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Modular speci�cations: constructions with �nite colimits,diagrams, isomorphismsCatherine ORIATR�esum�e : La composition de sp�eci�cations modulaires peut être mod�elis�ee, dans le forma-lisme des cat�egories, par des colimites de diagrammes. Les sommes amalgam�ees permettenten particulier de d�ecrire l'assemblage de deux sp�eci�cations qui ont une partie commune. Cetravail �etend cette id�ee classique selon trois axes.Tout d'abord, nous d�e�nissons un langage de termes pour repr�esenter les sp�eci�cationsmodulaires construites �a l'aide de colimites sur une cat�egorie de base. Formellement, celangage est caract�eris�e par une cat�egorie �niment cocompl�ete.Nous proposons ensuite d'associer �a chaque terme un diagramme. Cette interpr�etationpermet de faire abstraction de certains choix e�ectu�es lors de la construction de la sp�eci�cationmodulaire. Nous d�e�nissons une cat�egorie de diagrammes, qui est une compl�etion de lacat�egorie de base par colimites �nies. Nous montrons que cette interpr�etation d�e�nit une�equivalence entre la cat�egorie des termes et la cat�egorie des diagrammes, ce qui montre lacorrection de l'interpr�etation.En�n, nous proposons un algorithme pour normaliser les diagrammes, dans le cas o�u lacat�egorie de base est squelettique, �nie et sans cycle. Cela nous permet de d�etecter des \iso-morphismes de construction" entre sp�eci�cations modulaires, c'est-�a-dire des isomorphismesqui ne d�ependent pas de la s�emantique des sp�eci�cations de base, mais seulement de leurassemblage.Abstract: The composition of modular speci�cations can be modeled, in a category the-oretic framework, by colimits of diagrams. Pushouts in particular describe the combinationof two speci�cations sharing a common part. This work extends this classic idea along threelines.First, we de�ne a term language to represent modular speci�cations built with colimitconstructions over a category of base speci�cations. This language is formally characterizedby a �nitely cocomplete category.Then, we propose to associate with each term a diagram. This interpretation providesus with a more abstract representation of modular speci�cations because irrelevant steps ofthe construction are eliminated. We de�ne a category of diagrams, which is a completion ofthe base category with �nite colimits. We prove that the interpretation of terms as diagramsde�nes an equivalence between the corresponding categories, which shows the correctness ofthis interpretation.At last, we propose an algorithm to normalize diagrams, in the case when the basecategory is skeletal, �nite and cycle free. This allows us to detect \construction isomorphisms"between modular speci�cations, i.e. isomorphisms which do not depend on the semantics ofthe base speci�cations, but only on their combination.



Modular speci�cations: constructions with �nite colimits,diagrams, isomorphismsCatherine ORIATLSR{IMAGBP 5338041 Grenoble Cedex 09, Francee-mail : Catherine.Oriat@imag.fr1 IntroductionThe speci�cation of large programs requires to split up the problem to solve into severalsimpler problems. This top-down approach, corresponding to the slogan divide and conquer,is classic in software engineering. The decomposition of speci�cations into modules allowsone to reect the logical structure of the problem, and to develop the di�erent parts of theprogram independently.On the opposite, we are interested here in the composition of speci�cations. This bottom-up approach to modularity consists in storing elementary speci�cations in a library and inconstructing new speci�cations by gathering already de�ned ones. Such a reuse of speci�ca-tions (and possibly of programs as well) is advocated in software engineering to avoid errorsand reduce development costs.We focus on algebraic speci�cations [16, 26, 37], which come from universal algebra inmathematics, and from abstract data types in software engineering. Our aim is to studythe composition of algebraic speci�cations in a category theoretic framework. Indeed, thealgebraic speci�cation formalism strongly relies on category theory. Historically, the devel-opment of algebraic speci�cation, in particular the work of the ADJ group [22, 23, 21], hasbeen inuenced by Lawvere's algebraic theories [25, 6, 36]. Practically, the use of categorytheory may be justi�ed by the important role played by speci�cation morphisms for struc-turing speci�cations. Moreover, the combination of speci�cations related by speci�cationmorphisms can be modeled using the categorical concept of colimit. Intuitively, a diagramdescribes a combination of objects with some sharings, and the colimit of a diagram the resultof this combination.We suppose that we have a library of elementary speci�cations and speci�cation mor-phisms, which forms a base category C0. We de�ne a term language to express speci�cationsand speci�cation morphisms built from the base category with colimit constructions. Then,we propose to associate with each term denoting a speci�cation a diagram, and with eachterm denoting a speci�cation morphism a diagram morphism. We thus need to de�ne acategory of diagrams. This representation of modular speci�cations is more abstract thanterms in that it allows us to get rid of some speci�c steps chosen for the construction of themodular speci�cation. At last, we propose a procedure to decide whether two diagrams areisomorphic, in the case when the category C0 of base speci�cations is skeletal, �nite and cyclefree. This allows us to detect construction isomorphisms between speci�cations, by testingwhether their associated diagrams are isomorphic. These isomorphisms do not depend onthe contents of the base speci�cations, but only on their combinations.Algebraic speci�cations can be based on various logics, for instance equational, Horn-clause or �rst-order logic. Goguen and Burstall have developed the theory of institutions[19, 20] to formalize a notion of logical system which is independent of the underlying logic.As the problem of composing speci�cations does not depend on the logic used to express1



speci�cations, we can work in the framework of institutions. We only need to assume thatthe category of speci�cations is �nitely cocomplete, which means that every �nite diagramhas a colimit. Goguen and Burstall have shown [20] that the category of speci�cations is�nitely cocomplete if and only if the category of signatures is �nitely cocomplete.The idea of modeling the interconnection of systems by means of colimits was proposedby Goguen [17, 18]. Then, colimits were used in the context of algebraic speci�cation todescribe the semantics of the speci�cation language Clear [7, 8]. The diagram morphismsused in this context were mere inclusions of diagrams. This idea has been extended to moregeneral categories of diagrams such as for instance the atten category Func(C0) describedin [34], page 244. However, these categories of diagrams are not general enough to model anycombination of speci�cations because they are not, in the general case, �nitely cocomplete.We propose here to work in a category Diagr(C0) of diagrams which is �nitely cocomplete.Similarly, from a syntactic point of view, term languages which have been proposed until nowto express colimit constructions are not based on a �nitely cocomplete category either (seefor instance [15]). The term language proposed here relies on a �nitely cocomplete categoryTerm(C0), and therefore is powerful enough to express any combination of speci�cations.Syntax and representation choicesIn computer science, we usually distinguish between the syntax, which corresponds to thelanguage used to describe the entities (e.g. a program), and the semantics, which correspondsto the meaning of the entities (e.g. the result of a program execution). The syntax requiresrepresentation choices, while the semantics may give a result which is independent of thecoding. In category theory, no representation choices are made on arrows of a category inthe sense that two syntactically di�erent arrows may be equal. For example, in a categorywe have f � idA = f for every arrow f : A ! B. From a syntactic point of view, this is notsatisfactory because we want to make a distinction between a syntactic equality (i.e. identityof symbol strings: f � idA = f � idA) and a semantic equality (i.e. equivalence of meaning:f � idA = f). We thus use equiv-categories.An equiv-category has the same structure as a category, except that equalities betweenarrows are replaced by a congruence relation, introduced to model semantic equivalence.Considering the quotient of an equiv-category by its associated congruence yields a categorywhich might be considered as a (trivial) semantics. So, in an equiv-category, we have f �idA =f � idA and f � idA � f . Equiv-categories were introduced by D. Duval and J.-C. Reynaud[11]. Usual concepts of category theory can be restated in the context of equiv-categories:equiv-functors correspond to functors, equiv-colimits to colimits ... etc1.Problems of representation choices may also occur at the level of objects when categoricalconcepts are de�ned up to isomorphism. In particular, colimits are usually de�ned up toisomorphism: a diagram may have several colimits which are then isomorphic. The set(f1g �A) [ (f2g �B) is one example of sum of A and B in the category of sets. If we wantto de�ne a syntax to represent colimit constructions, we can no longer de�ne colimits up toisomorphism, because we must make representation choices for these constructions. We mustconsider chosen colimits, i.e. canonical colimits among all isomorphic colimits. We might forinstance decide that (f1g � A) [ (f2g �B) is the chosen sum of A and B in the category ofsets. Theoretically, these choices are needed if we want to get a free construction of terms.The introduction of chosen colimits, due to C. Ehresmann [13, 14], endows a category with1In [28], equiv-categories, equiv-functors and equiv-colimits were respectively called precategories, prefunc-tors and precolimits. We now adopt D. Duval and J.-C. Reynaud's terminology.2



an algebraic structure, the chosen colimits playing the role of constructors. Of course, in anequiv-category we actually need to consider chosen equiv-colimits.This paper is organized as follows. In section 2, we present various modular speci�cationsof rings constructed from a category C0 of base speci�cations. This academic example presentson the one hand a syntax for modular speci�cations and on the other hand the notion ofconstruction isomorphism between two modular speci�cations.Section 3 contains the theoretical bases of our work. We present the notion of equiv-category as well as the equiv-category of diagrams DIAGR(C0). We show that DIAGR(C0) is�nitely cocomplete, and is a completion of C0 with �nite equiv-colimits.Section 4 is dedicated to the formal de�nition of the syntax for modular speci�cations.We present a strati�ed construction of an equiv-category TERM(C0) which provides us witha term language to represent modular speci�cations and speci�cation morphisms. We showthat TERM(C0) is �nitely cocomplete, is a conservative extension of C0, and is freely generatedover C0 by a chosen equiv-initial object and chosen equiv-pushouts.In section 5, we associate terms with diagrams and show that this interpretation de�nesan equivalence between the equiv-categories DIAGR(C0) and TERM(C0).In section 6, we suppose that the base category C0 is skeletal, �nite and cycle free. In thatcase, we de�ne a normalization procedure for diagrams. This procedure allows us to detectconstruction isomorphisms between two modular speci�cations by comparing the normalforms of their corresponding diagrams.2 ExampleIn this section, we present various ways of specifying the theory of rings with modular spec-i�cations. This example only makes use of equational speci�cations, but we could actuallywork in any institution whose category of speci�cations is �nitely cocomplete.2.1 Base speci�cationsFirst of all, we de�ne a library of base speci�cations. Base speci�cations are written in thespeci�cation language LPG [3, 4]. The LPG language has two kinds of speci�cations: typeswhich are interpreted as initial algebras (or, for generic types, as free algebras), and propertieswhich are interpreted as classes of algebras satisfying the equations. In the example developedhere, we will only use properties, which means that a model of a speci�cation is the class ofall algebras which satisfy the equations. We can also de�ne speci�cation morphisms with astatement introduced by the keyword satisfies. The semantics of LPG is described in [29],and the rules to compose speci�cation morphisms are presented in [5].We now specify the base speci�cations and base speci�cation morphisms.S = property A-SORTsorts s B = property BIN-OPsorts soperators op : s,s -> ssatisfies A-SORT[s]The property S speci�es a single sort s. The property B speci�es a single sort, also calleds, a binary operator op and a speci�cation morphism s : S ! B, de�ned by the statementsatisfies A-SORT[s] in the module B. This morphism maps the sort s of S to the sort sof B. 3



