
Jartege: a Tool for Random Generation of Unit

Tests for Java Classes

Catherine Oriat
LSR-IMAG, Grenoble

email: Catherine.Oriat@imag.fr

Abstract

This paper presents Jartege, a tool which allows random generation of unit
tests for Java classes specified in JML. JML (Java Modeling Language) is a
specification language for Java which allows one to write invariants for classes,
and pre- and postconditions for operations. As in the JML-JUnit tool, we use
JML specifications on the one hand to eliminate irrelevant test cases, and on
the other hand as a test oracle. Jartege randomly generates test cases, which
consist of a sequence of constructor and method calls for the classes under test.
The random aspect of the tool can be parameterized by associating weights to
classes and operations, and by controlling the number of instances which are
created. The practical use of Jartege is illustrated by a small case study.

Keywords

Testing, unit testing, random generation of test cases, Java, JML

Reference

C. Oriat. Jartege: A Tool for Random Generation of Unit Tests for Java Classes.
In Quality of Sofware Architectures and Software Quality, 2nd International
Workshop of Software Quality — SOQUA’05, LNCS 3712, pages 242-256, Erfurt,
Germany, Sept 2005.

LNCS proceedings are available at:

http://www.springeronline.com/lncs

This material is presented to ensure timely dissemination of

scholarly and technical work. Copyright and all rights therein

are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the

terms and constraints invoked by each author’s copyright. In

most cases, these works may not be reposted without the explicit

permission of the copyright holder.

c© 2005 Springer-Verlag. The copyright for this contribution is

held by Springer.

Jartege: a Tool for Random Generation of Unit

Tests for Java Classes

Catherine Oriat
LSR-IMAG, Grenoble

email: Catherine.Oriat@imag.fr

Abstract This paper presents Jartege, a tool which allows random generation
of unit tests for Java classes specified in JML. JML (Java Modeling Language) is
a specification language for Java which allows one to write invariants for classes,
and pre- and postconditions for operations. As in the JML-JUnit tool, we use
JML specifications on the one hand to eliminate irrelevant test cases, and on
the other hand as a test oracle. Jartege randomly generates test cases, which
consist of a sequence of constructor and method calls for the classes under test.
The random aspect of the tool can be parameterized by associating weights to
classes and operations, and by controlling the number of instances which are
created. The practical use of Jartege is illustrated by a small case study.

1 Introduction

Main validation technique in software engineering, program testing aims at en-
suring that the program is correct, i.e. conforms to its specifications. As the input
domain of a program is usually very large or infinite, exhaustive testing, which
consists in testing the program for all its possible inputs, is in general impossible.
The objective of testing is thus rather to improve the software quality by finding
faults in it. Testing is an important activity of software development, whose cost
is usually estimated to about 40% of the total cost of software development,
exceeding the cost of code writing.

A test campaign for a program requires several steps: design and development
of test sets, execution and results examination (or oracle). Considering the cost
of testing, it is interesting to automate some of these steps.

For Java programs, the JUnit framework [JUn,BG98] allows the developer to
write an oracle for each test case, and to automatically execute test sets. JUnit
in particular permits to automatically regression test several test sets.

If a formal specification is available, it can be translated into assertions which
can be checked at runtime, and thus serve as a test oracle. For instance, the
DAISTS system [GMH81] compiles algebraic axioms of an abstract data type
into consistency checks; Rosenblum’s APP pre-processor allows the program-
mer to write assertions for C programs [Ros92]; the Eiffel design and contract
approach integrates assertions in the programming language [Mey88,Mey92].

It is also interesting to automate the development of tests. We can distinguish
between two groups of strategies to produce test sets: random and systematic
strategies. Systematic strategies, such as functional testing or structural testing,
consist in decomposing the input domain of the program in several subdomains,
often called “partitions”.

Many systematic strategies propose to derive test cases from a formal specifi-
cation [Gau95]. For instance, the Dick and Faivre method [DF93], which consists
in constructing a finite state automaton from the formal specification and in se-
lecting test cases as paths in this automaton, has been used as a basis by other
approaches, in particular Casting [ABM97] or BZTT [LPU02]. BZTT uses B or
Z specifications to generate test cases which consist in placing the system in a
boundary state and calling an operation with a boundary value.

