LSR

Laboratoire Logiciels, Systemes, Réseaux

RAPPORT DE RECHERCHE

Modular specifications: constructions with
finite colimits, diagrams, isomorphisms

Catherine Oriat

RR 964-I-LSR 3 Novembre 1996

BP 53 - 38041 Grenoble Cedex 9 - France

Fédération IMAG

Centre National de la Recherche Scientifique - Institut National Polytechnique de Grenoble -
Université Joseph Fourier Grenoble |

Modular specifications: constructions with finite colimits,

diagrams, isomorphisms

Catherine ORIAT

Résumé : La composition de spécifications modulaires peut étre modélisée, dans le forma-
lisme des catégories, par des colimites de diagrammes. Les sommes amalgamées permettent
en particulier de décrire ’assemblage de deux spécifications qui ont une partie commune. Ce
travail étend cette idée classique selon trois axes.

Tout d’abord, nous définissons un langage de termes pour représenter les spécifications
modulaires construites & ’aide de colimites sur une catégorie de base. Formellement, ce
langage est caractérisé par une catégorie finiment cocomplete.

Nous proposons ensuite d’associer a chaque terme un diagramme. Cette interprétation
permet de faire abstraction de certains choix effectués lors de la construction de la spécification
modulaire. Nous définissons une catégorie de diagrammes, qui est une complétion de la
catégorie de base par colimites finies. Nous montrons que cette interprétation définit une
équivalence entre la catégorie des termes et la catégorie des diagrammes, ce qui montre la
correction de 'interprétation.

Enfin, nous proposons un algorithme pour normaliser les diagrammes, dans le cas ou la
catégorie de base est squelettique, finie et sans cycle. Cela nous permet de détecter des “iso-
morphismes de construction” entre spécifications modulaires, c’est-a-dire des isomorphismes
qui ne dépendent pas de la sémantique des spécifications de base, mais seulement de leur
assemblage.

Abstract: The composition of modular specifications can be modeled, in a category the-
oretic framework, by colimits of diagrams. Pushouts in particular describe the combination
of two specifications sharing a common part. This work extends this classic idea along three
lines.

First, we define a term language to represent modular specifications built with colimit
constructions over a category of base specifications. This language is formally characterized
by a finitely cocomplete category.

Then, we propose to associate with each term a diagram. This interpretation provides
us with a more abstract representation of modular specifications because irrelevant steps of
the construction are eliminated. We define a category of diagrams, which is a completion of
the base category with finite colimits. We prove that the interpretation of terms as diagrams
defines an equivalence between the corresponding categories, which shows the correctness of
this interpretation.

At last, we propose an algorithm to normalize diagrams, in the case when the base
category is skeletal, finite and cycle free. This allows us to detect “construction isomorphisms”
between modular specifications, i.e. isomorphisms which do not depend on the semantics of
the base specifications, but only on their combination.

Modular specifications: constructions with finite colimits,

diagrams, isomorphisms

Catherine ORIAT
LSR-IMAG
BP 53
38041 Grenoble Cedex 09, France
e-mail : Catherine.Oriat@imag.fr

1 Introduction

The specification of large programs requires to split up the problem to solve into several
simpler problems. This top-down approach, corresponding to the slogan divide and conquer,
is classic in software engineering. The decomposition of specifications into modules allows
one to reflect the logical structure of the problem, and to develop the different parts of the
program independently.

On the opposite, we are interested here in the composition of specifications. This bottom-
up approach to modularity consists in storing elementary specifications in a library and in
constructing new specifications by gathering already defined ones. Such a reuse of specifica-
tions (and possibly of programs as well) is advocated in software engineering to avoid errors
and reduce development costs.

We focus on algebraic specifications [16, 26, 37], which come from universal algebra in
mathematics, and from abstract data types in software engineering. Our aim is to study
the composition of algebraic specifications in a category theoretic framework. Indeed, the
algebraic specification formalism strongly relies on category theory. Historically, the devel-
opment of algebraic specification, in particular the work of the ADJ group [22, 23, 21], has
been influenced by Lawvere’s algebraic theories [25, 6, 36]. Practically, the use of category
theory may be justified by the important role played by specification morphisms for struc-
turing specifications. Moreover, the combination of specifications related by specification
morphisms can be modeled using the categorical concept of colimit. Intuitively, a diagram
describes a combination of objects with some sharings, and the colimit of a diagram the result
of this combination.

We suppose that we have a library of elementary specifications and specification mor-
phisms, which forms a base category Cy. We define a term language to express specifications
and specification morphisms built from the base category with colimit constructions. Then,
we propose to associate with each term denoting a specification a diagram, and with each
term denoting a specification morphism a diagram morphism. We thus need to define a
category of diagrams. This representation of modular specifications is more abstract than
terms in that it allows us to get rid of some specific steps chosen for the construction of the
modular specification. At last, we propose a procedure to decide whether two diagrams are
isomorphic, in the case when the category Cy of base specifications is skeletal, finite and cycle
free. This allows us to detect construction isomorphisms between specifications, by testing
whether their associated diagrams are isomorphic. These isomorphisms do not depend on
the contents of the base specifications, but only on their combinations.

Algebraic specifications can be based on various logics, for instance equational, Horn-
clause or first-order logic. Goguen and Burstall have developed the theory of institutions
[19, 20] to formalize a notion of logical system which is independent of the underlying logic.
As the problem of composing specifications does not depend on the logic used to express

specifications, we can work in the framework of institutions. We only need to assume that
the category of specifications is finitely cocomplete, which means that every finite diagram
has a colimit. Goguen and Burstall have shown [20] that the category of specifications is
finitely cocomplete if and only if the category of signatures is finitely cocomplete.

The idea of modeling the interconnection of systems by means of colimits was proposed
by Goguen [17, 18]. Then, colimits were used in the context of algebraic specification to
describe the semantics of the specification language Clear [7, 8]. The diagram morphisms
used in this context were mere inclusions of diagrams. This idea has been extended to more
general categories of diagrams such as for instance the flatten category Func(Cy) described
in [34], page 244. However, these categories of diagrams are not general enough to model any
combination of specifications because they are not, in the general case, finitely cocomplete.
We propose here to work in a category Diagr(Cy) of diagrams which is finitely cocomplete.
Similarly, from a syntactic point of view, term languages which have been proposed until now
to express colimit constructions are not based on a finitely cocomplete category either (see
for instance [15]). The term language proposed here relies on a finitely cocomplete category
Term(Cy), and therefore is powerful enough to express any combination of specifications.

Syntax and representation choices

In computer science, we usually distinguish between the syntaz, which corresponds to the
language used to describe the entities (e.g. a program), and the semantics, which corresponds
to the meaning of the entities (e.g. the result of a program execution). The syntax requires
representation choices, while the semantics may give a result which is independent of the
coding. In category theory, no representation choices are made on arrows of a category in
the sense that two syntactically different arrows may be equal. For example, in a category
we have f oidy = f for every arrow f : A — B. From a syntactic point of view, this is not
satisfactory because we want to make a distinction between a syntactic equality (i.e. identity
of symbol strings: f oidy = f oidy) and a semantic equality (i.e. equivalence of meaning:
foida = f). We thus use equiv-categories.

An equiv-category has the same structure as a category, except that equalities between
arrows are replaced by a congruence relation, introduced to model semantic equivalence.
Considering the quotient of an equiv-category by its associated congruence yields a category
which might be considered as a (trivial) semantics. So, in an equiv-category, we have foidy =
foidsg and foidy ~ f. Equiv-categories were introduced by D. Duval and J.-C. Reynaud
[11]. Usual concepts of category theory can be restated in the context of equiv-categories:
equiv-functors correspond to functors, equiv-colimits to colimits ... etcl.

Problems of representation choices may also occur at the level of objects when categorical
concepts are defined up to isomorphism. In particular, colimits are usually defined up to
isomorphism: a diagram may have several colimits which are then isomorphic. The set
({1} x A) U ({2} x B) is one example of sum of A and B in the category of sets. If we want
to define a syntax to represent colimit constructions, we can no longer define colimits up to
isomorphism, because we must make representation choices for these constructions. We must
consider chosen colimits, i.e. canonical colimits among all isomorphic colimits. We might for
instance decide that ({1} x A) U ({2} x B) is the chosen sum of A and B in the category of
sets. Theoretically, these choices are needed if we want to get a free construction of terms.
The introduction of chosen colimits, due to C. Ehresmann [13, 14], endows a category with

n [28], equiv-categories, equiv-functors and equiv-colimits were respectively called precategories, prefunc-
tors and precolimits. We now adopt D. Duval and J.-C. Reynaud’s terminology.

an algebraic structure, the chosen colimits playing the role of constructors. Of course, in an
equiv-category we actually need to consider chosen equiv-colimits.

This paper is organized as follows. In section 2, we present various modular specifications
of rings constructed from a category Cy of base specifications. This academic example presents
on the one hand a syntax for modular specifications and on the other hand the notion of
construction isomorphism between two modular specifications.

Section 3 contains the theoretical bases of our work. We present the notion of equiv-
category as well as the equiv-category of diagrams DIAGR(Cy). We show that DIAGR(Cy) is
finitely cocomplete, and is a completion of Cy with finite equiv-colimits.

Section 4 is dedicated to the formal definition of the syntax for modular specifications.
We present a stratified construction of an equiv-category TERM(Cy) which provides us with
a term language to represent modular specifications and specification morphisms. We show
that TERM(Cp) is finitely cocomplete, is a conservative extension of Cy, and is freely generated
over Cy by a chosen equiv-initial object and chosen equiv-pushouts.

In section 5, we associate terms with diagrams and show that this interpretation defines
an equivalence between the equiv-categories DIAGR(Cy) and TERM(Cy).

In section 6, we suppose that the base category Cy is skeletal, finite and cycle free. In that
case, we define a normalization procedure for diagrams. This procedure allows us to detect
construction isomorphisms between two modular specifications by comparing the normal
forms of their corresponding diagrams.

2 Example

In this section, we present various ways of specifying the theory of rings with modular spec-
ifications. This example only makes use of equational specifications, but we could actually
work in any institution whose category of specifications is finitely cocomplete.

2.1 Base specifications

First of all, we define a library of base specifications. Base specifications are written in the
specification language LPG [3, 4]. The LPG language has two kinds of specifications: types
which are interpreted as initial algebras (or, for generic types, as free algebras), and properties
which are interpreted as classes of algebras satisfying the equations. In the example developed
here, we will only use properties, which means that a model of a specification is the class of
all algebras which satisfy the equations. We can also define specification morphisms with a
statement introduced by the keyword satisfies. The semantics of LPG is described in [29],
and the rules to compose specification morphisms are presented in [5].
We now specify the base specifications and base specification morphisms.

property BIN-O0P
property A-SORT sorts]

sorts s operators op : §,S -> S
satisfies A-SORT[s]

The property S specifies a single sort s. The property B specifies a single sort, also called
s, a binary operator op and a specification morphism s : S — B, defined by the statement
satisfies A-SORT[s] in the module B. This morphism maps the sort s of S to the sort s
of B.

property MONOID property ABEL-GROUP
sorts] sorts]

operators * : s,s -> s operators + : s,8 -> 8

M — . 1: ->s a— 9 HER
equations 1 * x == x i: s ->s8
x *x 1 ==x equations x +y ==y + X

(x *xy) x z ==x % (y *x 2) i(x) + x ==
satisfies BIN-O0OP[s,*] satisfies MONOID[s,+,0]

The property M specifies a monoid, with a specification morphism b : B — M, which maps
the sort s of B to the sort s of M and the operator op of B to the operator * of M. The
property G specifies an Abelian group: we add to the specification of monoids an inverse
function i and the commutativity of the binary operator. We also define a specification
morphism m : M — G. This morphism maps the operator * of M to the operator + of G
and the constant 1 of M to the constant 0 of G.

property DISTRIBUTIVE

sorts s
p | operators + : s,5 > s
* 1 §5,8 > S
equations x * (y + z) == (x * y) + (x * z)

satisfies BIN-0P[s,+], BIN-0OP[s,*]

At last, the property D specifies two binary operators related by the distributive law, as well
as two specification morphisms my,m, : B — D. The morphism m maps op to + and the
morphism m, maps op to *.