M = property MONOIDsorts soperators * : s,s -> s1 : -> sequations 1 * x == xx * 1 == x(x * y) * z == x * (y * z)satisfies BIN-OP[s,*] G = property ABEL-GROUPsorts soperators + : s,s -> s0 : -> si : s -> sequations x + y == y + xi(x) + x == 0satisfies MONOID[s,+,0]The property M speci�es a monoid, with a speci�cation morphism b : B ! M , which mapsthe sort s of B to the sort s of M and the operator op of B to the operator * of M . Theproperty G speci�es an Abelian group: we add to the speci�cation of monoids an inversefunction i and the commutativity of the binary operator. We also de�ne a speci�cationmorphism m : M ! G. This morphism maps the operator * of M to the operator + of Gand the constant 1 of M to the constant 0 of G.D = property DISTRIBUTIVEsorts soperators + : s,s -> s* : s,s -> sequations x * (y + z) == (x * y) + (x * z)satisfies BIN-OP[s,+], BIN-OP[s,*]At last, the property D speci�es two binary operators related by the distributive law, as wellas two speci�cation morphisms m+;m� : B ! D. The morphism m+ maps op to + and themorphism m� maps op to *.We have so far de�ned a graph and now consider the category C0 freely generated by thisgraph. The category C0, called the base category, represents a library of available speci�cationsand speci�cation morphisms.S B M GD-s -b -m??m+ m�Graph corresponding to the base category C02.2 Combinations with colimit constructionsWe can combine base speci�cations to form new modular speci�cations. In LPG, we can forexample write a speci�cation R1 of rings by combining the properties MONOID, DISTRIBUTIVEand ABEL-GROUP as follows.
4



R1 = property RINGsorts soperators +, * : s, s -> s0, 1 : -> si : s -> scombines MONOID[s,*,1],DISTRIBUTIVE[s,+,*],ABEL-GROUP[s,+,0,i]This speci�cation implicitly describes some sharings of sorts and operators. For example,the three speci�cations M , D and G share the same sort s. These sharings are of coursecrucial to get a speci�cation of rings.In our work, the sharings are expressed by colimits of diagrams. This categorical con-struction allows us to model the composition of objects with explicit sharings. In the exampleof rings, the speci�cation R1 corresponds to the colimit of the diagram �1.
� 
� �

�G�D
�M

�B �S
�B

-m�b�����m+@@@@Rm�b�s -m��s�����b�s@@@@Rm�-b
�1Here is the intuitive interpretation of this diagram.{ The vertices labeled by M , D and G, which are terminating vertices of the graph (noedge has one of these vertices as source), are the speci�cations we wish to gather.{ The vertices labeled by B, S and B express the sharings.� The sort s is shared by the three speci�cations M , D and G. This sharing ismodeled by the morphisms b � s : S !M , m� � s : S ! D and m � b � s : S ! G.� The binary operator * is shared by the speci�cations M and D. This sharing ismodeled by the morphisms b : B !M and m� : B ! D.� The binary operator + is shared by the speci�cations G and D. This sharing ismodeled by the morphisms m � b : B ! G and m+ : B ! D.In the following, we focus on one particular construction of colimit: pushouts, which modelthe composition of two speci�cations.De�nition 1 (Pushout) Let A, B, C be three speci�cations and f : A! B, g : A! C betwo speci�cation morphisms. A pushout of f and g is a triple(push(A;B;C; f; g); k1(A;B;C; f; g); k2(A;B;C; f; g));where push(A;B;C; f; g) is a speci�cation and5



k1(A;B;C; f; g) : B ! push(A;B;C; f; g)k2(A;B;C; f; g) : C ! push(A;B;C; f; g)are two speci�cation morphisms, such that1. k1(A;B;C; f; g) � f = k2(A;B;C; f; g) � g ;2. for any speci�cation D and speci�cation morphisms f 0 : B ! D, g0 : C ! D such thatf 0 � f = g0 � g, there exists a unique speci�cation morphismup(A;B;C;D; f; f 0; g; g0) : push(A;B;C; f; g) ! Dsuch that ( up(A;B;C;D; f; f 0; g; g0) � k1(A;B;C; f; g) = f 0up(A;B;C;D; f; f 0; g; g0) � k2(A;B;C; f; g) = g0:In the following, if P = push(A;B;C; f; g), we write k i(P ) for k i(A;B;C; f; g).
C
BA@@@Rg����f P����k1(P )@@@Rk2(P ) D-upPPPPPPPPPPPq�����������1f 0g0A well known result of category theory states that a category is �nitely cocomplete (i.e.every �nite diagram has a colimit) if and only if this category has an initial object andpushouts.This means that together with the empty speci�cation, pushouts can simulate the colimitconstruction of any �nite diagram. Indeed, the empty speci�cation, noted�, is initial becausefor any speci�cation A, there is a unique speci�cation morphism from � to A, noted j(A) :�! A.We now may de�ne a speci�cation R2 of rings with pushouts by combining the speci�ca-tions M and D, and then adding G to the result:MD = push(B;M;D; b;m�)R2 = push(B;MD ; G; k2(MD) �m+;m � b)There are other ways of specifying a ring with the given base speci�cations. For instance, wecan �rst combine D and G and then add the speci�cation M . We get a new speci�cation R02of rings.DG = push(B;D;G;m+;m � b)R02 = push(B;M;DG; b; k1(DG) �m�)
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D
MB@@@Rm�����b MD����k1(MD)@@@Rk2(MD)B G@@@Rm�b����m+ R2
��������

k1(R2)@@@Rk2(R2) G
DB@@@Rm�b����m+ DG����k1(DG)@@@Rk2(DG)

B M@@@Rm�����b
R02����k2(R02)

@@@@@@@Rk1(R02)

One can easily convince oneself that the speci�cations R2 and R02 are isomorphic. Intuitively,both constructions are equivalent because the pushout operation is \associative" (in a sensewhich should be de�ned formally). Actually, R2 and R02 are two di�erent encodings of thecolimit of the diagram �2 with pushouts.
� �
� �

� G� � D� �M
AAUm�b���m+AAUm����bBB �2But more complicated cases may arise. We can for instance start by de�ning a \pseudo-ring" i.e. a ring without distributivity either with the term P or P 0 as follows.P = push(S;M;G; b � s;m � b � s)Q1 = push(S;B;B; s; s)Q2 = push(B;M;Q1; b; k1(Q1))P 0 = push(B;Q2; G; k2(Q2) � k2(Q1);m � b)
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S G
M P������b�s@@@@@Rm�b�s ������k2(P )
@@@@@Rk1(P ) S B

B
G
Q1
M Q2 P 0����s@@@Rs ����k2(Q1)@@@Rm�b

����b@@@Rk1(Q1)
��������k2(P 0)����k2(Q2)@@@Rk1(Q2)@@@Rk1(P 0)

The speci�cations P and P 0 correspond to the colimit of the diagram � below. Now we can\add the distributivity" on two di�erent ways and get two new speci�cations of rings R3 andR4. We �rst consider the speci�cationB2 = push(�; B;B; j(B); j(B))which groups two binary operators, and the speci�cation morphismu1 = up(�; B;B; P; j(B); j(B); k1(P ) � b; k2(P ) �m � b) : B2 ! P .This arrow exists because as � is initial, k1(P ) � b � j(B) = k2(P ) �m � b � j(B). There isalso an arrow u2 = up(�; B;B;D; j(B); j(B);m�;m+) : B2 ! D.
� B

B
G
B2
M

P����j(B)@@@Rj(B) ����k2(B2)@@@Rm�b
����b@@@Rk1(B2)

��������k2(P )
@@@@@@@Rk1(P )-u1 B

B�@@@Rj(B)����j(B) B2����k1(B2)@@@Rk2(B2) D-u2PPPPPPPPPPPq�����������1
m�m+

We then obtain a speci�cation R3 of rings by combining D and P sharing B2.R3 = push(B2; P;D; u1; u2)= push(push(�; B;B; j(B); j(B)); P;D;up(�; B;B; P; j(B); j(B); k1(P ) � b; k2(P ) �m � b);up(�; B;B;D; j(B); j(B);m�;m+))And here is a last speci�cation R4 of rings which uses P 0:8



R4 = push(push(�; B;B; j(B); j(B)); P 0;D;up(�; B;B; P 0; j(B); j(B); k1(P 0) � k2(Q2) � k1(Q1);k1(P 0) � k2(Q2) � k2(Q1));up(�; B;B;D; j(B); j(B);m�;m+))The constructions R3 and R4 respectively correspond to the following diagrams �3 and �4.
� �
� �

�S �M
� G������b�sAAAAAUm�b�s� � �

� �
� G� � D� �M
AAUm�b���m+AAUm����b�S BB������b�s@@@@@Rm�b�s�3 � �

� �
� G� � D� �M
AAUm�b���m+AAUm����bB

B�S ���sAAUs
�4By using the de�nition of colimit in category theory, we can check that the colimits of thediagrams �1, �2, �3 and �4 are isomorphic, because of the equality of speci�cation morphismsm+ � s = m� � s:This equality means that the fact that both operators + and * operate on the same set iscontained in the speci�cation D of distributive operators. We will see in section 3 and 6 that�1, �2, �3 and �4 are isomorphic in the category of diagrams Diagr(C0).2.3 Construction isomorphismWe have just seen that there are various equivalent ways of specifying the theory of ringsfrom a given category of base speci�cations. Formally, two speci�cations are equivalent ifthey are isomorphic in some category of speci�cations. We present here some isomorphismsand motivate the use of construction isomorphisms to compare modular speci�cations.Identity. Two speci�cations are isomorphic if they are identical. This very weak isomorphismis not very interesting.Structural equivalence. Two speci�cations are isomorphic if they have been constructed thesame way, independently of aliases which may have been de�ned in the constructionprocess. This isomorphism is slightly less weak than the previous one, but still not veryinteresting.Isomorphism in Spec. Two speci�cations are isomorphic if there exists an isomorphism be-tween them in the category of all speci�cations Spec. The di�culty here is �rst toexhibit the isomorphism between both signatures, and above all to check that it is aspeci�cation morphism, which is in general undecidable.9



Construction isomorphism. Two speci�cations constructed with colimits from a common cat-egory of base speci�cations C0 are isomorphic if we can prove it with general propertiesof colimits. The speci�cations R2, R02, R3 and R4 are isomorphic in this sense. Thiscorresponds to an isomorphism in the category Term(C0) which will be described insection 4. On the one hand, this construction isomorphism is not too general in thatit reects the construction of the modular speci�cation. On the other hand, it is moregeneral than the structural isomorphism because some irrelevant steps chosen whileconstructing the modular speci�cation are abstracted. These isomorphisms do not de-pend on the actual de�nition of the base speci�cations, but only on their combination.At last, we show in section 6 that, under certain conditions, we can decide whether twospeci�cations are related by a construction isomorphism.3 Categorical SettingThis section presents the notion of equiv-category, and DIAGR(C), the equiv-category ofdiagrams. We mainly restate well known concepts of category theory in the context of equiv-categories. However, the de�nition of diagram morphism which is proposed here is moregeneral than those usually presented in computer science. The reader not familiar with basicnotions of category theory may refer to [1, 24].3.1 Equiv-categoriesAn equiv-category is similar to a category, except that equalities between arrows are replacedby equivalence relations.De�nition 2 (Equiv-category)An equiv-category C is a triple (Obj(C);Arr(C);�) such that:{ Obj(C) is a class of objects2.{ 8A;B 2 Obj(C), Arr(C)(A;B) is a set of arrows from A to B.{ 8A;B 2 Obj(C), � is a relation on Arr(C)(A;B).{ 8A;B;C 2 Obj(C), there is a composition operation� : Arr(C)(B;C)�Arr(C)(A;B)! Arr(C)(A;C):{ 8A 2 Obj(C), there is an identity arrow idA 2 Arr(C)(A;A).{ 8A;B 2 Obj(C);8f 2 Arr(C)(A;B), f � idA � f and idB � f � f .{ 8A;B;C;D 2 Obj(C);8f 2 Arr(C)(A;B); 8g 2 Arr(C)(B;C); 8h 2 Arr(C)(C;D);(h � g) � f � h � (g � f):{ The relation � is a congruence i.e.� � is an equivalence relation, i.e. is reexive, symmetric and transitive;2Although Obj(C) may not be a set, we talk of \elements" of Obj(C) and write \A 2 Obj(C)".10



