A zooming process for specifications
with an application to exceptions

D. Duval, C. Lair, C. Oriat, J.-C. Reynaud

Rapport de Recherche IMAG-LMC
n’ 1055
Mars 2003

A zooming process for specifications
with an application to exceptions

D. Duval **, C. Lair®, C. Oriat®, J.-C. Reynaud °

ALMC-IMAG, Université Joseph Fourier, Grenoble
b Université Denis Diderot, Paris

CLSR-IMAG, Institut National Polytechnique, Grenoble

Abstract

The zooming method which is described in this paper performs a zoom-in on spec-
ifications: it begins with a far specification, which takes care of the main features
of the structure to be specified, and it ends up with a near specification, which in-
cludes all the details of this structure. This method is formalized in the framework
of diagrammatic specifications, as introduced by Duval and Lair. As an example,
the zooming process is applied to a treatment of exceptions, and it is compared to
the method of monads.

Key words: Sketches and generalizations, algebraic specifications, categorical
logic, monads.

MSC: 18C30, 68Q65, 03G30

1 Introduction

The zooming method which is described in this paper proceeds from a far
specification S to a near specification U. The basic idea is that the far view
is rather simple, at the cost of omitting some details, which are recovered in
the near view.

On the one hand, the far specification S is a simplified description of the
main syntactic features of the near specification /. On the other hand, it can

* Corresponding author. Address: B.P. 53, ' 38041 Grenoble cedex 9 (France)

Email addresses: Dominique.Duval@imag.fr (D). Duval), lairchrist@aol.com
(C. Lair), Catherine.Oriat@imag.fr (C. Oriat), Jean-Claude.Reynaud@imag.fr
(J.-C. Reynaud).

Preprint March 5, 2003

happen that, as in implementation or refinement techniques, the properties of
the models are preserved by the zoom; but this is not compulsory, and it can
be very convenient to use zooms which do not preserve the properties of the
models, as will appear from our example.

In this paper we focus on a restricted family of zooms, such that the semantics
of the whole process is given by the interpretations of U. The zooming process
builds up an intermediate kind of specification T', which is both simple, like S,
and with relevant interpretations, like U. However, the issue is that T' is not
a specification in the usual sense.

In the framework of (Duval and Lair , 2002), T as well as S and U are dia-
grammatic specifications. Basically, the diagrammatic specifications stem from
Lair’s trames (Lair , 1987). They can be considered as a generalization of
the algebraic specifications from (Goguen, Thatcher and Wagner , 1978), and
some of them can also be considered as a concretization of the institutions
from (Goguen and Burstall , 1984). In the context of diagrammatic specifica-
tions, the description of the zooming process is quite simple. It proceeds in
two steps. First, the construction of T' from S is called the decoration step.
Then, the construction of U from T' is called the ezxpansion step. Whenever T'
is equal to S, the zooming process is made of the expansion step only, and it
may correspond to the construction associated to a monad, as introduced in

(Moggi , 1991) and used in Haskell (Peyton Jones et al. , 1999).

The running example in this paper deals with a treatment of exceptions. The
zooming process 1s described, in an informal way, from the example of natural
numbers with a predecessor operation. The specifications U; and U; below
correspond to two different ways to deal with the fact that the predecessor
operation is not defined everywhere: either by raising an exception, or by
partiality.

Let us first raise an exception: the set N of natural numbers gives rise to
the set N = N W {¢} (where & denotes the disjoint union), such that the
predecessor of 0 is €. This corresponds to the following near specification Uj.
The points (or sorts) of U; are meant to be interpreted as sets, and the arrows
(or operations) of U; as maps. The constraint:

V=1

means that V' has to be interpreted as a singleton, so that constants can be
identified to arrows with source V. The constraint:

N/ = N+ @V, or N=- b N <</

means that N’ has to be interpreted, up to isomorphism, as the disjoint union
of the interpretations of N and V| and ¢ and e as the inclusions.

Specification U;:
points: V, N, N';
arrows: z:V — N, s: N— N, p: N — N/,
t:N— Ne:V— N
constraints: V =1, N' = N+ V.

This can be illustrated as follows.

V=1
o
P o=

Let us consider a model of U; where N is interpreted as N and V' as the
singleton {v}. Then, because of the constraints, N’ is interpreted as N {¢},
where ¢ is considered as an exception, while 7 is interpreted as the inclusion
of Nin NW {¢} and e as the map v — ¢, from {v} to N {c}. There is such
a model where z is interpreted as the constant map v — 0, s as the map
n +— n 4+ 1, and p as the map such that n — n — 1 for each positive integer n
and 0 — e. As required, in this model the predecessor of 0 raises an exception.
The way such an exception can be handled is addressed in section 3.5.

In this example, the far specification S is the following specification of nat-
ural numbers, which omits the “detail” that the predecessor operation is not
defined everywhere.

Specification S:
points: V', N;
arrows: z:V — N, s: N — N,p: N — N;
constraint: V = 1.

This can be illustrated as follows.

V=1

N
S NP
There are models of S where N is interpreted as N, V as {v}, z as the constant

map v — 0, s as the map n — n+ 1, and p as a map such that n — n — 1 for
each positive integer n. But the predecessor operation must be total on such

a model: it has to map 0 to some value in N. This does not match the usual
semantics of the predecessor operation. However, the terms of S correspond
to programs, like p o s o z which is valid, or s o p o z which is not valid.

Now, let us describe the zooming process which, in two steps, builds U from S.

The decoration step starts from the far specification S and builds up some
intermediate specification 7. It will be seen in the paper that 7' is a speci-
fication in the diagrammatic sense. The basic idea for the decoration step is
that 7" is built from S by adding some keywords. The keywords are meant to
say that the interpretations of the arrows z and s never raise an exception,
whereas the interpretation of p may raise an exception for some values of its
argument. So, the keywords for the arrows are:

e “not-erroneous”, or “x”,

e “maybe-erroneous”, or “77.

By associating the right keyword to each arrow in S, we get the following
intermediate specification T

Specification 1"
points: V, NV;
arrows: (z :%):V — N, (s :%): N — N, (p:?7): N — N;
constraint: V = 1.

V=1

Zik
s:*& Qp:?

The expansion step starts from the intermediate specification T and builds
up the near specification U;. The basic idea for the expansion step is to state
explicitly what is the meaning of the keywords:

e an arrow f: X — Y with keyword “x” is indeed an arrow f, : X — Y,

e an arrow [: X — Y with keyword “?” stands for an arrow f7 : X — Y7,
where the new point Y’ is submitted to the constraint Y’ = Y + F with
E=1.

This means that f : X — Y with keyword £ stands for a model of the
specification Wi (k), which is described now.

Specification W;(*):
points: X, Y;

arrow: f,: X — Y.

Specification W;(?):
points: X, Y, Y' F;
arrows: [: X — Y/, iy : Y — Y ey : B — Y/,
constraints: K =1, Y' =Y+ F.

Finally, a new specification U] is obtained by replacing each arrow with key-
word k in T by a copy of the specification W (k). This has to be done in the
“most natural” way, as explained now.

First, let us come back to the three arrows of S:

b

The graphical part of S is obtained by merging these three arrows:

|
SGNQP

Now, let us replace each arrow by a copy of the specification Wi (k) for the
right keyword k:

V N N

S

N N N>....Z_. >Nl<'”é']'\']'<E -1
N

In a similar way, part of U] is obtained by merging these three specifications:

This construction has to be completed by dealing with the constraint V =1
of S, so as to get the specification U].

Specification U;:
points: V, N, N'| F;
arrows: z, : V — N, s, : N — N, p; : N — N/,
in: N — N'exy: — N';
constraints: V =1, F =1, N'= N+ F.

Clearly, both specifications U] and U; are equivalent. This is an example of
the way the zooming process builds the near specification U; from the far
specification S, via some intermediate specification 7.

Now, let us forget about Uy, and let us use partiality: the predecessor operation
is defined only on the subset N = N\ {0} of N. This corresponds to a second
near specification U,. The constraint:

J mono , or N”>L>N,
means that 7 has to be interpreted as an injective map.
Specification Uj:
points: N, N;

arrows: z:V — N, s: N — N,p: N" — N, j: N — N;
constraints: V' =1, 7 mono.

This can be illustrated as follows.

There is a model of U, where N is interpreted as N, N as N’ = N\ {0},

J as the inclusion of N” in N, z as the constant map v +— 0, s as the map
n+— n+ 1, and p as the map n — n — 1 from N” to N. As required, in this
model the predecessor of 0 is not defined.

Let us now consider the same near specification S and the same intermediate
specification T as above, so that the decoration step is unchanged. For the
expansion step, let us modify the meaning of the keyword “77:

e an arrow [: X — Y with keyword “4” remains an arrow f,: X — Y,
e but now an arrow f : X — Y with keyword “?” stands for an arrow
fo: X" — Y, with some mono jx : X" — X.

This means that f : X — Y with keyword & stands for a model of Wy(k),
where Wy (%) = Wi (%) and Wy(?) is described below.

Specification Wh(?):
points: X, X" Y,

arrows: f : X — Y’ jx : X" — X;
constraint: jx mono.

Jx -
X x

Y

As above, each arrow of S gives rise to a copy of the specification Wy (k) for
the right keyword k:
N N// >L. N

y
N N

Then U is obtained by merging these three specifications and adding the

N

constraint V = 1:

Specification U}:
points: V, N, N";
arrows: 2, : V — N, 8, : N — N, ps: N — N, jy : N" — N;
constraints: V =1, yx mono.

NII

N NSS

Clearly, both specifications U, and U, are equivalent. This second example
shows another property of the zooming process: one decoration step can give
rise to several expansion steps. In this way, it is possible to reason at the
intermediate level, with the keywords, before deciding which will be exactly the
interpretation of the keywords. For instance, it can be said at the intermediate
level that a term which is composed from arrows with keyword “x” cannot be
erroneous. As a consequence, the term s oz of S must be non-erroneous in U,
as well as in U,.

The aim of this paper is to give a formal status to the intermediate specifi-
cation T" and to the decoration and expansion processes. This is quite easy
in the framework of diagrammatic specifications, as introduced in (Duval and
Lair , 2002): indeed, T' is a diagrammatic specification, as well as S, U, and

the W(k)’s.

Some basic facts about diagrammatic specifications are stated in section 2,
so that this paper can be read without any knowledge of (Duval and Lair ,
2002). The decoration step is studied in section 3, then the expansion step
in section 4. Finally, the entire zooming process is described in section 5.
The application to exceptions is built progressively in subsections 2.5, 3.5, 4.4

and 5.4.

Size issues are not addressed in this paper, although they do occur, for in-
stance, when we speak about a category of sets at the meta-level and another
one at the specification level, which are respectively denoted Set and set. Nat-
urality issues are not addressed either, since everything in this paper which
can be called natural is indeed natural.

2 Diagrammatic specifications

The paper (Duval and Lair , 2002) introduces a framework for dealing with
diagrammatic spectifications; its main features are summarized here, together
with some additional notions.

Some knowledge of category theory is assumed, which can be found in (Mac
Lane , 1971). Projective sketches are used at the meta-level in order to define

diagrammatic specifications. Sketches appear in (Ehresmann , 1966), and an
introduction to sketch theory can be found in (Coppey and Lair , 1984) and
(Coppey and Lair , 1988), or in (Barr and Wells , 1990). On the other hand, the
notion of diagrammatic specification can also be considered as a generalization
of sketches.