We have so far defined a graph and now consider the category Cy freely generated by this
graph. The category Cy, called the base category, represents a library of available specifications
and specification morphisms.

§S—* wp—b .y m . g

my e

D
Graph corresponding to the base category Co

2.2 Combinations with colimit constructions

We can combine base specifications to form new modular specifications. In LPG, we can for
example write a specification R; of rngs by combining the properties MONOID, DISTRIBUTIVE
and ABEL-GROUP as follows.

property RING

sorts]
operators +, * : S8, s -> 8
0,1 : ->s
R, = o’
1 : 8 —->8

combines MONOID[s,*,1],
DISTRIBUTIVE[s,+,*],
ABEL-GROUP[s,+,0,1]

This specification implicitly describes some sharings of sorts and operators. For example,
the three specifications M, D and G share the same sort s. These sharings are of course
crucial to get a specification of rings.

In our work, the sharings are expressed by colimits of diagrams. This categorical con-
struction allows us to model the composition of objects with explicit sharings. In the example
of rings, the specification R; corresponds to the colimit of the diagram ;.

- N
Be b oM
b>Q
Se =% e

7nobii><jf+
Be ° G
_ mob J
01

Here is the intuitive interpretation of this diagram.

— The vertices labeled by M, D and G, which are terminating vertices of the graph (no
edge has one of these vertices as source), are the specifications we wish to gather.

— The vertices labeled by B, S and B express the sharings.

e The sort s is shared by the three specifications M, D and G. This sharing is
modeled by the morphisms bos: S — M, myos:S =D andmobos: 85— G.

e The binary operator * is shared by the specifications M and D. This sharing is
modeled by the morphisms b : B —+ M and m, : B — D.

e The binary operator + is shared by the specifications G and D. This sharing is
modeled by the morphisms mob: B — G and m4 : B — D.

In the following, we focus on one particular construction of colimit: pushouts, which model
the composition of two specifications.

Definition 1 (Pushout) Let A, B, C be three specifications and f : A — B, g: A — C be
two specification morphisms. A pushout of f and ¢ is a triple

(pUSh(A7B7 C7 f?g)7 k]-(A7B7 C7 f?g)7 k2(A7B7 C7 f?g))7

where push(A, B,C, f,g) is a specification and

k1(A,B,C,f,g) : B —)push(A,B,C,f,g)
k2(A7B707f7g) : C%pUSh(AJBJCJfJQ)

are two specification morphisms, such that
L. kl(A7B707f7g) o f = kQ(AJBJCJfJ.g) °g;

2. for any specification D and specification morphisms f': B — D, g’ : C — D such that
f'o f =g og, there exists a unique specification morphism

up(A,B,C,D,f,f’,g,g') ZPUSh(AuBuoufug) =D

such that
up(AuB707D7f7f,7979,) Ok]_(A,B,C,f,g) = f,
up(AuB707D7f7f,7979,) OkZ(AaBac7fag) :g,'

In the following, if P = push(A, B, C, f,g), we write k;(P) for k;(A,B,C, f,g).

B
f f!
/k1(P)
A p—° D
ky(P)
g g
C

A well known result of category theory states that a category is finitely cocomplete (i.e.
every finite diagram has a colimit) if and only if this category has an initial object and
pushouts.

This means that together with the empty specification, pushouts can simulate the colimit
construction of any finite diagram. Indeed, the empty specification, noted @, is initial because
for any specification A, there is a unique specification morphism from @ to A, noted j(A) :
0 — A

We now may define a specification Ry of rings with pushouts by combining the specifica-
tions M and D, and then adding G to the result:

MD = push(B, M, D, b, m.,)
Ry = push(B, MD, G, ka(MD) om,,mob)

There are other ways of specifying a ring with the given base specifications. For instance, we
can first combine D and G and then add the specification M. We get a new specification R,
of rings.

DG = push(B,D,G, m4,mob)
R/, = push(B, M, DG,b, ki (DG) o m)

M M
/ \kl\(\MD) /
B MD B f (1)
\\ / yl\(&) \\
ms k2 (MD) ms
D Ry
m 1(DG)
ko (1)
B ks(Ry)
mo\b\ \ON /DG

G

One can easily convince oneself that the specifications Ry and R, are isomorphic. Intuitively,
both constructions are equivalent because the pushout operation is “associative” (in a sense
which should be defined formally). Actually, Ry and R/, are two different encodings of the
colimit of the diagram d, with pushouts.

But more complicated cases may arise. We can for instance start by defining a “pseudo-
ring” i.e. a ring without distributivity either with the term P or P’ as follows.

P = push(S,M,G,bo s,mobos)
Q1 = push(S, B, B, s, s)

Q? = pUSh(B7 M7 Q17 b7 kl(Ql))
P’ = push(B, Qs, G, ka(Q2) o ka(Q1), m o b)

M
/wz)

M
bos ki(P))
/ \ /Q2\
S
m\ %3> \ /Ql
ko (P")
G

mk\
G

The specifications P and P’ correspond to the colimit of the diagram ¢ below. Now we can
“add the distributivity” on two different ways and get two new specifications of rings R3 and
R4. We first counsider the specification

By = pUSh(QaBJBJJ(B)U(B))
which groups two binary operators, and the specification morphism
u; = up(D,B,B,P,j(B),j(B),ki(P)ob,ky(P)omob): By — P.

This arrow exists because as @ is initial, ki (P) o bo j(B) = ko(P)omobo j(B). There is
also an arrow uy = up(9, B, B, D, j(B),j(B),m«,my) : By — D.

M
e
ki(P) B
J/ \\BZ j%’ \\ m.
ki (B>)
o R & o By —2 D
ko (B>)
j(B J(B) .
ko (P) B
m}N

We then obtain a specification R3 of rings by combining D and P sharing Bs.

R3 = pUSh(BQ,P,D,ul,Ug)
= pUSh(pUSh(®7Bva.j(B)v.j(B))
up(D,B,B,P,j(B),j(B), k ()ob ko(P) omob),
up(@,B,B,D,j(B),j(B),m*,m+))

And here is a last specification Ry of rings which uses P':

Ry = push(push(D, B, B, j(B), j(B)), P
up(9D, B, B, P',j(B),j(B), k (') o ka(Q2) o k1(Q1),
K1 (P') 0 ka(Q2) o ka(Q1)),
u (QvBaBaDaf()7](),m*,m+))

The constructions R3 and R4 respectively correspond to the following diagrams 05 and 0.

- N Y
o\ o\

b B /‘b
B || AN

FAREZAS
mob\ oo ||y
\mob B\mob

o (7 o (7
. / \ J

¢ 03 04

By using the definition of colimit in category theory, we can check that the colimits of the
diagrams d1, d9, 03 and d4 are isomorphic, because of the equality of specification morphisms

M4 O 8 = My O 5.

This equality means that the fact that both operators + and * operate on the same set is
contained in the specification D of distributive operators. We will see in section 3 and 6 that
d1, 02, 03 and 04 are isomorphic in the category of diagrams Diagr(Cp).

2.3 Construction isomorphism

We have just seen that there are various equivalent ways of specifying the theory of rings
from a given category of base specifications. Formally, two specifications are equivalent if
they are isomorphic in some category of specifications. We present here some isomorphisms
and motivate the use of construction isomorphisms to compare modular specifications.

Identity. Two specifications are isomorphic if they are identical. This very weak isomorphism
is not very interesting.

Structural equivalence. Two specifications are isomorphic if they have been constructed the
same way, independently of aliases which may have been defined in the construction
process. This isomorphism is slightly less weak than the previous one, but still not very
interesting.

Isomorphism in Spec. Two specifications are isomorphic if there exists an isomorphism be-
tween them in the category of all specifications Spec. The difficulty here is first to
exhibit the isomorphism between both signatures, and above all to check that it is a
specification morphism, which is in general undecidable.

Construction isomorphism. Two specifications constructed with colimits from a common cat-
egory of base specifications Cy are isomorphic if we can prove it with general properties
of colimits. The specifications Rg, R/, R3 and R4 are isomorphic in this sense. This
corresponds to an isomorphism in the category Term(Cy) which will be described in
section 4. On the one hand, this construction isomorphism is not too general in that
it reflects the construction of the modular specification. On the other hand, it is more
general than the structural isomorphism because some irrelevant steps chosen while
constructing the modular specification are abstracted. These isomorphisms do not de-
pend on the actual definition of the base specifications, but only on their combination.
At last, we show in section 6 that, under certain conditions, we can decide whether two
specifications are related by a construction isomorphism.

3 Categorical Setting

This section presents the notion of equiv-category, and DIAGR(C), the equiv-category of
diagrams. We mainly restate well known concepts of category theory in the context of equiv-
categories. However, the definition of diagram morphism which is proposed here is more
general than those usually presented in computer science. The reader not familiar with basic
notions of category theory may refer to [1, 24].

3.1 Equiv-categories

An equiv-category is similar to a category, except that equalities between arrows are replaced
by equivalence relations.

Definition 2 (Equiv-category)
An equiv-category C is a triple (Obj(C), Arr(C), ~) such that:

— Obj(C) is a class of objects?.

— VA, B € Obj(C), Arr(C)(A, B) is a set of arrows from A to B.
— VA, B € Obj(C), ~ is a relation on Arr(C)(4, B).

— VA, B,C € Obj(C), there is a composition operation

o:Arr(C)(B,C) x Arr(C)(A, B) = Arr(C) (4, C).

— VA € Obj(C), there is an identity arrow id4 € Arr(C)(A, A).
— VA, B € Obj(C),Vf € Arr(C)(A,B), foida ~ f and idpo f ~ f.

_ VA, B,C,D € Obj(C),
Vf e Arr(C)(A, B), Vg € Arr(C)(B,C), Yh € Arr(C)(C, D),

(hog)ofr~ho(gof)
— The relation ~ is a congruence i.e.

e ~ is an equivalence relation, i.e. is reflexive, symmetric and transitive;

2 Although Obj(C) may not be a set, we talk of “elements” of Obj(C) and write “A € Obj(C)”.

10

e VA, B,C € Obj(C), Vf, ' € Arr(C)(A, B), Vg,9' € Arr(C)(B, C),
f~fandg~g = gof~golf

Notation: f € Arr(C)(A, B) will sometimes be noted f : A — B, when we wish to leave the
equiv-category C implicit.

Definition 3 (Isomorphism) An arrow f € Arr(C)(A, B) is an isomorphism in an equiv-
category C if there exists ¢ € Arr(C)(B, A) such that go f ~ idy and fog ~ idg. If
f € Arr(C)(A, B) is an isomorphism, we say that A and B are isomorphic, and we note
A= B.

Definition 4 (Equiv-functor) Let C and C' be two equiv-categories. An equiv-functor F
from C to C', noted F : C — (', is a map which assigns to each object A of C an object F(A)
of ', and to each arrow f € Arr(C)(A, B) an arrow F(f) € Arr(C')(F(A), F(B)), and such
that

= f~f = F(f)~F(f);
— F(ida) ~ idp(a);
— F(gof)~F(g) o F(f).

Definition 5 (Full equiv-functor) An equiv-functor F : C — C' is full if
Vg € Are(C')(F(A), F(B)), 3f € Arr(C)(4, B); g ~ F(f).

Definition 6 (Faithful equiv-functor) An equiv-functor F : C — C' is faithful if
Vi, f'€ Arr(C)(A,B), F(f) ~F(f") = f~f.

Definition 7 (Natural transformation between equiv-functors)
Let F,G : C — C' be two equiv-functors. A natural transformation o from F to G, noted
o: F = (G, is a map which assigns to every object A of C an arrow o4 € Arr(C')(F(A),G(A))
such that

Vf e Arr(C)(A,B), G(f)ooa ~opo F(f).

