
A Superposition-Based Calculus for Diagrammatic Reasoning
(Long Version)

Rachid Echahed

Mnacho Echenim

Mehdi Mhalla

Nicolas Peltier

Univ. Grenoble Alpes, LIG, CNRS/GINP

F-38000, Grenoble, France

ABSTRACT
We introduce a class of rooted graphs which are expressive enough

to encode various kinds of classical or quantum circuits. We then

follow a set-theoretic approach to define rewrite systems over the

considered graphs. Afterwards, we tackle the problem of equational

reasoning with the graphs under study andwe propose a new Super-

position calculus to check the unsatisfiability of formulas consisting

of equations or disequations over these graphs. We establish the

soundness and refutational completeness of the calculus.

CCS CONCEPTS
• Theory of computation → Automated reasoning; Equa-
tional logic and rewriting.

KEYWORDS
Equational Reasoning, Graph, Superposition Calculus

ACM Reference Format:
Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier. 2021.

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Ver-

sion). In 23rd International Symposium on Principles and Practice of Declara-

tive Programming (PPDP 2021), September 6–8, 2021, Tallinn, Estonia. ACM,

New York, NY, USA, 20 pages. https://doi.org/10.1145/3479394.3479405

1 INTRODUCTION
Rewrite systems play an important rôle in defining operational se-

mantics of declarative programming languages such as functional

programming [3, 26, 32] or functional-logic programming [16, 24].

In general, the basic objects of such declarative languages are trees,

e.g., lambda terms or first-order terms. In this paper, we consider

rewrite systems operating on a class of rooted graphs. Such sys-

tems are tailored to model applications based on circuits building

and simulation. The road to computing by means of graph rewrite

systems started in the seventies [19] using the well-known alge-

braic double pushout approach. Since then, several approaches of

graph rewriting have been proposed. One can distinguish two main

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8689-0/21/09. . . $15.00

https://doi.org/10.1145/3479394.3479405

streams of research : the algebraic approaches using constructs

borrowed from category theory [14, 15, 18, 29] on one hand and the

set-theoretic or algorithmic approaches [4, 17, 20] based on actual

algorithms/operations involved in graph transformations on the

other hand. All the proposed approaches define dedicated solutions

to the delicate action of replacing a given subgraph by another in

the rewriting process. Subgraph replacement is more difficult to

achieve in general if compared to subterm (subtree) replacement.

This difficulty is mainly due to the way one handles the possible

edges connecting nodes of the subgraph to be replaced with the rest

of the considered graph. In this work, we propose a set-theoretic ap-

proach to define a class of rewrite systems over rooted graphs. We

introduce the basic operations over graphs needed to work out the

machinery used to define rewriting steps. Due to the shape of the

graphs we consider, our definition of graph rewriting is rather close

to term rewriting and thus avoids the difficulties behind subgraph

replacement actions.

Rule-based programming offers the possibility to write programs

in a declarative way by stating rules or inferences behind the in-

tended algorithm without caring for the control in a first step.

Another benefit of rule-based programming is the underlying math-

ematical foundation which allows one to make some formal reason-

ing on programs. For example, in the case of term rewrite systems,

equational reasoning has been developed intensively and now is

routine inmost theorem provers. Unfortunately, reasoning on graph

structures is still in its infancy despite the progress made in using

Hoare-like calculi [9, 22, 34] or model-checkers [35, 39]. In this

paper, we also tackle the problem of reasoning with graphs and

propose an extension to graphs of the well-known Superposition

calculus.

