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Abstract. This paper presents a model inference system to control in-stantiation of generic modules. Generic parameters are speci�ed by prop-erties which represent classes of modules sharing some common features.Just as type checking consists in verifying that an expression is welltyped, model checking allows to detect whether a (possibly generic) in-stantiation of a generic module is valid, i.e. whether the instantiationmodule is a model of the parameterizing property. Equality of instancescan be derived from a canonical representation of modules. At last, weshow how the code of generic modules can be shared for all instances ofmodules.1 IntroductionGenericity is a useful feature for speci�cation languages, and for programminglanguages alike, because it allows to reuse already written packages by instan-tiating them on various ways, thus limits the risk of bugs and reduces softwarecosts. When a generic module is instantiated and imported into another module,one has to check that the instantiation is valid, i.e. that the instantiation moduleis a model of the formal part. For that, one can either rely on the syntax, i.e.on the theory de�ned by the modules, or on the semantics of the modules inthe given speci�cation language. In the �rst case one has to prove that someformulae are theorems in the theory. This problem is semi-decidable if the se-mantics is purely loose, but is undecidable if we work in an initial semantics[14]. In the second case, one has to check properties on classes of algebras, whichis hard to do automatically. Consequently, in almost all speci�cation languages(e.g. PLUSS [11, 6, 7], ACT-TWO [9], OBJ [10, 12], . . . ), such veri�cations areleft to the user.In this paper, we show that such veri�cations can partly be done automati-cally. We describe the model inference system used by the speci�cation languagelpg to control instantiation of generic modules. lpg (Langage de Programma-tion G�en�erique, i.e. language for generic programming) is a speci�cation languagedeveloped at the IMAG Institute by Didier Bert and Rachid Echahed [4, 5]. lpgallows on the one hand to de�ne and combine generic components of speci�ca-tions, and on the other hand to make prototypes thanks to an evaluation tool.There is also a solver of goals associating functional and logic programming.In lpg, generic modules are parameterized by properties. The semantics oflpg mixes loose and initial features: the semantics of a property is a class of



algebras, while the semantics of a generic module is a free functor. An lpgmodule can be instantiated by another one only if the other module is a modelof the required property. Properties and modules are related by constraints.These constraints are similar those given by Ehrig and Mahr [9] in that they putrestrictions on classes of algebras. However, they di�er in several points: �rstly,Ehrig and Mahr only consider inclusion of speci�cations, whereas we consider anymorphism in lpg. Secondly, for Ehrig and Mahr, the initial (or free) semanticsof a speci�cation is stated at the time of its importation. In other words aspeci�cation boolean can be imported once with a loose semantics, and oncewith an initial semantics. In lpg, the semantics of a unit is stated once for all atthe time of its de�nition. Thirdly, and this is the original feature of lpg we wantto stress in this paper, the language provides an inference system to generatenew constraints from declared ones.This inference system can be compared to type systems used for program-ming languages: just as types allow to control utilizations of variables, constraintsallow to control instantiations of modules. There is one important di�erencethough: constraints apply at the level of units, and are therefore category theo-retic (i.e. formulated with morphisms) rather than set theoretic (i.e. formulatedwith membership or inclusion). In particular, there are various ways a modulecan be a model of a property.Such veri�cations for modules already exist in some programming languages.For instance in Ada [1], homology rules are used to check the validity of instanti-ations; e.g. with private and limited