Let F,G : C — C' be two equiv-functors and o : F = G a natural transformation. If for
every A € Obj(C), o4 is an isomorphism, then we say that F' and G are naturally isomorphic,
and we note F' = G. In that case, there is a natural transformation c~' : G =+ F defined by
(e Ha=oy"

Given a graph® a®, Vertices(a®) and Edges(a®) respectively denote the set of vertices
and the set of edges of a®. An edge a of source m and of target n is noted a : m — n.
There is an equiv-category P(a®) freely generated over the graph a® which may be defined
as follows. The set of objects of P(a?®) is the set of vertices of a®. Arrows of P(a?) are paths
of composable edges of a®

(al,ag, . ,ak)

3By graph, we actually mean a directed multigraph, because edges are oriented and there can be more than
one edge between any two vertices.

11

where two edges a; and a;41 are composable if the target of a; is equal to the source of a;41.
The congruence relation is the equality on paths. Identity arrows are paths of length 0, noted
(). The composition is the concatenation of paths:

(bl,bQ,...,bl>o(al,ag,...,ak> = (al,ag,...,ak,bl,bg,...,bl).

Any graph morphism ¢® : «® — % from a graph o® to a graph 3% uniquely extends to
an equiv-functor P(a®) : P(a®) — P(B®). P(c?) is equal to 0® on objects, and is defined
on paths as follows:

P(e®)(()) = O

Po®)(a1,a2,...,a)) = (0®(a1),0%(a2),...,0%(ar)).

3.2 Equiv-category of diagrams

A diagram @ over an equiv-category C consists of a graph a® whose vertices m are labeled
by objects a(m) of C and whose edges a : m — n are labeled by arrows a(a) : a(m) = a(n)
of C. Formally:

Definition 8 (Diagram over an equiv-category)
A diagram @ over an equiv-category C is a couple @ = (a®, «: P(a®) — C), where o? is a
graph and a : P(a®) — C is an equiv-functor.

We say that the diagram @ is based on the graph o®, or that o® is the underlying graph of
@. A diagram @ is finite when its underlying graph is finite.

Examples of diagrams

1. The empty diagram, noted (), is the only diagram based on the empty graph.

2. Let A be an object of C. There is a one point diagram
I(A) = (1%, 1*:P(1®) - 0),
where

— 1? is a graph which has only one vertex, noted x;
— the equiv-functor I4 is defined by I4(x) = A.

Q)

graph 1% diagram I(A)

3. Let 7® be the graph consisting of three vertices 0, 1, 2, and two edges a; : 0 — 1,
az : 0 = 2. A pushout diagram is a diagram based on 7®. If A,B,C € Obj(C),
f € Arr(C)(A, B) and g € Arr(C)(A, C), then there is a pushout diagram

PushDiagr(A, B, C, f,g) = (z%, n: P(x?) = C)

defined by 7(0) = A, (1) = B, n(2) =C, w(a1) = f, w(a2) = g.

12

O<+—— 00— 0 ®O<+— 00— 0
(1010022) CBfAQCD

graph 7® diagram PushDiagr(A, B,C, f,g)

We now define diagram morphisms. We could consider couples
g:a—-B8=0%:a*=p% c:a= BoP(?)

where o®

is a graph morphism and ¢ a natural transformation. This definition is presented
in [34] (it is the flatten category Func(Cy), page 244, example 4), and in a dual form in [24]
(it is the super-comma category, page 111, exercise 5.b). This definition is not general enough
for our purpose because the resulting category is not, in the general case, finitely cocomplete.
It indeed does not contain enough arrows, and therefore some specification morphisms have
no corresponding diagram morphism.

To come back to the example presented in section 2, there is indeed a term
TUp = up(SJ M, G7 Ry, bo 8,1 © bo 8, kl(RQ) ° kl(MD)7 k2(R2))

from P to Ry, which should correspond to an arrow from the diagram ¢ to the diagram ds.
However, there is no diagram morphism with the definition above.

T N —idu)
M1 =idu 1M

bos

bos /a1

:

09 = M08

7

mobos \@2

/
=
:

mobos \B‘
G2 - 2'G
\ J 09 = IdG \ J
¢ z 3

For this reason, instead of considering a graph morphism ¢® : a® — %, we need to

consider a generalized graph morphism o® : a® ~— B, which assigns to each edge of a® a
zigzag of B%. Instead of considering a natural transformation o : a = 80 P(0®), we need to
consider a generalized natural transformation o : a ~= 3o P(a?®) [27].

Definition 9 (Zigzag) A zigzag Z of a graph o® is a triple (k, Zy, Zx) where
— k is a natural, called the length of Z;
— Zy is a (k + 1)-uple (ng,ny,...,n;) of vertices of a®;

— Zg is a k-uple (ag,a1,...,a,_1) of edges of a®, such that Vi,0 < i < k — 1, either
a; : n; — niy1 (i.e. a; is an edge of source n; and of target n;11), or a; : nj+1 — n; (i.e.
a; is an edge of source n;;; and of target n;).

A zigzag is noted Z : ny ~— ny, or, more pictorially,
D Qf—
J = ny ﬂ>nl &Tbg&’ﬂg"'nk_l —ink,

where an arbitrary orientation is chosen for each edge a;.

13

For every vertex n of a®, there is an empty zigzag 0, : n ~— n. We get a graph Zigzag(a®),
with the same vertices as o®, and with edges the zigzags of o®.

Definition 10 (Generalized graph morphism)
A generalized graph morphism o® from o® to 3%, noted 0® : a® ~— %, is a graph morphism
from a® to Zigzag(3?).

We can compose generalized graph morphisms by joining zigzags.

Definition 11 (Connection relation) Let § = (6%, § : P(0®) — C) be a diagram, and
n, n' two vertices of 0. Two arrows u : A — d(n) and v : A — §(n') of C are said to be
connected by the diagram 6 if and only if there exist a zigzag Z : ng ~— ny, of 6% with n = ng
and n' = ny

a a Ak—1
7 = n=ng—5ng < np_1 — np=n’,

S
S

<
2
&
'O@/

and a set of arrows

{ci:A—0d(ni); i €{0,...,k}}, A~ 7

such that u ~ ¢y, v ~ ¢ and Vi € {0,... k — 1}, €3

.
S

4

.

;

<

¢

Q
W
S

/

W

— 0(aj) o ¢y ~ cit1, if a; : my = njga;

e T4
— 0(aj) ocip1 ~ ¢, if a; : mip1 — ny. C
- J
We note u ~5 v, or u ~5 v [Z] if we want to specify the)
zigzag Z. u~5 v [Zng ~— nyl

Definition 12 (Diagram morphism) Let C be an equiv-category, @ and (3 be two dia-
grams over C. A diagram morphism @ from @ to [, noted @ : @ — [, is a couple

g:a—=f=(0%:a®~= 8% 0:a~3 BoP(c?))
where
@

— 0% :a® ~— % is a generalized graph morphism;

— 0 :a ~> BoP(c?®) is a generalized natural transformation, i.e. a set of arrows
{0y : a(n) — B(c®(n)), Vn € Vertices(a®)} such that

Va: m — n € Edges(a®), o, 0 a(a) ~F Om [0®(a)].

Note: if 0® is a graph morphism, then P(c?®) : P(a®) — P(8?) is a functor and o : o =
BoP(c?) is a natural transformation.

Examples of diagram morphisms
1. For every diagram @, there is a diagram morphism
Ty : @ — a = (idye : a® ~ a?, Tz : o ~=)
where id,s is the identity (generalized) graph morphism and Zdg : @ ~= « is a (gener-

alized) natural transformation defined by (Zdgz), = idy(n)-

14

2. For every diagram @, there is a (unique) diagram morphism from the empty diagram
to @, noted Jx : O —a

3. We can define a diagram morphism @ : ¢ — d- corresponding to the term Typ. This
arrow consists of a generalized graph morphism ¢® : (® ~— 63 and a generalized
natural transformation o : { ~= dy o P(c®).

The generalized graph morphism o® may be defined as follows:
o®(0) =0, o®(1) = 1' ‘P(z) =2,
o®(ar) =0 &3 25 17, 0%(an) = 0 £ 47 8 o,

The generalized natural transformation o : (~= 63 0 P(0®) is defined by
09 =my o8, o1 = idy;, 09 = idg.

We indeed defined a diagram morphism & because m, o s ~ m, o s.

Another diagram morphism 7 : (— 5, which also corresponds to the term Tup, may
be defined as follows.

The generalized graph morphism 7%

is
0) =3, (1) =1, 7*(2) =2,
7% (ay) = 3 LN 1, 7%(ay) = 3" 25 0 <= g ok o,
The generalized natural transformation 7 : ¢ ~= dy o P(7®) is defined by

0 =8, T = idpys, T = idg.

To get an equiv-category of diagrams, it remains to define a congruence on diagram morphisms.
Intuitively, two diagram morphisms &,7 : @ — (3 are equivalent if they correspond to the
same colimiting arrow from @ to f.

Definition 13 (Equivalence ~) Let 7,7 : @ — 3 be two diagram morphisms. By defini-
tion, o & T if Vn € Velrtices(ozq))7 Tn ~F Toe

For instance, in the example above, the diagram morphisms @, 7 : (— 02, which correspond
to the same specification morphism Typ, are equivalent.

Theorem 14 DIAGR(C) is an equiv-category, which has diagrams as objects, diagram mor-
phisms as arrows and = as congruence relation.

Proof. First, we must define the composition of diagram morphisms. Let @, 3 and 7 be
three diagrams. Let

\1| QI

QI QI

—B=(0%:a®~=p% oc:a~3 BoP(0?))
=7 = (1" 4% oy, T By o P(T?))
be two diagram morphisms. The composition K =7 o0& of & and 7 is the couple
(k?

R:a—7y= ca? vyt K ra~m Yo P(RY))

where

15

NS . s

— the generalized natural transformation x : a ~% v o P(k®) is defined by: Vn €
Vertices(a®), K, = T (n) © On.

One has to check that is indeed a general natural transformation and that the composition
is associative.

For every diagram @, the diagram morphism Zdg : @ — @ is an identity.

It then remains to show that a is a congruence. = is an equivalence relation, because ~5
is an equivalence relation. To prove that it is a congruence, we show that given two arrows

u € Arr(C)(A, B(m)) and v € Arr(C)(A, B(n)), we have
— Vw € Arr(C) (A, A), u~gv [Z] = uow~guvow [Z];

—VT: 06— 7, U~z [Z] = Tmour~yTyov [%(Z)).

Definition 15 (Equiv-functor I : C — DIAGR(C))

We define an equiv-functor I : C — DIAGR(C) as follows. I assigns to each object A of C
the diagram I(A), and to each arrow f € Arr(C)(A, B) the diagram morphism I(f) = (id;e :
1% ~— 1%, 17 [A ~=s [B) defined by I = f.

I C — DIAGR(C)
PR
fass e @l 6E
We can check that I is full and faithful.

Definition 16 (Cone) Let @ be a diagram over an equiv-category C and C' be an object of
C. A cone from @ is a diagram morphism A : @ — I(C).

Remark 17 X :@ — I(C) is a diagram morphism if and only if
Va :m — n € Edges(a®), A\, oa(a) ~ A\p.

Definition 18 (Equiv-colimiting cone) Let @ be a diagram over an equiv-category C. A
cone A : @ — I(C) from @ is an equiv-colimiting cone if for any cone i : @ — I(D) from @,
there exists an arrow 9 € Arr(C)(C, D), unique up to equivalence, such that (1) o \ ~ 7.

The object C' is called an equiv-colimit of the diagram @ and is noted Colim@. The arrow
is called a mediating arrow from X to 7i. A diagram may have several equiv-colimits which
are then isomorphic. Given a diagram @ which has an equiv-colimiting cone, one can choose
an equiv-colimit of &@. This means

1. choose an equiv-colimiting cone X : @ — I(C);

2. for every cone 7 : @ — I(D), choose a mediating arrow ¢ : C' — D from X to 77 in C.