The Superposition calculus [1] is the most successful automated

proof procedure for equational reasoning. The calculus may be

viewed as an extension of the Knuth-Bendix algorithm [28] to a

wider class of equational formulæ, involving disjunctions (e.g., con-

ditional rules) and quantifiers. It also generalizes the narrowing

procedure [25] by handling equations that cannot be oriented and

may be viewed as an extension of the Resolution calculus [31, 37],

which is the most efficient proof procedure for predicate logic, to

sets of clauses containing the equality predicate. The calculus is

presented as a set of inference rules, deducing new assertions from

axioms or previously generated assertions, together with a generic

redundancy criterion that permits to prune the search space and

discard many inferences. This calculus is sound, in the sense that

every derived formula is a logical consequence of the premises, and

https://doi.org/10.1145/3479394.3479405
https://doi.org/10.1145/3479394.3479405

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

refutationally complete: if a set of axioms 𝐸 is contradictory, then a

contradiction (i.e., an empty clause, equivalent to false) can always

be generated by the calculus. It is also generic, and can be uniformly

applied to any set of axioms that can be expressed in first-order

logic. Most efficient theorem provers, such as Vampire [36], E [38]

or Spass [42], are based on the Superposition calculus. Numerous

extensions of the Superposition calculus have been proposed to han-

dle specific theories or extensions of first-order logic, for instance

higher-order logic [6], inductive and co-inductive datatypes [7],

cancellative monoids [41], or general-purpose theory-reasoning

[5]. In the present paper, we extend the calculus to perform equa-

tional reasoning on graphs instead of terms and we establish the

soundness and refutational completeness of the obtained proof

procedure.

Graphs are ubiquitous in programming and verification. They

are often used for example to model pointer-based data-structures,

and equations between graphs may be viewed as specifications

of functions operating on such data-structures. In this context,

proving general properties of these functions involves performing

equational reasoning on graphs. In quantum computing, graphs

have become particularly useful for the formal verification of quan-

tum algorithms and protocols, and several such languages have

been developed over the past years for such an analysis, including

the ZW calculus [23], the ZH calculus [2], the ZX calculus [13],

the SZX [10] calculus, or more recently the PBS-calculus [11]. The

reason these languages are so useful is that standard approaches

to verifying the correctness of quantum algorithms and protocols

involve computations on complex matrices, and such approaches

are non-intuitive and error-prone. On the other hand, graph-based

languages permit to represent the same algorithms and protocols

in a more intuitive way, by abstracting the numerical values and

matrices, and replacing computations on these matrices by rewrite

rules. Using graph-based languages to represent quantum algo-

rithms thus permits to reduce many verification tasks to testing

the equivalence of two graphs modulo a set of equations, which

represent properties of the considered computations.

Extending the Superposition calculus to reason on graphs is thus

a very desirable feature, with promising applications in program-

ming. A first, rather straightforward, approach would be to encode

graphs into first-order terms, stating all the necessary properties as

axioms. However, such an approach would be very inefficient and

the produced proofs would be extremely long and hardly readable,

since they will be cluttered by the many reasoning steps necessary

to handle trivial transformations related to associativity, commuta-

tivity, isomorphism etc. A second, more promising, approach is to

tune the Superposition calculus so that it applies directly on graphs,

which would replace terms as basic objects, with built-in algorithms

to cope with basic graph properties. This approach is appealing but

it raises three difficult issues. First it has been known for a long

time that well-established properties of term rewriting fail when

graphs are considered. In particular, orthogonal ground rewrite

systems operating on graphs are not confluent in general [27]: for

instance the system {𝑓 (𝑥) → 𝑥, 𝑔(𝑥) → 𝑥} is not confluent if

cyclic graphs are considered. In fact, it is known that confluence

of terminating set of rules operating on graphs is undecidable [33].

Unfortunately, the confluence of ground rewrite systems plays a key

rôle for establishing the completeness of the Superposition calculus,

because, informally, term rewrite systems are used to construct

models of saturated clause sets (i.e. of the clause sets on which no

non-redundant inference apply and containing no contradiction),

to prove that such sets are indeed satisfiable. A second issue, related

to the first one, is that equality between graphs is not preserved

by context embedding, for instance two isomorphic graphs may

become non-isomorphic when additional vertices and edges are

added. Finally, the most difficult problem is that the Superposition

calculus relies on the existence of reduction orders, i.e., of well-

founded orders which are total on ground terms (i.e., on terms

containing no variables) and closed under context embedding and

under replacement. Such orders are used to orient ground equations

into rewrite rules in order to construct suitable representations of

models for saturated sets containing no contradiction. However,

such reduction orders are very difficult (if not impossible) to define

for graphs, because the order must be closed under isomorphism.