types. In Ada, these rules apply to one typeonly. In contrast, M. V. Aponte proposed a type system for checking SML mod-ules [2], based on uni�cation and sharing, and which performs veri�cations w.r.t.the whole speci�cation of the generic part of a module. In this approach, veri�-cations are based on the names of types and functions, and therefore there arenot various ways an SML-structure (i.e. a module) can match an SML-signature(i.e. a property).Constraints allow us to reason locally about units. The semantics of algebraicspeci�cation languages often seems complicated because it is global, i.e. one hasto know the semantics of all imported units to know the semantics of the currentunit. Making constraints explicit does not change the semantics, but allows tomake safe deductions without having to be aware of all importations at the sametime. The inference system presented in this paper is sound with respect to thealgebraic semantics of the language. Note that it is not complete, and cannot becomplete with respect to this semantics. One reason is that we work in initialalgebras, and therefore it is impossible to deduce all semantically true statementsfrom any deductive system. All we can do is to rely on the user's declarations,and make safe deductions.The paper is organized as follows: section 2 and 3 present lpg units andconstraints. In section 4 we describe the inference system which allows to de-duce new constraints, and thus checks the validity of instantiations. In section5 we show the representation used for instances of generic modules. This repre-sentation allows to share imported modules consistently. Section 6 presents the



compilation of modules. In contrast to languages such as Ada [1] or C++ [13],generic modules are compiled only once in lpg, all the instantiations sharingthe same code. This is an interesting feature for a prototyping language, becauseit reduces compilation times a lot when developing highly generic programs.2 The Language ConstructionsThe lpg language has two kinds of units, namely properties and modules. lpgmodules allow to de�ne abstract data types, and more generally to group to-gether a set of types and operators logically related. lpgmodules can be generic,i.e. parameterized by a set of types and operators. The generic part of a moduleis itself an lpg unit, and is called the property required by the module. lpgunits are composed of a signature and a set of formulae, which are conditionalequations. In modules, the equations may be oriented; in this case they can becompiled and executed by the evaluation tool.module BOOLEANtypes booleanconstructorstrue, false : booleanoperatorsnot : boolean -> booleanand : boolean, boolean -> booleanor : boolean, boolean -> booleanequationsnot(true) ==> falsenot(false) ==> trueand(true,x) ==> xand(false,x) ==> falseor(true,x) ==> trueor(false,x) ==> x

property ANYtypes anyproperty DISCRETEtypes toperators first, last : tnext : t -> tproperty MONOIDtypes toperators e : top : t,t -> tequationsop(e,x) == xop(x,e) == xop(x,op(y,z)) == op(op(x,y),z)Fig. 1. Simple examples of modules and propertiesFigure 1 shows some simple examples of lpg units: the module BOOLEAN, theproperties ANY (specifying a single type any), DISCRETE and MONOID. Figure 2de�nes the generic module of lists, parameterized by the property ANY.module LIST requires ANY[elem]types listconstructors nil : list ; cons : elem,list -> listoperators head : list -> elem ; tail : list -> listequations head(cons(e,l)) ==> e ; tail(cons(e,l)) ==> lFig. 2. Generic module of lists



Given a moduleM which requires a property P , there is an injective signaturemorphism from P to M , which is merely a renaming of the types and operatorsof the property P into the module M . These morphisms are noted P r,�!M . Themodule of lists is noted ANY r,�! LIST, where r is the morphism fany 7! elemg.r is given in the module LIST by the statement requires ANY[elem].A non generic module M (such as BOOLEAN for instance) can be consideredas a generic module � �M,���!M parameterized by the empty property �, whichcontains no types nor operators. �M is the only morphism from � to M . (Cate-gorically speaking, � is the initial object of