16

Examples of equiv-colimits

— Given an object A of C, any object isomorphic to A is an equiv-colimit of the diagram

I(A).
An equiv-initial object is an equiv-colimit of the empty diagram ().

If an equiv-category C has a chosen equiv-initial object, this one is noted @¢. The
chosen mediating arrow from ¢ to any object A is noted j§ : @€ — A.

An equiv-pushout is an equiv-colimit of a pushout diagram. For instance, the equiv-
colimit of PushDiagr(A, B, C, f,g) consists of a triple (P, ky, ky) where P is an object
of C, k1 : B— P and ko : C'— P are two arrows of C, such that

o kyof~hkyog;

e VD € Obj(C), f' € Arr(C)(B,D),q" € Arr(C)(C, D) such that f'o f ~ ¢’ o g, there
exists an arrow up : P — D, unique up to equivalence, such that up o k; ~ f' and
up ok ~ ¢

If PushDiagr(A, B,C, f,g) has a chosen equiv-colimit, P, k; and kg are respectively
noted

pUShC(A7B7 C? f’g)

ki (4,B,C, [,g) : B — pusk(A,B,C, f,9)

ki (4,B,C, [,g) : C — push®(A, B,C, f, g).
For all f' € Arr(C)(B,D) and ¢’ € Arr(C)(C, D) such that f'o f ~ ¢’ o g, the chosen
mediating arrow from P to D is noted

up®(4,B,C,D, f,g,f'.¢") : pusk®(4, B,C, f,g) — D.

Definition 19 (Finitely cocomplete equiv-category) An equiv-category C is finitely co-
complete if every finite diagram over C has an equiv-colimit.

Let C be a finitely cocomplete equiv-category. Thus, every diagram @ has an equiv-
colimiting cone, noted 7j5 : @ — I(Colim@). We show that we can extend the map Colim to
arrows so that Colim : DIAGR(C) — C is an equiv-functor.

Let @ and 8 be two diagrams, with equiv-colimiting cones 7z : @ — I(Colim@) and
Uk B — I(ColimB). Let @ : @ — 8 be a diagram morphism. We have a cone Ngoo o —

I(Colim 3). As Tz : @ — I(Colim@) is an equiv-colimiting cone from @, there exists an arrow

Colim & : Colim@ — Colim j3,

unique up to equivalence, such that I(Colima) o 7jz ~ Mz00.

Proposition 20 Let C be a finitely cocomplete equiv-category.

1.
2.
3.

Colim : DIAGR(C) — C is an equiv-functor.
There is a natural transformation 7 : Idpiagr(cy = I © Colim.

Between the equiv-functors Colim and I, there is an adjunction (Colim - I) whose unit
is 7. This means that for each object B of C and arrow i : @ — I(B) of DIAGR(C),
there exists an arrow 1 : Colima — B of C, unique up to equivalence, such that

I() o Tig ~ 1.

The counit € : Colimo I = Id¢ of the adjunction (Colim - I) is a natural isomorphism.

17

Proof.
1. We just show that Colim is compatible with relations.
ORT = TNgoToRTzOT (~ is a congruence)

= I(Colim@) oTjz &~ I(Colim7) o 7z (definition of Colim)
= Colima ~ Colim7 (T equiv-colimiting cone)

2. Immediate by the definition of Colim&.
3. g : @ — I(Colim@) is an equiv-colimiting cone from @.

4. Using the law Ie-7n I = id; which relates the unit and the counit of the adjunction, we
show that for all object B of C, e o (n7(p))« ~ idp and (1))« © €5 ~ idcolim 1(B)-

O

3.3 Preservation of equiv-colimits

In this paragraph, we define the image of a diagram and of a diagram morphism over C by
an equiv-functor F': C — C'.

Definition 21 (Image of a diagram) Let @ = (a®, a: P(a®) — C) be a diagram over C.
The image of @ by F is the diagram over C’

Foa=(a? Foa:P(®) = ().

Definition 22 (Image of a diagram morphism)
Letz:a— f=(0%:a® ~ B2, 0:a~= BoP(c?)) be a diagram morphism over C. The
image of & by F' is the diagram morphism over C’

FG:Foa—FofB= (%0~ 0% Fo:Foa~>FofBoP(0?)),
where the generalized natural transformation Fo is defined by
Vn € Vertices(a®), (Fo), = F(oy).

Lemma 23 The map
DIAGR(F) : DIAGR(C) — DIAGR(C")

o — Foa
o — Fo

is an equiv-functor such that I o F = DIAGR(F) o I.

An equiv-functor preserves a (chosen) equiv-colimit when the image of a (chosen) equiv-
colimit is a (chosen) equiv-colimit.

Definition 24 (Equiv-functor preserving an equiv-colimit) Let @ be a diagram over

C, with an equiv-colimiting cone X : @ — I(C). The equiv-functor F preserves the equiv-
colimit of @ if F'A is an equiv-colimiting cone from F o @.

18

Lemma 25 Let C and C' be two finitely cocomplete equiv-categories. If an equiv-functor
F :C — (' preserves all equiv-colimits, then there is a natural isomorphism

Colim o DIAGR(F') = F o Colim.

Definition 26 (Equiv-functor preserving a chosen equiv-colimit)
Let @ be a diagram over C with a chosen equiv-colimit, i.e. a chosen equiv-colimiting cone
X :@ — I(C) and a chosen mediating arrow 3 : C — D for any cone i : @ — I(D). The
equiv-functor F' preserves the chosen equiv-colimit of @ if F'X is the chosen equiv-colimiting
cone from F o@ and F(1)) is the chosen mediating arrow of the cone F.

Let us consider the pushout diagram PushDiagr (A, B,C, f,g). Then, F preserves its chosen
equiv-colimit if

F(push® (4, B,C, f,9)) = pusl (F(A), F(B), F(C), F(f), F(9))
F(klc(A,B,C,f,g)) Zkf’(F(A),F(B),F(C),F(f
F(kg(A,B,C,f,g)) :kZC (F(A)vF(B)vF(C)vF(f
F(up®(4,B,C,D, g, f'.4")

= up® (F(A), F(B),F(C), F(D),F(f), F(9), F(f'), F(¢"))-

F preserves the chosen initial object @€ of C if

F(0%) =0
F(j§) = jf(ay-

3.4 Flattening

In this paragraph, we show that the equiv-category of diagrams DIAGR/(C) is finitely cocom-
plete. In other words, every diagram over DIAGR(C), i.e. every object of DIAGR?(C) has
an equiv-colimit. An object of DIAGR?(C)

A = (A®, A:P(A%) — DIAGR(C))

is a graph A® whose vertices N are labeled by diagrams A(N) (which are objects of the
equiv-category DIAGR(C)), and whose edges A : N — N’ are labeled by diagram morphisms
A(A) : A(N) — A(N') (which are arrows of DIAGR(C)). We will show that an equiv-
colimit of A may be computed by flattening this diagram. Intuitively, flattening A consists
in considering the union of all diagrams A(N), and in transforming every arrow of DTAGR/(C)
into a set of arrows of C.

The congruence relation in DIAGR?(C) will be noted .

Definition 27 (Flattening Apl: DIAGR?(C) — DIAGR(C))
Flattening is a map which assigns to each object

A = (A%, A:P(A®) - DIAGR(C))
of DIAGR?(C) an object AplA =35 = (6%, 6 : P(6%) — C) of DIAGR(C) as follows.

— 6% is a graph defined by its set of vertices and its set of edges.

Vertices(6®) = { (NV,n) ; N € Vertices(A?®), n € Vertices(A(N)?®) }

Bdges(6?) = { (N.a) : (Non) — (N,)
N € Vertices(A?), n,n' € Vertices(A(N)?),
a:n— n' € Edges(A(N)?) }
O (A,n) s (N,m) = (N, A(A)® () -
N, N’ € Vertices(A®), A: N — N' € Edges(A?),
n € Vertices(A(N)?®) }

— §: P(6%) — C is an equiv-functor defined on vertices and edges of §¢ as follows.
e Action on vertices: §(N,n) = A(N)(n).
e Action on edges: 6(N,a) = A(N)(a)
(A, n) =A(A)y,.
For each vertex N of A®, we define an arrow Ky : A(N) — § in DIAGR(C)
Kn:A(N) =0 = (Ky : A(N)® ~= 6%, Ky : A(N) ~= 0 P(KY)).

— The generalized graph morphism K% : A(N)® ~— §% is defined by

K% 0 AN)? ~ §®
n — (N,n)
a:n—n" — (N,a):(N,n)— (N,n).

IC%’, is actually a graph morphism because each edge of A(N)?® is assigned to an edge
of 6% (and not to any zigzag).

— The (generalized) natural transformation Ky : A(N) ~=> § o P(K%) assigns to each
vertex n of A(N)?® the arrow of C

(KN)n = ida(n)(mn) = ids(n,n)-

Note. In the following, we will think of (Xx), as an isomorphism from A(N)(n) to (N, n)
to

which is consistent with the fact that Ky is a diagram morphism from A(N) to 0.

Lemma 28 The set of arrows {Ky : A(N) — 6; VN € Vertices(A®)} defines an arrow
K : A — I(5) in DIAGR?(C).

Proof. We need to show that

VA: N — N' € Edges(A?®), Ky o A(A) ~ Ky
& Vn e Vertices(A(N)‘I’), (’CN’)A(A)‘I’(TL) o A(A)n ~5 (’CN)n
which is true by definition of 4. O

Theorem 29 DIAGR(C) is finitely cocomplete, with chosen equiv-colimits.

20

Proof. We show that the arrow K : AT (§) is an equiv-colimiting cone from A. Let

0:A—1 (@) be another cone from A. We define an arrow UP : § — @ as follows.
— UP?® : 6% ~— 2 is a generalized graph morphism.
o V(N,n) € Vertices(0®), UP*(N,n) = Q% (n).
e V(N,a): (N,n) — (N,n') € Edges(5%),
UP®(N,a) = QF(a) : QR (n) = QX (n).
o W(A,n) 1 (N,n) = (N', A(4)® (n)) € Edges(6®), UP®(A,n) = Z,
where Z : Q% (n) ~— Q% (A(A)(n)) is the zigzag such that
(Qn7)aayem) © A(A)n ~= (Ln),, [Z].
— UP : § ~= aoP(UP?) is the generalized natural transformation defined by

Y(N,n) € Vertices(6%), UP Ny = (N)n © (Kn), L.

We must show that I(P) o K & O.

I(UP)o KX O
& VN € Vertices(A?), UP o Ky ~ On
& VN, Vn € Vertices(A(N)?®), UP Ny © (KN)n ~a (QN)n

This last statement is true, by definition of UP(y).
It remains to show that UP is unique up to equivalence. Let 7 : § — @ such that

I(T)o K & Q. Then,

I(UP) oK R I(T) o K

= VN € Vertices(A?), UP o Ky ~To Ky

= VN, Vn € Vertices(A(N)®), UP(nn)© (KN)n ~a T(nm) © (KN)n
= VN, Vn € Vertices(A(N)®), UP(yz) ~a T(Nn)

= ~T

At last, the cone K : A — I (6) and the mediating arrows UP : § — @ define chosen equiv-
colimits. O

Application to pushouts

Let @, (3, 7 be three objects of DIAGR(C) and 7 : @ — B, 7:@
DIAGR(C). We consider the pushout diagram A = PushDiagr (@, 3,
A chosen equiv-colimit of A is given by the diagram

— % be two arrows of
7,7, 7) in DIAGR?(C).

PUSH (@, B,7,7,7) = AplA.

The arrows which make up the equiv-colimiting cone from A are noted

Given two arrows & : 3 — 0’ and 7 : ¥ — ¢ such that @ o & ~ 7 o 7, the mediating arrow

from PUSH (@, 3,7,7,T) to & is noted
W(a7 B? 77 W? 67 ?7 6,7 F,) : PUSH (a7 B7 77 67 F) % y'

Lemma 30 The equiv-functor Colim : DIAGR?(C) — DIAGR(C) is such that

Colim o DIAGR(I) & Idpacr(c)-

Theorem 31 (Completion) DIAGR(C) is a completion of C by finite equiv-colimits. In
other words, let C' be a finitely cocomplete equiv-category. Let F': C — C' be an equiv-functor.
Then there exists an equiv-functor G : DIAGR(C) — C', unique up to natural isomorphism,

which preserves equiv-colimits and such that Gol = F'.