In the present paper we overcome these issues by consider-

ing a specific class of graphs, called DRL-graphs, which possess

properties similar to those used in term rewriting. We provide a

Superposition-based calculus to check the satisfiability of sets of

equations and disequations between the considered class of graphs

and we prove that the calculus is sound and refutationally complete.

To tackle the problem mentioned above related to the existence

of reduction orders, the completeness proof relies on non-well-

founded orders and non-terminating rules, which comes at the

cost of a more restrictive redundancy criterion. It should be noted

that using non-terminating rules makes the confluence proof more

difficult, since establishing local confluence is not sufficient.

Graphs may contain variables, denoting terms labeling the nodes

and the calculus may be used to synthesize terms satisfying some

graph properties, by propagating unifiers. In Section 8, we shall

see that this class is general enough to denote circuits occurring in

quantum programming. We wish to emphasize that the considered

class is strictly more expressive than that of terms, for instance the

satisfiability problem is undecidable even if the considered formula

contains no variable (see Theorem 45).

Related Work
The very recent research report [21] is very close to our work. It

pursues similar aims, namely to construct automatically equational

derivations on diagrammatic structures, more precisely on ZX di-

agrams [12]. The considered approach, which is practically very

successful, is different from ours: it relies on the use of the stan-

dard Superposition calculus [1] together with an encoding of ZX

diagrams and rules by terms and equations between them (includ-

ing an embedding of higher-order terms to cope with schematic

rules). In our work, we bypass this encoding by defining a Super-

position calculus that applies directly on graphs. The advantage is

that we do not have to model graph properties by first-order axioms

(such as the associativity and commutativity of graph constructors,

see, e.g.,[21, Equations 303-304, p. 80]), instead these properties are

taken into account in the definition of the inference rules. We do not

use schematic rules to cope with variadic gates, instead instances of

these rules with fixed arities may be generated on demand during

the proof search.

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Numerous works in graph rewriting use an algebraic framework

based on categories theory, using mostly the double pushout ap-

proach introduced in the seminal paper [19] (which has since been

generalized in many directions). Here, we prefer to use an algorith-

mic, set theorical framework. This low-level approach, although

less general, is more suited to deal with the intricacies in the def-

inition of the inference rules and in the completeness proof. The

considered structures are also closer to those considered usually in

superposition-based theorem proving, which is more convenient

for extending the calculus to graphs.

In [8], it is proven that confluence is decidable for terminating

rewrite systems on graphs with an interface, which embed those

considered in the present paper (as mentioned above, confluence

is undecidable in general in graph rewriting). In our results, the

rewrite rules we consider are not necessarily terminating (and equa-

tions are not even orientable in general). In Section 7, confluence

is used as a tool to construct models of saturated sets of clauses. It

is easy to check that a terminating set of rules with no non join-

able critical pair is always saturated (in the sense of Definition 53

and w.r.t. some adequate order), thus the decidability of confluence

could be re-established for our particular class of graphs using

Lemma 56 in the present paper.

We wish to emphasize that the notion of “completeness” consid-

ered in the present paper refers to the completeness of the infer-

ence rules, i.e., to their ability to detect that graphs are reducible

to each other. It should not be confused with work asserting the

completeness of the diagrammatic axiomatization w.r.t. a particular

semantics and application domain (such as [40]).

The rest of the paper is organized as follows. Some basic defini-

tions are recalled in the next section. The class of rooted graphs

is introduced in Section 3 together with some basic operations

on these graphs as well as the considered class of graph rewrite

systems. Sections 4 and 5 define the graph formulas and their se-

mantics. In Section 6, the new Superposition calculus is presented

and its completeness is established in Section 7. Section 8 provides

examples of the considered graphs and concluding remarks are

made in Section 9.