the category of signatures.)We suppose the reader is familiar with basic concepts of algebraic speci�-cation (see e.g. [8]). The class of algebras which satisfy a unit U together withhomomorphisms is a category noted Alg (U). If m : U1 ! U2 is a signaturemorphism, then there is a forgetful functor Um : Alg (U2) ! Alg (U1), and afree functor left adjoint to Um, Fm : Alg (U1)! Alg (U2). We do not de�ne thewhole semantics of lpg here, but only present the features which are relevantfor this paper. For a complete description of the semantics of lpg, see [15].De�nition 1. (semantics of a property) The semantics of a property P isa class of algebras mod (P ), which satisfy the speci�cation P , i.e.: mod (P ) �Alg (P ). The semantics of a property need not be the whole class Alg (P ) becausesome algebras may be left out to preserve imported modules.De�nition 2. (semantics of a module) The semantics of a module P r,�!Mis the free functor Fr : Alg (P ) ! Alg (M). The free functor associates to eachalgebra of Alg (P ) the algebra freely generated on M . This functor must bestrongly persistent on algebras of mod (P ), i.e.: for all algebras A of mod (P ),Ur(Fr(A)) = A.This condition expresses that previously de�ned units must be preserved, i.e.that introducing a new module does not change the semantics of old units. Let 1be the only algebra satisfying the empty property �. When a module is notgeneric, i.e. when P is the empty property, then Fr(1) is the initial algebra.3 ConstraintsThere are �ve kinds of constraints relating lpg units, namelymodel, satisfaction,combination, importation of a module into a property, and into a module. Aconstraint is composed of a signature morphism and of a semantic condition,which states the validity of the constraint.De�nition 3. (model constraint) A module P r,�!M is a model of a propertyP1 if there is a signature morphism P1 m��!M and if the formulae of P1 hold(through the translation induced by m) in M .Model (P1 m��!M) def, Um(Fr(mod (P ))) � mod (P1)



For instance, we can express that the module BOOLEAN is a model of the propertyANY with the following declaration of model (written in the module BOOLEAN):models ANY[boolean]This declaration de�nes the signature morphism fany 7! booleang from ANY toBOOLEAN. As there is no equation in the property ANY, nothing else has to bechecked. In the same way, we can de�ne di�erent models of DISCRETE with nat-ural numbers, for instance the natural numbers from 1 to 10 with the successoroperator; or natural numbers from 49 to 0, with the predecessor operator.models DISCRETE[natural,1,10,succ], DISCRETE[natural,49,0,pred]We can also express that the module BOOLEAN is a model of MONOID:models MONOID[boolean,true,and], MONOID[boolean,false,or]De�nition 4. (satisfaction constraint) A property P2 satis�es a property P1if there is a signature morphism P1 s��!P2 and if any module which is a modelof P2 is (through the translation induced by s) a model of P1.Sat (P1 s��!P2) def, Us(mod (P2)) � mod (P1) , mod (P2) � U�1s (mod (P1))For instance, we can state that the property MONOID satis�es ANY, with thedeclaration satisfies ANY[t] in the unit MONOID. The declaration states thatthere is a morphism ANY s��! MONOID = fany 7! tg, such that any model ofMONOID is a model of ANY.Combination. Properties can be combined, i.e. put together to form a newproperty. Figure 3 shows a property specifying any type and a discrete type.property ANY+DISCRETEcombines ANY[elem], DISCRETE[index,first,last,next]Fig. 3. Property ANY+DISCRETEThe combination constraint states that any model of ANY+DISCRETE is a model ofANY and is a model of DISCRETE (i.e. ANY+DISCRETE satis�es ANY and DISCRETE).Conversely, any two models of ANY and DISCRETE allow to construct a model ofANY+DISCRETE.In this example, the \union" of both properties happens to be disjoint, i.e.no symbol of type nor operator appears twice. We can for instance specify aproperty ANY DISCRETE, where the type of ANY and the type of DISCRETE areshared. We thus specify a class of modules with one type which is a model ofboth ANY and DISCRETE. Then any two models of ANY and DISCRETE which sharethis type allow to construct a model of ANY DISCRETE.