� 8A;B;C 2 Obj(C); 8f; f 0 2 Arr(C)(A;B); 8g; g0 2 Arr(C)(B;C);f � f 0 and g � g0 ) g � f � g0 � f 0:Notation: f 2 Arr(C)(A;B) will sometimes be noted f : A! B, when we wish to leave theequiv-category C implicit.De�nition 3 (Isomorphism) An arrow f 2 Arr(C)(A;B) is an isomorphism in an equiv-category C if there exists g 2 Arr(C)(B;A) such that g � f � idA and f � g � idB . Iff 2 Arr(C)(A;B) is an isomorphism, we say that A and B are isomorphic, and we noteA �= B.De�nition 4 (Equiv-functor) Let C and C0 be two equiv-categories. An equiv-functor Ffrom C to C0, noted F : C ! C0, is a map which assigns to each object A of C an object F (A)of C0, and to each arrow f 2 Arr(C)(A;B) an arrow F (f) 2 Arr(C0)(F (A); F (B)), and suchthat{ f � f 0 ) F (f) � F (f 0);{ F (idA) � idF (A);{ F (g � f) � F (g) � F (f).De�nition 5 (Full equiv-functor) An equiv-functor F : C ! C0 is full if8g 2 Arr(C0)(F (A); F (B)); 9f 2 Arr(C)(A;B) ; g � F (f).De�nition 6 (Faithful equiv-functor) An equiv-functor F : C ! C0 is faithful if8f; f 0 2 Arr(C)(A;B); F (f) � F (f 0) ) f � f 0.De�nition 7 (Natural transformation between equiv-functors)Let F;G : C ! C0 be two equiv-functors. A natural transformation � from F to G, noted� : F �! G, is a map which assigns to every object A of C an arrow �A 2 Arr(C0)(F (A); G(A))such that 8f 2 Arr(C)(A;B); G(f) � �A � �B � F (f):Let F;G : C ! C0 be two equiv-functors and � : F �! G a natural transformation. If forevery A 2 Obj(C), �A is an isomorphism, then we say that F and G are naturally isomorphic,and we note F �= G. In that case, there is a natural transformation ��1 : G �! F de�ned by(��1)A = ��1A .Given a graph3 ��, Vertices(��) and Edges(��) respectively denote the set of verticesand the set of edges of ��. An edge a of source m and of target n is noted a : m ! n.There is an equiv-category P(��) freely generated over the graph �� which may be de�nedas follows. The set of objects of P(��) is the set of vertices of ��. Arrows of P(��) are pathsof composable edges of �� ha1; a2; : : : ; aki3By graph, we actually mean a directed multigraph, because edges are oriented and there can be more thanone edge between any two vertices.
11



where two edges ai and ai+1 are composable if the target of ai is equal to the source of ai+1.The congruence relation is the equality on paths. Identity arrows are paths of length 0, notedhi. The composition is the concatenation of paths:hb1; b2; : : : ; bli � ha1; a2; : : : ; aki = ha1; a2; : : : ; ak; b1; b2; : : : ; bli:Any graph morphism �� : �� ! �� from a graph �� to a graph �� uniquely extends toan equiv-functor P(��) : P(��) ! P(��). P(��) is equal to �� on objects, and is de�nedon paths as follows:P(��)(hi) = hi ;P(��)(ha1; a2; : : : ; aki) = h��(a1); ��(a2); : : : ; ��(ak)i:3.2 Equiv-category of diagramsA diagram � over an equiv-category C consists of a graph �� whose vertices m are labeledby objects �(m) of C and whose edges a : m! n are labeled by arrows �(a) : �(m)! �(n)of C. Formally:De�nition 8 (Diagram over an equiv-category)A diagram � over an equiv-category C is a couple � = (��; � : P(��) ! C), where �� is agraph and � : P(��)! C is an equiv-functor.We say that the diagram � is based on the graph ��, or that �� is the underlying graph of�. A diagram � is �nite when its underlying graph is �nite.Examples of diagrams1. The empty diagram, noted , is the only diagram based on the empty graph.2. Let A be an object of C. There is a one point diagramI(A) = (1�; IA : P(1�)! C);where{ 1� is a graph which has only one vertex, noted �;{ the equiv-functor IA is de�ned by IA(�) = A.�
�	�graph 1� �
 �	� Adiagram I(A)3. Let �� be the graph consisting of three vertices 0, 1, 2, and two edges a1 : 0 ! 1,a2 : 0 ! 2. A pushout diagram is a diagram based on ��. If A;B;C 2 Obj(C),f 2 Arr(C)(A;B) and g 2 Arr(C)(A;C), then there is a pushout diagramPushDiagr (A;B;C; f; g) = (��; � : P(��)! C)de�ned by �(0) = A; �(1) = B; �(2) = C; �(a1) = f; �(a2) = g.12



�� ���1 �0 �2-a2�a1graph �� �� ���B �A �C-g� fdiagram PushDiagr (A;B;C; f; g)We now de�ne diagram morphisms. We could consider couples� : �! � = (�� : �� ! ��; � : � �! � � P(��))where �� is a graph morphism and � a natural transformation. This de�nition is presentedin [34] (it is the atten category Func(C0), page 244, example 4), and in a dual form in [24](it is the super-comma category, page 111, exercise 5.b). This de�nition is not general enoughfor our purpose because the resulting category is not, in the general case, �nitely cocomplete.It indeed does not contain enough arrows, and therefore some speci�cation morphisms haveno corresponding diagram morphism.To come back to the example presented in section 2, there is indeed a termTup = up(S;M;G;R2; b � s;m � b � s; k1(R2) � k1(MD); k2(R2))from P to R2, which should correspond to an arrow from the diagram � to the diagram �2.However, there is no diagram morphism with the de�nition above.
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For this reason, instead of considering a graph morphism �� : �� ! ��, we need toconsider a generalized graph morphism �� : �� �! ��, which assigns to each edge of �� azigzag of ��. Instead of considering a natural transformation � : � �! � � P(��), we need toconsider a generalized natural transformation � : � ��! � � P(��) [27].De�nition 9 (Zigzag) A zigzag Z of a graph �� is a triple (k; ZV ; ZE) where{ k is a natural, called the length of Z;{ ZV is a (k + 1)-uple (n0; n1; : : : ; nk) of vertices of ��;{ ZE is a k-uple (a0; a1; : : : ; ak�1) of edges of ��, such that 8i; 0 � i � k � 1, eitherai : ni ! ni+1 (i.e. ai is an edge of source ni and of target ni+1), or ai : ni+1 ! ni (i.e.ai is an edge of source ni+1 and of target ni).A zigzag is noted Z : n0 �! nk, or, more pictorially,Z = n0 a0�! n1 a1 � n2 a2 � n3 � � � nk�1 ak�1�! nk;where an arbitrary orientation is chosen for each edge ai.13



For every vertex n of ��, there is an empty zigzag 0n : n �! n. We get a graph Zigzag(��),with the same vertices as ��, and with edges the zigzags of ��.De�nition 10 (Generalized graph morphism)A generalized graph morphism �� from �� to ��, noted �� : �� �! ��, is a graph morphismfrom �� to Zigzag(��).We can compose generalized graph morphisms by joining zigzags.De�nition 11 (Connection relation) Let � = (��; � : P(��) ! C) be a diagram, andn, n0 two vertices of ��. Two arrows u : A ! �(n) and v : A ! �(n0) of C are said to beconnected by the diagram � if and only if there exist a zigzag Z : n0 �! nk of �� with n = n0and n0 = nkZ = n=n0 a0�! n1 a1 � � � �nk�1 ak�1�! nk=n0;and a set of arrowsfci : A! �(ni) ; i 2 f0; : : : ; kgg;such that u � c0, v � ck and 8i 2 f0; : : : k � 1g,{ �(ai) � ci � ci+1, if ai : ni ! ni+1;{ �(ai) � ci+1 � ci, if ai : ni+1 ! ni.We note u �� v, or u �� v [Z] if we want to specify thezigzag Z. � �
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u � c0c1c2c3v � c4 �u �� v [Z : n0 �! n4]De�nition 12 (Diagram morphism) Let C be an equiv-category, � and � be two dia-grams over C. A diagram morphism � from � to �, noted � : �! �, is a couple� : �! � = (�� : �� �! ��; � : � ��! � � P(��))where{ �� : �� �! �� is a generalized graph morphism;{ � : � ��! � � P(��) is a generalized natural transformation, i.e. a set of arrowsf�n : �(n)! �(��(n)); 8n 2 Vertices(��)g such that8a : m! n 2 Edges(��); �n � �(a) �� �m [��(a)]:Note: if �� is a graph morphism, then P(��) : P(��) ! P(��) is a functor and � : � �!� � P(��) is a natural transformation.Examples of diagram morphisms1. For every diagram �, there is a diagram morphismId� : �! � = (id�� : �� �! ��; Id� : � ��! �)where id�� is the identity (generalized) graph morphism and Id� : � ��! � is a (gener-alized) natural transformation de�ned by (Id�)n = id�(n).14



2. For every diagram �, there is a (unique) diagram morphism from the empty diagramto �, noted J� :! �.3. We can de�ne a diagram morphism � : � ! �2 corresponding to the term Tup. Thisarrow consists of a generalized graph morphism �� : �� �! ��2 and a generalizednatural transformation � : � ��! �2 � P(��).The generalized graph morphism �� may be de�ned as follows:��(0) = 00; ��(1) = 10; ��(2) = 20;��(a1) = 00 m� � 30 b�! 10; ��(a2) = 00 m+ � 40 m�b�! 20:The generalized natural transformation � : � ��! �2 � P(��) is de�ned by�0 = m� � s; �1 = idM ; �2 = idG:We indeed de�ned a diagram morphism � because m+ � s � m� � s.Another diagram morphism � : � ! �2, which also corresponds to the term Tup , maybe de�ned as follows.The generalized graph morphism �� is��(0) = 30; ��(1) = 10; ��(2) = 20;��(a1) = 30 b�! 10; ��(a2) = 30 m��! 00 m+ � 40 m�b�! 20:The generalized natural transformation � : � ��! �2 � P(��) is de�ned by�0 = s; �1 = idM ; �2 = idG:To get an equiv-category of diagrams, it remains to de�ne a congruence on diagrammorphisms.Intuitively, two diagram morphisms �; � : � ! � are equivalent if they correspond to thesame colimiting arrow from � to �.De�nition 13 (Equivalence ��) Let �; � : � ! � be two diagram morphisms. By de�ni-tion, � �� � if 8n 2 Vertices(��); �n �� �n.For instance, in the example above, the diagram morphisms �; � : � ! �2, which correspondto the same speci�cation morphism Tup , are equivalent.Theorem 14 DIAGR(C) is an equiv-category, which has diagrams as objects, diagram mor-phisms as arrows and �� as congruence relation.Proof. First, we must de�ne the composition of diagram morphisms. Let �, � and  bethree diagrams. Let� : �! � = (�� : �� �! ��; � : � ��! � � P(��))� : � !  = (�� : �� �! �; � : � ��!  � P(��))be two diagram morphisms. The composition � = � � � of � and � is the couple� : �!  = (�� : �� �! �; � : � ��!  � P(��))where 15