2 BASIC DEFINITIONS AND NOTATIONS
For any partial function 𝑓 , we denote by dom(𝑓) its domain, i.e., the

set of elements 𝑥 such that 𝑓 (𝑥) is defined and by img(𝑓) the set
{𝑓 (𝑥) | 𝑥 ∈ dom(𝑓)}. For any function 𝑓 and for any 𝐷 ⊆ dom(𝑓),
we denote by 𝑓 |𝐷 the restriction of 𝑓 to 𝐷 . The integer interval

{𝑎, 𝑎 + 1, . . . , 𝑏} is denoted by ⟦𝑎, 𝑏⟧ (it is empty if 𝑎 > 𝑏). The

function of domain {𝑡1, . . . , 𝑡𝑛} mapping 𝑡𝑖 to 𝑠𝑖 for all 𝑖 ∈ ⟦1, 𝑛⟧ is

denoted by {𝑡𝑖 ↦→ 𝑠𝑖 | 𝑖 ∈ ⟦1, 𝑛⟧}.
Any partial function 𝑓 operating on some set 𝑆 may be ex-

tended into a function operating on tuples or sets of elements

in 𝑆 , using the relations: 𝑓 (⟨𝑡1, . . . , 𝑡𝑛⟩)
def
= ⟨𝑓 (𝑡1), . . . , 𝑓 (𝑡𝑛)⟩ and

𝑓 ({𝑡1, . . . , 𝑡𝑛})
def
= {𝑓 (𝑡1), . . . , 𝑓 (𝑡𝑛)}. If 𝑡𝑖 ∉ dom(𝑓) for some 𝑖 =

1, . . . , 𝑛 then 𝑓 (⟨𝑡1, . . . , 𝑡𝑛⟩) and 𝑓 ({𝑡1, . . . , 𝑡𝑛}) are undefined. These
relations may be applied recursively, e.g., if 𝑡1, . . . , 𝑡𝑛 are themselves

sets or tuples of elements.

The notation 𝑔 ◦ 𝑓 denotes as usual the composition of 𝑔 and

𝑓 , with dom(𝑔 ◦ 𝑓) = {𝑥 ∈ dom(𝑓) | 𝑓 (𝑥) ∈ dom(𝑔)} and (𝑔 ◦

𝑓) (𝑥) = 𝑔(𝑓 (𝑥)) for every 𝑥 ∈ dom(𝑔 ◦ 𝑓). According to the pre-

vious convention, if functions are viewed as sets of pairs, then

for every function 𝑓 and for every injective function 𝑔 such that

img(𝑓) ∪ dom(𝑓) ⊆ dom(𝑔), 𝑔(𝑓) is a function with dom(𝑔(𝑓)) =
𝑔(dom(𝑓)), img(𝑔(𝑓)) = 𝑔(img(𝑓)), and (𝑔(𝑓)) (𝑔(𝑥)) = 𝑔(𝑓 (𝑥)),
for any 𝑥 ∈ dom(𝑓). Note that, by definition, 𝑔(𝑓) = 𝑔 ◦ 𝑓 ◦ 𝑔−1.

With a slight abuse of notations, we sometimes use set notations

on tuples when the order and duplication of components are irrel-

evant, i.e., we write 𝑢 ∈ ⟨𝑡1, . . . , 𝑡𝑛⟩ to state that 𝑢 ∈ {𝑡1, . . . , 𝑡𝑛},
⟨𝑡1, . . . , 𝑡𝑛⟩ ∪ 𝐸 to denote the set {𝑡1, . . . , 𝑡𝑛} ∪ 𝐸 or ⟨𝑡1, . . . , 𝑡𝑛⟩ =

⟨𝑡 ′
1
, . . . , 𝑡 ′𝑚⟩ ∪ ⟨𝑡 ′′

1
, . . . , 𝑡 ′′

𝑘
⟩ for {𝑡1, . . . , 𝑡𝑛} = {𝑡 ′

1
, . . . , 𝑡 ′𝑚, 𝑡 ′′

1
, . . . , 𝑡 ′′

𝑘
}.