De�nition 5. (combination constraint) A property P is a combination ofthe properties P1; P2; : : : Pk w.r.t. the morphisms Pi ci��!P; 8i 2 f1; : : : kg ifmodels of P1; P2; : : : Pk which share the same types and operators as speci�ed inP allow to construct a model of P .Comb (P1; : : : Pk c1;:::ck�����!P ) def, mod (P ) = k\i=1U�1ci (mod (Pi)), �8i 2 f1; : : : kg; Uci(mod (P )) � mod (Pi)8A2Alg (P ); (8i 2 f1; : : : kg; Uci(A) 2 mod (Pi))) A2mod (P )Importation and Instantiation. Once a generic module has been de�ned, itis possible to use it in another unit. This is called importation into a module orinto a property. When a module is imported, its formal part (i.e. the signaturecontained in its required property) must be instantiated, either with actual, orformal parameters, or both. This instantiation de�nes a signature morphismfrom the imported module to the currently de�ned unit.We de�ne on �gure 4 a module called VECTOR, parameterized by the propertyANY+DISCRETE. The property ANY gives the type of information stored in a vector,and the property DISCRETE de�nes the index. We are not concerned here withthe actual representation of vectors, therefore we only specify two operations:store which assigns a new value to an index, and get which picks up the valueassociated to an index. From now on, the axiomatization of operators is omitted.module VECTOR requires ANY+DISCRETE[t,index,first,last,next]types vectoroperators store : vector, index, t -> vectorget : vector, index -> tFig. 4. Part of the module VECTORThen we may de�ne vectors of integers with some new operations. For that,we have to import the module INTEGER containing integer values as well as usualoperations on them. This module no longer requires a type for the informationstored, so it is only parameterized by the property DISCRETE.module INTEGER_VECTOR requires DISCRETE[index,first,last,next]imports INTEGER, VECTOR[integer,index,first,last,next]operators scalar_prod : vector, vector -> integerFig. 5. Module of vectors of integersAnother example: given a binary operator on the type t, we can de�ne abinary operator on vectors. The module �gure 6 de�nes a null vector and a sumof vectors, given a null element e and an associative binary operator op. Notethat we have also stated that vectors with these two operators form a monoid.



module VECTOR_SUM requires MONOID+DISCRETE[t,e,op,index,first,last,next]imports VECTOR[t,index,first,last,next]operators null_vect : vector ; sum_vect : vector, vector -> vectormodels MONOID[vector,null_vect,sum_vect]Fig. 6. Vectors with a binary operatorIn example 5, the type vector refers to the type vector of integers, whereasin example 6 it refers to vector of t. There is no confusion because the moduleVECTOR is only imported once in each module. If we want to import a moduleseveral times (with di�erent instantiations) in a module, we have to name theinstantiated modules:INTEGER_V = VECTOR[integer,index,first,last,next]T_V = VECTOR[t,index,first,last,next]and then to refer to the types and operators as INTEGER V.vector, T V.vector,INTEGER V.store and so on.The originality of lpg is that not any importation is valid. For instance, theimportation imports LIST[integer] is valid only if the module INTEGER is amodel of the property ANY with the morphism fany 7! integerg. This can bethe case either if the user has de�ned such a model with the declaration modelsANY[integer], or if the system can deduce it from other declarations, using theinference system presented next section. For instance, if INTEGER is a model ofMONOID, and if MONOID satis�es ANY, then INTEGER is a model of ANY.The examples we have presented here are importations of a module intoanother module. It is also possible to import a module into a property.De�nition 6. (constraint of importation of a module into a module)Let P1 r1,��!M1 and P2 r2,��!M2 be two modules. P1 r1,��!M1 is imported intoP2 r2,��!M2 with the morphism M1 i�!M2 if:Import M (M1 i�!M2) def, Ui(Fr2(mod (P2))) � Fr1(mod (P1)), �Model (P1 i�r1���!M2)8A2 2 mod (P2); Ui(Fr2(A2)) = Fr1(Ur1(Ui(Fr2(A2)))) (HM )The morphism i expresses the instantiation of the generic part of the moduleP1 r1,��!M1 with a part of the module P2 r2,��!M2, and the inclusion of the nongeneric part of P1 r1,��!M1 into P2 r2,��!M2.De�nition 7. (constraint of importation of a module into a property)Let P1 r1,��!M1 be a module, P2 be a property. P1 r1,��!M1 is imported into P2with the morphism M1 i�!P2 if:Import P (M1 i�!P2) def, Ui(mod (P2)) � Fr1(mod (P1)), �Sat (P1 i�r1���!P2)8A2 2 mod (P2); Ui(A2) = Fr1(Ur1(Ui(A2))) (HP )