The basic definitions about diagrammatic specifications are reviewed in sec-
tion 2.1, with an example in section 2.2. The category of propagators, which
stands at the meta-level, is defined in section 2.3. The properties of the Yoneda
functor are given in section 2.4. Some propagators for dealing with exceptions
are introduced in section 2.5.

Asin (Duval and Lair , 2002), the meta-specification level is based on projective
sketches while the specification level is based on diagrammatic specifications,
which are much more general than projective sketches but of the same nature,
and which stem from Lair’s trames (Lair , 1987). In order to keep distinct these
two levels, at the meta-specification level we speak about the realizations of
a projective sketch C, which map the distinguished cones of C to limit cones,
and at the specification level we speak about the models of a diagrammatic
specification S, which map the potential products of S to actual products, and
the potential sums of S to actual sums, among many other possible potential
properties.

2.1 Specifications and their models

A compositive graph can be defined as a directed graph where some points
X have an identity arrow idx : X — X and some consecutive pairs of
arrows (f : X — Y.,g: Y — 7Z) have a composed arrow go [: X —
Z. In a compositive graph, there is no assumption about associativity and
unitary of composition and identities. A morphism of compositive graphs is
a morphism of directed graphs which preserves the identity arrows and the
composed arrows. In a compositive graph G, a cone is made of a vertex point
G, a base morphism b: 7 — G, where the compositive graph 7 is called the
index, and projection arrows p; : G — b([I) for each point I in Z, such that
b(i) o pr = pp for each arrow i : [— " in 7.

A projective sketch is a compositive graph where some cones are called distin-
guished cones. A propagator P : C — C' is a morphism of projective sketches,
which means that it is a morphism of compositive graphs which preserves
the distinguished cones. Some basic examples are described at sections 2.2
and 2.5. A (set-valued) realization S of a projective sketch C interprets each
point C' of C as a set S(C) and each arrow ¢ : ¢4 — €5 of C as a map

S(c) : S(C1) — S(Cy), in such a way that each identity loop becomes an
identity map, each composed arrow becomes a composed map, and each dis-
tinguished cone of C becomes a limit cone in the category of sets. For instance
a distinguished binary cone €y ¢— (' — ('3 becomes, up to isomorphism, a
binary cartesian product S(Cy) «— S(C;) x S(Cy) — S(C3). It is easy to
define morphisms of realizations of C as natural transformations, which yields
the category Real(C) of realizations of C.

Diagrammatic specifications are defined with respect to a propagator:
P:C—C.

A P-specification S is a realization of C, and a P-domain S is a realization
of C. More precisely, the category of P-specifications and the category of P-
domains are defined as:

Spec(P) = Real(C) , Dom(P) = Real(C) .

So, in this context, the projective sketches and propagators are used at the
meta level, for the specification of the diagrammatic specifications.

Let us consider a propagator P : C —+ C, a P-specification S and a P-
domain S:

C

L C
N~ A
Set

The omilling functor Gp : Dom(P) — Spec(P) is such that Gp(S) = So P
for all domain S. This functor has a left adjoint Fp : Spec(P) — Dom(P),
called the freely generating functor.

Fp

Spec(P) Dom(P)

-~

Gp

The set of P-models of S with values in S is:

Modp(S, S) = Hompmpy(Fp(S5),5),

so that the property of the adjunction yields:

Modp(S, S) = Homg,e.(p) (S, Gp(S)) .

For each morphism o : § — §’, it is easy to define a map Modp(c,S) :

10

Modp(S’,S) — Modp(S,S), so that Modp(—, S) is a contravariant functor
from the category of P-specifications to the category of sets.

In addition, it can happen, and it does happen in the most usual cases, that
there is a natural notion of morphisms of P-models, so that the P-models
form a category.

A propagator P is called conservative if both functors Fp and Gp are full and
faithful. Then, the category of P-specifications and the category of P-domains
are equivalent.

A propagator P is filling if the functor Fp is full and faithful; this corresponds
to a persistence property: for each P-specification S, the saturation of S, i.e.
the P-specification Gp(Fp(5)), is isomorphic to S. Then, it will be seen at
section 4 that the functor Fp is quite easy to determine.

A propagator P is fractioning if the functor G'p is full and faithful; this means
that, up to some equivalence, P consists in adding inverses to arrows; such an
inverse can be seen as a property which has to be satisfied by the P-domains,
or as a rule for generating P-domains. Then, the functor Fp is usually difficult
to determine: typically, this functor describes the way all the theorems in a
given logical theory are derived from the axioms.

The decomposition theorem in (Duval and Lair , 2002) proves that any prop-
agator P can be decomposed, up to equivalence, as a filling propagator .J
followed by a fractioning one K. This decomposition is not unique. The proof
which is given in (Duval and Lair , 2002) is an effective one: it builds explicitely
the required propagators J and K in such a way that, in addition, the functor
Fj is very easy to compute. It follows that, for dealing with Fp(S), it can be
assumed that P is fractioning, i.e. it can be assumed that P consists in adding
inverses to arrows. Let ¢ : C' — H be an arrow in C which gets invertible in

C. Then in C:

and in C:

So that the propagator P can be described as the projective sketch C together
with a dashed arrow for each inverse which is added in C:

The points H and (' stand respectively for “hypotheses” and “conclusion”,

11

while the arrow ¢! stands for the rule:

Qf =

(™)

Moreover, when dealing with specifications, the notion of morphism can be
generalized, in the Kleisli way, as follows (the Kleisli category of a monad
is described in (Mac Lane , 1971), for instance). First, a morphism of P-
specifications oy : Sy — 5} is called an entailment if the freely generated
morphism of P-domains Fp(o3) : Fp(Sy) — Fp(S}) is an isomorphism, so
that Modp(oy, S) : Modp(S}, S) — Modp(Ss, S) is a bijection. Then, essen-
tially, a generalized morphism of specifications o : S — 53 can be defined
as a morphism o’ : S; — 5}, of realizations of C, together with an entailment
Sy — SY. This means that, in order to define a morphism from S; to S5, it is
allowed to add to Sy various ingredients, as soon as they can be deduced from
Sy. Typically, in equational specifications, if s and ¢ are consecutive arrows
in Sy, it is allowed to build S) by adding the composite ¢ o s.

2.2 A basic example

In this section, “graph” stands for directed graph, and “sketch” for projective
sketch. Moreover, an arrow ¢ : C' — (" in a sketch C is called a mono, and is
represented as:

C — ('

when there is in C a distinguished cone of the following form:

idf/C\i(jc
C C
N
C/

which means that the arrow ¢ becomes an injective map in all realization of C.

r. :

Let Cy be the following graph, where “Pt”, “Ar”, “sce” and “tgt” stand re-
spectively for points, arrows, source and target.

sce
s
Pt ~"Ar
tgt

As any graph, Cy is a sketch of a very simple kind. It is a sketch of graphs,
in the sense that its category of realizations is isomorphic to the category of

12

graphs. For instance, the graph Sy:

5

)

No—==N;<*—N,

can be identified with the following realization of Cy:

Z NO
Sn(sce)=1 g — Nl
a — N2
SN(Pt) = {NOaNlaNQ} SN(AI") = {Zasaa}
Z N1
Sn(tgt)= S > Nl
a — N1

The sketch Cy can be enriched in a conservative way, in order to deal with
consecutive arrows. The resulting sketch C; has a new point “Cons”, which
stands for conseculive pair. It is the vertex of a distinguished cone I'cong, which
formalizes the definition of consecutive pairs.

FCons . COHS

P - U L V\g
A A

Pt Ar Cons T T
tgt sce
Pt

In order to get a sketch of compositive graphs C, we enrich C; in a filling, but
non-conservative, way. In C there is a new point “Comp”, which stands for
composable pair, a mono j : Comp ~— Cons and an arrow comp : Comp —»
Ar, which stands for the composition of composable arrows, such that sce o
comp = sce o py o j and tgt o comp = tgt o py 0 5. Additional features should
be added in order to deal with the identity arrows.

comp
sce P1 j
< T =
Pt —ArZ_ ~Cons=——= Comp
tat P2

A category is a compositive graph where each consecutive pair has a composed
arrow and each point has an identity, and which satisfies the usual associativity
and unitary axioms. A sketch C of categories can be obtained as a fractioning,
but non-conservative, enrichment of C. In this sketch C, the property that
each consecutive pair has a composed arrow is formalized by the fact that the
arrow j : Comp — Cons becomes invertible. Then the arrow comp o 57! :

13

Cons —» Ar can be added to C, it stands for the composition of consecutive
arrows in categories. Additional features should be added in order to deal with
the identity arrows, and with the associativity and unitarity axioms.

comp
-
sce P1 J Ny
- s — _
Pt ~“Ar Cons<——F—— Comp
tgt P2
compo;~!

This construction gives rise to an instance of the decomposition theorem of
(Duval and Lair , 2002). Indeed, the propagator from the sketch of graphs Cy to
the sketch of categories C is decomposed, thanks to the sketch of compositive

graphs C, as a filling propagator, from Cy to C, followed by a fractioning one,
from C to C.

The graph Sy freely generates a category, i.e. a realization of C, which contains:

Sy (compoj~1)

Sy (sce) Sy (p1)
{N07N17N2}< {Z7S7a7‘90275057---}4 __{(Z,S),(S,S),...}
- S (tgt) = Sn(p2) -
Sn(Pt) Sn(Ar) Sn(Cons)

where Sy(compo j7') : Sy(Cons) — Sy(Ar) maps the pair (z,s) to s oz,
the pair (s,s) to s o s, and so on.

In addition, up to some care about the size of the sets which are involved, the
category of sets is a realization of C where Pt, Ar, and comp, are interpreted
as the sets, the maps, and the composition of maps. This P-domain is denoted
set.

2.3 The category of propagators

The definition of the morphisms of propagators is straightforward: for two
given propagators P : C — C and R : &€ — &, a morphism o : P — R
is made of two morphisms of projective sketches, both denoted «, namely
a:C—&and a:C — &, such that oo P = Roa.

C—P>€ or P
i_fhg R

14

Whenever needed, the notation a will be precised as either o : P — R or
a:C—Eora:C—¢&.

Propagators and their morphisms form a category in the obvious way. In the
rest of this paper, as above, we use the expression “morphism of projective
sketches”, rather than “propagator”, for dealing with the two components of
a morphism of propagators. Some examples of morphisms of propagators are
described in section 2.5.

The following result is an easy consequence of the adjunction property.

Proposition 1 Let o : P — R be a morphism of propagators. Then for all
P-specification S and all R-domain U :

Modp(S, Ga(T)) = Modg(Fa(S),T) .

Proof. We have to prove that Homp,,p)(Fp(S), Gs (T7)) is in one-to-one cor-
respondence with Hompom(R)(FR(Fa(S)),U). But Fro F, & F, o Fp since

Roa =ao P. So, the result derives from the adjunction which is associated
toa:C— €. 0O

The next result is an easy consequence of the fact that, essentially, a fractioning
propagator only adds inverses to arrows.

Proposition 2 Let us assume that P is fractioning. Then a morphism of
projective sketches a: C — &€ can be extended to a morphism of propagators
a: P — R if and only if, for each arrow ¢ in C which becomes invertible in
C, the arrow a(c) becomes invertible in E; if so, then a1 P — R is uniquely
determined.