Proof. Let G = ColimoDIAGR(F). We have

Colimo I = Id¢ (proposition 20.4)

= ColimoloFX=F

= Colimo DIAGR(F)oI =2 F (lemma 23)
= GolZ=ZF (definition of G)

We now show that G preserves equiv-colimits, i.e. that given a diagram A with an equiv-
colimiting cone K : A — I (6), then GK : G o A — I(G(9)) is an equiv-colimiting cone from

G o A. For all (N,n) € Vertices(6?), let

§vm) = (Mpoagayn © F((Kn)Rh.

This defines an arrow £ : Fod — G o A such that GK ol N pos-

Given a cone 11 : G o A > I(A), we must show that there exists an arrow ¢ : G(

unique up to equivalence, such that I(¢) o GK ~ .

Eristence. As there is a cone fio & : F o0 — I(A), there exists an arrow) :

unique up to equivalence, such that () o7, 5~ o €.

W)n ° F((ICN)n)_l
~ 1N © (N poxiEy)n

I(th) oMpz mBOE
= Y(N,n), %o (Npg)(n) ~ 1IN ©E(Nn)
= V(N,n), ¥ o (Mpe5)(vn) ~ 1N © (Mg
= V(N,n), Yo Mp.z5) v ° F((Kn)n)
= VY(N,n), oG)
= YN, I($o G(KN)) o Mpoarmy # L(0N) © T xwy
= VN, Yo G(Ky) ~ pun
= I(¢p)oGK~r T

Unicity. Let ¢’ : G(5) — A such that I(¢') o GK ~ fi. Then,

1) oTip; ~ I(§)oGKoE

~ ok

> |
1
>

G(6) — A,

At last, we must show that G is unique up to natural isomorphism. Let H : DIAGR(C) —
C' be an equiv-functor which preserves equiv-colimits and such that H o [= F.

Gol=Hol
= Colim o DIAGR(G) o DIAGR(I) = Colim o DIAGR(H) o DIAGR(I)
= G o Colim o DIAGR(/) = H o Colim o DTAGR([) (lemma 25)
= G=H (lemma 30)

O

3.5 From equiv-categories to categories

The definitions of equiv-category, equiv-functor and equiv-colimit lead to the usual definitions
of category, functor and colimit.

Category If C = (Obj(C),Arr(C),~) is an equiv-category, then there is a category C/~
whose class of objects is Obj(C) and whose set of arrows from an object A to an object B is
the quotient set Arr(C)(A, B)/~.
There is a projection equiv-functor Pe : C — C/~ which is the identity on objects and
which assigns to each arrow f € Arr(C)(A, B) its equivalence class [f] : A — B in C/~.
Reciprocally, we can consider any category as an equiv-category by taking the equality
relation on arrows as congruence relation.

Functor Any equiv-functor between two equiv-categories gives rise to a functor between
the corresponding categories. Let F' : C — C’ be an equiv-functor. Then there is a unique
functor F/~ :C/~ — C'/~, which is equal to F on objects and such that

Vi e Arr(C)(A, B), (F/~)(f]) = [F(f)].

An equiv-functor F : C — C' is full (respectively faithful) if and only if the functor F/~
is full (respectively faithful).

Natural transformation between functors Let F,G : C — C’ be two equiv-functors
between the equiv-categories C and C'. Let o : F = G be a natural transformation. Then,
there is a natural transformation [o] : ¥/~ = G/~ defined by [o]4 = [04].

Two equiv-functors F' and G are naturally isomorphic if and only if F/~ and G/~ are
naturally isomorphic.

Colimit Let C be an equiv-category. An arrow X : @ — I(C) of DIAGR(C) is an equiv-
colimiting cone from a diagram @ if and only if the arrow Pe) : Pecoaw — I(C) of DIAGR(C/~)
is a colimiting cone from Fr o @.

Therefore, an equiv-category C is finitely cocomplete if and only if the category C/~ if
finitely cocomplete.

As a category is finitely cocomplete if and only if it has an initial object and pushouts,
an equiv-category C is finitely cocomplete if and only if C has an equiv-initial object and
equiv-pushouts.

Remark 32 (Chosen colimits versus chosen equiv-colimits)
In an equiv-category, a choice of equiv-colimit for a diagram @ consists of

1. a choice of an equiv-colimiting cone A : @ — I(C);

23

2. for any other cone 77 : @ — I(D), a choice of arrow ¢ : C — D such that I()) o A & i
(this arrow is only unique up to equivalence).

In a category though, a choice of colimit for a diagram @ just consists of a choice of a
colimiting cone X : @ — I(C). Then for any other cone i : @ — (D), there exists a unique
¢ : C'— D such that I(y)) o A =Ti.

We must note that a choice of equiv-colimits in an equiv-category C does not induce a
choice of colimits in the category C/~. Indeed, given a diagram @ over C/~, there may exist
several diagrams (3 over C such that Pz o3 = @, which induce several different possible choices
for the colimit of @.

3.6 Category of diagrams Diagr(C)

The category of diagrams Diagr(C) is the quotient category corresponding to the equiv-
category DIAGR(C)
Diagr(C) = DIAGR(C)/~.

This category is a completion of C by finite colimits. Diagr(C) is thus finitely cocomplete,
but has no chosen colimits (cf. remark 32).

The category Diagr(C) is well known in category theory. Its objects are diagrams. The
set of arrows from a diagram @ to a diagram [may be defined “concretely” with limits and
colimits of hom-functors as

Hom(@, 3) = Lim Colim Hom(a(x), B(y)).
zea® yep®

Our definition is very similar to the “abstract” definition proposed in [35] (see also [2]), except
that in [35], a diagram morphism @ : @ — [consists of a set of

{on, n € Vertices(a®)}

where oy, is an equivalence class of arrows modulo ~7 from «(n) to B(n').

In this section, we actually presented the category Diagr(C) as a quotient of the “syn-
tactic” equiv-category DIAGR(C) by ~. DIAGR(C) is “syntactic” in the sense that we have
an effective representation of its arrows. The advantage of our (long) definition is be able to
manipulate arrows of Diagr(C) by representatives taken in DIAGR/(C). Therefore, all compu-
tations (like those described in section 5) take place in the equiv-category DIAGR(C), while
the results may be interpreted in the category Diagr(C).

4 The Term Language TERM/(Cy)

The aim of this section is to define a term language for describing colimit constructions. We
build an equiv-category TERM(Cy) whose objects represent colimit constructions, and arrows
colimiting arrows between colimit constructions.

We wish to be able to represent any colimit constructions of base specifications related
by base specification morphisms. As a category is finitely cocomplete if and only if it has an
initial object and pushouts, we choose to have a representation for these two constructions.

Therefore, we define a term @ to represent the initial object, and for all objects A, B,
C and arrows f : A — B, g : A — C, we define a term push(A, B,C, f,g) to represent
the pushout of the diagram PushDiagr(A,B,C, f,g). We will also need terms to denote
specification morphisms.

24

4.1 Problem of circularity

Let Cy be a small category (that we will consider as an equiv-category). The aim is to define
an equiv-category which contains Cy, an equiv-initial object and equiv-pushouts.

Equiv-initial object

For the equiv-initial object, we just have to introduce a new object @ and for every object
A an arrow j(A) : @ — A. Moreover, we also need to introduce for all f,g : @ — A the
relation f ~ g.

Equiv-pushouts

Given three objects A, B, C and two arrows f: A — B, g: A — C, we need to introduce a
new object

push(A, B, C, f,g),
two arrows

ki(A,B,C, f,g) : B— push(A,B,C, f,q)
ko(A,B,C, f,g) : C — push(A,B,C, f,g),

and the relation
kl(A,B,C,f,g) o f ~ kz(A,B,C,f,g) ©g.

Moreover, given two arrows f': B — D and ¢’ : C — D such that f' o f ~ ¢’ o g, we need to
introduce an arrow

up(A7B7C7D7f7g7f,7g,) ZPUSh(A7B7C7f7g) _>‘D

and two relations

up(A,B,C,D,f,g,f’,g')olq(A,B,C,f,g) Nfl
up(AJBJCJDJfJQJflag,)Ok?(A7B707f7g) Ng,'

Introducing the arrow up(A, B,C, D, f,g, f',g') raises a problem. Until now, we have first
defined terms and then relations on these terms. Here, we need to introduce a new term only
if a relation is satisfied. There is therefore a circularity between the definition of terms and
the definition of relations.

Generalized algebraic theories, which are a generalization of multi-sorted algebras, have
been proposed by Cartmell to specify dependent types, i.e. types parameterized by terms [9].
For instance, the “type” Arr(A, B) depends on both terms A and B. J.-C. Reynaud proposes
to use Cartmell’s dependent types to specify colimit constructions [30, 31, 32]. The syntax
presented here is widely inspired by his work. However, Cartmell’s dependent types cannot
specify terms which are conditioned by a relation between two other terms. J.-C. Reynaud
gets round the difficulty by constructing a concrete, i.e. semantic, finitely cocomplete category
[32]. T. Streicher and M. Wirsing, who also advocate the use of dependent types to describe
colimit constructions [33] do not make it clear how they solve this circularity problem.

Besides, H. Ehrig et al. [15] also propose a syntax to describe colimit constructions. But
as their syntax has no representation for all up arrows, it is not powerful enough to describe
all colimit constructions.

One solution is to specify a finitely cocomplete equiv-category without up arrows, by
replacing them by other arrows whose existence is not conditioned by any relation. This

25

approach has been proposed by F. Cury [10], who introduces two arrows called p and d,
which do not depend on any relation, and allow to reconstruct a posteriori any up arrow.

Here, we wish to stay close to the classic definition of pushouts and therefore to keep
the up arrows. For this reason, we propose a stratified construction of the equiv-category
TERM(Cy), by defining a sequence of equiv-categories (C;);>0 such that the introduction of
an up arrow n an equiv-category C; only depends on a relation in C;—1. The equiv-category
of terms is then the union of all equiv-categories C;.

4.2 Equiv-categories C;

The sequence of equiv-categories C; = (Obj(C;), Arr(C;), ~;) is defined by induction over ¢ > 1
by the following rules.