{ �� = �� � ��;{ the generalized natural transformation � : � ��!  � P(��) is de�ned by: 8n 2Vertices(��); �n = ���(n) � �n.One has to check that � is indeed a general natural transformation and that the compositionis associative.For every diagram �, the diagram morphism Id� : �! � is an identity.It then remains to show that �� is a congruence. �� is an equivalence relation, because ��is an equivalence relation. To prove that it is a congruence, we show that given two arrowsu 2 Arr(C)(A; �(m)) and v 2 Arr(C)(A; �(n)), we have{ 8w 2 Arr(C)(A0; A); u �� v [Z] ) u � w �� v � w [Z];{ 8� : � ! ; u �� v [Z] ) �m � u � �n � v [��(Z)].De�nition 15 (Equiv-functor I : C ! DIAGR(C))We de�ne an equiv-functor I : C ! DIAGR(C) as follows. I assigns to each object A of Cthe diagram I(A), and to each arrow f 2 Arr(C)(A;B) the diagram morphism I(f) = (id1� :1� �! 1�; If : IA ��! IB) de�ned by If� = f .I : C ! DIAGR(C)A 7! �
 �	� Af : A! B 7! �
 �	�A �
 �	� B-fWe can check that I is full and faithful.De�nition 16 (Cone) Let � be a diagram over an equiv-category C and C be an object ofC. A cone from � is a diagram morphism � : �! I(C).Remark 17 � : �! I(C) is a diagram morphism if and only if8a : m! n 2 Edges(��); �n � �(a) � �m:De�nition 18 (Equiv-colimiting cone) Let � be a diagram over an equiv-category C. Acone � : � ! I(C) from � is an equiv-colimiting cone if for any cone � : � ! I(D) from �,there exists an arrow  2 Arr(C)(C;D), unique up to equivalence, such that I( ) � � �� �.The object C is called an equiv-colimit of the diagram � and is noted Colim�. The arrow  is called a mediating arrow from � to �. A diagram may have several equiv-colimits whichare then isomorphic. Given a diagram � which has an equiv-colimiting cone, one can choosean equiv-colimit of �. This means1. choose an equiv-colimiting cone � : �! I(C);2. for every cone � : �! I(D), choose a mediating arrow  : C ! D from � to � in C.16



Examples of equiv-colimits{ Given an object A of C, any object isomorphic to A is an equiv-colimit of the diagramI(A).{ An equiv-initial object is an equiv-colimit of the empty diagram .If an equiv-category C has a chosen equiv-initial object, this one is noted �C . Thechosen mediating arrow from �C to any object A is noted jCA : �C ! A.{ An equiv-pushout is an equiv-colimit of a pushout diagram. For instance, the equiv-colimit of PushDiagr (A;B;C; f; g) consists of a triple (P; k1; k2) where P is an objectof C, k1 : B ! P and k2 : C ! P are two arrows of C, such that� k1 � f � k2 � g ;� 8D 2 Obj(C); f 0 2 Arr(C)(B;D); g0 2 Arr(C)(C;D) such that f 0 � f � g0 � g, thereexists an arrow up : P ! D, unique up to equivalence, such that up � k1 � f 0 andup � k2 � g0.If PushDiagr (A;B;C; f; g) has a chosen equiv-colimit, P , k1 and k2 are respectivelynotedpushC(A;B;C; f; g)k C1 (A;B;C; f; g) : B ! pushC(A;B;C; f; g)k C2 (A;B;C; f; g) : C ! pushC(A;B;C; f; g).For all f 0 2 Arr(C)(B;D) and g0 2 Arr(C)(C;D) such that f 0 � f � g0 � g, the chosenmediating arrow from P to D is notedupC(A;B;C;D; f; g; f 0; g0) : pushC(A;B;C; f; g) ! D.De�nition 19 (Finitely cocomplete equiv-category) An equiv-category C is �nitely co-complete if every �nite diagram over C has an equiv-colimit.Let C be a �nitely cocomplete equiv-category. Thus, every diagram � has an equiv-colimiting cone, noted �� : �! I(Colim�). We show that we can extend the map Colim toarrows so that Colim : DIAGR(C)! C is an equiv-functor.Let � and � be two diagrams, with equiv-colimiting cones �� : � ! I(Colim�) and�� : � ! I(Colim�). Let � : � ! � be a diagram morphism. We have a cone �� � � : � !I(Colim�). As �� : �! I(Colim�) is an equiv-colimiting cone from �, there exists an arrowColim� : Colim�! Colim�;unique up to equivalence, such that I(Colim�) � �� �� �� � �.Proposition 20 Let C be a �nitely cocomplete equiv-category.1. Colim : DIAGR(C)! C is an equiv-functor.2. There is a natural transformation � : IdDIAGR(C) �! I � Colim.3. Between the equiv-functors Colim and I, there is an adjunction (Colim a I) whose unitis �. This means that for each object B of C and arrow � : � ! I(B) of DIAGR(C),there exists an arrow  : Colim� ! B of C, unique up to equivalence, such thatI( ) � �� �� �.4. The counit � : Colim� I �! IdC of the adjunction (Colim a I) is a natural isomorphism.17



Proof.1. We just show that Colim is compatible with relations.� �� � ) �� � � �� �� � � (�� is a congruence)) I(Colim�) � �� �� I(Colim �) � �� (de�nition of Colim)) Colim� � Colim � (�� equiv-colimiting cone)2. Immediate by the de�nition of Colim�.3. �� : �! I(Colim�) is an equiv-colimiting cone from �.4. Using the law I� � � I �� idI which relates the unit and the counit of the adjunction, weshow that for all object B of C, �B � (�I(B))� � idB and (�I(B))� � �B � idColim I(B).3.3 Preservation of equiv-colimitsIn this paragraph, we de�ne the image of a diagram and of a diagram morphism over C byan equiv-functor F : C ! C0.De�nition 21 (Image of a diagram) Let � = (��; � : P(��)! C) be a diagram over C.The image of � by F is the diagram over C0F � � = (��; F � � : P(��)! C0):De�nition 22 (Image of a diagram morphism)Let � : �! � = (�� : �� �! ��; � : � ��! � � P(��)) be a diagram morphism over C. Theimage of � by F is the diagram morphism over C0F� : F � �! F � � = (�� : �� �! ��; F� : F � � ��! F � � � P(��));where the generalized natural transformation F� is de�ned by8n 2 Vertices(��); (F�)n = F (�n):Lemma 23 The map DIAGR(F ) : DIAGR(C) ! DIAGR(C0)� 7! F � �� 7! F�is an equiv-functor such that I � F = DIAGR(F ) � I.An equiv-functor preserves a (chosen) equiv-colimit when the image of a (chosen) equiv-colimit is a (chosen) equiv-colimit.De�nition 24 (Equiv-functor preserving an equiv-colimit) Let � be a diagram overC, with an equiv-colimiting cone � : � ! I(C). The equiv-functor F preserves the equiv-colimit of � if F� is an equiv-colimiting cone from F � �.18



Lemma 25 Let C and C0 be two �nitely cocomplete equiv-categories. If an equiv-functorF : C ! C0 preserves all equiv-colimits, then there is a natural isomorphismColim � DIAGR(F ) �= F � Colim:De�nition 26 (Equiv-functor preserving a chosen equiv-colimit)Let � be a diagram over C with a chosen equiv-colimit, i.e. a chosen equiv-colimiting cone� : � ! I(C) and a chosen mediating arrow  : C ! D for any cone � : � ! I(D). Theequiv-functor F preserves the chosen equiv-colimit of � if F� is the chosen equiv-colimitingcone from F � � and F ( ) is the chosen mediating arrow of the cone F�.Let us consider the pushout diagram PushDiagr (A;B;C; f; g). Then, F preserves its chosenequiv-colimit ifF (pushC(A;B;C; f; g)) = pushC0(F (A); F (B); F (C); F (f); F (g))F (k C1 (A;B;C; f; g)) = kC01 (F (A); F (B); F (C); F (f); F (g))F (k C2 (A;B;C; f; g)) = kC02 (F (A); F (B); F (C); F (f); F (g))F (up C(A;B;C;D; f; g; f 0; g0))= upC0(F (A); F (B); F (C); F (D); F (f); F (g); F (f 0); F (g0)).F preserves the chosen initial object �C of C ifF (�C) = �C0F (j CA) = j C0F (A).3.4 FlatteningIn this paragraph, we show that the equiv-category of diagrams DIAGR(C) is �nitely cocom-plete. In other words, every diagram over DIAGR(C), i.e. every object of DIAGR2(C) hasan equiv-colimit. An object of DIAGR2(C)� = (��; � : P(��)! DIAGR(C))is a graph �� whose vertices N are labeled by diagrams �(N) (which are objects of theequiv-category DIAGR(C)), and whose edges A : N ! N 0 are labeled by diagram morphisms�(A) : �(N) ! �(N 0) (which are arrows of DIAGR(C)). We will show that an equiv-colimit of � may be computed by attening this diagram. Intuitively, attening � consistsin considering the union of all diagrams �(N), and in transforming every arrow of DIAGR(C)into a set of arrows of C.The congruence relation in DIAGR2(C) will be noted ���.De�nition 27 (Flattening Apl : DIAGR2(C)! DIAGR(C))Flattening is a map which assigns to each object� = (��; � : P(��)! DIAGR(C))of DIAGR2(C) an object Apl� = � = (��; � : P(��)! C) of DIAGR(C) as follows.{ �� is a graph de�ned by its set of vertices and its set of edges.19



Vertices(��) = f (N;n) ; N 2 Vertices(��); n 2 Vertices(�(N)�) gEdges(��) = f (N; a) : (N;n)! (N;n0) ;N 2 Vertices(��); n; n0 2 Vertices(�(N)�);a : n! n0 2 Edges(�(N)�) g[ f (A;n) : (N;n)! (N 0;�(A)�(n)) ;N;N 0 2 Vertices(��); A : N ! N 0 2 Edges(��);n 2 Vertices(�(N)�) g{ � : P(��)! C is an equiv-functor de�ned on vertices and edges of �� as follows.� Action on vertices: �(N;n) = �(N)(n).� Action on edges: �(N; a) = �(N)(a)�(A;n) = �(A)n:For each vertex N of ��, we de�ne an arrow KN : �(N)! � in DIAGR(C)KN : �(N)! � = (K�N : �(N)� �! ��; KN : �(N) ��! � � P(K�N )):{ The generalized graph morphism K�N : �(N)� �! �� is de�ned byK�N : �(N)� �! ��n 7! (N;n)a : n! n0 7! (N; a) : (N;n)! (N;n0):K�N is actually a graph morphism because each edge of �(N)� is assigned to an edgeof �� (and not to any zigzag).{ The (generalized) natural transformation KN : �(N) ��! � � P(K�N ) assigns to eachvertex n of �(N)� the arrow of C(KN )n = id�(N)(n) = id�(N;n):Note. In the following, we will think of (KN )n as an isomorphism from �(N)(n) to �(N;n)which is consistent with the fact that KN is a diagram morphism from �(N) to �.Lemma 28 The set of arrows fKN : �(N) ! � ; 8N 2 Vertices(��)g de�nes an arrowK : �! I(�) in DIAGR2(C).Proof. We need to show that8A : N ! N 0 2 Edges(��); KN 0 ��(A) �� KN, 8n 2 Vertices(�(N)�); (KN 0)�(A)�(n) ��(A)n �� (KN )nwhich is true by de�nition of �.Theorem 29 DIAGR(C) is �nitely cocomplete, with chosen equiv-colimits.20