We now introduce the notion of reliability, which will be used at section 3. Let
a: P — R be a morphism of propagators. Then, it is easy to see, as in (Duval
and Lair , 2002), that this morphism gives rise to a natural transformation:

¢, : FpolG, = G,o Fr:Spec(R) — Dom(P) .

Definition 3 A morphism of propagators o : P — R is reliable if the nat-
ural transformation @, is a natural isomorphism:

FPOGQEGQOFR.

15

Spec(P)—2~Dom(P)

GQT TGQ

Spec(R) iDom(R)

QU
s
Q

Q
-~

o
|
Cn

-~
Q

2.4 The Yoneda functor

The Yoneda functor plays a basic role in category theory, as a link between a
syntax and its set-valued semantics. It is a contravariant functor.

First, let us assume that the projective sketch C is a projective prototype,
which means that its underlying compositive graph is a category and that
all its distinguished cones are limit cones. Then, the realizations of C are the
limit-preserving functors from C to Set. The Yoneda functor associated to C:

Ye : C > Real(C)

is the contravariant functor such that, for all point C' of C, the realization
Ye(C) of C is:
Ye(C) = Home (€, —)

and for all arrow ¢ : ' — €’ of C, the morphism of realizations Yc(c) is:
Ye(e) = Home(c, =) = Ye(C') — Ye(C)
which maps [: C' — C" to foc: C — C".

Now, let C be any projective sketch, then it can be proven that C freely gen-
erates a projective prototype, which is denoted Proto(C). There is a canonical
morphism proto(C) : C — Proto(C), and the categories of realizations of C
and Proto(C) can be identified. The Yoneda functor associated to C is com-
posed of proto(C) followed by YVproto(c):

Ve : C > Real(C) .

As an example, let us consider the projective sketch of graphs Cy, as described
in section 2.2. Let)y denote the Yoneda functor Ve, : Co =<+ Gr. The projec-
tive sketch Cq 1s simply the graph:

Then clearly, the prototype Proto(Cp) is simply the category:

idpy C Pt ArDidAr

In Proto(Cy), the identity arrow idp; is the unique arrow from Pt to Pt, and
there is no arrow from Pt to Ar. It follows that Yy(Pt)(Pt) has a unique
element idp¢, and that Yy (Pt)(Ar) is empty. So, the realization Yy(Pt) of Cy
is:

sce

tgt

Yo(Pt)(Pt) = {idp¢} Yo(Pt)(Ar) =0
In this context, the element idpy of Vo(Pt)(Pt) is a point X of the graph
Yo(Pt). So, the graph Yy(Pt) is made of this point X and no arrow:

€9

Similarly, in Proto(Cy), the identity arrow ida, is the unique arrow from Ar
to Ar, that there are only both arrows sce and tgt from Ar to Pt. So, the
realization Yy(Ar) of Cy is:

ida—rsce

Yo(Ar)(Pt) = {sce,tgt}(__/yo(Ar)(Ar) = {ida,}

ida—tgt

In this context, the element ids, of Yy(Ar)(Ar) is an arrow f of the graph
Yo(Ar). Similarly, the elements sce and tgt of Yo(Ar)(Pt) are points Y and Z
of the graph Yo(Ar). So, the graph)o(Ar) is made of one arrow [together
with its source and target Y and Z:

S/‘
\V
7

Then, the morphism Yy(sce) : Vo(Ar) — Vo(Pt) is determined by the map
Yo(sce)(Pt) : {idp} — {sce,tgt}, which maps idp; to idp; 0 sce = sce;
as a morphism of graphs, it maps the point X to Y. Similarly, the mor-
phism Yy(tgt) : Vo(Ar) — Yo(Pt) is determined by the map Yy(tgt)(Pt) :
{idp¢} — {sce,tgt}, which maps idp; to idp; o tgt = tgt; as a morphism of
graphs, 1t maps the point X to Z. So, the projective sketch Cy is mapped, via
the Yoneda functor Yy, to the following diagram in the category of graphs:

XY
@ TN Y
~_ |
X—=7Z 7

Now, let us consider the projective sketch of compositive graphs C, as described
in section 2.2. Let Y denote the Yoneda functor Ye : C =<+ Comp. The projec-

17

tive sketch C contains Cy, the point Cons and the arrows py, po : Cons — Ar:

sce P1
e
- AT Cons
tgt P>

It also contains the distinguished cone I'cons:

COHS

NS
A/

It can be checked that the restriction of) to Cy coincide with). In addition,
the distinguished cone I'cons becomes a colimit cone Y(T'cons) in Real(C):

Y(Cons)
V wz
V(A Ar)

jgf\ /;:(a

Y(Pt)

It follows that Y(Cons) is the following compositive graph:

S

Theorem 4 states some of the properties of the Yoneda functor. The density

property, in this theorem, deals with a colimit indexed by a compositive graph
which is denoted C\S, where S is a realization of C. The compositive graph
C\S is made of a point [C,z] for all point C' of C and all z € S(C), an
arrow [c, z] : [Cy, 2] — [Cy, S(c)(z)] for all arrow ¢ : 4y — €y of C and all
z € S(Cy), together with the identities idjc 4 = [ide, 2] and the composites
[c 0 cr,z] = [e2,S(e1)(z)] o [e1, 2], whenever ide and ¢, o ¢; exist in C. In
addition, (C\S)? is the opposite compositive graph, with all the arrows in the
opposite direction.

Theorem 4 The Yoneda functor Ve is a contravariant realization of C, which

means that it maps each distinguished cone in C to a colimit cone in Real(C).
In addition:

o Compatibity property: Let o : C — &£ be a morphism of projective
sketches, then:

FoodYe = Veoa.

18

e Yoneda property: For all realization S of C:

§ = Hompauey(Ve(-). 5)
o Density property: For all realization S of C:

S = colimeygyer (Ve (C)) -

The Yoneda property means that for all point C' of C there are “S(C')” ways
to map Ye(C') to S. The density property means that, up to isomorphism, S
can be recovered by gluing together, in the right way, one copy of V¢ (C) for
each element of S(C).

The Yoneda functor can be used in order to illustrate the description of a
propagator. Indeed, let P : C — C be a propagator, and let us assume that P
consists in the inversion of arrows: indeed, we know from the decomposition
theorem that such propagators play a major role. Then, as in section 2.1, P
can be described by adding a dashed arrow in C for each inverse arrow which

is added in C. On the other hand, the Yoneda functor), : C =< Real (C)

yields an illustration of C. Indeed, each arrow of C:

H s C

gives rise, in a contravariant way, to a morphism in Real(C):

Ye(H)—29 = 3.(0)

When ¢ gets invertible in C, according to the compatibility property of the

Yoneda functor, the functor Fp maps Yc(c) to Ve(c) in Real(C), and there is
a morphism Yx(c)™! = Ya(c1):

Val(e)™!
A/y__(c)\
Vz(H) Yz ()

C

In the spirit of D-algebras (Coppey , 1972), this rule (¢7') is represented by
a dashed arrow yc(c)(_l) which is added to Real(C), although it does not

correspond to any actual morphism in Real(C):

yc(cl(—l)

- ~

Ve(H)—29__y.(0)

This kind of illustration will be used in the examples.

19

2.5 Some propagators for dealing with exceptlions

Let us describe three propagators P, R and (), which will be used in sec-
tions 3.5, 4.4 and 5.4 in order to formalize a treatment of exceptions in equa-
tional specifications, as outlined in the introduction. It would be quite easy to
generalize this treatment to other logics, e.g. to first-order logic.

A propagator P for the far specifications.

Let P : C — C be the following propagator, which corresponds to equational
logic.

In a compositive graph, as defined in section 2.1, two arrows are parallel if
they share the same source and target. A (finite discrete) cone (Z,(f; : Z —»
Xz-)lsisﬂ) is made of a point 7, called the vertex of the cone, together with
a finite family of arrows from the vertex. It is simply denoted (f; : Z —
Xi)1gign when n > 0.

A P-specification S is a compositive graph together with a set of pairs of
parallel arrows, which are called the equations of S, and with a set of cones,
which are called the potential products of S. When n = 0, the vertex of a
potential product is called a potential terminal point of S. An equation (f,g)
is written f = g. The vertex of a potential product with base (Xi,...,X,) can
be denoted X; x ... x X, and a potential terminal point can be denoted 1.

In a category, a (n-ary) product is a cone (p; : X — X;)i<i<n such that for
each cone (f; : 7 — Xi)lgign there 1s a unique factorization arrow, i.e. an
arrow fact(f1,..., fn) : Z — X such that p; o fact(f1,..., fn) = fi for all .
When n = 0, a product is called a terminal point, and its property is that
for each point Z there is a unique arrow fact(Z) : Z — X. In the category
of sets, the products are (up to isomorphism) the cartesian products, and the
terminal points are the singletons.

A P-domain is a P-specification such that its underlying compositive graph
is a category, its equations are equalities, it has a chosen potential terminal
point 1, which is an actual terminal point, and it has a chosen potential prod-
uct (pi @ Xy x ... x X, — Xj)i<i<n for each n and each n-uple of points
(X3, X3,...,X,), which is an actual product.

So, at the meta-level, C contains a sketch of graphs and C contains a sketch of
categories. Since each consecutive pair of arrows in a category has a composed
arrow, the arrow:

Cons <—~——Comp

20

of C becomes invertible in C. This property corresponds to the rule:

fX—Y ¢g: Y —7
gof: X —7

which is illustrated, as explained above, with the help of the Yoneda functor:

Ye (Q(_l)

— ~

Ye (Con/s_) Ye(y) Ye(Comp)

The compositive graph Y (Cons) has been computed in section 2.4. The com-
positive graph Y¢(Comp) can been computed in a similar way, it is made of
composable pair (f, g) together with its composed arrow g o f. So, the rule of
composition is illustrated as follows:

The existence of chosen products in a P-domain corresponds to the inversion
of three arrows in C, which is illustrated as follows, in the binary case. The
three morphisms below are inclusions.

X/h<>h/q\y - X/h<>h'q\Y

Y\Z/ Y\7/
poh=[f,poh=Ff poh=f,poh'=Ff

\qOhEg,qoh’Eg qoh=g,qoh'=g

21

In our examples, S will denote the following P-specification:

Specification S:
points: V', N;
arrows: 2:V — N, s:N —N,p: N — N, q:V — N;
equations: pos =idy, poz = g;
constraint: V = 1.

V=1
Z)‘l pos=idy

poz=gq
VD,

And Sy will denote the underlying graph of S, which can be considered as a
P-specification of a simple form:

Specification Sy:
points: V', N;
arrows: z:V — N, s: N — N, p: N — N, qg:V — N.

)
D,
The P-specification Sy is such that So(Pt) = {V, N} and Sy(Ar) = {z, s, p, ¢}.

Let set denote the P-domain of sets, where the chosen products are the carte-
sian products.

A propagator R for the near specifications.

Let R : & — & be the following propagator, which corresponds to “equational

logic with zor’s”.

In a compositive graph, a (finite discrete) cocone (Z,(f; : Xi — Z)1<i<n) 18
made of a point 7, called the vertex of the cone, together with a finite family
of arrows to the vertex. It is simply denoted (f; : X; — Z)ISZ'S” when n > 0.

