite and has no cycle. By \having no cycle" wemean here that any arrow from an object A to itself is the identity.We make this restriction because we have not solved the problem in thegeneral case. This restriction is compatible with the LPG language, because thede�nition of cycling morphisms is syntactically forbidden.In order to simplify the presentation, we also suppose that there is no iso-morphism between objects in the category C0. So in C0, A �= B) A = B. Thealgorithm is actually not much more complicated without this restriction.

 	
� �

rGr rD
r rMAAUm�b���m+AAUm����brS BB�����b�s@@@@Rm�b�s �3
 	

� �
rGr rD
r rMAAUm�b���m+AAUm����brS BB��3sQQss�����b�s@@@@Rm�b�s �03Fig. 4. the completion of diagram �3 is �03The algorithm can be described in 3 steps:1 Complete the diagramFor each pair of arrows f : A ! B and g : C ! B, if there exists an arrowh : A! C such that g � h = f in C0, we add the arrow h to the diagram. If h isthe identity function idA, then we merge both vertices labeled by A.For instance completing the diagram �3 gives the diagram �03 (Fig. 4). The dia-grams �1, �2 and � are already complete.2 Match the \terminating vertices"A \terminating vertex" is a vertex where no edge starts from.Lemma 15. If two diagrams � and � are complete and isomorphic, then forevery terminating vertex m of �, there exists a terminating vertex n of � suchthat �(m) �= �(n).Proof. use the fact that the diagrams are complete, and C0 has no cycle.We can check that the diagrams �1, �2, and �03 have three terminating vertices,labeled by M , D and G.

3 Match the \elementary zigzags"An elementary zigzag of a diagram � is a zigzag n0 f � n g�! n00 of �, where fand g may be compositions of arrows of C0, and f 6= g.De�nition 16 (Ordering on elementary zigzags). Let � be a complete di-agram. We de�ne an ordering on elementary zigzags of � as follows.Let Z = n00 u � n v�! n0k be an elementary zigzag of �. Let Z 0 be a zigzag of�, composed of the elementary zigzags Z1; :::Zk, with Z 0i = n0i�1 � ni �! n0i.{ Z < Z 0i i� (u �� v [Z 0] and 8i; n 6= ni).{ Z � Z 0i i� (Z = Z 0 or Z < Z 0)To prove that � is indeed an ordering, one has to use the fact that C0 has nocycle, and that the vertices linked by an identity arrow have been merged in thediagram �.For instance, in �03, (and in �2 as well)M b�s � S m�b�s�! G � M b � B m��! D� D m+ � B m�b�! G� is an ordering on a �nite set, so there are maximal elements (maximal elemen-tary zigzags). Intuitively, the maximal elementary zigzags are those which reallycount. The others can be removed without changing the colimit of the diagram.Lemma 17. If two diagrams � and � are complete and isomorphic, then thereexists an isomorphism from � to � which associates every maximal elementaryzigzag of � to a maximal elementary zigzag of �.Finally, two diagrams are isomorphic if they have the same terminating ver-tices, linked by the same maximal elementary zigzags. In particular, �1, �2 and�03 are isomorphic.7 ConclusionWe proposed to study \construction isomorphisms" of modular speci�cations. A\construction isomorphism" is an isomorphism which comes from general prop-erties of colimits. We think this isomorphism is interesting, because it relies onthe construction of a modular speci�cation, without depending on the speci�csteps chosen for the construction. We showed in this paper that these isomor-phisms of modular speci�cations correspond to isomorphisms of diagrams in thecategory diagr (C0). The category diagr (C0) is a completion with �nite colim-its of the category C0 of base speci�cations. In particular, diagr (C0) is �nitelycocomplete, even if C0 is not �nitely cocomplete. We showed how speci�cationscan be associated to diagrams. We gave an algorithm to detect isomorphismsin diagr (C0), which strongly relies on the assumption that C0 has no cycle. Wehave not solved the problem in the general case, i.e. if there are cycles in C0

(which may introduce cycles in the diagram while completing it). We think thisproblem is much more di�cult, because the number of arrows to consider maybe in�nite. However, in the case of algebraic speci�cation, arrows are speci�ca-tion morphisms between �nite signatures, so the number of arrows between twospeci�cations remains �nite, which suggests that isomorphisms should still bedetectable.References1. D. Bert and R. Echahed. Design and implementation of a generic, logic and func-tional programming language. In Proceedings of ESOP'86, number 213 in LNCS,pages 119{132. Springer-Verlag, 1986.2. M. Bidoit. The strati�ed loose approach: A generalization of initial and loosesemantics. Technical Report 402, Universit�e d'Orsay, France, 1988.3. R.M. Burstall and J.A. Goguen. Putting theories together to make speci�cations.In Int. Conf. Arti�cial Intelligence, 1977.4. R.M. Burstall and J.A. Goguen. The semantics of CLEAR, a speci�cation lan-guage. In Proc. Advanced Course on Abstract Software Speci�cation, number 86in LNCS, pages 292{332. Springer-Verlag, 1980.5. J. Cartmell. Generalized algebraic theories and contextual categories. Annals ofPure and Applied Logic, 32:209{243, 1986.6. H. Ehrig and B. Mahr. Fundamentals of algebraic speci�cation 1. Equations andinitial semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-ence. Springer-Verlag, 1985.7. K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.In Proc. Principles of Programming Languages, pages 52{66, 1985.8. M.-C. Gaudel. A �rst introduction to PLUSS. Technical report, Universit�ed'Orsay, France, 1984.9. S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.10. J.-C. Reynaud. Putting algebraic components together: A dependent type ap-proach. Research Report 810 I IMAG, LIFIA, Apr. 1990.11. J.-C. Reynaud. Putting algebraic components together: A dependent type ap-proach. Number 429 in LNCS. Springer-Verlag, 1990.12. J.-C. Reynaud. Isomorphism of typed algebraic speci�cations. Internal Report,LGI-IMAG, Feb. 1993.13. A. Tarlecki, R.M. Burstall, and J.A. Goguen. Some fundamental algebraic tools forthe semantics of computation: Part 3. indexed categories. Theoretical ComputerScience, 91:239{264, 1991.14. M. Wirsing. Structured Algebraic Speci�cations: A Kernel Language. TheoreticalComputer Science, 42:123{249, 1986.
This article was processed using the LATEX macro package with LLNCS style