In contrast to systematic methods, random testing generally does not use
the program nor the specification to produce test sets. It may use an operational
profile of the program, which describe how the program is expected to be used.
The utility of random testing is controversial in the testing community. It is usu-
ally presented as the poorest approach for selecting test data [Mye94]. However,
random testing has a few advantages which make us think that it could be a
good complement to systematic testing:

– random testing is cheap and rather easy to implement. In particular, it can
produce large or very large test sets;

– it can detect a substantial number of errors at a low cost [DN84,HT90,Nta01].

Moreover, if an operational profile of the program is available,

– random testing allows early detection of the failures that are most likely to
appear when using the program [FHLS98];

– it can be used to evaluate the program reliability [HT90,Ham94], a way of
quantifying its quality.

However, partition testing can be much more effective at finding failures, es-
pecially when the strategy defines some very small subdomains with a high
probability to cause failures [WJ91].

Among the best practices of extreme programming, or XP [Bec99,Bec00], are
continuous testing and code refactoring. While they are writing code, developers
should write corresponding unit tests, using a testing framework such as JUnit.
Unit testing is often presented as a support to refactoring: it gives the devel-
oper confidence that the changes have not introduced new errors. However, code
refactoring often requires to change some of the corresponding unit tests as well.
Both practices can therefore be hard to conciliate, especially when the amount
of code corresponding to the tests exceeds the amount of code of the class.

This paper proposes to use random generation of tests to facilitate continuous
testing and code refactoring in the context of extreme programming. We presents
Jartege, a tool for random generation of unit tests for Java classes specified in
JML, which aims at easily producing numerous test cases, in order to detect a
substantial number of errors at a low cost.

The rest of the paper is organized as follows. Section 2 introduces the ap-
proach. Section 3 presents a case study which consists in modeling bank accounts.
This case study will serve to illustrate the use of our testing tool. Section 4
presents our tool Jartege and how it can be used to test the bank account case
study. Section 5 introduces more advanced features of Jartege, which allow one

to parameterize its random aspect. Section 6 shows the errors which are de-
tected by test cases generated by Jartege in the case study. Section 7 presents
and compares related approaches. Section 8 discusses some points about random
generation of tests and draw future work we intend to undertake around Jartege.

2 Approach

JML (Java Modeling Language) is a specification language for Java inspired by
Eiffel, VDM and Larch, which was designed by Gary Leavens and his colleagues
[JML,LBR03,LPC+03]. Several teams are currently still working on JML design
and tools around JML [BCC+03]. JML allows one to specify various assertions in
particular invariants for classes as well as pre- and postconditions for methods.

The JML compiler (jmlc) [CL02a] translates JML specifications into asser-
tions checked at runtime. If an assertion is violated, then a specific exception is
raised. In the context of a given method call, the JML compiler makes a useful
difference between an entry precondition which is a precondition of the given
method, and an internal precondition, which is a precondition of an operation
being called, at some level, by the given method.

The JML-JUnit tool [CL02b] generates JUnit test cases for a Java program
specified in JML, using the JML compiler to translate JML specifications into
test oracles. Test cases are produced from a test fixture and parameter values
supplied by the user.

Our approach is inspired by the JML-JUnit tool: we propose to generate
random tests for Java programs specified in JML, using this specification as a
test oracle, in the JML-JUnit way. Our aim is to produce a big number of tests
at a low cost, in order to facilitate unit testing.

To implement these ideas, we started developing a prototype tool, called
Jartege for Java Random Test Generator. Jartege is designed to generate unit
tests for Java classes specified with JML. By unit tests, we here mean tests for
some operations in a single class or a small cluster of classes. In our context, a
test case is a Java method which consists of a sequence of operation (constructor
or method) calls. As in the JML-JUnit tool, we use the JML specification to
assist test generation in two ways:

1. It permits the rejection of test sequences which contain an operation call
which violates the operation entry precondition. We consider that these test
sequences are not interesting because they detect errors which correspond to
a fault in the test program. (Although such sequences could be used to detect
cases when a precondition is too strong, this goal would prevent us from
producing long sequences of calls. Thus, we choose to trust the specification
rather than the code. We can note that if an operation uses a method whose
precondition is too strong, this will produce an internal precondition error
and the sequence will not be rejected.)