A R-specification U 1s a compositive graph together with a set of pairs of
parallel arrows, which are called the equations of U, with a set of cones,
which are called the potential products of U, and with a set of cocones, which
are called the potential mono-sums of U. A potential binary mono-sum (j; :

22

X; — X,j2: X2 — X) can be denoted:

In a category, a monomorphism is an arrow j : X' — X such that for all
gh Y — X' if jog = joh then g = h. A (n-ary) sum is a cocone
(7i + Xi — X)i<i<n such that for each cocone (f; : Xi — Z)i<icn there
is a unique cofactorization arrow, i.e. an arrow cofact(fi,...,f,) : X — Z
such that cofact(fi,..., f,) o ji = fi for all i. Here, a mono-sum is a sum
(7: + Xi — X)i<i<n such that each coprojection j; is a monomorphism. In
the category of sets, the monomorphisms are the injections, and the sums are
(up to isomorphism) the disjoint unions, so that each sum is a mono-sum.

A R-domain is a R-specification such that its underlying compositive graph
is a category, its equations are equalities, each potential terminal point is
an actual terminal point, each potential product is an actual product, and
each potential mono-sum is an actual mono-sum. In contrast with P-domains,
it is not assumed in a R-domain that each n-uple of points is the base of
any potential product or potential mono-sum; the reason for this choice is
explained in section 4.4.

In our examples, U will denote the following R-specification:

Specification U:
points: V, N, N’;
arrows: z:V — N, s : N — N,p: N — N',
1: N— N,e:V — N
equations:pos =1, poz = ¢;

constraints: V =1, N' = N+ V.

V=1
<
e pos=i
P =
poz=c¢
N :

Let set also denote the R-domain of sets.

A propagator () for the intermediate specifications.
Let us now define a third propagator Q : D —+ D. Roughly speaking, a Q-

specification is a kind of equational specification where each ingredient can be
endowed with some keywords: this will get a precise meaning in section 3.4.

23

Only arrows (and points) are mentioned here, while equations and constraints
will be considered in section 3.5.

The basic idea is that there are three families of arrows in the Q)-specifications,
which are labelled by the three keywords “x”, “7” and “!”:
e “x” means “non-erroneous”,
° ﬁ(?” [13 b ”

!” means “maybe-erroneous”,
e “!” means “surely-erroneous”.
So, roughly speakin is obtained from P by taking three copies Ar,, At

) y sp) y p)

and Ar; of Ar instead of one. In addition, it can be noted that an arrow which
is either never erroneous or always erroneous is also sometimes erroneous: this
means that “no” and “yes” are special cases of “maybe”. So, D contains the

following graph:
Ar,

tgt,
SCex >ar*)7
tgt,

Pt=————Ar

sces?

tgt, >ar!,?
scey

f\Tj

It follows that, in a @Q-specification T, there are sets T(Ar,), T(Ar;) and
T(An), and maps T(ar.») : T(Ar,) — T(Are) and T'(ar») : T(Ar) —
T(AI'?).

In a Q-domain T, in addition, the sets T(Ar,) and T(Ar) can be identified to

subsets of T(Ar?). This means that in D the arrows ar, » and ary+ are required
to be monos:

In D, the arrows ar,» and ari» are not required to be monos. This property
could be required, however it would be useless: since ar,» and ari» become
monos in D, if it happens that the corresponding maps are not injections in a
@-specification 7', then they do become injections in the @-domain Fg(T)).

Now, let us look at the composition of arrows in a @)-specification.

In the projective sketch C, the point Cons stands for the set of consecutive

24

pairs of arrows, since it is the vertex of the distinguished cone T'gops:

FCons . COIIS
N
Ar

Ar
Pt

In D, there is a point Consy,; for each pair of keywords (k, (), which stands for
the set of consecutive pairs of arrows (f, g) where f has keyword k£ and ¢ has
keyword [. So, Consy; 1s the vertex of the distinguished cone FConskyl:

FConskJ : COHS]C l

N,
tg\ /

In C, there is a mono j : Comp ~— Cons which stands for the inclusion of
the set of composable pairs into the set of consecutive pairs, and an arrow
comp : Comp — Ar for the composition of composable pairs:

comp
Ar Cons<———= Comp
In D, there is a mono ji; : Comp,, »— Consy; for each pair of keywords
1

(k,1), and an arrow compy;,, : Comp,; — Ar, for some triples of key-
words (k,1,m). For instance, there are arrows comp, , ,, comps 7 7, comp, ;, and
compy oy in D. The first one means that the composed of two non-erroneous
arrows 1s a non-erroneous arrow, and the last one means that for each compos-
able pair of arrows (f, g), where [is surely erroneous and g may be erroneous,
the composed arrow g o f is surely erroneous.

COMPy %

/\

AT‘* COHS*,*<—]< Comp*,*

comps 7 »

/’_\

Ar, Cons? 7 <—2—< Comp, ,

compy 1y

/_\

AI‘! COHS?’! <—j< Comp?’!

25

compy 7

T~

Ar Consy 7 <—2—~< Comp, ,

The arrow j becomes invertible in C, and similarly the arrows ji;,, become
invertible in D. For instance, the fact that ji 21 becomes invertible corresponds
to the rule:
(fH: X —Y (¢::Y —7
(gof:H: X — 7

which is illustrated as follows:

Moreover, all the identity arrows have keyword “x”.

The decoration of the equations and the constraints will be considered in

section 3.5.

In our examples, T, will denote the ()-specification such that:

o To(Pt) = {V, N},

o To(Ar,) = {z : #,5: *},

o To(Ary) ={z:7,s:7,p:2,q:7},

o To(Ar) = {q:!},

o Ty(ar.) maps z : * to z :? and s : * to s :7,
o Ty(ari7) maps g :! to q:7,

o Th(sce,) maps z : * to V and s : * to N,

o Ty(sces) maps z :7 and ¢ :? to V and the others to N,
o Th(scer) maps g :! to V,

o Th(tgt,) maps z : * and s : * to N,

o Ty(tgt,) maps all of Ty(Ars) to N.

o Ty(tgt,) maps ¢ :! to N,

This can be described, with obvious conventions, as a “decorated” version of
the graph Sy underlying S. One of the conventions is that, for each arrow,
only the strongest keyword is mentioned.

Specification Tj:

points: V', N;
arrows: (z:%):V — N, (s:%): N — N, (p:7): N — N,
(g:!): V — N.

26

V

oo o
WGV,

A @-specification T will be built in section 3.5 by adding equations and con-
straints to 7.

There 1s no straighforward ()-domain of sets. However, for each set E, a Q-
domain setg i1s described now. This ()-domain will be useful for dealing with
exceptions: then, the set E will stand for the set of exceptions.

e A point of setg, i.e. an element of setg(Pt), is a disjoint union AW E.

e A non-erroneous map of sety, i.e. an element of selg(Ar,), is a map ¢ :
AWE — BWE which is the identity on E and such that ¢(a) is in B for
all @ in A.

o A maybe-erroneous map of setg, i.e. an element of setg(Ars), is a map
¢: AYE — B WE which is the identity on E.

o A surely-erroneous map of sely, i.e. an element of setg(Ary), is a map ¢ :
AWE — B WE which is the identity on E and such that ¢(a) is in E for
all @ in A.

We are interested in the model M of Ty with values in sety such that:

e M(V) is the disjoint union {v} W E,

e M(N) is the disjoint union NW E,

e M(z : %) is the map such that € — ¢ and v — 0,

e M(s: «) is the map such that ¢ = ¢ and n +— n 4 1,

e M(p:?) is the map such that ¢ — ¢, 0 =~ cand n+—n —1if n £ 0,
e M(q:!)is the map such that € — ¢ and v — e

Some morphisms of propagators.

We are interested by two morphisms between these propagators P, () and R.

The morphism 4 :) — P maps Pt to Pt, maps Ar,, Ar; and Ar, to Ar, and
maps ar, s and ar 7 to ida,. For instance, the Q-specification G5(.Sp) is such

that G5(So)(Pt) = So(Pt) = {V, N}, and:
G5(So)(Ary) = Gs(So)(Are) = G5(S0)(Ar) = So(Ar) = {z,s,p,q} ,

which means that all the arrows of Sy are associated to all the keywords. Tt
follows that Ty(Ary) is a subset of Sy(Ary) for each keyword k; this determine

27

a morphism of Q-specifications (o : Ty — Gs(So).

The morphism y : Q — R depends on the choice of a set E. First, let us
consider the following R-specification of exceptions, with respect to E.

Specification Ug:
points: K, E. for each ¢ € E;
arrows: i. : . — F for each ¢ € E,;
constraints: F, = 1 for each ¢ € E,
and the cocone (1.), is a potential mono-sum.

This is a specification of E, in the sense that the unique model of Ur with
values in set (up to isomorphism) interprets the point £ as the set E. Then,
in order to make the illustrations of R-specifications easier to read, the point £
will represent the whole specification Ug.

Now, the morphism x : () — R is easily described via its image by the
Yoneda functor Ve, as follows. Let:

W, =Yeox:Q > Real(R) .

For instance, while the image of the point Pt of D via the Yoneda functor Yp
is the @)-specification made of one point:

yD(Pt) : X

the image of the point x(Pt) of £ via the Yoneda functor Y is the following
R-specification, which is made of a potential mono-sum X' = X + F:

W, (Pt) = Ve(x(Pt)) : XX 1 <K<

In the same way, the images of the points x(Ary) of € via the Yoneda functor
Ve are the following R-specifications:

X>““2-'X“>X’ <X <R
W, (Ar,) - lf*

Y Y <"é'1';“'<E

y

28

W, (Arq) - 5
Y>'""Z:§">'Y'<“"‘;'“<E
X>....’.X..>X/ <X <R

W, (An) : f
Y>""2"{/;”>YI<"é'1}""<E

In order to describe the image, via x, of the arrows of D in &£, we can also
look at their image via W, in Spec(R), keeping in mind that the functor W,
is contravariant. For each keyword k:

e the morphism W, (sce;) maps the point X in W, (Pt) to the point X in
WX(ATk),

e the morphism W, (tgt,) maps the point X in W, (Pt) to the point Y in
WX(ATk).

In addition:

¢ the morphism W, (ar.») maps f> to iy o f,,
e the morphism W, (ari2) maps f» to ey o fi.

Actually, up to an entailment, an arrow f» : X — Y, together with the
equation f; =iy o fi, can be added to W, (Ar,). Similarly, up to an entailment,
an arrow fr» : X — Y’ together with the equation f, = ey o fi, can be added
to W, (Ar). Then the morphisms W, (ar, 7) and W, (ar+) are the inclusions.

Since the arrow ar. ; becomes a mono in D, it follows from the compatibility
property of the Yoneda functor that the morphism W, (ar, ») becomes an epi-
morphism, via Fg, in Dom(R). Indeed, if two morphisms of R-domains ¢, :
Fr(Wy(Ar,)) — U are such that p o Fr(W, (ar.?)) = ¢ o Fr(W,(ar. 7)), so
that p(iy) = ¢ (iy) and p(f2) = ¢(f2), then (iy)op(f.) = (i) o (f.), and
since @(1y) is a monomorphism in any R-domain, it follows that ¢(f.) = ¥(f.),
as required. In a similar way, the morphism Fg(W, (ari7)) is an epimorphism
in Dom(R), because ey becomes a monomorphism in any R-domain.

An enrichment of the propagator Q).

Whenever needed, various keywords can be added to (), together with their
interpretation by y. For instance, it will be useful in section 3.5, in order
to handle exceptions, to have a fourth keyword “+” for the arrows in Q-
specifications. Until now, all the arrows are assumed to preserve the excep-

29

tions. A loose arrow is of a more general kind: it does not have to preserve the
exceptions.

o “+” means “loose”.