Proof. We show that the arrow K : � ! I(�) is an equiv-colimiting cone from �. LetQ : �! I(�) be another cone from �. We de�ne an arrow UP : � ! � as follows.{ UP� : �� �! �� is a generalized graph morphism.� 8(N;n) 2 Vertices(��); UP�(N;n) = Q�N (n).� 8(N; a) : (N;n)! (N;n0) 2 Edges(��);UP�(N; a) = Q�N (a) : Q�N (n)! Q�N (n0):� 8(A;n) : (N;n)! (N 0;�(A)�(n)) 2 Edges(��); UP�(A;n) = Z,where Z : Q�N (n) �! Q�N 0(�(A)(n)) is the zigzag such that(QN 0)�(A)�(n) ��(A)n �� (QN )n [Z]:{ UP : � ��! � � P(UP�) is the generalized natural transformation de�ned by8(N;n) 2 Vertices(��); UP(N;n) = (QN )n � (KN )�1n :We must show that I(UP) � K ��� Q.I(UP) � K ��� Q, 8N 2 Vertices(��); UP � KN �� QN, 8N; 8n 2 Vertices(�(N)�); UP(N;n) � (KN )n �� (QN )nThis last statement is true, by de�nition of UP(N;n).It remains to show that UP is unique up to equivalence. Let � : � ! � such thatI(� ) � K ��� Q. Then,I(UP) � K ��� I(� ) � K) 8N 2 Vertices(��); UP � KN �� � � KN) 8N; 8n 2 Vertices(�(N)�); UP(N;n) � (KN )n �� �(N;n) � (KN )n) 8N; 8n 2 Vertices(�(N)�); UP(N;n) �� �(N;n)) UP �� �At last, the cone K : � ! I(�) and the mediating arrows UP : � ! � de�ne chosen equiv-colimits.Application to pushoutsLet �, �,  be three objects of DIAGR(C) and � : � ! �, � : � !  be two arrows ofDIAGR(C). We consider the pushout diagram � = PushDiagr (�; �; ; �; �) in DIAGR2(C).A chosen equiv-colimit of � is given by the diagramPUSH(�; �; ; �; �) = Apl�.The arrows which make up the equiv-colimiting cone from � are notedK1(�; �; ; �; �) : � ! PUSH(�; �; ; �; � )K2(�; �; ; �; �) :  ! PUSH(�; �; ; �; � ).21



Given two arrows �0 : � ! �0 and � 0 :  ! �0 such that �0 � � �� � 0 � � , the mediating arrowfrom PUSH(�; �; ; �; � ) to �0 is notedUP(�; �; ; �0; �; � ; �0; � 0) : PUSH(�; �; ; �; �)! �0:Lemma 30 The equiv-functor Colim : DIAGR2(C)! DIAGR(C) is such thatColim � DIAGR(I) �= IdDIAGR(C):Theorem 31 (Completion) DIAGR(C) is a completion of C by �nite equiv-colimits. Inother words, let C0 be a �nitely cocomplete equiv-category. Let F : C ! C0 be an equiv-functor.Then there exists an equiv-functor G : DIAGR(C) ! C0, unique up to natural isomorphism,which preserves equiv-colimits and such that G � I �= F .Proof. Let G = Colim�DIAGR(F ). We haveColim � I �= IdC (proposition 20.4)) Colim � I � F �= F) Colim �DIAGR(F ) � I �= F (lemma 23)) G � I �= F (de�nition of G)We now show that G preserves equiv-colimits, i.e. that given a diagram � with an equiv-colimiting cone K : �! I(�), then GK : G �� ! I(G(�)) is an equiv-colimiting cone fromG ��. For all (N;n) 2 Vertices(��), let�(N;n) = (�F��(N))n � F ((KN )�1n ):This de�nes an arrow � : F � � ! G �� such that GK � � �� �F��.Given a cone � : G � � ! I(A), we must show that there exists an arrow  : G(�) ! A,unique up to equivalence, such that I( ) �GK �� �.Existence. As there is a cone � � � : F � � ! I(A), there exists an arrow  : G(�) ! A,unique up to equivalence, such that I( ) � �F�� �� � � �.I( ) � �F�� �� � � �) 8(N;n);  � (�F��)(N;n) � �N � �(N;n)) 8(N;n);  � (�F��)(N;n) � �N � (�F��(N))n � F ((KN )n)�1) 8(N;n);  � (�F��)(N;n) � F ((KN )n) � �N � (�F��(N))n) 8(N;n);  �G(KN ) � (�F��(N))n � �N � (�F��(N))n) 8N; I( �G(KN )) � �F��(N) �� I(�N ) � �F��(N)) 8N;  �G(KN ) � �N) I( ) �GK �� �Unicity. Let  0 : G(�)! A such that I( 0) �GK �� �. Then,I( 0) � �F�� �� I( 0) �GK � � �� � � �)  �  0 22



At last, we must show that G is unique up to natural isomorphism. Let H : DIAGR(C)!C0 be an equiv-functor which preserves equiv-colimits and such that H � I �= F .G � I �= H � I) Colim � DIAGR(G) �DIAGR(I) �= Colim � DIAGR(H) �DIAGR(I)) G � Colim �DIAGR(I) �= H � Colim � DIAGR(I) (lemma 25)) G �= H (lemma 30)3.5 From equiv-categories to categoriesThe de�nitions of equiv-category, equiv-functor and equiv-colimit lead to the usual de�nitionsof category, functor and colimit.Category If C = (Obj(C);Arr(C);�) is an equiv-category, then there is a category C=�whose class of objects is Obj(C) and whose set of arrows from an object A to an object B isthe quotient set Arr(C)(A;B)=�.There is a projection equiv-functor PC : C ! C=� which is the identity on objects andwhich assigns to each arrow f 2 Arr(C)(A;B) its equivalence class [f ] : A! B in C=�.Reciprocally, we can consider any category as an equiv-category by taking the equalityrelation on arrows as congruence relation.Functor Any equiv-functor between two equiv-categories gives rise to a functor betweenthe corresponding categories. Let F : C ! C0 be an equiv-functor. Then there is a uniquefunctor F=� : C=� ! C0=�, which is equal to F on objects and such that8f 2 Arr(C)(A;B); (F=�)([f ]) = [F (f)]:An equiv-functor F : C ! C0 is full (respectively faithful) if and only if the functor F=�is full (respectively faithful).Natural transformation between functors Let F;G : C ! C0 be two equiv-functorsbetween the equiv-categories C and C0. Let � : F �! G be a natural transformation. Then,there is a natural transformation [�] : F=� �! G=� de�ned by [�]A = [�A].Two equiv-functors F and G are naturally isomorphic if and only if F=� and G=� arenaturally isomorphic.Colimit Let C be an equiv-category. An arrow � : � ! I(C) of DIAGR(C) is an equiv-colimiting cone from a diagram � if and only if the arrow PC� : PC��! I(C) of DIAGR(C=�)is a colimiting cone from PC � �.Therefore, an equiv-category C is �nitely cocomplete if and only if the category C=� if�nitely cocomplete.As a category is �nitely cocomplete if and only if it has an initial object and pushouts,an equiv-category C is �nitely cocomplete if and only if C has an equiv-initial object andequiv-pushouts.Remark 32 (Chosen colimits versus chosen equiv-colimits)In an equiv-category, a choice of equiv-colimit for a diagram � consists of1. a choice of an equiv-colimiting cone � : �! I(C);23



2. for any other cone � : � ! I(D), a choice of arrow  : C ! D such that I( ) � � �� �(this arrow is only unique up to equivalence).In a category though, a choice of colimit for a diagram � just consists of a choice of acolimiting cone � : � ! I(C). Then for any other cone � : � ! I(D), there exists a unique : C ! D such that I( ) � � = �.We must note that a choice of equiv-colimits in an equiv-category C does not induce achoice of colimits in the category C=�. Indeed, given a diagram � over C=�, there may existseveral diagrams � over C such that PC �� = �, which induce several di�erent possible choicesfor the colimit of �.3.6 Category of diagrams Diagr(C)The category of diagrams Diagr(C) is the quotient category corresponding to the equiv-category DIAGR(C) Diagr(C) = DIAGR(C)=��:This category is a completion of C by �nite colimits. Diagr(C) is thus �nitely cocomplete,but has no chosen colimits (cf. remark 32).The category Diagr(C) is well known in category theory. Its objects are diagrams. Theset of arrows from a diagram � to a diagram � may be de�ned \concretely" with limits andcolimits of hom-functors asHom(�; �) = Limx2�� Colimy2�� Hom(�(x); �(y)):Our de�nition is very similar to the \abstract" de�nition proposed in [35] (see also [2]), exceptthat in [35], a diagram morphism � : �! � consists of a set off�n; n 2 Vertices(��)gwhere �n is an equivalence class of arrows modulo �� from �(n) to �(n0).In this section, we actually presented the category Diagr(C) as a quotient of the \syn-tactic" equiv-category DIAGR(C) by ��. DIAGR(C) is \syntactic" in the sense that we havean e�ective representation of its arrows. The advantage of our (long) de�nition is be able tomanipulate arrows of Diagr(C) by representatives taken in DIAGR(C). Therefore, all compu-tations (like those described in section 5) take place in the equiv-category DIAGR(C), whilethe results may be interpreted in the category Diagr(C).4 The Term Language TERM(C0)The aim of this section is to de�ne a term language for describing colimit constructions. Webuild an equiv-category TERM(C0) whose objects represent colimit constructions, and arrowscolimiting arrows between colimit constructions.We wish to be able to represent any colimit constructions of base speci�cations relatedby base speci�cation morphisms. As a category is �nitely cocomplete if and only if it has aninitial object and pushouts, we choose to have a representation for these two constructions.Therefore, we de�ne a term � to represent the initial object, and for all objects A, B,C and arrows f : A ! B, g : A ! C, we de�ne a term push(A;B;C; f; g) to representthe pushout of the diagram PushDiagr (A;B;C; f; g). We will also need terms to denotespeci�cation morphisms. 24