4 Inference Rules for Model CheckingIn this section, we describe the rules which allow to combine constraints to buildnew ones, and thus provide an inference system of constraints. Every declarationof a model, satisfaction or combination constraint gives a corresponding axiom.The user must check that these axioms are semantically correct, i.e. that theassociated semantic condition is satis�ed.fHMg Model (P1 i�r1����!M2)Import M (M1 i�!M2) (IM) fHP g Sat (P1 i�r1����!P2)Import P (M1 i�!P2) (IP)Sat (� �P���!P ) (1) Model (� �M���!M) (2) Model (P r��!M) (3)Sat (P1 s1��!P2) ; Sat (P2 s2��!P3)Sat (P1 s2�s1�����!P3) (4)Sat (P1 s��!P2) ; Model (P2 m��!M)Model (P1 m�s����!M) (5)Model (P m��!M1) ; Import M (M1 i�!M2)Model (P i�m���!M2) (6)Model (P1 m��!M2) ; Import P (M2 i�!P3)Sat (P1 i�m���!P3) (7)Comb (P1; : : : Pk c1;:::ck������!P )8j 2 f1; : : : kg; Sat (Pj cj��!P ) (8)Comb (P1; : : : Pk c1;:::ck������!P ) ; 8j 2 f1; : : : kg; Sat (Pj s�cj����!P 0)Sat (P s��!P 0) (9)Comb (P1; : : : Pk c1;:::ck������!P ) ; 8j 2 f1; : : : kg; Model (Pj m�cj����!M 0)Model (P m��!M 0) (10)Fig. 7. Main inference rulesFigure 7 shows the set of main rules used by the system. Properties are notedP , P1, P2, : : :. Modules such as P r,�!M , P1 r1,��!M1, P2 r2,��!M2, : : : are justnoted M , M1, M2, : : :. The rules (IM) and (IP) are associated to declarationsof importations. Their application is conditioned by the hypothesis HM or HP ,which must be checked by the user. The other rules are not associated with anyhypothesis, which means that their application is always possible. Axioms 1 and2 state that any property P satis�es the empty property �, and that any moduleP r,�!M is a model of �. As � is initial, the morphisms �P and �M are unique.Axiom 3 expresses that a module P r,�!M is a model of its own property P ,with the morphism r. In particular, if two modules are parameterized by thesame property, then one can instantiate one module with the formal part of the



other one. Rules 4 to 7 are composition rules. Rules 8 to 10 are related to thecombines constraint. Import P (M i�!P1) ; Sat (P1 s��!P2)Import P (M s�i���!P2) (11)Import P (M i�!P1) ; Model (P1 m��!M2)Import M (M m�i���!M2) (12)Import M (M1 i1��!M2) ; Import P (M2 i2��!P3)Import P (M1 i2�i1����!P3) (13)Import M (M1 i1��!M2) ; Import M (M2 i2��!M3)Import M (M1 i2�i1����!M3) (14)Fig. 8. Derived inference rulesThese rules are actually used by the lpg system. One can note that wehave not considered all possible compositions. The remaining compositions aredescribed in �gure 8. These derived rules are not used by the system, becausewe have the following result:Theorem 8. Any proof involving derived rules can be transformed into a proofonly involving main rules.Proof. Any introduction of an Import P constraint is preceded by a satisfactionconstraint, and any Import M constraint is preceded by a model constraint. Thisallows to get rid of all derived rules, from the axioms to the conclusion.Theorem 9. The inference system is sound with respect to the semantics.This result means that provided the conditions associated to declaration axiomsand rules (IM, IP) are satis�ed, the constraints deduced by the inference systemare semantically correct.Examples of Deductions. In this paragraph, we reconsider the examples ofimportations given in the previous section and prove their validity using theinference system.The importation of a non generic module into a module or into a propertyis always valid in the system, provided that the corresponding condition HM orHP is satis�ed. This can be shown by using rule (2) followed by rule (IM), or byusing rule (1) followed by rule (IP). In particular, the importation of the moduleINTEGER into INTEGER VECTOR (�gure 5) is valid.Let us now consider the importation of VECTOR into INTEGER VECTOR (�gure5), as well as the importation of VECTOR into VECTOR SUM (�gure 6). We are goingto take shorter notation, in order to be able to draw the proofs.