Since any arrow can be considered as a loose arrow, for each keyword £ there
is some arg 4+ : Ary — Ary in D, which becomes a mono in D.

The @-domain sety is completed as follows:

o A loose map of sely, i.e. an element of setg(Ary), is any map
v: AYE — BWE

The propagator y : Q — R is completed as follows:
Wy (Ary) - lﬂ

For all keyword k& among “x”, “?” and “!”, it has been noticed that, up to
some entailment, there is an arrow fo : X — Y’ in W, (Ary). Similarly, up
to an entailment, there is an arrow fy : X’ — Y” in W, (Ary), together with
the equations fy o ix = f» and f} o ex = ey, so that fi = cofact(fz,ey) in
any R-domain. Then, the morphism W, (arj +) is the inclusion of W, (Ary) in
W, (Aryg).

Altogether. To sum up, we get the following diagram, usually called a span,
in the category of propagators:

P/QXR

3 The decoration step
3.1 The framework for the decoration step

From the example in the introduction, the decoration step in the zooming
method proceeds from a far specification S to an intermediate specification T
by adding some information to 5. The framework for the definition and study

30

of the decoration step is made of a morphism of propagators:

/Q

P

In this section, we consider a P-specification S and a Q-domain T

D 9 D
S,
P —_

% A
X
Set

The decorations of S with respect to ¢ are defined in section 3.2, as well as the
corresponding models with value in 7. Tn section 3.3, the decorations are iden-
tified to realizations of a projective sketch. Then decorations with properties
are identified to realizations of other projective sketches in section 3.4, and the
notion of models is refined. The decoration step for dealing with exceptions is
studied in section 3.5.

3.2 The various decorations of a P-specification

Definition 5 A decoration of a P-specification S with respect to § is made
of a Q-specification T, called the source of the decoration, together with a
morphism of Q-specifications (: T — Gs(S).

Let (T,() be a decoration of S. In some applications, including the treatment
of exceptions, we are interested in the set of Q-models of T' with values in T

MOdQ (T, T) .

However, it will be seen in section 3.4 that the relevant set of models, in
general, is somewhat different from Modg(7,T): it does depend on (, not
only on T.

Let us now consider the triples (5,7, () with S € Spec(P), T € Spec(Q)) and
¢ : T — Gs(S5), so that (T,() is a decoration of S with respect to 4. A
morphism from (S, Ty, (1) to (Ss, Tz, (3) is defined as a pair (o : Sy — Sy, 7 :
Ty — T;) where o is a morphism of P-specifications and 7 is a morphism of

31

@-specifications, such that Gs(c)o (; = (30 7.

T, & T

A

G5(S2)

Gs(o)

G'5(57)

Then it is straightforward to define the identities and the composition of mor-
phisms in order to get a category R(J).

In the following sections, we identify decorations of S with respect to § and
specifications with respect to some propagator.

3.3 Decoralions as spectfications

In order to identify the decorations of S to specifications with respect to some
propagator, we introduce the notion of laz-colimit of a morphism. This notion
can be defined in the general context of 2-categories. Here, we simply define
the lax-colimit of a morphism of projective sketches, then the lax-colimit of a
morphism of propagators.

Definition 6 The lax-colimit of a morphism of projective sketches 6 : D —
C is the projective sketch Lax(8) which is made of:

e a copy of C,

e a copy of D,

e for each point D of D, an arrow trp : D — C where C' = 6(D), which is
called the transition arrow associated to D,

o for each arrowd : Dy — Dy of D, a commutative square cotrp, = trp,od

where ¢ = 6(d).

Dl d D2
tTDll ltT‘D2
Cl :(S(Dl) c:é(d) 02:5(D2)

Let Lo = Lax(d). From the definition of the lax-colimit, both C and D are
parts of Lo. The inclusions are denoted pg : C — Lo and vy : D — L. In
addition, the transition arrows determine a natural transformation trg : vg =
to 090 : D — Ly. It should be noted that ¢rq is not a natural transformation
between functors, as usual in category theory, but a natural transformation
between morphisms of compositive graphs. The composition of such natural
transformations can be defined, although not as canonically as in categories. In
this paper we only need to compose a natural transformation with a morphism,

32

in either direction, which is indeed similar to the usual composition of a natural
transformation with a functor.

The following result is easy to check.

Proposition 7 The category Real(Lo) of realizations of the laz-colimil of &
is isomorphic to the category R(0).

In a similar way, there is a lax-colimit Lo = Lax(§ : D — C) with the inclu-
sions g : C — Lo and vy : D — Lo, and with the natural transformation
tro :vg = pood : D — Lo. Then it is easy to check that there is a unique
propagator:

Ly: Ly — Zo

such that the pairs (o : C — Lo,po : C — Lo) and (vp : D — Lo, 10 -
D— Zo) are morphisms of propagators pg: P — Lg and vy : Q — L.

Both natural transformations called try are such that Ly o trg = trg o Q).
This yields a natural transformation between the corresponding morphisms of
propagators:
lro :vo = ppod:Q — L.
L —
Lo ° Loy Ly
Ho \/0 Ho \/0 Mo \\/0
tro tro tro
D D Q
s / /
C L C P

Definition 8 The lax-colimit of a morphism of propagators § :) — P is
the unique propagator:

Lo: Lo — Lo = Lax(5:Q—>P):Eax(5:D—>C)—>£aX(5:§—>€)
such that po : P — Lo and vg : () — Lo are morphisms of propagators.

Let Z = (S,T,() be a Lo-specification, with (: T"— Gs(S). Then (freely

generates a morphism of -domains:

Fo(Q) : Fo(T) — Fo(Gs(9)) -

33

In addition, we know from section 2.3 that there is a morphism of Q-domains:
®;5(5) : Fo(Gs(S)) — Gs(Fp(5)) -
By composition, we get a decoration of Fp(S) with respect to 4:
B5(S) 0 Fo(C) : Fo(T) — Gs(Fp(S)) .

Proposition 9 The morphisms of propagators po: P — Lo and vy : Q —
Ly are reliable.

Proof. From the definition of reliability in section 2.3, this means that for
each Lg-specification 7 there are two isomorphisms:

FP(G#O(ZD = GMO(FLO(Z)> and FQ(GUO(Z>) = GUO(FLO(Z)> :
Let Z = (S,T,(), then the triple (Fp(S), Fp(T), ®5(S)oFp(()) is a Lo-domain,

and it is easy to check that it is isomorphic to Fr,(7), which concludes the
proof. O

It follows that:
Fp(S) = Fp(Guo(2)) = Guo(Fr(Z)) and Fo(T) = Fp(Gu(Z)) = Gu (FL(Z)) .
To sum up, a Lg-specification Z can be identified to a decoration of some

S with some source T'. Then, the freely generated Lo-domain F (7) can be
identified to a decoration of Fp(S) with source Fg(T), and:

MOdQ(T, T) =~ Hompom(Q)(GyO(FLO(Z)),T) .

3.4 Decorations with properties

In order to focus on the decorations of S which satisfy some given property,
we define the lax-cocones over §.

Definition 10 A lax-cocone A over a morphism of propagators § :) — P
15 a propagalor:

L:L—L

together with two morphisms u : P — L and v : Q — L and a natural
transformation:

tr:v=pod:Q — L.

34

L—F——>T L
1 \' u \’ t t\”
. tr Q . tr \ < T
D D Q
c—Lr ¢ P

So, the lax-colimit Lq of § defines a lax-cocone Ag over 4. In addition, for each
lax-cocone A = (L, u, v, tr) over 4, there is a unique morphism « : Ly — L
such that y = Kk o g, v = Koy and tr = K o trg. So, a L-specification 7
gives rise to a Lg-specification Z, = G, (7Z), which can be identified to the
triple (S,7,() where S = G, (Zy) = Gu(Z), T = Gy, (Zy) = G,(Z) and
(:T— Gs(S)is Zolr:Zov —s Zopuol.

Definition 11 A decoration (T,() of S with respect to § satisfies A if the
Lo-specification (S, T, () is the image, via G, of a L-spectfication.

Let us assume that k : Ly — L is fractioning. This means that both functors
(i, are full and faithful, so that Spec(L) can be identified to a full subcategory
of Spec(Lg) and Dom(L) to a full subcategory of Dom(Ly). It follows that the
L-specifications can be identified to the decorations of S with respect to &
which satisfy A.

Let us assume that & is fractioning and p is reliable. Then the freely gener-
ated L-domain F,(Z) can be identified to a decoration of Fp(S) with source
G, (FL(Z)).

Let us assume that & is fractioning and both y and v are reliable. Then F7,(Z)
can be identified to a decoration of Fp(S) with source Fg(T).

To sum up, if k : Ly — L is fractioning, a L-specification Z can be identified
to a decoration of some S with some source T'. Then, the freely generated
L-domain Fp,(Z) can be identified to a decoration of some S with some source
T. If p is reliable then S = Fp(S), and if v is reliable then T = Fy(T). In
this paper, we focus on situations where all these assumptions are satisfied, so
that:

MOdQ(T, T) = Hompom(Q)(Gl,(FL(Z)),T) .

Definition 12 The monomorphic lax-colimit of § is the laz-cocone Ay over

§ which is obtained by adding to both sketches Lax(§ : D — C) and Lax(:
D — C) a distinguished cone T'p for each point D in D, which ensures that

35

the transition arrow trp : D — 6(D) is a mono.

FD : id D id
N
D D

tk AD
(D)

D

Then, clearly, a decoration (7, () of S satisfies Ay if and only if it is monomor-
phic, which means that for all point D in D the map (p : T(D) — S(C),
where C' = §(D), is injective. The monomorphic decorations of S can be easily
described, up to isomorphism, in the following way. Let (7', () be a monomor-
phic decoration of S. Then for each point D of D there is an injective map
(p : T(D) — S(C), where C = §(D). Up to isomorphism, T'(D) can be
replaced by its image in S(C') and (p by the inclusion. Then, for each arrow
d of D, the map T'(d) is the restriction of the map S(c¢), where ¢ = §(d). For
each point C of C and each element x of S(C), let us define the keywords of
x as the points D such that 6(D) = C and z is in T(D). Then clearly the
monomorphic decoration (7', () of S is determined, up to isomorphism, by this
set of keywords, for each element x. In this situation, it is routine to check
that & is fractioning and that p is reliable. The morphism v is not reliable, in
general, however in this paper we focus on situations where v is reliable.

3.5 A decoration for dealing with exceplions

The propagator P and the P-specification S are as in section 2.5. In section 2.5,
there is a partial description of the propagator @), the morphism 6 : Q — P,
the Q-specification 7', the morphism ¢ : T — G5(5), the @-domain sety and
the model M of T' with values in sety. There, only the decoration of the points
and arrows have been defined. Now, let us look more closely at the decoration
of the equations and of the arity constraints, which allow to state that an
operation is either a constant or a n-ary operation.

Equations. In C, there are two points Par and Eq, which stand respectively
for parallel pair and for equation, and a mono j' : Eq »— Par:

sce P3
“<— e

Pt "Ar___
tgt P1

Par <j—<Eq

The point Par is the vertex of a distinguished cone I'p,, which formalizes the

36

definition of parallel pairs:

FPar : Par

In D, for each pair (k,!) of keywords for arrows, there is a point Pary; above
Par (with respect to §) and a distinguished cone Tpar, , above 'py,:

Cpar,, : Pary

N

AI‘[

Ark tgty sce
Sceki >< ltgtl

Pt Pt

In addition, there is at least one point Eq, above Eq and a mono 5/ above j:

scey

1
P Je
PtT_ AT Par < g,
tgty

The point Eq, in D corresponds to a keyword for equations:

e “e” means “everywhere”.