4.1 Problem of circularityLet C0 be a small category (that we will consider as an equiv-category). The aim is to de�nean equiv-category which contains C0, an equiv-initial object and equiv-pushouts.Equiv-initial objectFor the equiv-initial object, we just have to introduce a new object � and for every objectA an arrow j(A) : � ! A. Moreover, we also need to introduce for all f; g : � ! A therelation f � g.Equiv-pushoutsGiven three objects A, B, C and two arrows f : A! B, g : A! C, we need to introduce anew object push(A;B;C; f; g);two arrows k1(A;B;C; f; g) : B ! push(A;B;C; f; g)k2(A;B;C; f; g) : C ! push(A;B;C; f; g);and the relation k1(A;B;C; f; g) � f � k2(A;B;C; f; g) � g:Moreover, given two arrows f 0 : B ! D and g0 : C ! D such that f 0 � f � g0 � g, we need tointroduce an arrow up(A;B;C;D; f; g; f 0; g0) : push(A;B;C; f; g)! Dand two relations up(A;B;C;D; f; g; f 0; g0) � k1(A;B;C; f; g) � f 0up(A;B;C;D; f; g; f 0; g0) � k2(A;B;C; f; g) � g0:Introducing the arrow up(A;B;C;D; f; g; f 0; g0) raises a problem. Until now, we have �rstde�ned terms and then relations on these terms. Here, we need to introduce a new term onlyif a relation is satis�ed. There is therefore a circularity between the de�nition of terms andthe de�nition of relations.Generalized algebraic theories, which are a generalization of multi-sorted algebras, havebeen proposed by Cartmell to specify dependent types, i.e. types parameterized by terms [9].For instance, the \type" Arr(A;B) depends on both terms A and B. J.-C. Reynaud proposesto use Cartmell's dependent types to specify colimit constructions [30, 31, 32]. The syntaxpresented here is widely inspired by his work. However, Cartmell's dependent types cannotspecify terms which are conditioned by a relation between two other terms. J.-C. Reynaudgets round the di�culty by constructing a concrete, i.e. semantic, �nitely cocomplete category[32]. T. Streicher and M. Wirsing, who also advocate the use of dependent types to describecolimit constructions [33] do not make it clear how they solve this circularity problem.Besides, H. Ehrig et al. [15] also propose a syntax to describe colimit constructions. Butas their syntax has no representation for all up arrows, it is not powerful enough to describeall colimit constructions.One solution is to specify a �nitely cocomplete equiv-category without up arrows, byreplacing them by other arrows whose existence is not conditioned by any relation. This25



approach has been proposed by F. Cury [10], who introduces two arrows called p and d ,which do not depend on any relation, and allow to reconstruct a posteriori any up arrow.Here, we wish to stay close to the classic de�nition of pushouts and therefore to keepthe up arrows. For this reason, we propose a strati�ed construction of the equiv-categoryTERM(C0), by de�ning a sequence of equiv-categories (Ci)i�0 such that the introduction ofan up arrow in an equiv-category Ci only depends on a relation in Ci�1. The equiv-categoryof terms is then the union of all equiv-categories Ci.4.2 Equiv-categories CiThe sequence of equiv-categories Ci = (Obj(Ci);Arr(Ci);�i) is de�ned by induction over i � 1by the following rules.Rules de�ning the set Obj(Ci) A 2 Obj(C0)A 2 Obj(Ci) (1)� 2 Obj(Ci) (2)A;B;C 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)push(A;B;C; f; g) 2 Obj(Ci) (3)Rules de�ning the family of sets Arr(Ci)A;B 2 Obj(C0) ; f 2 Arr(C0)(A;B)f 2 Arr(Ci)(A;B) (4)A;B;C 2 Obj(Ci) ; f 2 Arr(Ci)(A;B) ; g 2 Arr(Ci)(B;C)g � f 2 Arr(Ci)(A;C) (5)A 2 Obj(Ci)id(A) 2 Arr(Ci)(A;A) (6)A 2 Obj(Ci)j(A) 2 Arr(Ci)(�; A) (7)A;B;C 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)k1(A;B;C; f; g) 2 Arr(Ci)(B; push(A;B;C; f; g)) (8)A;B;C 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)k2(A;B;C; f; g) 2 Arr(Ci)(C; push(A;B;C; f; g)) (9)A;B;C;D 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)f 0 2 Arr(Ci�1)(B;D) ; g0 2 Arr(Ci�1)(C;D) ; f 0 � f �i�1 g0 � gup(A;B;C;D; f; g; f 0; g0) 2 Arr(Ci)(push(A;B;C; f; g);D) (10)
26



Rules de�ning the family of relations �iA;B 2 Obj(C0) ; f; g 2 Arr(C0)(A;B) ; f �0 gf �i g (11)A;B 2 Obj(Ci) ; f 2 Arr(Ci)(A;B)f �i f (12)A;B 2 Obj(Ci) ; f; g 2 Arr(Ci)(A;B) ; f �i gg �i f (13)A;B 2 Obj(Ci) ; f; g; h 2 Arr(Ci)(A;B) ; f �i g ; g �i hf �i h (14)A;B;C 2 Obj(Ci) ; f; f 0 2 Arr(Ci)(A;B)g; g0 2 Arr(Ci)(B;C) ; f �i f 0 ; g �i g0g � f �i g0 � f 0 (15)A;B;C;D 2 Obj(Ci)f 2 Arr(Ci)(A;B) ; g 2 Arr(Ci)(B;C) ; h 2 Arr(Ci)(C;D)(h � g) � f �i h � (g � f) (16)A;B 2 Obj(Ci) ; f 2 Arr(Ci)(A;B)f � id(A) �i f (17)A;B 2 Obj(Ci) ; f 2 Arr(Ci)(A;B)id(B) � f �i f (18)A 2 Obj(Ci) ; f; g 2 Arr(Ci)(�; A)f �i g (19)A;B;C 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)k1(A;B;C; f; g) � f �i k2(A;B;C; f; g) � g (20)A;B;C;D 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)f 0 2 Arr(Ci�1)(B;D) ; g0 2 Arr(Ci�1)(C;D) ; f 0 � f �i�1 g0 � gup(A;B;C;D; f; g; f 0; g0) � k1(A;B;C; f; g) �i f 0 (21)A;B;C;D 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)f 0 2 Arr(Ci�1)(B;D) ; g0 2 Arr(Ci�1)(C;D) ; f 0 � f �i�1 g0 � gup(A;B;C;D; f; g; f 0; g0) � k2(A;B;C; f; g) �i g0 (22)A;B;C 2 Obj(Ci�1) ; f 2 Arr(Ci�1)(A;B) ; g 2 Arr(Ci�1)(A;C)D 2 Obj(Ci) ; u; v 2 Arr(Ci)(push(A;B;C; f; g);D)u � k1(A;B;C; f; g) �i v � k1(A;B;C; f; g)u � k2(A;B;C; f; g) �i v � k2(A;B;C; f; g)u �i v (23)Lemma 33 For all i � 0,1. Obj(Ci) � Obj(Ci+1);2. Arr(Ci)(A;B) � Arr(Ci+1)(A;B);3. 8f; g 2 Arr(Ci)(A;B); f �i g ) f �i+1 g:27



Proof. By induction on i. This result is obvious for i = 0. For the inductive step, we provethe three points in parallel, by structural induction on the de�nition of Obj(Ci), Arr(Ci) and�i.Lemma 34 For all i � 0,1. Ci is an equiv-category ;2. if i � 1, then � is equiv-initial in Ci.Proof. Obvious from the rules de�ning Obj(Ci), Arr(Ci), and �i.Remark 35 The statement push(A;B;C; f; g) 2 Obj(Ci) does not mean that the objectpush(A;B;C; f; g) is an equiv-pushout in Ci. Indeed we have delayed the introduction ofsome up arrows in order to avoid circularity in our de�nition.For all i � 0, the equiv-category Ci is a conservative extension of C0, which means thatwe do not introduce in Ci new arrows between objects of C0, and that we do not introducenew relations between arrows of C0.For all i � 0, let Ji be the inclusion equiv-functor of C0 into Ci.Theorem 36 (Ci is a conservative extension of C0)For all i � 0, the equiv-functor Ji : C0 ! Ci is full and faithful.This theorem is equivalent to the following result:8i � 0; 8A;B 2 Obj(C0);1. (Ji is full) 8h 2 Arr(Ci)(A;B); 9h0 2 Arr(C0)(A;B) ; h �i h02. (Ji is faithful) 8h0; h00 2 Arr(C0)(A;B); h0 �i h00 ) h0 �0 h00The proof, which consists of tedious inductions, is too long to be written here and is developedin [28].4.3 Equiv-category of terms TERM(C0)De�nition 37 We de�ne the equiv-category of termsTERM(C0) = (Obj(TERM(C0));Arr(TERM(C0));�)as the union of all equiv-categories Ci.{ The set of objects of TERM(C0) isObj(TERM(C0)) = 1[i=0Obj(Ci):{ Let A;B 2 Obj(TERM(C0)). There exists k � 0 such that A;B 2 Obj(Ck). The set ofarrows from A to B isArr(TERM(C0))(A;B) = 1[i=kArr(Ci)(A;B):28



{ Let f; g 2 Arr(TERM(C0))(A;B). There exists k � 0 such that f; g 2 Arr(Ck)(A;B).By de�nition, f � g if and only if f �k g.From lemma 33, Obj(TERM(C0)), Arr(TERM(C0)) and � are well de�ned, and from lemma34.1, TERM(C0) is an equiv-category.Theorem 38 TERM(C0) is a �nitely cocomplete equiv-category.Proof. The object � is equiv-initial in TERM(C0). 8A;B;C 2 Obj(TERM(C0)), f 2Arr(TERM(C0))(A;B), g 2 Arr(TERM(C0))(A;C), the triple(push(A;B;C; f; g); k 1(A;B;C; f; g); k2(A;B;C; f; g))is an equiv-pushout. Therefore, TERM(C0) has all �nite equiv-colimits.Let J : C0 ! TERM(C0) be the inclusion equiv-functor of C0 into TERM(C0).Theorem 39 (TERM(C0) is a conservative extension of C0)The equiv-functor J : C0 ! TERM(C0) is full and faithful.Proof. This is a consequence of theorem 36.Theorem 40 TERM(C0) is the equiv-category freely generated over C0 by a chosen equiv-initial object and chosen equiv-pushouts. In other words, let F : C0 ! E be an equiv-functor,E be an equiv-category with a chosen equiv-initial object and chosen equiv-pushouts. Thenthere exists a unique equiv-functor G : TERM(C0)! Ewhich preserves the chosen equiv-initial object and chosen equiv-pushouts and such thatG � J = F:Proof sketch. We construct the equiv-functor G : TERM(C0) ! E by induction on thestructure of objects and arrows of TERM(C0), such that1. 8A 2 Obj(C0); G(A) = F (A)2. G(�) = �E3. G(push(A;B;C; f; g)) = pushE(G(A); G(B); G(C); G(f); G(g))4. 8f 2 Arr(C0)(A;B); G(f) = F (f)5. G(g � f) = G(g) �G(f)6. G(id(A)) = idG(A)7. G(j(A)) = j EA8. G(k1(A;B;C; f; g)) = kE1 (G(A); G(B); G(C); G(f); G(g))9. G(k2(A;B;C; f; g)) = kE2 (G(A); G(B); G(C); G(f); G(g))29