2. The specification is also used as a test oracle: the test detects an error when
another assertion (e.g. an invariant, a postcondition or an internal precon-

dition) is violated. Such an error corresponds to a fault in the Java program
or in the JML specification.

Our work has been influenced by the Lutess tool [Par96,dBORZ99], which
aims at deriving test data for synchronous programs, with various generation
methods, in particular a purely random generation and a generation guided
by operational profiles. The good results obtained by Lutess, which won the
best tool award of the first feature interaction detection contest [dBZ99], have
encouraged us to consider random generation of tests as a viable approach.

3 Case Study

In this section, we present a case study to illustrate the use of Jartege. This case
study defines bank accounts and some operations on these accounts.

We describe here an informal specification of bank accounts:

1. An account contains a certain available amount of money (its balance), and
is associated with a minimum amount that this account may contain (the
minimum balance).

2. It is possible to credit or debit an account. A debit operation is only possible
if there is enough money on the account.

3. One or several last credit or debit operations may be cancelled.
4. The minimum balance of an account may be changed.

To represent accounts, we define a class Account with two attributes: balance
and min which respectively represent the balance and the minimum balance of
the account, and three methods: credit, debit and cancel. In order to implement
the cancel operation, we associate with each account an history, which is a linked
list of the previous balances of the account. The class History has one attribute,
balance, which represents the balance of its associated account before the last
credit or debit operation. With each history is associated its preceding history.
Figure 1 shows the UML class diagram of bank accounts.

min

credit(amount: int)
debit(amount: int)
cancel()

History

balance

prec

0..1

hist

0..1

Account

balance

Fig. 1. UML diagram of the case study

We implement both class Account and History in Java, and specify them with
JML. We choose to write lightweight public specifications to emphasize that these
specifications are destined for clients and need not be complete.

In order to forbid uncontrolled modifications of the attributes, we declare
them as private and define associated access methods: getBalance, getMin and
getHist in class Account and getBalance and getPrec in class History. These meth-
ods are specified as pure methods in JML because they are side effect free, which
allows us to use them in JML assertions.

The class Account has an invariant which specifies that the balance of an
account must always be greater than the minimum balance.

/* Class of bank accounts. */

public class Account {
/* Invariant of class Account. */

/*@ public invariant getBalance() >= getMin(); */

private int balance; // The balance of this account
private int min; // The minimum balance
private History hist; // The history list of this account

/* The balance of this account. */

public /*@ pure */ int getBalance() { return balance; }

/* The history list of this account. */

public /*@ pure */ History getHist() { return hist; }

/* The minimum balance of this account. */

public /*@ pure */ int getMin() { return min; }

The constructor of class Account constructs an account with the specified balance
and the specified minimum balance. Its precondition asserts that the specified
balance is greater than the specified minimum balance.

/* Constructs an account with the specified balance and
* minimum balance. */

/*@ requires balance >= min; */

public Account (int balance, int min) {
this.balance = balance;
this.min = min;
this.hist = null;

}

As the minimum balance min is a private attribute, we have to introduce a
method to change its value. The method setMin (int min) sets the minimum
balance to the specified value. Its precondition asserts that the balance is greater
than the specified minimum value.

/* Sets the minimum balance to the specified value. */

/*@ requires getBalance () >= min; */

public void setMin (int min) { this.min = min; }

The method credit (int amount) credits the account with the specified amount.
Its precondition requires the amount to be positive. Its postcondition asserts that
the new balance is the former balance augmented by the specified amount, that
a new history is created with balance the former balance of the account and with
previous history the former history of the account. Its exceptional postcondition
asserts that the method should never terminate abruptly.

/* Credits this account with the specified amount. */

/*@ requires amount >= 0;

*@ ensures getBalance () == \old (getBalance ()) + amount &&

*@ \fresh (getHist ()) &&

*@ getHist ().getBalance () == \old (getBalance ()) &&

*@ getHist ().getPrec () == \old (getHist ());
*@ signals (Exception e) false;
*/

public void credit(int amount) {
hist = new History (balance, getHist ());
balance = balance + amount;

}

The debit operation, which is very similar to the credit operation, is not de-
tailed here. It has the additional precondition that the balance decreased by the
specified amount is greater than the minimum balance.