“, "
€

An equation with keyword is written as:

(fit)=(g9:1).

“w, "
€

The description of the keyword is given by the R-specification:

W, (Eq,) : g+<)f+ fr =94

In addition, the keywords for the arrows and the keywords for the equations
can be combined, by means of distinguished cones in D, as follows. Let f : &k
and ¢ : [for any keywords k& and [. From the fact that the keyword “+7 is
more general than any other keyword it follows that f: 4+ and g : +. Then:

(f:k)=.(g:1)

37

means that f: kand ¢ : [and (f: 4) =. (¢ : +). In D, this conjunction of

decorations corresponds to a point Eq, ; ; which is the vertex of a distinguished
cone:

qu,k,l Eq,
l l
Pary Par, ,
SN N
Ary Ar, Ary Ary
W
YT ar g

Then, for instance, it is easy to formalize the following property: “if two oper-
ations are interpreted in the same way, and if the second one is known to be
non-erroneous, then the first one also is non-erroneous”:

(f:7) = (g:%)
(f:%)=.(g:%)

Indeed, the arrow ar,» : Ar, — Ar» in D gives rise to an arrow:

qu,*,* — qu,?,*
and the inversion of this arrow in D corresponds to this property.

In setg, let ¢ : AVE — BWE and ¢p: AWE — BUWE, so that (p,¢) is a
parallel pair.

e An everywhere equation ¢ =. v of selg, i.e. an element of setg(Eq,), is
simply the equality of maps ¢ = .

It follows that, for any a in A, ¢(a) raises an exception (i.e., ¢(a) € E) if and
only if ¥(a) raises an exception.

In our example, the equations of T' are:

(pos:N)=.(dy:%), (poz:?)=.(q:)),

hence it can be deduced that p o s: * and that po z :l.

More equations. Other keywords for equations can be added, for instance:

e “nea” means “only-on-non-erroneous-arguments”,
e “nev” means “only-when-non-erroneous-values”,

which correspond to two other points Eq,,., and Eq,,., in D above Eq. The

38

description of the keyword “nea” is given by the R-specification:

Wx<Eqnea) : 9+(>f+ f+ (¢ iX =gy 0 7:X
Y= oY= <E

iy
For the description of the keyword “nev”, the propagator R has to be enriched,
in order to allow potential limits in R-specifications. Then:

H
WX(Eqne’U) : \ f+OhEg+Oh
f! g

X=Xl << iyof'=fyoh
() iyog =groh
f+ 9+

with the following potential limit, which ensures that H is interpreted as the
part of X’ where both f. and g4 are non-erroneous, and h as the inclusion:

lh iyof'=froh

1

f! X g iyog =groh

DN

Y=Y Y’ <Z.'.Y...<Y

ty

Then in sety, let ¢, : AWE — BWE.

e An only-on-non-erroneous-arguments equation © =,., ¥ i.e. an element of
setp(Eq,,.,), is an equality only when the arguments of both maps are non-
erroneous: p(a) = t(a) for all @ in A.

e An only-when-non-erroneous-values equation © =,., ¥ of selg, i.e. an ele-
ment of setg(Eq,,,), is an equality only when the values of both maps are
non-erroneous: p(a) = ¢ (a) for all @ in A such that ¢(a) € E and ¢(b) ¢ E.
It follows that there can be some a in AWE such that p(a) € E and ¢(a) € E.

As an example of a “only-when-non-erroneous-values” equation, the equation
s op = idy could be added to S, and the equation (s o p :?) =,., (idy : *)
to T. Indeed, in the model M, the interpretation of (s o p):? is the map such
that € — €, n — n for all n # 0 in N, and 0 — €: it does coincide with the
identity map on every n € N such that the successor of the predecessor of n
is non-erroneous.

39

Constants. The propagator P has to deal with constants. A constant is a
nullary operation, which means that its source is a potential terminal point:
indeed, in the category of sets, a terminal point is a singleton {v}, so that any
element z in any set X can be identified with the map v — z from {v} to X.

A terminal point V' in a category satisfies the following property: for each
point X there is a unique arrow fact(X') from X to V. So, in the sketch C there
is a point Term which stands for terminal points, and a mono ¢ : Term — Pt.

In C, the universal property of a terminal point V is described by the inversion
of two arrows of C: the first one for the existence of an arrow f : X — V,
the second one for its unicity. This is illustrated as follows.

In D, these arrows f and f’ have to be decorated, as well as the equation
f = f'. Let us consider three cases, where f and f’ have the same keyword,

(A 14 ' R

either “¢” or “?” or “!”, and the equation is “everywhere”.

e If f and [’ are decorated with the keyword “£”, this property means that
V is interpreted as M (V) = B W E such that, for each AW E, there is a
unique map ¢ : AWE — B WE which is the identity on E and such that
¢(a)is in B for all a in A; it is easy to check that M (V) is {v} WE for any
singleton {v}.

o If f and f" are decorated with the keyword “?”, this property means that V/
is interpreted as M (V) = BWE such that, for each AWE, there is a unique
map ¢ : AUE — BWE which is the identity on E; it is easy to check that
M(V') does not exist, except when E is a singleton, in which case M (V) is
E.

e If f and f’ are decorated with the keyword “!”, this property means that V'
is interpreted as M(V) = BWE such that, for each AWE, there is a unique
map ¢ : AWE — B W E which is the identity on E and such that ¢(a)
is in E for all a in A; it is easy to check that M (V) does not exist, except
when E is a singleton, in which case M (V) can be BWE for any set B.

Actually, we are interested in a model M of T with values in setgy such that
M(V)is {v} WE, so that M(z : *) can be the map such that v — 0. For this
purpose, we choose the keyword “+” for f and [/ and “e” for the equation.
So, in D there is a point Term, which stands for terminal points with respect
to the non-erroneous arrows. In D, the corresponding property is illustrated

40

as follows, with the convention that:
V=1,

means that V' is a potential terminal point with respect to the non-erroneous
arrows.

The description of the Q-specification T can now be completed. The constraint
V =11n S is decorated as V = 1, in T'. So, altogether:

Specification T"

points: V', N;
arrows: (z:%):V — N, (s:%): N — N, (p:?): N — N,
(¢g:):V — N.

equations: (pos:7) =. (idny : %), (poz:7) = (¢:!),;
constraint: V = 1,.

V == 1*
D" (pos:?) = (idy: %)
NS (poz:?)=(q:)

Then the morphism ¢ : T — G5(S) is easily completed, in such a way
that (7,¢) is a monomorphic decoration of S. So, (5,T,¢) can be identified
to a Li-specification 7, where L, is the monomorphic lax-colimit of § as de-
fined in section 3.4. As with any monomorphic lax-colimit, the morphism & is
fractioning and the morphism g is reliable. In addition, here, it happens that
the morphism v is also reliable, so that indeed:

Modg(T, setx) = Hompem () (G (FL(Z)), selg) .

Binary operations. An operation is n-ary when its source is the vertex of a
potential product of n sorts. Let us consider binary operations: n = 2.

The way binary operations are dealt with in P is illustrated in section 2.5.
The existence and the unicity of the factorization arrow correspond to the

41

inversion of two arrows of C in C:

pX><Yq _ pX><Yq
X\h B Y X\h Y
f g f '/ g

poh=f poh=f

poh'=f poh'=f

qoh=g goh=g

\ qoh'=g) qoh'=yg
\ h="h)

In @, all this has to be decorated.

In any P-domain, the expression “a(f(z),g(z))” stands for the composed ar-
row a o fact(f, g) o z. The issue is to determine, in)-domains, with respect to
the decorations (f : k) and (g : [) of f and g, whether some kind of factoriza-

tion arrow of (f : k) and (g : [) does exist, and what are precisely its existence
and unicity properties.

When both f and g are non-erroneous, then clearly a factorization arrow
should exist: it i1s non-erroneous, and its properties are obtained by decorating
all the arrows with “x” and all the equations with “e”, as follows.

L X XY \/—\>/ RS AN
e =

(poh:x)=.(f:%) (poh:x)=.(f:%)
(poh' %) =.(f:%) (poh':%)=.(f:%)
(qo]];, *) fe (g *) (q o]/;,) fe (g *)
\(qo D) =, (g*)J (go *E):(ehl(g*)

o}

In the Q-domain sety, it is easy to check that:
AYEXx BWE=(Ax B)WE,

with the obvious projections. Let ¢ : DWE — AWE and ¢ : DWE — BWE
be non-erroneous maps in setg. Then the factorization arrow of ¢ and ¢ is
the non-erroneous map 6 : DWE — (A x B) WE, which is the identity on E
and such that 6(d) = (¢(d),(d)) for all d in D.

More about arities. It is well known that there is no hope to get any
kind of canonical factorization arrow in general: indeed, whenever f raises an
exception, and ¢ raises another exception, there is no canonical way to decide
what should happen with any kind of “fact(f,g)” arrow. However, it can be
required that the same cone as above, with vertex X x Y and projections p : %
and g : *, gives rise to some kind of factorization arrow when one among f
and g may be erroneous. Let us assume that f is non-erroneous and ¢ may
be erroneous. Then, let us decide that this factorization arrow should raise an
exception if and only if g does, and it should be the same exception as ¢g. This
corresponds to adding the following properties.

/ h:? \Y

(poh:?) = (f: %)

\(qoh:?) = (g:7) J

43

/ N X xY \/7\ / N XxY_ \

X/ () X/h;iP()h“?KYv
(poh:?) = (f : %) (poh:?) = (f: %)
(poh':)EWJ(D) (poh’:)zneu(f *)
(qoh:?)=c(g:7) (qoh7)§(9 :7)

) =
oh!:)=, (g:7? oh!:7) =,
\(q 7) = (g:7) J \(q(h p (h/()) J

As required, f is decorated with the keyword “x” and g with the keyword
“77, as well as h. The equation (qo h :7) =, (g :?) is an everywhere equa-
tion, so that A is erroneous if and only if ¢ is erroneous, and both raise the
same exception. On the other hand, the equation (po h :?) =,., (f : *) is
an only-when-non-erroneous-values equation, since h can raise an exception
whereas f cannot. The decorations are the same when A’ occurs instead of h,
and finally the equation (h :7) =, (R’ :7) is an everywhere equation, so that
the factorization arrow is unique in any (J-domain.

||| =

In the @-domain selg, it is easy to check that the product (A x B)WE satisfies
these properties. Indeed, let ¢ : DWE — AWE and v : DUE — BWE
be maps which are identities on E and such that ¢(d) is in A for all d in D.
Then the factorization arrow of ¢ and ¢ is § : DY E — (A x B)WE, which
is the identity on E and such that 6(d) = ¢ (d) whenever ¢(d) is in E, and
6(d) = (¢(d),¥(d)) otherwise.

The symmetric situation is easy to describe. Whenever both f and g are non-
erroneous, the three factorization arrows coincide.

Exception handling.
Basically, the keyword “+” for arrows allows exception handling.