Rules defining the set Obj(C;)

A € Obj(Cy) (1)
A € Obj(()
3 € Obj(Cy) @)
A7B7 Ce ObJ(szl)) f € AI‘I‘(Ci,]_)(A,B) i g€ AI‘I‘(Ci,]_)(A, C) (3)
pUSh(A7 B7 07 f7g) € ObJ(Cz)
Rules defining the family of sets Arr(C;)
AJB € ObJ(CO) f € AI‘I‘(Co)() (4)
f € Arr(Ci)(4, B)

A,B,C € Obj(C;) ; f € Arr(C;)(A,B) ; g€ Arr(C)(B,C) (5)

gofe Aff(Cz)(Aa C)
A € 0bj(C:) ©

id(A) € Arr(C;) (A, A)
A € Obj(() (7)

J(A) € Arr(C)(D, A)
A, B,C € O0bj(C;i—1) ; feArr(C;i1)(A,B) ; g€ Arr(C;i1)(A,C) (8)

ki(A,B,C, f,g) € Arr(C;) (B, push(A B,C, f,9))
A,B,C € Obj(Ci—1) ; f € Arr(Ci—1)(A,B) ; g € Arr(C;—1)(A,C) ()
kZ(AJBJCJ f?g) € AI‘I‘()(C pUSh(A B C f7))
AJBJCJD € ObJ(lel)) f € Arr(Ci,l)(A,B) i g€ AI‘I‘(Cz',l)(A, C)
f’ S AI‘I‘(Cifl)(B,D) y g' € AI‘I‘(Cifl)(C, D) , f’ o f ~i_1 g' og (10)
Up(A,B, CaDa f797 flvg’) € AI'I'(Ci)(pUSh(A, Ba Ca fag)aD)

26

Rules defining the family of relations ~;

A, B € Obj(Co) ;5 f.g € Arr(Co)(A,B) 5 f~oyg

f~ig
A, B € Obj(C;) ; f € Arr(Ci)(A, B)

f ~i f

A,B € Obj(Ci) ; f.g€Ar(Ci)(A,B) 5 f~ig
g~if

A,B € Obj(Ci) ; f,g.h € Arr(Ci)(A,B) 5 f~ig; g~ih
f~ih
A,B,C € Obj(C;) ; f,f" € Arr(C)(A, B)

9,9 € Arr(Ci)(B,C) ;5 f~i f' 5 g~i g
9°f~i9’0f’

A,B,C,D € Obj(C;)
feArr(C)(A,B) ; ge Arr(C)(B,C) ; he Arr(C)(C, D)
(hog)of~ihol(gof)

A, B € Obj(C;) ; f € Arr(C;)(A, B)

foid(A) ~i f
A Be ObJ(i) 5 f € Arr(Ci)(A, B)

() fr~if
A € Obj(C;) ; f,g9 € Arr(C;)(9, A)

fr~ig
A, B,C e 0bj(Ci—1) ; feArr(Cii1)(A,B) ; g€ Arr(Ci—1)(4,0)
ki(A,B,C, f,g) o f ~i k2(A, B,C, f,g) o

A,B,C,D € Obj(Ci—1) ; f € Arr(C;-1)(A,B) ; g€ Arr(Ci—1)(A4,C)

f’EAI‘I‘(Cifl)(B,D)) g EAI‘I‘()(CvD)) f’Osz?l g’og
UP(A,B,C,D,f,g,f,,)Okl(Avacfvg) Nif,

A,B,C,D € Obj(Ci—1) ; f € Arr(Ci—1)(A,B) ; g€ Arr(Ci—1)(4,C)
freArr(Cia)(B,D) ; ¢ € Arr(Ci)(C,D) 5 f'of~ic1g' og

UP(A,B,C,D,f,g,f,,)OkZ(Avacfvg) Nzgl
A, B,C e 0bj(Ci—1) ; feArr(Cii1)(A,B) ; ge Arr(Ci—1)(4,0)

D € Obj(C) ; u,v € Arr(C;)(push(A, B,C, f,g),D)
uok1(A,B,C f.9) ~ivoki(A B Cf, 9)
uokQ(A,B,C f,g)N Uok2(A Caf’g)

U ~; v
Lemma 33 For alli >0,

1. Obj(C;) € Obj(Cit1);

2. Arr(Ci)(A, B) C Arr(Cit1)(4A, B);

3. Vf,g € Arr(Ci)(A,B), f~ig = [~ing.

27

(11)

(12)

(13)

(14)

(21)

(22)

Proof. By induction on i. This result is obvious for ¢ = 0. For the inductive step, we prove
the three points in parallel, by structural induction on the definition of Obj(C;), Arr(C;) and
~i. O

Lemma 34 For alli >0,

1. C; 1s an equiv-category ;

2. if i > 1, then @ is equiv-initial in C;.
Proof. Obvious from the rules defining Obj(C;), Arr(C;), and ~;. O
Remark 35 The statement push(A, B,C, f,g) € Obj(C;) does not mean that the object

push(A, B, C, f,g) is an equiv-pushout in C;. Indeed we have delayed the introduction of
some up arrows in order to avoid circularity in our definition.

For all ¢ > 0, the equiv-category C; is a conservative extension of Cy, which means that
we do not introduce in C; new arrows between objects of Cy, and that we do not introduce
new relations between arrows of C.

For all 2 > 0, let J; be the inclusion equiv-functor of Cy into C;.

Theorem 36 (C; is a conservative extension of Cp)
For all i > 0, the equiv-functor J; : Co — C; s full and faithful.

This theorem is equivalent to the following result:
Vi >0, YA, B € Obj(Cy),

1. (J; is full) Vh € Arr(C;)(A, B), 3b' € Arr(Co)(A,B) ; h ~; B/
2. (J; is faithful) VA, A" € Arr(Cy)(A,B), b ~; h" = h' ~¢ h"

The proof, which consists of tedious inductions, is too long to be written here and is developed
in [28].

4.3 Equiv-category of terms TERM(Cp)

Definition 37 We define the equiv-category of terms
TERM(Cy) = (Obj(TERM(Cp)), Arr(TERM(Cyp)), ~)
as the union of all equiv-categories C;.

— The set of objects of TERM(Cy) is

Obj(TERM(Cy)) = fj Obj(Cy).
=0

— Let A, B € Obj(TERM(Cyp)). There exists k > 0 such that A, B € Obj(Cj). The set of
arrows from A to B is

Arr(TERM(Cy))(A, B) = Ej Arr(C;)(A, B).
i=k

28

— Let f,g € Arr(TERM(Cy))(A, B). There exists k > 0 such that f,g € Arr(Ci)(A, B).
By definition, f ~ g if and only if f ~j g.

From lemma 33, Obj(TERM(Cp)), Arr(TERM(Cp)) and ~ are well defined, and from lemma
34.1, TERM(Cp) is an equiv-category.

Theorem 38 TERM(Cy) is a finitely cocomplete equiv-category.

Proof. The object @ is equiv-initial in TERM(Cy). VA, B,C € Obj(TERM(Cy)), f €
Arr(TERM(Cy))(A, B), g € Arr(TERM(Cp))(4, C), the triple

(pUSh(A7 B7 C7 f7 9)7 k]-(A7 B7 C7 f7 g)? k2(A7 B7 C7 f7 g))
is an equiv-pushout. Therefore, TERM(Cy) has all finite equiv-colimits. O

Let J : Cyp — TERM(Cyp) be the inclusion equiv-functor of Cy into TERM(Cy).

Theorem 39 (TERM(Cy) is a conservative extension of Cy)
The equiv-functor J : Co — TERM(Cy) is full and faithful.

Proof. This is a consequence of theorem 36. O

Theorem 40 TERM(Cy) is the equiv-category freely generated over Cy by a chosen equiv-
initial object and chosen equiv-pushouts. In other words, let F': Co — & be an equiv-functor,
E be an equiv-category with a chosen equiv-initial object and chosen equiv-pushouts. Then
there exists a unique equiv-functor

G : TERM(Cy) — &€
which preserves the chosen equiv-initial object and chosen equiv-pushouts and such that
GodJ=F.

Proof sketch. We construct the equiv-functor G : TERM(Cy) — £ by induction on the
structure of objects and arrows of TERM(Cp), such that

1. YA € Obj(Cy), G(A) = F(A)

2. G(Q) = 0f

3. G(push(4, B,C, f,g)) = push®(G(4),G(B),G(C),G(f),G(g))
4. Vf € Arr(Co)(4,B), G(f) = F(f)

5. G(go f) = Glg) e G(f)

6. G(id(A)) = jde(A)

7. G(j(4) = j§

8. G(ki(A, B,C, f,9)) = ki (G(4),G(B),G(0),G(f),G(9))

9. G(ka(A, B,C, f,9)) = k3 (G(A),G(B),G(C),G(f),G(g))

29

10' G(up(A7 B? C? D? f’ g? f’?gl))
= upg(G(A), G(B)7 G(C)7 G(D)7 G(f)7 G(g)7 G(f,)v G(g’))
We show that G is compatible with the congruences in TERM(Cy) and £ by induction on
the length of the proof that A ~ A’ in TERM(Cp). Then, G is an equiv-functor because of

conditions 5 and 6; G o J = F because of 1 and 4; G preserves the chosen initial object
because of 2 and 7; G preserves chosen equiv-pushouts because of 3, 8, 9 and 10. O

4.4 Category of terms Term(Cy)

The category of terms Term(Cy) is the quotient category
TeI‘IIl(Co) = TERM(CO)/N

Obviously, from theorem 38, Term(Cp) is a finitely cocomplete category. However, the
category Term(Cp) has no chosen pushout. Indeed, if f ~ f’ and g ~ ¢’ in TERM(Cy), then
push(A, B, C, f,g) and push(A, B, C, f',¢') are two different choices of pushouts of f = f' and
g = ¢' in Term(Cp) (cf. remark 32). Therefore, Term(Cy) is not freely generated by a chosen
initial object and chosen pushouts. However, it is possible to construct a category freely
generated by a chosen initial object and chosen pushouts by identifying the multiple choices
of pushouts. This construction, inspired by F. Cury’s “object rewriting” [10], is described in
[28].

Categories freely generated by certain limits or colimits correspond to the type of a
sketch introduced by C. Ehresmann [14]. Here, the advantage of defining the equiv-category
TERM(Cp) is to get an effective representation of arrows.

5 From terms to diagrams

In this section, we show how to associate with each specification (represented by an object
of TERM(Cp)) a diagram, and with each specification morphism (represented by an arrow of
TERM(Cp)) a diagram morphism.

5.1 Equiv-functor D : TERM(Cy) — DIAGR(Cp)

The equiv-category DIAGR(Cp) has a chosen equiv-initial object and chosen equiv-pushouts
(theorem 29). Therefore, from theorem 40, there exists a unique equiv-functor

D : TERM(Cy) — DIAGR(Co)
such that
1. YA € Obj(Cy), D(A) = I(A)
2.D0)=0

3. D(pUSh(A73707 fug))
= PUSH(D(A),D(B),D(C),D(f),D(g))
= AplPushDiagr(D(A),D(B),D(C),D(f),D(g))

4. Vf € Arr(Co)(4, B), D(f) = I(f)

30

5. D(go f) =D(g) o D(f)
6. D(id(A)) = Tdp(a

7. D((A)) = 7D(A)

8. D(ki1(4,B,C, f,9)) = Ki(D(4),D(B),D(C), D(f), D(9))
9. D(kZ(Aa B,C, f, g)) = K_Z(D(A)v D(B)7 D(C)7 D(f)7 D(g))
10' D(up(A£C7D7f7g7f,7g,))

= UP(D(A),D(B),D(C), D(D),D(f),D(9),D(f'), D(9')-

The rules 1 and 4 are equivalent to Do J = I.

These rules give us a procedure to compute the diagram associated with a term. At
last, there is of course a functor D/~ : Term(Cy) — Diagr(Cy) which corresponds to the
equiv-functor D : TERM(Cy) — DIAGR(Cy).

5.2 Example

As an example, we compute the diagram associated with the specification R3 of rings which
was defined as follows (cf. section 2).

P = push(S,M,G,bos,mobos)

By = pUSh(QaBaBaj(B)v./(B))

ur = up(@, B, B, Pj(B) j(B), ky(P) o b, ks(P) omob) : By = P
Uz = up(@,B,B,D,j(B),j(B),m*,m+) :By = D

R3 = pUSh(BQ,P,D,Ul,Ug)

Let us start by computing the diagram associated with the specification P of pseudo-rings.

D(P) = Apl PushDiagr(D(S), D(M),D(G),D(bo s),D(mobo s))

(=l
(e}
»
~
Il

mobes) -

Let us compute the diagram associated with the specification Bs.

To find the diagram morphism associated with the specification morphism u; : By — P, we
must first calculate D(k1(P) o b) and D(ka(P) o m o b).

D(ki(P)ob) = Ki(D(S),D(M),D(G),D(bos),D(mobos))oD(B)

D(ka(P)omob) = Ko(D(S),D(M),D(G),D(bos),D(mobos))

Boy"
-

We can now compute the diagram morphism associated with u; : By — P.

32

1
5
9

* Q
9

S e

mobos

-/
Let us compute the diagram morphism associated with uy : By — D.

D(UZ) = D_(up(@,B,B,D,J(B),j(B),m*,m+))
= UP(D(9),D(B),D(B),D(D),D(j(B)),D((B)), D(mx), D(m))

D)=

D(m.) =
Dims) =
D(uz) =

At last, we compute the diagram associated with the specification Rj.