The method cancel cancels the last credit or debit operation. Its precondition
requires that the history is not null, which means that at least one operation of
credit or debit has taken place since the account was created. Its postcondition
ensures that the balance and the history of the account have been updated with
their former values.

/* Cancels the last credit or debit operation. */

/*@ requires getHist () != null;
*@ ensures getHist () == \old (getHist ().getPrec ()) &&

*@ getBalance () == \old (getHist ().getBalance ());
*@ signals (Exception e) false;
*/

public void cancel () {
balance = hist.getBalance ();
hist = hist.getPrec ();

}
} // End of class Account

We do not define any JML assertion for the class History.

/* Class of histories. */

public class History {
private int balance; // The balance of this history.
private History prec; // The preceding history.
/* Constructs a history with the specified balance and preceding history. */

public History (int balance, History prec) {
this.balance = balance; this.prec = prec;

}
/* The balance of this history. */

public /*@ pure */ int getBalance () { return balance; }
/* The preceding history. */

public /*@ pure */ History getPrec () { return prec; }
} // End of class History

4 Jartege

Jartege (Java Random Test Generator) is a framework for automatic random
generation of unit tests for Java classes specified with JML. This approach con-
sists in producing test programs which are composed of test cases, each test
case consisting of randomly chosen sequences of method calls for each class un-
der test. Each generated test program can be executed to test the classes, and
re-executed later on either after having corrected some faults or for regression
test.

The tool is designed to produce unit tests, i.e. tests composed of calls of some
methods which belong to a few classes. As noticed in [LTFWD00], because of
complex dependences that exist between classes in object-oriented programs, it
is usually not possible to test a method or a class in complete isolation. Jartege
thus is able to generate test cases which allow the integration of several classes.

4.1 Practical Use of Jartege

Suppose we wish to generate tests for the classes Account and History. We write
the following Java program:

/** Jartege test cases generator for classes Account and History. */

class TestGen {
public static void main (String[] args) {

ClassTester t = new ClassTester (); // Creates a class tester
t.addClass ("Account"); // Adds the specified classes to
t.addClass ("History"); // the set of classes under test
// Generates a test class TestBank, made of 100 test cases.
// For each test case, the tool tries to generate 50 method calls.
t.generate ("TestBank", 100, 50);

}}

The main class of the Jartege framework is ClassTester. This class must be
instantiated to allow the creation of test programs.

The method addClass (String className) adds the class className to the set
of classes under test. In this example, we wish to generate tests for the classes
Account and History.

The method generate (String className, int numberOfTests, int numberOfMe-
thodCalls) generates a file className.java which contains a class called className.
This class is composed of numberOfTests test cases. For each test case, the tool
makes numberOfMethodCalls attempts to generate a method call of one of the
classes under test. Using the accessible constructors, the tool constructs objects
which serve as parameters for these method calls.

When the program TestGen is executed, it produces a file TestGen.java which
contains a main program. This main program calls successively 100 test methods
test1 (), test2 () ... test100 (). Each test method contains about 50 method calls.

While the program is generated, Jartege executes on the fly each operation
call, which allows it to eliminate calls which violate the operation precondition.
When this precondition is strong, it may happen that the tool does not succeed
in generating a call for a given method, which explains that about 50 method
calls are generated.

4.2 Test Programs Produced by Jartege

A test program produced by Jartege is a class with a main method which con-
sists in calling sequentially all generated test cases. Each test case consists of a
sequence of constructor and method calls of the classes under test. Here is an
example of such a test case:

// Test case number 1
public void test1 () throws Exception {

try {
Account ob1 = new Account (1023296578, 223978640);
ob1.debit (152022897);
History ob2 = new History (1661966075, (History) null);
History ob3 = new History (-350589348, ob2);
History ob4 = ob2.getPrec ();
int ob5 = ob3.getBalance ();
ob1.cancel ();
// ...