In order to be more precise, we can define a map for exception handling in
setg as amap 0 : AYE — AW E such that 8(a) = a for all @ in A. This
corresponds to the notion which is used in (Benton, Hughes and Moggi , 2002).
Indeed, if t : E — AW E denotes the restriction of 6 to E, which can be any
map, then 8 is entirely determined by ¢, as follows. Let '’ € AW E:

if ¢’ € A then 0(a’) = d
if '’ € E then 0(a’) = t(d')

44

This can be formalized with the help of the keyword “nea” for equations, i.e.
“only-on-non-erroneous-arguments”. Then, in a ()-specification T', an excep-
tion handling arrow in 7', with respect to a point X, can be defined as an

arrow (h:4+): X — X such that:

(h:4) =peq (idx = %)

4 The expansion step
4.1 The framework for the expansion step

From the example in the introduction, the expansion step in the zooming
method proceeds from an intermediate specification 7' to a near specification
U by expliciting some features in T'. The framework for the definition and
study of the expansion step is made of a morphism of propagators:

Q
N
R

In this section, we consider a Q-specification 7" and a R-domain U:

D 9 D
\ K
T 5/R/
Set v

The expansion of T with respect to x is defined in section 4.2, as well as the
corresponding models with value in U. In section 4.3 it is proven that F\(T) is
easy to determine when x : D — £ is filling. The expansion step for dealing
with exceptions is studied in section 4.4. Basically, this section is made of
variations on the theme of adjunction.

4.2 The unique expansion of a Q)-specification
Definition 13 The expansion of a Q-specification T with respect to x is the
R-specification F.(T).

We are interested in the set of Q-models of T with values in G, (U):

45

MOdQ (T, GX (U)) .

Proposition 14 The set of Q-models of T with values in G, (U) is such thal:

Modg(T, G (U)) = Modg(F\(T),U) .

and also:

Modg (T, Gy (7)) & Homp,m(Fy(Fo(T)). T)

Proof. The first bijection follows immediately from proposition 1. Then,
the second bijection comes from the definition of models Modg(F\(T),U) =

Homp, gy (Fr(F\(T)),U), and from the fact that Fro F\, = F, o I3 because
Rox=x0@Q.O

As usual, a category is cocomplete if there is at least one colimit cone for
each base. If there are several colimit cones for one base, then all of them are
isomorphic, so that there is no danger in using the “colim” notation.

Definition 15 Let A be a cocomplete category. A contravariant realization
W : D = A of D with values in A is a contravariant functor which maps
each distinguished cone in D lo a colimil cone in A.

For instance, W = Yp : D —¢ Real(D) is a contravariant realization of D
with values in Real(D).

Let us consider the contravariant realization of D with values in Real(f,') :
Wy =Yeox:D > Real(€) .

Some properties of the contravariant realization W, are easily derived from
the properties of the Yoneda functor, as stated in theorem 4.

Theorem 16 The contravariant realization W, satisfies the following prop-
erties:

e Compatibity property:
WX = Fx o yp .
o Yoneda property: For all realization U of E:

Gy (U) = Hompea(e)(Wx(—),U) .

46

o Density property: For all realization T of D:
FX(T) = CO“IH(D\T)DP(WX(D)) .

So, when Yg is replaced by W, in the right handsides of the Yoneda and
density isomorphisms, one gets a description of the functors Gy and F, in
terms of W,.

Proof. The compatibility property of W, follows immediately from the com-
patibility property of the Yoneda functor.

The Yoneda property of Ve implies that U o x = Homgeq(e)(Ve(x(—)), U),
where U o x = G, (U), so that the Yoneda property of W, follows.

The density property of M implies that F\(S) = F\(colime\syr(Ve(C))). Tt
is a well-known fact that left-adjoint functors, like F), preserve the colimits
(Mac Lane , 1971). So, F\(S) £ colime\s)r (F\ (Ve (C'))), and finally the result
is derived from the compatibity property. O

The following result corresponds to the way our example has been presented
in the introduction: it states that an ingredient of T' with keyword & should
be interpreted as a model of a specification W(k).

Proposition 17 The sel of Q-models of T with values in G, (U) is such thal:

MOdQ(Tv GX(U>) = HomspeC(Q)(Ta MOdR(Wx(_>> U))

Proof. Let T = Go(G\(U))), so that Modg (T, G\ (U)) = Homge(oy(T,T).
Since y o Q = Ro y, it follows that T = G, (Ggr(U)). According to the

Yoneda property of Wy, this implies that T = Homgeau(e)(Wy(—), Gr(T)),
which means that T = Modg(Wy(—),U), as required. O

4.3 A construction of the expansion

Proposition 18 For all realization T of D there is an isomorphism:
T = Homeear(e)(Wx (=), Fi(T))
if and only if the morphism of projective sketches x : D — & is filling. Then:

Homgea (e)(Wx(=), Fx(T)) = Homgew(n)(Yp (=), T) .

47

Proof. From the Yoneda property of W,:
Gy (F(T)) = Hompea(ey(Wy (=), Fi(T)) -

On the other hand, T' = G (F\(T)) for all T if and only if x : D — & is
filling, which proves the first isomorphism. Then, the second isomorphism is
an immediate consequence of the Yoneda property of Yp. [

This result means that, for all point D of D, there are “as many” copies of
W, (D) in F\(T) as there are copies of Yp(D) in T'. So, when x is filling, F\(T)
can be computed from T pointwise, where the points must be understood as

the points W, (D) in the category Real(E).

Here is an example of a non-filling morphism y. Let D be a sketch of directed
graphs and & a sketch of categories, as described in section 2.2, and let x :
D — & be the inclusion. Then the category W, (Ar) = Ve(Ar) contains an
arrow [: X — Y, both points X and Y and both identity arrows idyx and
idy. Let T' be the directed graph made of one point, so that F,(7T) is the
category made of one point and one identity arrow. Then T(Ar) is empty,

whereas Homg, (W, (Ar), F\(T')) has one element.

4.4 An expansion for dealing with exceptions

The propagators () and R, the morphism of propagators x :) — R, the
Q)-specification T and the R-specification U are as in sections 2.5 and 3.5.

The contravariant realization W, = Ye o x : D = Real(€) is described in
section 2.5, on points and arrows. Let us now describe how the composition
of operations in a ()-domain is described via W,. As explained in section 2.5,
in order to deal with the composition of operations in the ()-domains, there
are four arrows j : Comp — Cons_ in D which become invertible in D.

First, let us come back to the illustration of the composition for P-domains,
which corresponds to the inversion, in C, of the arrow 5 : Comp — Cons of
C, as explained in section 2.5.

48

Now, here is the illustration of the four kinds of composition of arrows in
()-domains from section 2.5, when interpreted via x. The second one is a
composition “a la Kleisli”.

Since the morphism x : D — £ is filling, the expansion F\(T') can be com-
puted pointwise. Actually, F\(T) is equivalent to U.

49

The fact that V remains a potential terminal point in U, as in .S, comes from
the way it has been decorated in section 3.5. It is easy to check that the
constraint V' = 1, is expanded as:

V=1 _wvo S P oV < B

Similarly, it is easy to check that the binary product of X and Y in a Q-
specification T', as defined in section 3.5, is expanded as:

So, the expansion of the properties of the product associates to each pair of
arrows (fu: Z — X, g : Z — Y + F), an arrow hy : Z — (X x Y) + E.
This means that it associates to each arrow from 7 to X x (Y + E) an arrow
from Z to (X x Y) 4+ E. When applied to the identity of X x (Y + E), this

determines all arrow:

Xx(Y+FE)— (XxY)+E.

The expansion of an exception handling arrow, as defined in section 3.5, is an
arrow hg : (X + E) —_ (X + E) such that hy is equivalent to the identity
on X, and is any arrow on F:

idxl Jh+ h+ olxy =1x

Remark. According to the definitions given in section 2.5, in a R-domain
there are potential mono-sums for some pairs of points, but usually not for all
of them. Let us look at the kind of potential mono-sums which can occur in
Fr(U), where U is the expansion F\(T') of a Q-specification 7.

If X denotes a point in 7', then from the description of W(Pt) in section 2.5
there is a potential mono-sum X’ = X + E in U. However, if Y denotes a
point in 7', there is no potential mono-sum X + Y in U, and because of our
definition of R-domains there is no potential mono-sum X +Y in FR(U) either.
Similarly, there is no potential mono-sum F + F in U. So, some pairs of points
have a potential mono-sum in Fr(F,(T)), but not all of them.

50

5 Zooms
5.1 The framework for the zooming process

The zooming process is now easily defined from the decoration process of sec-
tion 3 and the expansion process of section 4: a zoom is a decoration followed
by an expansion. The framework for the zooms is made of a span ¥ of prop-
agators, i.e. three propagators P, (), R and two morphisms § : — P and
X : @ — R, and a laz-cocone A = (L, p, v, tr) over § : — P, as defined in

section 3.4.
L
° . tr\/
Q
X
/ \
P R

In this section, we consider a L-specification Z and a R-domain U.

Zooms and their models are defined in section 5.2, then some rigidity issues
are considered in section 5.3. In section 5.4, the previous examples are merged
in order to describe the zoom which corresponds to a treatment of exceptions.
Finally, in section 5.5, our method is compared with the method of monads.

5.2 The zooms and their models

Definition 19 The zoom with respect to A and ¥ which is associated to the
L-specification 7 is made of:

o the P-specification S = G,(7), called the far specification of the zoom,

o the Q-specification T = G,(7Z), called the intermediate specification of the
zoom,

e the R-specification U = F\(G,(Z)), called the near specification of the
zoom,

e and the span in the category of QQ-specificalions:

T
N
Gs(.5) Gy (U)

() is the decoration of S determined by Z, and n =n,r: T —
) is the canonical morphism.

where (T,
G (B (T)

51

So, (T,() is a decoration of S with respect to § which satisfies A, in the sense
of section 3.

And U = F(T) is the expansion of T with respect to x, in the sense of
section 4.

The zoom which is associated to the specification 7 will be also denoted 7.
However, 7 as a L-specification does not depend on ¥, whereas 7 as a zoom

depends on both A and ¥.

Definition 20 The set of models of the zoom Z with values in U is:

Mod s 5(Z,T) = Hompym (o) (G (FL(Z)), Gy (T)) .

Let T denote the intermediate specification of Z. As observed in section 3.4,
the natural transformation:

b,: Fhol, = G, o Fr: Spec(L) — Dom(Q)

is a natural isomorphism if and only if v is reliable. So, in general, the mor-
phism:
S, (Z): Fo(T) — G, (FL(Z)

is not an isomorphism, and the map Hom'Dom(Q)<®y(Z), GX(U)

—

Homp,m () (G (FL(7)), Gy(U)) — Modo(T, Gy(U))
is not a bijection, so that the sets
Moda x(Z, U) and Modg(7, GX(U))
are not in one-to-one correspondence.

Definition 21 The morphism v is reliable with respect to the morphism y
when the natural transformation:

Fyod,:F,oFyoG, = F, oG, ol :Spec(L) — Dom(R)
s a natural isomorphism.
Clearly, if v is reliable, then it is reliable with respect to y.

Proposition 22 Let 7 be a zoom with respect to A and X, with intermediate
specification T'. If v is reliable with respect to x, then:

MOd/\;;(Z, U) = MOdQ(T, GX(U>)

52

Proof. From the reliability assumption :
HomDom(R)(FX(FQ(T))7U) = HomDom(R)(FX(GV(FL(Z)>)7U) .

So, the result follows by adjunction with respect to y. O

Then, various expressions for Mod, x(Z,U) can be derived from proposi-
tions 14 and 17.