Properties ModulesANY ADISCRETE DMONOID MANY+DISCRETE ADMONOID+DISCRETEMD INTEGER IVECTOR AD r1,��!VINTEGER VECTOR D r2,��! IVVECTOR SUM MD r3,��!V S
Comb (A;D c1;c2����!AD)Model (A m��! I) Import M (I i1��! IV )Model (A i1�m����! IV ) (6)Model (A i�r1�c1������! IV ) (=) Model (D r2��! IV ) (3)Model (D i�r1�c2������! IV ) (=)Model (AD i�r1����! IV )Import M (V i�! IV ) (IM) (10)
Sat (A s��!M) Comb (M;D c01;c02����!MD)Sat (M c01��!MD) (8) Model (MD r3��!V S) (3)Model (M r3�c01����!V S) (5)Model (A r3�c01�s������!V S)Model (A i0�r1�c1������!V S) (=) (5)Comb (M;D c01;c02����!MD)Sat (D c02��!MD) (8) Model (MD r3��!V S) (3)Model (D r3�c02����!V S)Model (D i0�r1�c2������!V S) (=) (5)Comb (A;D c1;c2����!AD) Model (A i0�r1�c1������!V S) Model (D i0�r1�c2������!V S)Model (AD i0�r1����!V S)Import M (V i0��!V S) (IM) (10)Fig. 9. Proofs of importationsWe suppose the user has declared the following constraints:INTEGER is a model of ANY: Model (A m��! I). MONOID satis�es ANY: Sat (A s��! I).ANY+DISCRETE is a combination of ANY and DISCRETE: Comb (A;D c1;c2����!AD);and MONOID+DISCRETE of MONOID and DISCRETE: Comb (M;D c01;c02����!MD).The importation of INTEGER into INTEGER VECTOR is noted Import M (I i1��! IV ).The proofs that Import M (V i�! IV ) and Import M (V i0��!V S) are valid areshown �gure 9. Note that we use a rule called (=) which means that we use anequality between morphisms. Indeed we have i1 �m = i � r1 � c1, r2 = i � r1 � c2,r3 � c01 � s = i0 � r1 � c1, and r3 � c02 = i0 � r1 � c2. This rule appears here mainlyto clarify the proofs. It is not used as such by the system which works with aninternal representation of morphisms as a set of pairs, and not with a symbolicnotation.