Definition 1. Let Σ be a set of function symbols and let V be

a countable set of variables. Each symbol 𝑓 ∈ Σ is associated with

a unique arity ar (𝑓). The set of terms T is the least set such that

V ⊆ T and 𝑡1, . . . , 𝑡𝑛 ∈ T ⇒ 𝑓 (𝑡1, . . . , 𝑡𝑛) ∈ T , for every 𝑓 ∈ Σ
with 𝑛 = ar (𝑓). We denote by V(𝑡) the set of variables occurring in
𝑡 . A term 𝑡 is ground if V(𝑡) = ∅.

A substitution 𝜎 is a total mapping fromV to T . As usual, for any

term 𝑡 , 𝜎 (𝑡) denotes the term obtained from 𝑡 by replacing every

variable 𝑥 by 𝜎 (𝑥). A substitution 𝜎 is ground if 𝜎 (𝑥) is ground for

every 𝑥 ∈ dom(𝜎). A unifier of a set of pairs 𝐸 is a substitution 𝜎

such that 𝜎 (𝑡) = 𝜎 (𝑠) holds for all pairs (𝑡, 𝑠) ∈ 𝐸. 𝐸 is unifiable if it

admits a unifier. A substitution 𝜎 is more general than a substitution

𝜃 iff there exists a substitution 𝜎 ′
such that 𝜃 = 𝜎 ′ ◦ 𝜎 . It is well

known that every unifiable set of pairs admits a most general unifier

(mgu).

3 ROOTED GRAPHS
3.1 Definitions
We define the class of graphs on which the adaptation of the Su-

perposition calculus will be applied. Intuitively, this class consists

of labeled graphs with a distinguished sequence of nodes which

can be viewed as an interface that constrains the operations of re-

placing a subgraph by another graph that can be performed. More

precisely, the replacement is possible only if all the edges between

the original graph and the replaced subgraph have an incident node

inside the interface.

Let N be a fixed countable set of nodes, disjoint from the set

of terms, and let S be a set of sorts. We consider a function sort

mapping every node 𝛼 ∈ N to a sort in S and a pre-order ⊴ on N .

We write 𝛼 ≜ 𝛼 ′
if 𝛼 ⊴ 𝛼 ′

and 𝛼 ′ ⊴ 𝛼 , and 𝛼 ◁ 𝛼 ′
for 𝛼 ⊴ 𝛼 ′

and

𝛼 ′ ̸⊴ 𝛼 .

Definition 2. A DRL-graph (for Directed Rooted Labeled graph)

𝐺 is a tuple ⟨N𝐺 ,R𝐺 , E𝐺 , 𝑙𝐺 ⟩ where:

• N𝐺 is a finite subset of N .

• R𝐺 is a finite sequence of nodes inN𝐺 with no repetition, called

the roots of 𝐺 . We denote by N∗
𝐺
the set of nodes N𝐺 \ R𝐺 .

• E𝐺 is a finite set of ordered pairs (written (𝛼 → 𝛽)) of nodes
in N𝐺 , called edges. We write (𝛼 ⇄ 𝛽) to denote any edge

(𝛼 → 𝛽) or (𝛽 → 𝛼)
• 𝑙𝐺 is a function mapping each node 𝛼 ∈ N∗

𝐺
to a term (called

the label of 𝛼).

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

Two DRL-graphs 𝐺 and 𝐻 are disjoint if N𝐺 ∩N𝐻 = ∅. We denote

byV(𝐺) def
=
⋃

𝛼 ∈N∗
𝐺
V(𝑙𝐺 (𝛼)) the set of variables occurring in the

labels of nodes in 𝐺 . A DRL-graph 𝐺 is ground if V(𝐺) = ∅.