33

D(As) = D(push(Bs, P, D, uy,us))

= AplPushDiagr(D(B2),D(P),D(D),D(uy), D(uz))

\

)

Therefore, the diagram associated with the specification R3 is 03 (cf. section 2).

If we compute the diagram associated with Ry, we find a diagram @, which is isomorphic to

4.

5.3 Equivalence of terms and diagrams

In this paragraph, we show that the equiv-categories TERM(Cy) and DIAGR(Cy) are equiva-
lent. Intuitively, this means that these equiv-categories have the same equivalence classes of

isomorphic objects.

Definition 41 (Equivalence of equiv-categories) Two equiv-categories C and C' are
equivalent if and only if there exist two equiv-functors F' : C — C' and G : ' — C such

that F oG 2 Ider and Go F = Id¢.

34

I

oM
5 /b

Lemma 42 There exists an equiv-functor T : DIAGR(Cy) — TERM(Cy), which preserves
finite equiv-colimits, such that T ol = J.

Proof. From theorem 38, the equiv-category TERM(Cy) is finitely cocomplete. So the
result is immediate from theorem 31. O

Lemma 43 We have the following natural isomorphisms:
1. DoTolZ=1I;
2. ToDodJ=J.

Proof. This is an immediate consequence of T ol & J and Do J = 1. O

Proposition 44 There is a natural isomorphism D o T = Idpiacr(cy)-

Proof. From lemma 43.1, we have Do T oI = [. Moreover the equiv-functors D o 7 and
Idpracr(c,) preserve finite equiv-colimits. Therefore, from theorem 31, Do T = Idpiagr(cy)-
O

Proposition 45 There is a natural isomorphism T o D = Idtgrm(cy)-

Proof. We construct a natural transformation ¥ : 7 oD = Idrgry(c,)- For every object U
of TERM(Cp), we define by induction on the structure of U an isomorphism ¥y : T(D(U)) —
U, and, in parallel, we show that ¥ is a natural transformation by induction on the structure
of arrows of TERM(Cy).

1. U = J(A), where A is an object of Cy. From lemma 43.2, 7 o Do J = J. Therefore,
there exists an isomorphism ¥y : T(D(U)) — U.

2. U = 0. T(D(D)) = T(O) = O because T preserves the initial object. Let Ug :
T(D(D)) — O be this isomorphism.

3. U = push(A,B,C, f,g). By induction hypothesis, we have three isomorphisms ¥4 :
T(D(A)) - A, Up : T(D(B)) - B and V¢ : T(D(C)) — C such that fo Wy =
UpoT(D(f)) and go W4 = VeoT(D(g)). As T and D preserve pushouts, the triple

(T(D(push(A, B,C, f,9)), T(D(ki(A,B,C, f,9)), T(D(k(A,B,C, f,9)))
is a pushout of the diagram
PushDiagr(T(D(A)), T(D(B)), T(P(C)), T(D(f)), T(P(9)))-
Therefore, there is a mediating arrow
Uy T(D(push(A, B,C, f,q))) — push(A, B,C, f,g),
unique up to equivalence, which is an isomorphism, and such that

Yy OT(D(kl(A,B,C,f,g)) ~ k1(A,B,C,f,g) oUp
Uy o T(D(k2(A,B,C, f,9)) ~ k2(A,B,C, f,g) o Y.

It remains to show that ¥ is a natural transformation, which is done by induction on
the structure of arrows of TERM(Cy) (rules 4-10).

O

35

From propositions 44 and 45, we deduce the following theorem:
Theorem 46 The equiv-categories TERM(Cy) and DIAGR(Cy) are equivalent.

Intuitively, the equiv-categories TERM(Cy) and DIAGR(Cp) have the same classes of isomor-
phic objects. This implies that two objects of TERM(Cy) (representing two modular specifi-
cations) are isomorphic if and only if their associated diagrams are isomorphic in DIAGR(Cy),
and that two arrows of TERM(Cy) (representing two specification morphisms) are equivalent
if and ounly if their associated diagram morphisms are equivalent in DIAGR(Cp).

We have shown that the equiv-categories TERM(Cy) and DIAGR(Cp) are equivalent. How-
ever, we must note that TERM(Cy) and DIAGR(Cy) are not isomorphic, because they have
not the same choices of equiv-colimits. For instance, push(A, B, C, f,g) and push(A, C, B, g, f)
are two different equiv-pushouts in the equiv-category TERM(Cp) which are sent to the same
diagram in DIAGR(Cy).

Two equiv-categories C and C’ are equivalent if and only if their corresponding quotient
categories C/~ and C'/~ are equivalent. Therefore, from theorem 46, we can deduce that the
categories Term(Cy) and Diagr(Cy) are equivalent.

6 Normalization of Diagrams

We have seen that two modular specifications are isomorphic in TERM(Cy) if and only if their
associated diagrams are isomorphic. However, two isomorphic diagrams need not be identical.
For example, 01, d2, 63 and d; are different diagrams which are isomorphic in DIAGR(Cp).

In this section, we propose a normalization of diagrams and show that two diagrams are
isomorphic if and only if they have the same normal form. We will suppose that the base
category Co is finite and cycle free, because we have not solved the problem in the general
case.

Definition 47 (Skeletal (equiv-)category) An (equiv-)category C is skeletal if for all ob-
jects Aand BofC, A= B = A=B.

Any category Cp has an equivalent skeletal category C) which may be constructed by
choosing a representative in every equivalence class of isomorphic objects. Given an object
A, let Sk(A) be the chosen object for the class of objects isomorphic to A, and ¢4 : A — Sk(A)
the corresponding isomorphism. Then, there is a functor Sk : Cy — Cjy defined as follows.

Sk : Co — C(l)
A — Sk(A)
f:A=B = ¢pofody

For any diagram 0 = (6%, §: P(6%) — Cp) over Co, Skod = (6%, Sko §: P(6%) — C)) is
a diagram over Cj) which is isomorphic to 9.

6.1 Hypothesis

For the rest of the paper, we make the following assumptions.

1. The category Cy is finite i.e. the set of objects and the set of arrows of C is finite.

2. The category Cp is cycle free, i.e. for every arrow f: A — A of Cy, f = id4.

36

3. The category Cy is skeletal.

The hypothesis that Cy is skeletal is natural since we need a normal form for every object of
Co if we want to get a chance to have a normal form for diagrams over Cy.

Lemma 48 Let A, B be two objects, and f : A — B, g: B — A be two arrows of Cy. Then,
A=Band f =g=1idy.

Proof. Straightforward from hypothesis 2 and 3. O

6.2 Completion of diagrams

We first define complete diagrams and show that a diagram may be completed, i.e. transformed
into an isomorphic complete diagram.

Definition 49 (Complete diagram) A diagram § is complete if
— 6 has no edge labeled by an identity arrow: Ya : m — n, 6(a) # ids (1)

— ¢ contains no couple of edges with same source and target which are labeled by the
same arrow: Vai,as : m — n € Edges(0®), d(a1) # §(az);

— 0 contains all compositions: Yai : ng — ny,as : ny — ny € Edges(6%),
Ja : ng — no € Edges(0%); d(a) = 6(a2) o 6(a1);

0 contains all right factorizations: Vaj : nmy — ng, az : no — ng € Edges(6®), if
3h : 0(n1) — d(ne) in Cy such that §(az) o h = §(a1), then

Ja : ny — ng € Edges(0®); d(a) = h.
Proposition 50 (Completion) For every diagram 0, there exists a complete diagram
Complete(d)
such that 0 = Complete(9).
Proof. From 6, we construct a new diagram by iterating the following transformations.

1. For every a : m — n € Edges(d®) such that §(m) = 6(n) and 6(a) = ids(,y,), we remove
the edge a of 6. If m # n, then we also merge m and n.

2. For all ay,a : m — n € Edges(6®) such that d(a1) = §(az), we remove the edge as.

3. For all Yay : ng — ny,az : ny — ny € Edges(d?®), if there is no edge a : ng — ny €
Edges(6?) labeled by §(az) o §(ay), we add such an edge in 0.

4. Yai : ny — ng,as : ny — ng € Edges(d®), if there exists h : 6(a1) — 6(az) in Cy and if
there is no edge a : ny — no € Edges(d®) labeled by h, we add such an edge in 0.

We can check that
— this procedure stops, because the category Cy is finite;
— every transformation yields an isomorphic diagram.

Therefore, we end up with a complete diagram Complete(d) which is isomorphic to 6. O

37

For example, Complete(d;) = Complete(d3) = Complete(dy) = &'. Therefore, 0; = d3 = 0.
The diagram &, is complete: Complete(ds) = J5.

4 .M\ / Y \
bos/ e ’ B 0/b
My My
S o °]‘°’3\- D \‘. D
$ B
mobos °/m+ B °/m+
\mOb \mOb
N\ "¢ ")
5 by

6.3 Normalization

Completing a diagram allows us to get a more “canonical” form for diagrams. However, two
complete diagrams may be isomorphic without being identical e.g. do and 4.

Definition 51 (Elementary zigzag) An elementary zigzag of a graph 6% is a zigzag
ag a1
my <— mjp —» my
of 6% such that ag and a; are distinct edges.
Intuitively, a zigzag Z is included in a zigzag Z' if Z is a “sub-zigzag” of Z'.

Definition 52 (Inclusion of zigzag)
Let Z = (k,Zv,Zg) and Z' = (K', Z{,, Z};) be two zigzags of a graph 6%, with

Zy = (no,n1,...,ng) and Zg = (ap,ay,...,a5-1);
Zy = (ng,nl,...,n) and Zp = (ag,a), ... a5).

7 C Z' if there exists an integer j, 0 < j < k' — k, such that
— Vi, 050 <k, nj =ng;
- Vi, 0<i<k-—1, ai:a;ﬂ-.

Note that Z C Z’ implies k < k.

Let § = (6%, 6 : P(6%) — Cp) be a diagram. Elementary zigzags of § are elementary zigzags
of §%. We now define an ordering on elementary zigzags of a complete diagram.

Definition 53 Let 0 be a complete diagram over Cy. We define an ordering < on elementary
zigzags of § as follows.
Let Z; and Z3 be two elementary zigzags. Let Z; = my &y 2 ome,.

— We have Z; < Z; if there exists a zigzag Z' = (K, Zi,, Z};), with Zj, = (ng,n},...,n})
such that

38

o my = ng and my = nj, ;
« 7y CZ;

o d(ap) ~56(ar) [2'];

o Vi, 0<i<Kk, my#n].

— We have Z1 < Zy if Z1 = Z5 or Z1 < Z5.

!/
mog=—n
0. 0

a
0 on’l Z2

1b2\

m104>on’2 !
3
!
ap .<:'3
®
mo =My)
—_——
VA

Proposition 54 The relation < is an ordering.

For example, in the diagram 0’, we have

M bos S mobos G
M bos S mobos G
M bos S M08 D
D M08 S mobos G

M~ B ™ D,
p{* p™¢t g,
M < B ™ D,
D&+ pmtq

IAIN N IA

The set of elementary zigzags of a diagram ¢ is finite, therefore it contains mazimal
elements. For example, the elementary zigzags

b ¥ m b
M« B™D D+B™G
are maximal in ¢’. But
M bos Smobos G, M bos Sm*os D, D M08 Smobos G

are not.

Definition 55 (Terminating vertex) A terminating vertez of a graph 6% is a vertex n
such that there is no edge with source n in 6.

Definition 56 (Link) A link of a complete diagram 0 is a maximal elementary zigzag of &
7 = mo <a_0 miq ﬂ) mo
such that mg and my are terminating vertices of 0.

The set of links of a complete diagram is computable, because the set of elementary
zigzags is finite, and the ordering is decidable.

39

Lemma 57 Let § be a complete diagram, n, n' be two vertices of 6%, and v : A — §(n),
v:A—d(n') be two arrows of Cy. Then,

u~z [Z] = u~go 2]
where Z' = my <2 m; = ... &= ME_1 g my 15 a zigzag such that for each i Uerifyin_g

. a
0 <i < (k—2)/2, we have ag; : moit1 — Mai, G241 @ Moyl — Moire and Mo

a2i41 . . -
Moir1 —r Moo 18 a link of 0.