5 Representation of Imported ModulesWhen a module is instantiated and imported, there is no creation of a newmodule. For instance when we writeimports T_V = VECTOR[t,index,i1,in,s]T_V2 = VECTOR[t,index,i1,in,s]T V and T V2 represent the same module, and in particular, T V.vector andT V2.vector refer to the same type.This implies that instantiations can be done in various orders, as shown�gure 10: the names INT MAT1 and INT MAT2 refer to the same module. We thushave an equality of modules which is stronger than equality of names, in the sensethat two modules with di�erent names may be equal. The equality is of courseextended to types and operators. This allows to make multiple enrichments:we may for instance make an enrichment of VECTOR by importing two di�erentenrichments ENRICH VECTOR1 and ENRICH VECTOR2. The common part of bothmodules (i.e. the module VECTOR) will be shared correctly.module ENRICH_VECTOR requires ANY+DISCRETE[t,ind,i1,in,s]imports INTEGERT_V = VECTOR[t,ind,i1,in,s]T_MAT = VECTOR[T_V.vector,ind,i1,in,s]INT_V = VECTOR[integer,ind,i1,in,s]INT_MAT1 = T_MAT[integer,ind,i1,in,s]INT_MAT2 = VECTOR[INT_V.vector,ind,i1,in,s]Fig. 10. Example of instantiationsTo achieve this, modules are encoded with two pieces of information: �rst theorigin module (i.e. the module we want to import), and secondly the morphismfrom the required property of the origin module to the current module. That way,named intermediary modules used for clari�cation are never stored in the system.Similarly, types and operators are encoded with three pieces of information: theirname, the module they come from and the morphism from the required propertyof the origin module to the current module. For instance, addition on integersis coded as + = h+, INTEGER, fgi, where fg is of course the initial morphism� �I��! I. Let now m be the morphismm = f elem 7! integer, index 7! ind, first 7! i1, last 7! in, next 7! sg:INT V.vector = hvector, VECTOR, miINT MAT1.store = INT MAT2.store =h store, VECTOR, f elem 7! h vector, VECTOR, m i,index 7! ind, first 7! i1, last 7! in, next 7! s g i



6 Compilation of ModulesThe representation of imported modules allows to perform fast code generationfor operators of generic modules. The point is to share the code of generic op-erators with all their instantiations. So, code generation is modular and avoidsmultiple copies of the common parts. Notice that copying the code of genericmodules can be an option for run-time optimization, as for on-line generation ofthe code of procedure bodies. In this section, we give insights on principles ofcode generation without too many details about the generated code.The execution abstract machine for generic operators is constituted of theusual components of such machines, i.e. return-address stack (r-st), parametersand memory stack (m-st) and evaluation stack (v-st). It can also deal withexception recovery mechanism and handling contexts. The technique presentedhere is independent from these features.Compiling generic operators requires the introduction of a new stack to per-form generic parameter bindings. At run-time, only generic parameters withdynamic behaviour have to be stored in this stack, which is called generic pa-rameter stack (or g-st). For example, we assume that types have only a staticscope and do not need to be represented in the g-stack. The dynamic part of aproperty P is noted dyn(P ). In the framework presented in the paper, dyn(P )is the list of operators of P . So, for a generic module P r,�!M the g-stack isintended to represent the morphism which binds formal operators of dyn(P )to e�ective functions. The morphism i restricted to the operators of dyn(P ) isnoted dyn(i). Its cardinality is written #(dyn(P )).The compilation procedure compile is presented for an expression in a genericmodule P r,�!M . It takes an expression and produces the corresponding code fora machine with a state hv-st,m-st,r-st,g-sti. Operations on stacks and othermacro-commands for the abstract machine are de�ned �gure 11. At run-time,the result of the evaluation of an expression is always at the top of the evalu-ation stack: v-st. Moreover, the elements at the top of g-st are the addressesof the e�ective functions bound to the formal operators of P . The conventionadopted here is that identi�ers of the compiling procedure are in italic type stylewhereas generated macrocode is in type-written type style. The procedure gengenerate a macro-instruction for the abstract machine. All generating procedurecan be used as functions. In this case, the value returned is the address of (or areference to) the beginning of the generated code. In this text, address variablesare \logical" variables, because they can be used before having been assigned to.If this happens, these variables are agged by \[" (for \before").compile (f(e1; : : : ; en)) =compile (e1); -- code for evaluating e1gen ("m-st.push(v-st.rtop)"); -- the value of e1 will be kept in m-st. . . ;compile (en); -- code for evaluating engen ("m-st.push(v-st.rtop)"); -- the value of en will be at the top of m-stcompile op (f; 0); -- code for the call of fgen ("m-st.pop(n)"); -- code to remove the arguments of f