Note that the function 𝑙𝐺 is not defined over the nodes in R𝐺 .

Definition 3. For any substitution 𝜎 and DRL-graph 𝐺 , 𝜎 (𝐺)
denotes the DRL-graph ⟨N𝐺 ,R𝐺 , E𝐺 , 𝑙 ′⟩, where 𝑙 ′(𝛼) = 𝜎 (𝑙𝐺 (𝛼)),
for all 𝛼 ∈ N∗

𝐺
.

Definition 4. A DRL-graph 𝐻 is a DRL-subgraph of 𝐺 (written

𝐻 ⪯ 𝐺) if the following conditions hold:

(1) N𝐻 ⊆ N𝐺 ;

(2) If (𝛼 → 𝛽) ∈ E𝐻 then (𝛼 → 𝛽) ∈ E𝐺 .
(3) If (𝛼 → 𝛽) ∈ E𝐺 and 𝛼, 𝛽 ∈ N𝐻 then (𝛼 → 𝛽) ∈ E𝐻 .

(4) If (𝛼 ⇄ 𝛽) ∈ E𝐺 , 𝛽 ∉ N𝐻 and 𝛼 ∈ N𝐻 , then 𝛼 occurs in R𝐻 .

(5) If 𝛼 occurs in R𝐺 and 𝛼 ∈ N𝐻 , then 𝛼 occurs in R𝐻 .

(6) 𝑙𝐻 is the restriction of 𝑙𝐺 to the nodes in N∗
𝐻
.

Proposition 5. The relation ⪯ is transitive and reflexive.

Proof. It is immediate to check that ⪯ is reflexive. Assume that

𝐼 ⪯ 𝐻 ⪯ 𝐺 . Then:

(1) N𝐼 ⊆ N𝐻 ⊆ N𝐺 hence N𝐼 ⊆ N𝐺 .

(2) We have (𝛼 → 𝛽) ∈ E𝐼 ⇒ (𝛼 → 𝛽) ∈ E𝐻 ⇒ (𝛼 → 𝛽) ∈
E𝐺 .

(3) If (𝛼 → 𝛽) ∈ E𝐺 and 𝛼, 𝛽 ∈ N∗
𝐼
, then by Condition 5 of

Definition 4 𝛼, 𝛽 ∈ N∗
𝐻
, thus (𝛼 → 𝛽) ∈ E𝐻 and (𝛼 → 𝛽) ∈

E𝐼 .
(4) Assume that (𝛼 ⇄ 𝛽) ∈ E𝐺 , 𝛼 ∈ N𝐼 and 𝛽 ∉ N𝐼 . If 𝛽 ∈ N𝐻 ,

then (𝛼 ⇄ 𝛽) ∈ E𝐻 and we deduce that 𝛼 must occur in R𝐼

because 𝐼 ⪯ 𝐻 . If 𝛽 ∉ N𝐻 then 𝛼 occurs in R𝐻 since 𝐻 ⪯ 𝐺 .

Thus 𝛼 ∈ R𝐼 , since 𝐼 ⪯ 𝐻 .

(5) 𝑙𝐼 = 𝑙𝐻 |N∗
𝐼
= (𝑙𝐺 |N∗

𝐻
) |N∗

𝐼
= 𝑙𝐺 |N∗

𝐼
(because N∗

𝐼
⊆ N∗

𝐻
).

□

Proposition 6. If 𝐻 ⪯ 𝐺 then R𝐺 ⊆ N𝐺 \ N∗
𝐻
.

Proof. Assume for a contradiction that 𝛼 ∈ R𝐺 ∩N∗
𝐻
. Then by

definition, 𝛼 is a node in N𝐻 that does not occur in R𝐻 , but this is

impossible by Condition 5 of Definition 4. □

In what follows, we define an equivalence relation on graphs to

formalize the fact that the properties we prove do not depend on

the actual nodes that occur in the graph.