Proposition 23 Let us assume that v is reliable with respect to x. Let T be
the intermediale specification and U the near specification of the zoom 7. Then
the set of models of 7 with values in U is such that:

Mod, »(Z, U) =~ Modg(U, U) & Homspec(Q)(T, ModR(WX(—),U)) .

The expression Mod g (U, U7) means that the models of 7 with values in U can
be obtained from the near specification U in a straightforward way. However,
U is quite complex and unstructured.

The expression Homgyee(g) (T, Modr(W,(=),TU)) means that the models of 7
with values in U can be obtained from the intermediate specification T in a
non-canonical way, via the morphism Yy.

On the contrary, when v is not reliable with respect to y, the set Moda =(Z,)
cannot be defined without knowing the L-domain Fy(Z), whereas the set
Modg(T, G, (U)) can always be defined directly from the Q-specification T,
without knowing the @-domain Fy(T). Then, the models of T are some kind
of approximation for the models of Z. This situation is not considered any

further in this paper.

Remark. Since a zoom is determined from a L-specification, it is endowed
with an interesting genericity property: it is possible to change y, thus the
near specification U and the models of the zoom, without changing the L-
specification. An example is given in the introduction, where two different near
specifications Uy and U are computed from a unique intermediate specification
T. The deductions which are made in F(7T') remain valid in Fr(U), via y, for
any choice of y.

9.3 Rigidity

Let us assume that v is reliable with respect to y. It has been seen that the
models of a zoom Z with values in U can be defined either directly from the
near specification U or indirectly from the intermediate specification T'. But

53

usually, they cannot be recovered from the far specification S, which means
that the semantics of S is irrelevant. However, as explained below, it can
happen that some part of S gives rise to relevant interpretations.

The proposition below proves that the semantics of S can be adequate, under
some powerful assumption.

Assumption.
(A) There is a morphism ¢ : P — R such that ¢t 0§ = y.

Roughly speaking, the morphism + : P — R means that the logic which
corresponds to R is more powerful than the logic which corresponds to P.
The equality ¢ 0 § = x means that the following triangle is commutative:

Q
"
P———R

In section 5.4, it will be seen that in our example there is “nearly” a morphism
t, but the assumption that c 0§ = y is false.

Proposition 24 Under the assumption (A), if S = Fs(T) then:

Mody x(Z,U) = Modp(S, G,(T)) .

Proof. Since Mody 5(Z, U) = Modg(U, U), from U = F\(T) = F,(Fs(T)) we
get:

Modg(U,U) = Modg(F,(Fs(T)),U)

so that, from proposition 1:
Modg(U,U) = Modp(F5(T), G,(T)) .

The result follows from the assumption S = F5(T'). O

Most often, the assumptions of this proposition are not satisfied, but it hap-
pens that they become true on a restricted part of the propagators and spec-
ifications, which is called rigid.

54

5.4 A zoom for dealing with exceplions

In order to deal with exceptions, one can use the span of propagators ¥ from
section 2.5, and the lax-cocone A; which is associated to the monomorphic lax-
colimit, as in section 3.5. Then v is reliable. So, the models of a zoom Z with
values in set can be defined as the set-valued models of the far specification U,
or as the models of the intermediate specification T with values in Gy (set). It
is easy to check that the Q-domain G, (set) is selg, as defined in section 2.5.
Our running example corresponds to such a zoom. Its description is obtained
by merging sections 3.5 and 4.4.

As an example of a proof which can be done in Fp(Z), or in Fg(T), let us
prove that the term s o po s of S is non-erroneous.

In Fiy(T), every arrow with keyword “+”, like s, is also an arrow with keyword
“?77 . thanks to ar.». And every arrow which is composed from arrows with
keyword “?”7 is an arrow with keyword “?”. So, in Fg(T') there is an arrow
sopos 7 as well as arrows po s :7 and idy : #*, and there is an equation
(pos:?7)=. (idn : *), which leads to the equation:

(sopos:?)=.(s:%).

In section 3.5, it has been formalized in the propagator), by the inversion of
an arrow in D, that whenever (f :7) =, (g : *) it can be deduced that f : *.
So, it can be deduced, as required, that:

S0pPOS K.

Of course, this result could also be obtained by a classical deduction in first-
order logic in Fr(U). However, by reasoning at the intermediate level, first-
order logic is replaced by some kind of decorated equational logic, somewhat
similar to the one in (Hintermeier et al , 1998). Moreover, if the treatment of
exceptions is modified by changing R and y, the proof which is performed at
the intermediate level remains valid.

If R is enriched in such a way that there are chosen products in the R-domains,
then there is an inclusion morphism ¢ : P — R, and there is a rigid part in
the zooms: it is made of all the points and potential products of S, together
with the arrows of S which get the keyword “+”. Indeed, this part of S remains
the same in U, because of the definition of y.

More precisely, in order to restrict to the rigid part, P and R are unchanged,
but @, is the part of () which keeps only the keyword “x” for arrows and

)

w, "
€

the keyword for equations. The morphisms of propagators ¢ and x are

restricted to @),, so that they become isomorphismes.

Then T, is the),-specification underlying 7', and S, is the image of T, by (,
so that S, = F3(T,). Finally U, = F,(T,), so that the three of them are

isomorphic.

In our example, the rigid part of the zoom is the following one, from the three
points of view:

1 T, : V =1, U, : V=1

z]lv | -]

S,V
N
5.5 About monads

Let us compare our example to the treatment of exceptions with the help of
the monad A — AWE in the category of sets (Moggi , 1991). There are three
parts in this comparison: first we look only at the graphical part of S, then
we deal with its arity features, and finally with exception handling.

When dealing with the graphical part of S, in the zooming process for dealing
with exceptions, let us use the unique keyword “?” for arrows and the unique
keyword “e” for equations. This means that P and R remain the same, while ()
is simplified. Then 4 is an isomorphism between () and P, so that the deco-
ration step is trivial. The zooming process can be summarized as follows. An
arrow:
f+X—Y in§

is decorated as:

(f7): X —Y inT

then it is expanded as:
f+X—Y+FE nU
which in turn is interpreted, in any set-valued model M of U, as a map:
M(f): M(X) — M(Y)WYE in set .

This is indeed the kind of maps which are obtained when using the monad
A— AWE. So, when dealing with the graphical part of the far specification,
for such a treatment of exceptions, the zooming method can be considered
as a generalization of the monad approach. Indeed, with the unique keyword

56

“?” in the zoom, both points of view are quite similar, and in addition in the

zooming method it is possible to introduce other keywords, like “x” and “!”.

Let us now consider the arities of S, typically the binary product constraints.
As explained in section 3.5, the zooming method requires a second keyword
“x” for arrows in order to define the notion of product which is needed for
dealing with ordinary algebraic binary operations. The main point here is that
this product is defined by means of its universal property, i.e. by the existence
and unicity properties of the decorated factorization arrows. A consequence
of this definition, as explained in section 4.4, is that the expansion step yields
an arrow:

Xx(Y4+E)— (XxY)+E,

which in sef becomes a map (natural in A and B):
AX(BWE) — (Ax B)WE.

Actually, from the point of view of monads, according to (Moggi , 1991), this
means that the monad A — AWE in sel is strong. Moreover, this can be
expressed in terms of monoidal categories, as in (Plotkin and Power , 2001).
So, in both points of view, the monad has to be strong. However, this is the
starting point for the monads method, while for the zooming method this is
a consequence of the universal property of a decorated product.

Finally, the framework for exception handling is quite simple in the zoom-
ing method, with a keyword “+” for arrows and a keyword “nea” for equa-
tions, as explained in section 3.5. Indeed, an arrow with keyword “4+” in a
T-specification is interpreted as a map which does not have to preserve the
exceptions. With monads, according to (Plotkin and Power , 2001), exception
handling looks somewhat mysterious.

A detailed comparison of the zooming process with other notions related to
monads and effects, like (Plotkin and Power , 2001) or (Benton, Hughes and
Moggi , 2002), remains to be done.

6 Conclusion

This paper presents a zooming-in process, which leads from a far specifica-
tion S to a near specification U. An intermediate specification T' is needed,
which actually plays a major role in the zooming process. The zooming pro-
cess 1s an example of the way propagators can cooperate for dealing easily and

57

rigourously with several levels of logic.

Such a zooming process has many applications, among which the treatment of
exceptions which is presented in this paper, the explicitization of the denota-
tional semantics of some computational effects such as the state, and various
issues related to overloading.

In many applications, the far and the near specifications are described with
respect to classical logics, whereas the intermediate specification is described
with respect to some kind of non-classical logic. Most deductions in S are
irrelevant, and deductions in U may be rather complex, while deductions in T
are both relevant and quite simple. In spite of the non-classical aspect of
the corresponding logic, the deductions in T can easily be handled in the
framework of diagrammatic specifications. Moreover, there is a lot of flexibility
in the way the intermediate specifications can be defined, which allows to
express easily and in a coherent way many kinds of properties.

Aknowledgments. We are grateful to the participants of the working group
on Sketches and Computer Algebra in the Categories and Structures seminar,
to P. Berlioux, and to many others.

References

M. Barr and C. Wells. Category Theory for Computing Science, Prentice Hall
(1990).

N. Benton, J. Hughes and E. Moggi. Monads and Effects, Lecture Notes in
Computer Science 2395, 42-122 (2002).

L. Coppey. Théories algébriques et extensions de pré-faisceaux, Cahiers de
Topologie et Géomélrie Différentielle 13 (1972).

L. Coppey and C. Lair. Lecons de Théorie des esquisses (1), Diagrammes 12
(1984).

L. Coppey and C. Lair. Lecons de Théorie des esquisses (II), Diagrammes 19
(1988).

D. Duval. Diagrammatic specifications. To appear in Mathematical Structures
in Computer Science. A preliminary version is available as: D. Duval. and
C. Lair. Diagrammatic specifications. Rapport de recherche IMAG-LMC
1043 (2002). http://www-1mc.imag.fr/lmc-cf/Dominique.Duval/

C. Ehresmann. Introduction to the theory of structured categories, Report 10,
University of Kansas, Lawrence (1966).

J. Goguen and R. Burstall. Introducing institutions. Lecture Notes in Com-
puter Science 164, 221-256 (1984).

J. Goguen, J. Thatcher and E. Wagner. An initial algebra approach to the
specification, correctness, and implementation of abstract data types. In R.

38

T. Yeh, editor, Current Trends in Programming Methodology, TV, 80-149,
Prentice-Hall (1978).

C. Hintermeier, C. Kirchner and H. Kirchner. Dynamically-Typed Computa-
tions for Order-Sorted Equational Presentations, Journal of Symbolic Com-
putalion 25, 455-526 (1998).

C. Lair. Trames et sémantiques catégoriques des systemes de trames, Dia-
grammes 18, Paris, CL1-CL47 (1987).

S. Mac Lane. Categories for the working mathematician, Springer-Verlag
(1971).

E. Moggi. Notions of computation and monads, Information and Computation
93, 55-92 (1991).

S. Peyton Jones, J. Hughes, et al. (1 February 1999) Report of the program-
ming language Haskell 98; a non-strict, purely functional language (1999).
http://www.haskell.org/onlinereport/index.html

G. Plotkin and J. Power. Algebraic Operations and Generic Effects. This is the
journal version of “Semantics for Algebraic Operations”, Electronic Notes
in Theoretical Computer Science 45 Elsevier (2001).

59