For a stack object st the following operations are available in the abstract machine:st.push(x) push x at the top of stst.top return the value of the top of stst.pop remove the top element of stst.pop(n) remove n elements at the top of stst.rtop return top(st) and also perform pop(st)st.elem(n) return the element of st at o�set n from the top.st.elem(0) is the same as st.top.The following macro instructions are used in the paper:call(f) push the address of the next statement onto r-stand jump to the address of the beginning of code of f.fcall(i) push the address of the next statement onto r-st and jumpto the address of g-st.elem(i). Notice that i is a constant.return perform r-st.rtop and jump to this address.jump to(a) go to the given address a.Fig. 11. Operations of the abstract machineFor example, if f is a function with n parameters the code generation corre-sponding to the use of the variable xi in the body of f is:compile (xi) = gen ("v-st.push(m-st.elem(n � i))");Now, let us consider the procedure compile op (f; k). k is an integer giving thedepth in the g-stack where the binding morphism of the current module P r,�!Mis. For the call above, the depth is clearly 0. Three cases have to be considered.1. f is declared in M and is not a formal operator of the required property:compile op (f; k) = gen ("call(f)");2. f is declared in P r,�!M and is a formal operator, at rank j in the list ofoperators. The address of the e�ective operator is in the g-stack:compile op (f; k) = gen ("fcall(#(dyn(P ))� j)");3. f is declared in the module P1 r1,��!M1, imported inM : Import M (M1 i�!M).compile op (f; k) =install generic context (dyn(i � r1); k);gen ("call(f)");gen ("g-st.pop(#(dyn(P1)))"); -- restore the generic contextThe installation of the generic context consists in pushing onto the g-stack theaddresses of pieces of code performing calls to each e�ective parameter. So, the�rst step is to develop the installation for each operator:install generic context (fo1 7! f1; : : : ; ol 7! flg; k) =compile par (fo1 7! f1g; k);. . .compile par (fol 7! flg; k);Now, for each binding, two cases occur: either the target operator fj is an e�ec-tive operator (in the module M) and then, we have to generate the call to fj asa thunk and to push the address of this thunk on the g-stack, or the target is a



formal operator in M , say o0i and then, at run-time, the address of the e�ectiveoperator bound to o0i will be already in the g-stack at a given o�set from the top.In the �rst case, the depth of the morphism of the current required property Pmust be increased by the cardinality of the binding morphism of P1. These twocases are presented below:1. The target fj is e�ective:compile par (foj 7! fjg; k) =gen ("jump to(link address[)");thunk address := compile op (fj ; k +#(dyn(P1)));gen ("return");link address := gen ("g-st.push(thunk address)");2. The target o0i is formal in M . The address to be fetched is at #(dyn(P )) � ifrom the top of g-st of the evaluation context of M . This top is at depth k,and has been modi�ed by the installation of the generic context of the new call.So, the right address depends on the values of k and j, and is computed by thefunction fetch:compile par(foj 7! o0ig,k) =gen("g-st.push(g-st.elem( fetch (#(dyn(P ))� i; k; j) ))");In this paper, we do not develop the proof of correctness of code generation.That can be done by showing that for each ground expression e, the semanticsof the evaluation of e is equivalent to the result of evaluation of the compiledcode of e with the abstract machine presented here.The main characteristics of this code generation is that installation of ageneric context (parameters in the g-stack) is done only for context changes andnot for each call of generic operators as in higher-order functional programming.For example, all the local calls inside a generic module (including recursive calls)have no overhead with respect to non generic calls. In the same way, optimizationis possible if there exist several consecutive calls with the same e�ective genericcontext, or for calls of operators of imported modules if they have the same listof formal operators as the current module. Last point, this implementation hasbeen carried out successfully for the lpg language. The compilation techniquepresented here can be applied to languages with generic units if the e�ectivegeneric context of any module M1 imported into a module M2 can be related tothe generic context of M2 (by the morphism i � r1).7 ConclusionWe propose a model inference system to check the validity of instantiation ofgeneric modules. This system is based upon constraints relating whole units. Wethink these relationships are suitable for modules, whereas other notions such assubtyping or type hierarchies are more adapted to single types. We have shownthat the rules of the system are sound with respect to the algebraic semanticsof the language. The lpg language allows to instantiate modules either withformal or actual parameters, or both, thus provides partial instantiation at the
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