Definition 7. An N-mapping 𝜇 is a partial injective mapping

from nodes to nodes, such that sort (𝛼) = sort (𝜇 (𝛼)) and 𝛼 ≜ 𝜇 (𝛼).
For technical convenience we assume that 𝜇 (𝑡) = 𝑡 holds for every

term 𝑡 , i.e., every N -mapping is extended to the identity on terms.

Proposition 8. If 𝐺 is a DRL-graph, then for every N -mapping

𝜇 with dom(𝜇) ⊇ N𝐺 , 𝜇 (𝐺) is a DRL-graph. Moreover, N𝜇 (𝐺) =

𝜇 (N𝐺), E𝜇 (𝐺) = 𝜇 (E𝐺), R𝜇 (𝐺) = 𝜇 (R𝐺) and 𝑙𝜇 (𝐺) = 𝜇 (𝑙𝐺) =

𝜇 ◦ 𝑙𝐺 ◦ 𝜇−1 = 𝑙𝐺 ◦ 𝜇−1

Proof. The result follows immediately from the definition of

𝜇 (𝐺) (see Section 2) and from the fact that 𝜇 is injective. □

Similarly, because N-mappings are injective, we have the fol-

lowing result:

Proposition 9. If 𝐻 ⪯ 𝐺 and N𝐺 ⊆ dom(𝜇) for an N -mapping

𝜇, then 𝜇 (𝐻) ⪯ 𝜇 (𝐺).
Definition 10. We write 𝐺 ∼ 𝐺 ′

if there exists 𝜇 such that

dom(𝜇) ⊇ N𝐺′ and 𝐺 = 𝜇 (𝐺 ′).
Proposition 11. The relation ∼ is an equivalence relation.

Proof.

• Reflexivity. The identity on N𝐺 is an N-mapping, thus

𝐺 ∼ 𝐺 .

• Symmetry. If 𝐺 ∼ 𝐺 ′
, then 𝐺 = 𝜇 (𝐺 ′), where 𝜇 is an N-

mapping such that dom(𝜇) ⊇ N𝐺′ . Since 𝜇 is injective, 𝜇−1 is
well-defined, 𝜇−1 (𝐺) = (𝜇−1 ◦ 𝜇) (𝐺 ′) = 𝐺 ′

and dom(𝜇−1) =
img(𝜇) ⊇ 𝜇 (N𝐺′) = N𝐺 . Hence 𝐺

′ ∼ 𝐺 .

• Transivity. If 𝐺 ∼ 𝐺 ′ ∼ 𝐺 ′′
then there exist N-mappings

𝜇 and 𝜇 ′ such that 𝐺 = 𝜇 (𝐺 ′), 𝐺 ′ = 𝜇 ′(𝐺 ′′), dom(𝜇) ⊇ N𝐺′

and dom(𝜇 ′) ⊇ N𝐺′′ . Then since the composition of two

injective functions is also injective, 𝜇 ◦ 𝜇 ′ is an N -mapping,

and 𝐺 = (𝜇 ◦ 𝜇 ′) (𝜇 ′(𝐺 ′′)) with dom(𝜇 ◦ 𝜇 ′) ⊇ N𝐺′′ . Hence

𝐺 ∼ 𝐺 ′′
.

□

We now define a replacement operation on the considered class

of graphs. Intuitively, this replacement operation applied to a graph

permits to replace one of its subgraphs by another graph, provided

a so-called substitutability condition is satisfied. This condition

will guarantee that the replacement operation on graphs enjoys

properties similar to those of standard term rewriting.

Definition 12. Let𝐺 ,𝐻 and𝐻 ′
be DRL-graphs such that𝐻 ⪯ 𝐺 ,

R𝐻 = ⟨𝛼1, . . . , 𝛼𝑛⟩ and R𝐻 ′ = ⟨𝛼 ′
1
, . . . , 𝛼 ′

𝑚⟩. The DRL-graphs 𝐻 and

𝐻 ′
are root-compatible if 𝑛 = 𝑚 and for every 𝑖 ∈ ⟦1, 𝑛⟧, we have

sort (𝛼𝑖) = sort (𝛼 ′
𝑖
) and 𝛼𝑖 ≜ 𝛼 ′

𝑖
.