10. G(up(A;B;C;D; f; g; f 0; g0))= upE(G(A); G(B); G(C); G(D); G(f); G(g); G(f 0); G(g0)):We show that G is compatible with the congruences in TERM(C0) and E by induction onthe length of the proof that h � h0 in TERM(C0). Then, G is an equiv-functor because ofconditions 5 and 6; G � J = F because of 1 and 4; G preserves the chosen initial objectbecause of 2 and 7; G preserves chosen equiv-pushouts because of 3, 8, 9 and 10.4.4 Category of terms Term(C0)The category of terms Term(C0) is the quotient categoryTerm(C0) = TERM(C0)=�:Obviously, from theorem 38, Term(C0) is a �nitely cocomplete category. However, thecategory Term(C0) has no chosen pushout. Indeed, if f � f 0 and g � g0 in TERM(C0), thenpush(A;B;C; f; g) and push(A;B;C; f 0; g0) are two di�erent choices of pushouts of f = f 0 andg = g0 in Term(C0) (cf. remark 32). Therefore, Term(C0) is not freely generated by a choseninitial object and chosen pushouts. However, it is possible to construct a category freelygenerated by a chosen initial object and chosen pushouts by identifying the multiple choicesof pushouts. This construction, inspired by F. Cury's \object rewriting" [10], is described in[28].Categories freely generated by certain limits or colimits correspond to the type of asketch introduced by C. Ehresmann [14]. Here, the advantage of de�ning the equiv-categoryTERM(C0) is to get an e�ective representation of arrows.5 From terms to diagramsIn this section, we show how to associate with each speci�cation (represented by an objectof TERM(C0)) a diagram, and with each speci�cation morphism (represented by an arrow ofTERM(C0)) a diagram morphism.5.1 Equiv-functor D : TERM(C0)! DIAGR(C0)The equiv-category DIAGR(C0) has a chosen equiv-initial object and chosen equiv-pushouts(theorem 29). Therefore, from theorem 40, there exists a unique equiv-functorD : TERM(C0)! DIAGR(C0)such that1. 8A 2 Obj(C0); D(A) = I(A)2. D(�) =3. D(push(A;B;C; f; g))= PUSH(D(A);D(B);D(C);D(f);D(g))= AplPushDiagr (D(A);D(B);D(C);D(f);D(g))4. 8f 2 Arr(C0)(A;B); D(f) = I(f) 30



5. D(g � f) = D(g) � D(f)6. D(id(A)) = IdD(A)7. D(j(A)) = JD(A)8. D(k1(A;B;C; f; g)) = K1(D(A);D(B);D(C);D(f);D(g))9. D(k2(A;B;C; f; g)) = K2(D(A);D(B);D(C);D(f);D(g))10. D(up(A;B;C;D; f; g; f 0; g0))= UP(D(A);D(B);D(C);D(D);D(f);D(g);D(f 0);D(g0)):The rules 1 and 4 are equivalent to D � J = I.These rules give us a procedure to compute the diagram associated with a term. Atlast, there is of course a functor D=� : Term(C0) ! Diagr(C0) which corresponds to theequiv-functor D : TERM(C0)! DIAGR(C0).5.2 ExampleAs an example, we compute the diagram associated with the speci�cation R3 of rings whichwas de�ned as follows (cf. section 2).P = push(S;M;G; b � s;m � b � s)B2 = push(�; B;B; j(B); j(B))u1 = up(�; B;B; P; j(B); j(B); k1(P ) � b; k2(P ) �m � b) : B2 ! Pu2 = up(�; B;B;D; j(B); j(B);m�;m+) : B2 ! DR3 = push(B2; P;D; u1; u2)Let us start by computing the diagram associated with the speci�cation P of pseudo-rings.D(P ) = AplPushDiagr(D(S);D(M);D(G);D(b � s);D(m � b � s))D(S) = �
 �	� SD(M) = �
 �	�MD(G) = �
 �	� GD(b � s) = �
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� G������b�sAAAAAUm�b�s = �
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Let us compute the diagram associated with the speci�cation B2.D(B2) = AplPushDiagr (D(�);D(B);D(B);D(j(B));D(j(B)))D(�) =D(B) = �
 �	� BD(j(B)) =!�
 �	� BD(B2) = Apl� �
� �
� �
� ��
 �	�B�
 �	�B = � �

� �
�B�BTo �nd the diagram morphism associated with the speci�cation morphism u1 : B2 ! P , wemust �rst calculate D(k1(P ) � b) and D(k2(P ) �m � b).D(k1(P ) � b) = K1(D(S);D(M);D(G);D(b � s);D(m � b � s)) � D(B)

=
�
 �	�B

� �
� �

�S �M
� G������b�sAAAAAUm�b�s

-b
D(k2(P ) �m � b) = K2(D(S);D(M);D(G);D(b � s);D(m � b � s))� D(m) � D(b)

= �
 �	�B � �
� �

�S �M
� G������b�sAAAAAUm�b�s-m�bWe can now compute the diagram morphism associated with u1 : B2 ! P .
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D(u1) = D(up(�; B;B; P; j(B); j(B); k1(P ) � b; k2(P ) �m � b))= UP(D(�);D(B);D(B);D(P );D(j(B));D(j(B));D(k1(P ) � b);D(k2(P ) �m � b))
= � �
� �
�B�B � �

� �
�S �M

� G������b�sAAAAAUm�b�s����������:XXXXXXXXXXz
b

m�bLet us compute the diagram morphism associated with u2 : B2 ! D.D(u2) = D(up(�; B;B;D; j(B); j(B);m�;m+))= UP(D(�);D(B);D(B);D(D);D(j(B));D(j(B));D(m�);D(m+))D(D) = �
 �	� DD(m�) = �
 �	�B �
 �	� D-m�D(m+) = �
 �	�B �
 �	� D-m+D(u2) = � �
� �
�B�B �
 �	� D�����*HHHHHjm+m�

At last, we compute the diagram associated with the speci�cation R3.
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D(A3) = D(push(B2; P;D; u1; u2))= AplPushDiagr (D(B2);D(P );D(D);D(u1);D(u2))
= Apl
� �

� �

� �

� �
� �
� �
�B�B

� �
� �

�S �M
� G������b�sAAAAAUm�b�s

�
 �	� D@@@@@@@@@@R
�������3HHHHHHHHHHj-
m�b

bm+m�
= � �
� �

� G� � D� �M
AAUm�b���m+AAUm����b�S BB������b�s@@@@@Rm�b�s�3Therefore, the diagram associated with the speci�cation R3 is �3 (cf. section 2).If we compute the diagram associated with R4, we �nd a diagram �04, which is isomorphic to�4.

D(A4) =
� �

� �
�B�S �B�B �M
AAUs���sAAUidB
���b
� G�B AAUm�b���idB

�B�B
� idB� idB � DAAUm����m+

�04
�= � �
� �

� G� � D� �M
AAUm�b���m+AAUm����bB

B�S ���sAAUs
�4

5.3 Equivalence of terms and diagramsIn this paragraph, we show that the equiv-categories TERM(C0) and DIAGR(C0) are equiva-lent. Intuitively, this means that these equiv-categories have the same equivalence classes ofisomorphic objects.De�nition 41 (Equivalence of equiv-categories) Two equiv-categories C and C0 areequivalent if and only if there exist two equiv-functors F : C ! C0 and G : C0 ! C suchthat F �G �= IdC0 and G � F �= IdC . 34



Lemma 42 There exists an equiv-functor T : DIAGR(C0) ! TERM(C0), which preserves�nite equiv-colimits, such that T � I �= J .Proof. From theorem 38, the equiv-category TERM(C0) is �nitely cocomplete. So theresult is immediate from theorem 31.Lemma 43 We have the following natural isomorphisms:1. D � T � I �= I;2. T � D � J �= J .Proof. This is an immediate consequence of T � I �= J and D � J = I.Proposition 44 There is a natural isomorphism D � T �= IdDIAGR(C0).Proof. From lemma 43.1, we have D � T � I �= I. Moreover the equiv-functors D � T andIdDIAGR(C0) preserve �nite equiv-colimits. Therefore, from theorem 31, D � T �= IdDIAGR(C0).Proposition 45 There is a natural isomorphism T � D �= IdTERM(C0).Proof. We construct a natural transformation 	 : T �D �! IdTERM(C0). For every object Uof TERM(C0), we de�ne by induction on the structure of U an isomorphism 	U : T (D(U))!U , and, in parallel, we show that 	 is a natural transformation by induction on the structureof arrows of TERM(C0).1. U = J(A), where A is an object of C0. From lemma 43.2, T � D � J �= J . Therefore,there exists an isomorphism 	U : T (D(U))! U .2. U = �. T (D(�)) = T () �= � because T preserves the initial object. Let 	� :T (D(�))! � be this isomorphism.3. U = push(A;B;C; f; g). By induction hypothesis, we have three isomorphisms 	A :T (D(A)) ! A, 	B : T (D(B)) ! B and 	C : T (D(C)) ! C such that f � 	A =	B � T (D(f)) and g �	A = 	C � T (D(g)). As T and D preserve pushouts, the triple(T (D(push(A;B;C; f; g)); T (D(k1(A;B;C; f; g)); T (D(k2(A;B;C; f; g)))is a pushout of the diagramPushDiagr (T (D(A));T (D(B));T (D(C));T (D(f));T (D(g))):Therefore, there is a mediating arrow	U : T (D(push(A;B;C; f; g))) ! push(A;B;C; f; g);unique up to equivalence, which is an isomorphism, and such that	U � T (D(k1(A;B;C; f; g)) � k1(A;B;C; f; g) �	B	U � T (D(k2(A;B;C; f; g)) � k2(A;B;C; f; g) �	C :It remains to show that 	 is a natural transformation, which is done by induction onthe structure of arrows of TERM(C0) (rules 4{10).35



From propositions 44 and 45, we deduce the following theorem:Theorem 46 The equiv-categories TERM(C0) and DIAGR(C0) are equivalent.Intuitively, the equiv-categories TERM(C0) and DIAGR(C0) have the same classes of isomor-phic objects. This implies that two objects of TERM(C0) (representing two modular speci�-cations) are isomorphic if and only if their associated diagrams are isomorphic in DIAGR(C0),and that two arrows of TERM(C0) (representing two speci�cation morphisms) are equivalentif and only if their associated diagram morphisms are equivalent in DIAGR(C0).We have shown that the equiv-categories TERM(C0) and DIAGR(C0) are equivalent. How-ever, we must note that TERM(C0) and DIAGR(C0) are not isomorphic, because they havenot the same choices of equiv-colimits. For instance, push(A;B;C; f; g) and push(A;C;B; g; f)are two di�erent equiv-pushouts in the equiv-category TERM(C0) which are sent to the samediagram in DIAGR(C0).Two equiv-categories C and C0 are equivalent if and only if their corresponding quotientcategories C=� and C0=� are equivalent. Therefore, from theorem 46, we can deduce that thecategories Term(C0) and Diagr(C0) are equivalent.6 Normalization of DiagramsWe have seen that two modular speci�cations are isomorphic in TERM(C0) if and only if theirassociated diagrams are isomorphic. However, two isomorphic diagrams need not be identical.For example, �1, �2, �3 and �4 are di�erent diagrams which are isomorphic in DIAGR(C0).In this section, we propose a normalization of diagrams and show that two diagrams areisomorphic if and only if they have the same normal form. We will suppose that the basecategory C0 is �nite and cycle free, because we have not solved the problem in the generalcase.De�nition 47 (Skeletal (equiv-)category) An (equiv-)category C is skeletal if for all ob-jects A and B of C, A �= B ) A = B.Any category C0 has an equivalent skeletal category C00 which may be constructed bychoosing a representative in every equivalence class of isomorphic objects. Given an objectA, let Sk(A) be the chosen object for the class of objects isomorphic to A, and �A : A! Sk(A)the corresponding isomorphism. Then, there is a functor Sk : C0 ! C00 de�ned as follows.Sk : C0 ! C00A 7! Sk(A)f : A! B 7! �B � f � ��1AFor any diagram � = (��; � : P(��)! C0) over C0, Sk � � = (��; Sk � � : P(��)! C00) isa diagram over C00 which is isomorphic to �.6.1 HypothesisFor the rest of the paper, we make the following assumptions.1. The category C0 is �nite i.e. the set of objects and the set of arrows of C0 is �nite.2. The category C0 is cycle free, i.e. for every arrow f : A! A of C0, f = idA.36