} catch (Throwable except) {
error (except, 1);

}}

For each test method, if a JML exception is raised, then an error message
(coming from jmlc) is printed. The test program terminates by printing an as-
sessment of the test. As an example, here is an excerpt of what is printed with
a generated program TestBank.java:

1) Error detected in class TestBank by method test2: JMLInvariantError:
By method ”credit@post〈Account.java:79:18〉” of class ”Account”
for assertions specified at Account.java:11:32 [...]
at TestBank.test2(TestBank.java:138)

[...]
Number of tests: 100
Number of errors: 71
Number of inconclusive tests: 0

The program has detected 71 errors. The first error detected comes from a
violation of the invariant of class Account (specified line 11), which happened
after a credit operation.

The test program also indicates the number of inconclusive tests. A test case
is inconclusive when it does not allow one to conclude whether the program be-
haviour is correct or not. A test program generated by Jartege indicates that a
test case is inconclusive when it contains an operation call whose entry precon-
dition is violated. As Jartege is designed to eliminate such operation calls, this
situation may only arise when the code or the specification of one of the classes
under test has been modified after the test file was generated. A high number of
inconclusive tests indicates that the test file is no longer relevant.

5 Controlling Random Generation

If we leave everything to chance, Jartege might not produce interesting sequences
of calls. Jartege thus provides a few possibilities to parameterize its random
aspect. These features can be useful for stress testing, for instance if we want
to test more intensively a given method. More generally, they allow us to define
an operational profile for the classes under test, which describe how these classes
are likely to be used by other components.

Weights With each class and operation of a class is associated a weight, which
defines the probability that a class will be chosen, and that an operation of this
class will be called. In particular, it is possible to forbid to call some operation
by associating a null weight with it.

Creation of Objects Objects creation is commanded by creation probability
functions, which define the probability of creating a new object according to
the number of existing objects of the class against that of reusing an already
created object. If this probability is low, Jartege is more likely to reuse an already
created object than to construct a new one. This allows the user either to create
a predefined number of instances for a given class, or on the opposite, to create
numerous instances for a class.

In the example of bank accounts, it is not very interesting to create many
accounts. It is possible to test the class Account more efficiently for example by
creating a unique account and by applying numerous method calls to it.

The function changeCreationProbability(String className, CreationProbability
creationProbabilityFunction) changes the creation probability function associated
with the specified class to the the specified creation probability function.

The interface CreationProbability contains a unique method f : (double) → int
such that f(0) = 1 and f(n) ∈ [0, 1], ∀n ≥ 1.

The class ThresholdProbability allows one to define threshold probability func-
tions whose value is 1 under some threshold s and 0 above: f(n) = 1, if n < s ;
f(n) = 0, otherwise. A threshold probability function with threshold s allows
one to define at most s instances of a given class. We can for instance forbid the
creation of more than one instance of Account by adding the following statement
in the test generator:

t.changeCreationProbability ("Account", new ThresholdProbability (1));

Parameter Generation of Primitive Types When a method has a strong
precondition, the probability that Jartege, without any further indication, will
generate a call to this method which does not violate this precondition is low.
For primitive types, Jartege provides the possibility to define generators for some
parameters of a given method.

For example, the precondition of the debit operation requires the parameter
amount to be in range [0, getBalance () − getMin ()]. Let us suppose the range
is small, in other words that the balance is closed to the minimum balance. If
Jartege chooses an amount to be debited entirely randomly, this amount is not
likely to satisfy the method precondition.

Jartege provides a way of generating parameter values of primitive types for
operations. For this, we define a class JRT Account as follows.

public class JRT Account {
private Account theAccount; // The current account
/* Constructor. */

public JRT Account (Account theAccount) { this.theAccount = theAccount; }
/** Generator for the first parameter of operation debit (int). */

public int JRT debit int 1 () {
return RandomValue.intValue (0,

theAccount.getBalance () - theAccount.getMin ());
}}

The class JRT Account must contain a private field of type Account which will
contain the current object on which an operation of class Account is applied. A
constructor allows Jartege to initialize this private field. The class also contains
one parameter generation method for each parameter for which we specify the
generation of values. In the example, to specify the generation of the first param-
eter of operation debit (int amount), we define the method int JRT debit int 1 ().
We use the signature of the operation in the name of the method to allow over-
loading. The method RandomValue.intValue (int min, int max) chooses a random
integer in range [min, max].