Definition 58 (Normal form) A diagram 0 is in normal form if
— every vertex of 6% is a terminating vertex, or belongs to a link of J;
— every edge of 6% belongs to a link of 9.

Proposition 59 (Normalization) For every diagram 8, there ewists a diagram N(0) in
normal form such that 6 = N(6).

Proof. We consider the set
E :={a € Edges(0), a does not belong to a link of §}.

N(0) is the diagram which is obtained by removing all edges of E from 0. We prove that
we indeed get a diagram which is isomorphic to § by induction on Card(£). The important
point is to “suppress edges in ¢ in the right order”.

Base step. If E =, then § is in normal form.

Inductive step. We construct a diagram ¢’ by removing an edge a of E from 6. Let m be
a vertex of 6% such that there exists an edge ap : m — ng € £. Such a vertex exists because
6% has no cycle. Then, let F = {a; : m = n;y, a; € E} C E. We have of course F # ().

1. If Card(F) = 1, we have a unique edge a : m — n in F. We construct a diagram &' by
removing the vertex m and the edge a from 0.

We have an isomorphism @ : § — ¢’ such that ¢®(m) = n, 0®(a) = 0, and o, = 6(a).

2. If Card(F') < 2 and if there exists in F' an edge a : m — n such that n is not a
terminating verter, then we construct a diagram ¢’ from § by removing the edge a.
There exist two edges

ar:n—niy, a:m—>n € Edges(éq))
such that §(ay) o d(a) = 0(az)
We have an isomorphism @ : § — &' such that o®(a) = m 2 ny < n.

3. If Card(F) < 2 and if every edge a; : m — n; is such that n is a terminating vertex, let
a:m—n,a :m —n' €F. As the elementary zigzag

a a’ ’
n<m-—n
is not maximal, there exists a zigzag Z : n ~— n' in 0, which only contains links

(lemma 57), and such that §(a) ~5 6(a’) [Z]. Then, we construct a diagram &' from 0
by removing the edge a.

We have an isomorphism @ : § — ¢ such that 0®(a) = m > n/ Zon.

40

Corollary 60 Any two diagrams having the same normal form are isomorphic.

Back to the example, we have N (') = 0y and N (J2) = &2. Therefore, § = &3, hence
01 =0y 253 =0y

Theorem 61 Let @ and (3 be two diagrams. Then, @ = 3 < N(a) = N(B).

Proof. The <« part comes from corollary 60. It remains to show the = part. We can
suppose w.l.o.g. that @ and [are complete. Let @ : @ — (8 be an isomorphism in DIAGR/(Cy).
®(

1. We show that for any terminating vertex n of a®, ¢®(n) is a terminating vertex of 32,

a(n) = B(o®(n)) and oy, = idy,).

2. Let
ag al

my <— M — My

o o

((

be a link of @. Let ng = 0®(myg) and no = 0®(mg). Thus, the vertices ng and ny are

terminating vertices of * and
a(mg) = B(ng), a(mz) = B(n2), ome = ida(me)s Tmy = ida(ms,)-

Then, we prove that there exists a vertex n; in 3% such that a(mi) = B(n1). At last,
we show that there exist two edges by : ny — ng and by : n1 — ngy in B%® such that

a(ag) = B(bo) and afay) = B(b1).

Eventually, the diagrams @ and 3 have the same terminating vertices and the same links.

Therefore, N (@) = N'(B). a

7 Conclusion

In this paper, we proposed a theoretical framework to study modular specifications. We
revisited a classic idea in algebraic specification, which consists in modeling the composition
of modular specifications by means of colimits of diagrams.

We proposed a term language to represent specifications built from a category of base
specifications Cy with pushout constructions. This language is formally characterized by a
finitely cocomplete equiv-category TERM(Cy), which is freely generated over Cy by a chosen
equiv-initial object and chosen equiv-pushouts.

We proposed to represent terms denoting modular specifications as diagrams and thus
defined an equiv-category DIAGR(Cy) of diagrams. This equiv-category is a completion
of Cy by finite equiv-colimits. The association of terms with diagrams is described by an
equiv-functor D : TERM(Cy) — DIAGR(Cy) which defines an equivalence between the equiv-
categories TERM(Cy) and DIAGR(Cy).

We made a careful distinction between syntactic entities, i.e. objects and arrows in
an equiv-category, which may be handled effectively, and their meaning in the corresponding
category. This effective representation of terms in TERM(Cp), and of diagrams in DIAGR(Cp),
allowed us to define an equivalence between both equiv-categories as a computable equiv-
functor D.

At last, we gave a procedure to compute the normal form of a diagram, in the case when
the base category is skeletal, finite and cycle free. In this case, we can thus decide whether
two specifications are related by a construction isomorphism by comparing the normal form
of their associated diagrams.

41

Future Work

We have proposed a normalization of diagrams when the base category is finite and cycle
free. We do not know whether the problem of diagram isomorphism is, in the general case,
decidable.

At the present time, it is not possible to specify distinguished cones in the base category,
as in sketch theory [14, 11, 12]. It would be interesting to extend our work in order to take
into account some pushouts in the base category. This extension would provide us with a
finer structure of the library of base specifications.

From a practical point of view, our work could be applied to design or enhance specifica-
tion and programming languages. Applying the representation of module composition with
diagrams, we hope to get a more general concept of modularity, which supports renaming of
types and functions as well as consistent sharing of modules.

Moreover, one interest of modularity in programming is to be able to reuse modules in
different contexts. The idea here is to have a library of base specifications together with vari-
ous modules implementing them. Then, the diagram associated with a modular specification
describes all the sharing constraints between the imported modules, and could be used to
check the compatibility between these modules.

Acknowledgments

I wish to thank Didier Bert for supervising this research, and Jean-Claude Reynaud, whom
I borrowed the initial ideas of this work, for numerous helpful discussions. I am also grateful
to Christian Lair for pointing out the importance of equiv-categories, and for explaining to
me that the category Term(Cy) was not freely generated over Cy by a chosen initial object
and chosen pushouts.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall International,
1990.

[2] M. Barr and C. Wells. The categorical theory generated by a limit sketch, November 1994.

3] D. Bert, R. Echahed, P. Jacquet, M.-L. Potet, and J.-C. Reynaud. Spécification, généricité,
g
prototypage: aspects du langage LPG. Technique et science informatique, 14(9):1097-1129,
1995.

[4] D. Bert et al. Reference manual of the specification language LPG. Technical Report 59, LIFIA,
Mars 1990. Anonymous ftp at ftp.imag.fr, in /pub/SCOP/LPG/NewSun4/man lpg.dvi.

[5] D. Bert and C. Oriat. A model inference system for generic specification with application to code
sharing. In Proceedings of TAPSOFT’95, number 915 in LNCS, pages 741-755. Springer-Verlag,
1995.

[6] S.L.Bloom and E. G. Wagner. Many-sorted theories and their algebras with some applications to
data types. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics, chapter 4,
pages 133-168. Cambridge University Press, 1985.

[7] R. M. Burstall and J. A. Goguen. Putting theories together to make specifications. In Proceedings
of the 5" International Joint Conference on Artificial Intelligence, pages 1045-1058, 1977.

[8] R. M. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In Proceedings
of Advanced Course on Abstract Software Specification, number 86 in LNCS, pages 292-332.
Springer-Verlag, 1980.

42

[9]

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

J. Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure and Applied
Logic, 32:209-243, 1986.

F. Cury. Catégories lax-localement-cartésiennes et catégories localement cartésiennes : un exem-
ple de suffisante complétude connexe de sémantiques initiales. In diagrammes, volume 25, pages
1-155, Université Paris 7, Juillet 1991.

D. Duval and J.-C. Reynaud. Sketches and computation (part 1): Basic definitions and static
evaluation. Mathematical Structures in Computer Science, 4:185-238, 1994.

D. Duval and J.-C. Reynaud. Sketches and computation (part 2): Dynamic evaluation and
applications. Mathematical Structures in Computer Science, 4:239-271, 1994.

C. Ehresmann. Catégories et structures. Dunod, Paris, 1965.

C. Ehresmann. Esquisses et types de structures algébriques. Bulletin de [’Institut Polytechnique
de Iagi, 14(1), 1968.

H. Ehrig, R. M. Jimenez, and F. Orejas. Compositionality results for different types of parameter-
ization and parameter passing in specification languages. In Proceedings of the 4" International
Joint Conference CAAP/FASE, number 668 in LNCS, pages 31-45. Springer-Verlag, 1993.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and Initial Se-
mantics, volume 6 of FATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1985.

J. A. Goguen. Categorical foundations for general systems theory. In Advances in Cybernetics
and System Research, pages 121-130. Transcripta Books, 1973.

J. A. Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures in
Computer Science, 2:159-191, 1992.

J. A. Goguen and R. M. Burstall. Introducing institutions. In Proceedings of the Workshop on
Logic of Programming, number 164 in LNCS, pages 221-256. Springer-Verlag, 1984.

J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and
programming. Research Report ECS-LFCS-90-106, University of Edingburgh, January 1990.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specification,
correctness, and implementation of abstract data types. In R. T. Yeh, editor, Current Trends in
Programming Methodology, volume 4: Data Structuring, pages 80—149. Prentice-Hall, 1978.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Abstract data types as initial
algebras and the correctness of data representation. In Computer Graphics, Pattern Recognition
and Data Structure, pages 89-93, 1975.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra semantics and
continuous algebra. J. ACM, 24:68-95, 1977.

S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci., 50:869-873, 1963.

J. Meseguer and J. A. Goguen. Initiality, induction, and computability. In M. Nivat and J. C.
Reynolds, editors, Algebraic Methods in Semantics, chapter 14, pages 459—-541. Cambridge Uni-
versity Press, 1985.

C. Oriat. Detecting isomorphisms of modular specifications with diagrams. In Proceedings of
AMAST’95, number 936 in LNCS, pages 184-198. Springer-Verlag, 1995.

C. Oriat. Etude des spécifications modulaires : constructions de colimites finies, diagrammes, iso-
morphismes. These de doctorat, INPG, Grenoble, Janvier 1996. Anonymous ftp at ftp.imag.fr,
in pub/Mediatheque.IMAG/theses/96-0riat.Catherine/.

J.-C. Reynaud. Sémantique de LPG. Research Report 651 I IMAG, LIFIA, Mars 1987.

43

[30]
31]
[32]

[33]

[34]
[35]

[36]

[37]

J.-C. Reynaud. Putting algebraic components together: A dependent type approach. Research
Report 810 I IMAG, LIFTIA, April 1990. Extended version.

J.-C. Reynaud. Putting algebraic components together: A dependent type approach. In Proceed-
ings of DISCO’90, number 429 in LNCS. Springer-Verlag, 1990.

J.-C. Reynaud. Isomorphism of typed algebraic specifications. Research Report, LGI-IMAG,
April 1993.

T. Streicher and M. Wirsing. Dependent types considered necessary for specification languages.
In Proceedings of the 7" Workshop on Specification of Abstract Data Types, number 534 in
LNCS, pages 323-339, 1991.

A. Tarlecki, R. M. Burstall, and J. A. Goguen. Some fundamental algebraic tools for the semantics
of computation: Part 3. Indexed categories. Theoretical Computer Science, 91:239-264, 1991.

W. Tholen and A. Tozzi. Completions of categories and initial completions. Cahiers de Topologie
et Géométrie Différentielle Catégorique, 30:127-156, 1989.

E. G. Wagner, S. L. Bloom, and J. W. Thatcher. Why algebraic theories? In M. Nivat and
J. C. Reynolds, editors, Algebraic Methods in Semantics, chapter 17, pages 607-634. Cambridge
University Press, 1985.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, chapter 13, pages 677-788. Elsevier Science Publishers B.V., 1990.

44