3. The category C0 is skeletal.The hypothesis that C0 is skeletal is natural since we need a normal form for every object ofC0 if we want to get a chance to have a normal form for diagrams over C0.Lemma 48 Let A, B be two objects, and f : A! B, g : B ! A be two arrows of C0. Then,A = B and f = g = idA.Proof. Straightforward from hypothesis 2 and 3.6.2 Completion of diagramsWe �rst de�ne complete diagrams and show that a diagrammay be completed, i.e. transformedinto an isomorphic complete diagram.De�nition 49 (Complete diagram) A diagram � is complete if{ � has no edge labeled by an identity arrow: 8a : m! n; �(a) 6= id�(m);{ � contains no couple of edges with same source and target which are labeled by thesame arrow: 8a1; a2 : m! n 2 Edges(��); �(a1) 6= �(a2);{ � contains all compositions: 8a1 : n0 ! n1; a2 : n1 ! n2 2 Edges(��);9a : n0 ! n2 2 Edges(��) ; �(a) = �(a2) � �(a1);{ � contains all right factorizations: 8a1 : n1 ! n0, a2 : n2 ! n0 2 Edges(��), if9h : �(n1)! �(n2) in C0 such that �(a2) � h = �(a1), then9a : n1 ! n2 2 Edges(��) ; �(a) = h.Proposition 50 (Completion) For every diagram �, there exists a complete diagramComplete(�)such that � �= Complete(�).Proof. From �, we construct a new diagram by iterating the following transformations.1. For every a : m! n 2 Edges(��) such that �(m) = �(n) and �(a) = id�(m), we removethe edge a of �. If m 6= n, then we also merge m and n.2. For all a1; a2 : m! n 2 Edges(��) such that �(a1) = �(a2), we remove the edge a2.3. For all 8a1 : n0 ! n1; a2 : n1 ! n2 2 Edges(��), if there is no edge a : n0 ! n2 2Edges(��) labeled by �(a2) � �(a1), we add such an edge in �.4. 8a1 : n1 ! n0; a2 : n2 ! n0 2 Edges(��), if there exists h : �(a1) ! �(a2) in C0 and ifthere is no edge a : n1 ! n2 2 Edges(��) labeled by h, we add such an edge in �.We can check that{ this procedure stops, because the category C0 is �nite;{ every transformation yields an isomorphic diagram.Therefore, we end up with a complete diagram Complete(�) which is isomorphic to �.37



For example, Complete(�1) = Complete(�3) = Complete(�4) = �0. Therefore, �1 �= �3 �= �4.The diagram �2 is complete: Complete(�2) = �2.

� �
� �

� G� � D� �M
AAUm�b���m+AAUm����b�S BB���3sQQQss������b�s@@@@@Rm�b�s -m��s

�0 � �
� �

� G� � D� �M
AAUm�b���m+AAUm����bBB �26.3 NormalizationCompleting a diagram allows us to get a more \canonical" form for diagrams. However, twocomplete diagrams may be isomorphic without being identical e.g. �2 and �0.De�nition 51 (Elementary zigzag) An elementary zigzag of a graph �� is a zigzagm0 a0 � m1 a1�! m2of �� such that a0 and a1 are distinct edges.Intuitively, a zigzag Z is included in a zigzag Z 0 if Z is a \sub-zigzag" of Z 0.De�nition 52 (Inclusion of zigzag)Let Z = (k; ZV ; ZE) and Z 0 = (k0; Z 0V ; Z 0E) be two zigzags of a graph ��, withZV = (n0; n1; : : : ; nk) and ZE = (a0; a1; : : : ; ak�1) ;Z 0V = (n00; n01; : : : ; n0k0) and Z 0E = (a00; a01; : : : ; a0k0�1):Z � Z 0 if there exists an integer j, 0 � j � k0 � k, such that{ 8i; 0 � i � k; ni = n0i+j ;{ 8i; 0 � i � k � 1; ai = a0i+j .Note that Z � Z 0 implies k � k0.Let � = (��; � : P(��)! C0) be a diagram. Elementary zigzags of � are elementary zigzagsof ��. We now de�ne an ordering on elementary zigzags of a complete diagram.De�nition 53 Let � be a complete diagram over C0. We de�ne an ordering � on elementaryzigzags of � as follows.Let Z1 and Z2 be two elementary zigzags. Let Z1 = m0 a0 � m1 a1�! m2.{ We have Z1 < Z2 if there exists a zigzag Z 0 = (k0; Z 0V ; Z 0E), with Z 0V = (n00; n01; : : : ; n0k0)such that 38



� m0 = n00 and m2 = n0k0 ;� Z2 � Z 0 ;� �(a0) �� �(a1) [Z 0] ;� 8i; 0 � i � k0; m1 6= n0i.{ We have Z1 � Z2 if Z1 = Z2 or Z1 < Z2.
�m1 �m2 = n04�n03�n02�n01�m0 = n00�������������������������@@@@@@@@@@@@@@@@@@@@@@@@@������@@@@@R����3b1 -b2QQQQsb3 ���AAU���AAU

a0a1
9>>>>>=>>>>>;Z29>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;Z 0

| {z }Z1Proposition 54 The relation � is an ordering.For example, in the diagram �0, we haveM b�s � S m�b�s�! G � M b � B m��! D;M b�s � S m�b�s�! G � D m+ � B m�b�! G;M b�s � S m��s�! D � M b � B m��! D;D m��s � S m�b�s�! G � D m+ � B m�b�! G:The set of elementary zigzags of a diagram � is �nite, therefore it contains maximalelements. For example, the elementary zigzagsM b � B m��! D; D m+ � B m�b�! Gare maximal in �0. ButM b�s � S m�b�s�! G; M b�s � S m��s�! D; D m��s � S m�b�s�! Gare not.De�nition 55 (Terminating vertex) A terminating vertex of a graph �� is a vertex nsuch that there is no edge with source n in ��.De�nition 56 (Link) A link of a complete diagram � is a maximal elementary zigzag of �Z = m0 a0 � m1 a1�! m2such that m0 and m2 are terminating vertices of ��.The set of links of a complete diagram is computable, because the set of elementaryzigzags is �nite, and the ordering is decidable.39



Lemma 57 Let � be a complete diagram, n, n0 be two vertices of ��, and u : A ! �(n),v : A! �(n0) be two arrows of C0. Then,u �� v [Z] ) u �� v [Z 0]where Z 0 = m0 a0 � m1 a1�! : : : ak�2 � mk�1 ak�1�! mk is a zigzag such that for each i verifying0 � i � (k � 2)=2, we have a2i : m2i+1 ! m2i, a2i+1 : m2i+1 ! m2i+2 and m2i+1 a2i �m2i+1 a2i+1�! m2i+2 is a link of �.De�nition 58 (Normal form) A diagram � is in normal form if{ every vertex of �� is a terminating vertex, or belongs to a link of �;{ every edge of �� belongs to a link of �.Proposition 59 (Normalization) For every diagram �, there exists a diagram N (�) innormal form such that � �= N (�).Proof. We consider the setE := fa 2 Edges(�); a does not belong to a link of �g:N (�) is the diagram which is obtained by removing all edges of E from �. We prove thatwe indeed get a diagram which is isomorphic to � by induction on Card(E). The importantpoint is to \suppress edges in � in the right order".Base step. If E = ;, then � is in normal form.Inductive step. We construct a diagram �0 by removing an edge a of E from �. Let m bea vertex of �� such that there exists an edge a0 : m! n0 2 E. Such a vertex exists because�� has no cycle. Then, let F = fai : m! ni; ai 2 Eg � E. We have of course F 6= ;.1. If Card(F ) = 1, we have a unique edge a : m! n in F . We construct a diagram �0 byremoving the vertex m and the edge a from �.We have an isomorphism � : � ! �0 such that ��(m) = n, ��(a) = 0n and �m = �(a).2. If Card(F ) � 2 and if there exists in F an edge a : m ! n such that n is not aterminating vertex, then we construct a diagram �0 from � by removing the edge a.There exist two edges a1 : n! n1; a2 : m! n1 2 Edges(��)such that �(a1) � �(a) = �(a2)We have an isomorphism � : � ! �0 such that ��(a) = m a2�! n1 a1 � n.3. If Card(F ) � 2 and if every edge ai : m! ni is such that n is a terminating vertex, leta : m! n; a0 : m! n0 2 F . As the elementary zigzagn a � m a0�! n0is not maximal, there exists a zigzag Z : n �! n0 in �, which only contains links(lemma 57), and such that �(a) �� �(a0) [Z]. Then, we construct a diagram �0 from �by removing the edge a.We have an isomorphism � : � ! �0 such that ��(a) = m a0�! n0 Z � n.40



Corollary 60 Any two diagrams having the same normal form are isomorphic.Back to the example, we have N (�0) = �2 and N (�2) = �2. Therefore, �0 �= �2, hence�1 �= �2 �= �3 �= �4.Theorem 61 Let � and � be two diagrams. Then, � �= � , N (�) = N (�).Proof. The ( part comes from corollary 60. It remains to show the ) part. We cansuppose w.l.o.g. that � and � are complete. Let � : �! � be an isomorphism in DIAGR(C0).1. We show that for any terminating vertex n of ��, ��(n) is a terminating vertex of ��,�(n) = �(��(n)) and �n = id�(n).2. Let m0 a0 � m1 a1�! m2be a link of �. Let n0 = ��(m0) and n2 = ��(m2). Thus, the vertices n0 and n2 areterminating vertices of �� and�(m0) = �(n0); �(m2) = �(n2); �m0 = id�(m0); �m2 = id�(m2):Then, we prove that there exists a vertex n1 in �� such that �(m1) = �(n1). At last,we show that there exist two edges b0 : n1 ! n0 and b1 : n1 ! n2 in �� such that�(a0) = �(b0) and �(a1) = �(b1).Eventually, the diagrams � and � have the same terminating vertices and the same links.Therefore, N (�) = N (�).7 ConclusionIn this paper, we proposed a theoretical framework to study modular speci�cations. Werevisited a classic idea in algebraic speci�cation, which consists in modeling the compositionof modular speci�cations by means of colimits of diagrams.We proposed a term language to represent speci�cations built from a category of basespeci�cations C0 with pushout constructions. This language is formally characterized by a�nitely cocomplete equiv-category TERM(C0), which is freely generated over C0 by a chosenequiv-initial object and chosen equiv-pushouts.We proposed to represent terms denoting modular speci�cations as diagrams and thusde�ned an equiv-category DIAGR(C0) of diagrams. This equiv-category is a completionof C0 by �nite equiv-colimits. The association of terms with diagrams is described by anequiv-functor D : TERM(C0)! DIAGR(C0) which de�nes an equivalence between the equiv-categories TERM(C0) and DIAGR(C0).We made a careful distinction between syntactic entities, i.e. objects and arrows inan equiv-category, which may be handled e�ectively, and their meaning in the correspondingcategory. This e�ective representation of terms in TERM(C0), and of diagrams in DIAGR(C0),allowed us to de�ne an equivalence between both equiv-categories as a computable equiv-functor D.At last, we gave a procedure to compute the normal form of a diagram, in the case whenthe base category is skeletal, �nite and cycle free. In this case, we can thus decide whethertwo speci�cations are related by a construction isomorphism by comparing the normal formof their associated diagrams. 41
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