Fixtures If we want to generate several test cases which operate on a particular
set of objects, we can write a test fixture, in a similar way to JUnit. A test fixture
is a class which contains:

– attributes corresponding to the objects a test operates on;
– an optional setUp method which defines the preamble of a test case (which

typically constructs these objects);
– an optional tearDown method which defines the postamble of a test case.

6 Applying Jartege to the Case Study

The 100 test cases generated by Jartege, showing 71 failures, revealed three
different errors: one error caused by a credit operation, and two errors caused by
a cancel operation. We extracted the shorter sequence of calls which resulted in
each failure and obtained the following results. We also changed the parameter
values and added some comments for more readability.

Error 1. The credit operation can produce a balance inferior to the previous
balance because of an integer overflow.

public void test1 () {
Account ob1 = new Account (250000000, 0);
ob1.credit (2000000000); // Produces a negative balance,

} // below the minimum balance.

Error 2. The cancel operation can produce an incorrect result if it is preceded
by a setMin operation which changes the minimum balance of the account to a
value which is superior to the balance before cancellation.

public void test11 () {
Account ob1 = new Account (-50, -100);
ob1.credit (100);
ob1.setMin (0);
ob1.cancel (); // Restores the balance to a value

} // inferior to the minimum balance.

Error 3. The third error detected is a combination of an overflow on a debit op-
eration (similar to Error 1, which comes from an overflow on a credit operation)
and of the second error.

public void test13 () {
Account ob1 = new Account (-1500000000,-2000000000);
ob1.debit (800000000); // Produces a positive balance.
ob1.setMin (0);
ob1.cancel (); // Restores the balance to a value

} // inferior to the minimum balance.

We have the feeling that the three errors detected with test cases generated
by Jartege are not totally obvious, and could have easily been forgotten in a
manually developed test suite. Errors 2 and 3 in particular require three method
calls to be executed in a specific order and with particular parameter values.

It must be noted that the case study was originally written to show the use
of JML to undergraduate students, without us being aware of the faults.

7 Comparison with Related Work

Our work has been widely inspired by the JML-JUnit approach [CL02b]. The
JML-JUnit tool generates test cases for a method which consist of a combination
of calls of this method with various parameter values. The tester must supply
the object invoking the method and the parameter values. With this approach,
interesting values could easily be forgotten by the tester. Moreover, as a test case
only consists of one method call, it is not possible to detect errors which result of
several calls of different methods. At last, the JML-JUnit approach compels the
user to construct the test data, which may require the call of several constructors.
Our approach thus has the advantage of being more automatic, and of being able
to detect more potential errors.

Korat [BKM02] is a tool also based on the JML-JUnit approach, which al-
lows exhaustive testing of a method for all objects of a bounded size. The tools
automatically construct all non isomorphic test cases and execute the method on
each test case. Korat therefore has the advantage over JML-JUnit of being able
to construct the objects which invoke the method under test. However, test cases
constructed by Korat only consist of one object construction and one method
invocation on this object.

Tobias [Led02,MLBdB02] is a combinatorial testing tool for automatic gen-
eration of test cases derived from a “test pattern”, which abstractly describes a
test case. Tobias was first designed to produce test objectives for the TGV tool
[JM99] and was then adapted to produce test cases for Java programs specified
in JML or VDM. The main problem of Tobias is the combinatorial explosion
which happens if one tries to generate test cases which consist of more than
a couple of method calls. Jartege was designed while testing a small industrial
application [dBLL+04] in order to allow the generation of long test sequences
without facing the problem of combinatorial explosion.

8 Discussion and Future Work

Jartege is only in its infancy and a lot of work remains to be done.
Primitive values generation for methods parameters is currently done manu-

ally by writing primitive parameters generating methods. Code for these methods
could be automatically constructed from the JML precondition of the method.
This could consist in extracting range constraints from the method precondition
and automatically produce a method which could generate meaningful values
for the primitive parameters.

Jartege easily constructs test cases which consist of hundreds of constructors
and methods calls. It would be useful to develop a tool for extracting a minimum
sequence of calls which results in a given failure.

We developed Jartege in Java, and we specified some of its classes with JML.
We applied Jartege to these classes to produce test cases, which allowed us to
experiment our tool on a larger case study and to detect a few errors. We found
much easier to produce tests with Jartege than to write unit tests with JUnit or

JML-JUnit. We intend to continue our work of specifying Jartege in JML and
testing its classes with itself. We hope that this real case study will help us to
evaluate the effectiveness and scalability of the approach.

A comparison of our work with other testing strategies still remains to be
done. We can expect systematic methods, using for instance boundary testing
such as BZTT [LPU02], to be able to produce more interesting test cases that
ours. Our goal is certainly not to pretend that tests produced randomly can
replace tests produced by more sophisticated methods, nor a carefully designed
test set written by an experienced tester.

Our first goal in developing Jartege was to help the developer to write unit
tests for unstable Java classes, thus for “debug unit testing”. It would also be
interesting to use Jartege to evaluate the reliability of a stable component before
it is released. Jartege provides some features to define an operational profile of
a component, which should allow statistical testing. However, the definition of a
correct operational profile, especially in the context of object-oriented program-
ming, is a difficult task. Moreover, the relation between test sets generated by
Jartege and the reliability of a component requires more theoretical work, one
difficult point being to take into account the state of the component.

9 Conclusion

This paper presents Jartege, a tool for random generation of unit tests for Java
classes specified in JML. The aim of the tool is to easily produce numerous
test cases, in order to detect a substantial number of errors without too much
effort. It is designed to produce automated tests, which can in part replace tests
written by the developer using for instance JUnit. We think that the automatic
generation of such unit tests should facilitate continuous testing as well as code
refactoring in the context of extreme programming.

The JML specifications are used on the one hand to eliminate irrelevant test
cases, and on the other hand as a test oracle. We think that the additional cost
of specification writing should be compensated by the automatic oracle provided
by the JML compiler, as long as we wish to intensively test the classes. Moreover,
this approach has the advantage of supporting the debugging of a specification
along with the corresponding program. This allows the developer to increase his
confidence in the specification and to use this specification in other tools.

Most test generation methods are deterministic, while our approach is statis-
tical. We do not wish to oppose both approaches, thinking that both have their
advantages and drawbacks, and that a combination of both could be fruitful.

At last, we found JML to be good language to start learning formal methods.
Its Java-based syntax makes it easy to learn for Java programmers. As JML
specifications are included in Java source code as comments, it is easy to develop
and debug a Java program along with its specification. Moreover, automatic test
oracles as well as automatic generation of test cases are good reasons of using
specification languages such as JML.

References

[ABM97] Lionel Van Aertryck, Marc Benveniste, and Daniel Le Métayer. Casting:
a formally based software test generation method. In Proceedings of the
First IEEE Internatinal Conference on Formal Engineering Methods —
ICFEM’97, Hiroshima, Japan, pages 101–111, November 1997.

[BCC+03] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan, M. Leino, and Erik Poll. An overview of
JML tools and applications. Technical Report NIII-R0309, Department
of Computer Science, University of Nijmegen, March 2003.

[Bec99] Kent Beck. Embracing change with extreme programming. IEEE Com-
puter, 32(10):70–77, October 1999.

[Bec00] Kent Beck. Extreme Programming Explained. Addison Wesley, 2000.
[BG98] Kent Beck and Erich Gamma. Test infected: Programmers love writing

tests. Java Reports, 3(7):51–56, 1998.
[BKM02] Chandrasekhar Boyapati, Safraz Khurshid, and Darko Marinov. Korat:

Automated testing based on Java predicates. In Proceedings of the In-
ternational Symposium on Software Testing and Analysis — ISSTA’02,
Rome, pages 123–133, July 2002.

[CL02a] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the
Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong
Mun (eds.), International Conference on Software Engineering Research
and Practice — SERP’02, Las Vegas, Nevada, pages 322–328, 2002.

[CL02b] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In Boris Magnusson (ed.), 16th
European Conference on Object-Oriented Programming — ECOOP’02,
Malaga, Spain, number 2374 in Lecture Notes in Computer Science, pages
231–255. Springer-Verlag, June 2002.

[dBLL+04] Lydie du Bousquet, Jean-Louis Lanet, Yves Ledru, Olivier Maury, and
Catherine Oriat. A case study in JML-based software validation. In 19th
IEEE International Conference on Automated Software Engineering, Aus-
tria — ASE’04, pages 294–297, October 2004.

[dBORZ99] Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc Richier, and Nico-
las Zuanon. Lutess: a specification-driven testing environment for syn-
chronous software. In International Conference on Software Engineering
— ICSE’99, Los Angeles, USA. ACM Press, May 1999.

[dBZ99] Lydie du Bousquet and Nicolas Zuanon. An overview of Lutess: a
specification-based tool for testing synchronous software. In 14th IEEE
International Conference on Automated Software Engineering — ASE’99,
pages 208–215, October 1999.

[DF93] Jeremy Dick and Alain Faivre. Automating the generation and sequencing
of test cases from model-based specifications. In Proceedings of FME’93,
number 670 in LNCS, pages 268–284. Springer-Verlag, April 1993.

[DN84] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, 10(4):438–444, 1984.

[FHLS98] Phyllis G. Frankl, Richard G. Hamlet, Bev LittleWood, and Lorenzo Strig-
ini. Evaluating testing methods by delivered reliability. IEEE Transactions
on Software Engineering, 24(8):586–601, August 1998.

[Gau95] Marie-Claude Gaudel. Testing can be formal too. In Proceedings of TAP-
SOFT’95, Aarhus, Denmark, number 915 in LNCS, pages 82–96. Springer-
Verlag, May 1995.

[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data-abstraction
implementation, specification, and testing. ACM Transactions on Pro-
gramming Languages and Systems, 3(3):211–233, July 1981.

[Ham94] Richard Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia
of Software Engineering, pages 970–978. Wiley, 1994.

[HT90] Dick Hamlet and Ross Taylor. Partition testing does not inspire confi-
dence. IEEE Transactions on Software Engineering, 16(12), 1990.

[JM99] Thierry Jéron and Pierre Morel. Test generation derived from model-
checking. In Proceedings of the 11th International Conference on Com-
puter Aided Verification — CAV’99, Trento, Italy, number 1633 in LNCS,
pages 108–121. Springer-Verlag, July 1999.

[JML] The Java Modeling Language (JML) Home Page,
http://www.cs.iastate.edu/˜leavens/JML.

[JUn] The JUnit Home Page, http://www.junit.org.
[LBR03] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of

JML: A Behavioral Interface Specification Language for Java. Department
of Computer Science, Iowa State University, 1998–2003.

[Led02] Yves Ledru. The TOBIAS test generator and its adaptation to some
ASE challenges (position paper). In Workshop on the State of the Art in
Automated Software Engineering, ICS Technical Report UCI-ICS-02-17,
University of California, Irvine, USA, 2002.

[LPC+03] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, and Clyde
Ruby. JML Reference Manual. (Draft), April 2003.

[LPU02] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated boundary
testing from Z and B. In Proceedings of FME’02, Formal Methods Europe,
Copenhaguen, Denmark, number 2391 in LNCS, pages 21–40. Springer-
Verlag, July 2002.

[LTFWD00] Yvan Labiche, Pascale Thévenod-Fosse, Hélène Waeselynck, and M.-H.
Durand. Testing levels for object-oriented software. In Proceedings of
the 22nd International Conference on Software Engineering — ICSE’00,
Limerick, Ireland, pages 136–145. ACM, June 2000.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1988.

[Mey92] Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):40–
51, October 1992.

[MLBdB02] Olivier Maury, Yves Ledru, Pierre Bontron, and Lydie du Bousquet. Using
TOBIAS for the automatic generation of VDM test cases. In Third VDM
Workshop (at FME’02), Copenhaguen, Denmark, July 2002.

[Mye94] G. J. Myers. The Art of Software Testing. John Wiley and Sons, New
York, 1994.

[Nta01] Simeon C. Ntafos. On comparisons of random, partition, and propor-
tional partition testing. IEEE Transactions on Software Engineering,
27(10):949–960, July 2001.

[Par96] Ioannis Parissis. Test de logiciels synchrones spécifiés en Lustre. PhD
thesis, Grenoble, France, Septembre 1996.

[Ros92] David S. Rosenblum. Towards a method of programming with assertions.
In International Conference on Software Engineering — ICSE’92. IEEE
Computer Society Press, 1992.

[WJ91] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing
strategies. IEEE Transactions on Software Engineering, 17(7):703–711,
July 1991.