Definition 13. A DRL-graph 𝐻 ′
is substitutable for 𝐻 in𝐺 if 𝐻

and 𝐻 ′
are root-compatible and N𝐺 ∩ N𝐻 ′ ⊆ N𝐻 .

An immediate consequence of this definition is the following

property:

Proposition 14. If 𝐻 ′
is substitutable for 𝐻 in 𝐺 then (N𝐺 \

N𝐻) ∩ N𝐻 ′ = ∅.
Definition 15. Let 𝐺 , 𝐻 and 𝐻 ′

be DRL-graphs such that DRL-

graph 𝐻 ′
is substitutable for 𝐻 in𝐺 , 𝐻 ⪯ 𝐺 , R𝐻 = ⟨𝛼1, . . . , 𝛼𝑛⟩ and

R𝐻 ′ = ⟨𝛼 ′
1
, . . . , 𝛼 ′

𝑛⟩. The mapping from 𝐻 to 𝐻 ′
in𝐺 , is the function

𝜇𝐻→𝐻 ′
𝐺

def
= {𝛼𝑖 ↦→ 𝛼 ′

𝑖
| 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝛼 ↦→ 𝛼 | 𝛼 ∈ N𝐺 \ N𝐻 }.

Let 𝜇
def
= 𝜇𝐻→𝐻 ′

𝐺
. We denote by 𝐺 [𝐻 ′/𝐻] the DRL-graph 𝐺 ′

de-

fined as follows:

(1) N𝐺′
def
= (N𝐺 \ N𝐻) ∪ N𝐻 ′ .

(2) R𝐺′
def
= 𝜇 (R𝐺).

(3) E𝐺′
def
= 𝜇 (E𝐺 \ E𝐻) ∪ E𝐻 ′ .

(4) For every 𝛼 ∈ N𝐺′ :

𝑙𝐺′ (𝛼) def
=

𝑙𝐺 (𝛼) if 𝛼 ∈ N∗

𝐺′ \ N𝐻 ′

𝑙𝐻 ′ (𝛼) if 𝛼 ∈ N∗
𝐻 ′

𝑙𝐺 (𝜇−1 (𝛼)) if 𝜇−1 (𝛼) ∈ N∗
𝐺
∩ R𝐻

undefined otherwise

Example 16. Consider the following DRL-graphs (see also Figure

1):

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

𝛼
1

𝛼
2

𝛼
3

𝛼
4

𝐻

𝛽
1

𝛽
2

𝛽
3

𝛽
4

Figure 1: Graphs 𝐺 , 𝐻 (dashed lines) and 𝐻 ′ in Example 16
(the labels are omitted for readability)

𝛼
1 𝛽

1
𝛽
2

𝛼
4

𝛽
3

𝛽
4

Figure 2: The graph 𝐺 [𝐻 ′/𝐻] in Example 16

• 𝐺 is defined as follows:

N𝐺
def
= {𝛼1, 𝛼2, 𝛼3, 𝛼4}

R𝐺
def
= ⟨⟩

E𝐺
def
= {(𝛼1 → 𝛼2) , (𝛼2 → 𝛼3) , (𝛼3 → 𝛼4)}

𝑙𝐺
def
= {(𝛼1, 𝑎), (𝛼2, 𝑓 (𝑥)), (𝛼3, 𝑓 (𝑏)), (𝛼4, 𝑏)}

• 𝐻 is defined as follows:

N𝐻
def
= {𝛼2, 𝛼3}

R𝐻
def
= ⟨𝛼2, 𝛼3⟩

E𝐻
def
= {(𝛼2 → 𝛼3)}

𝑙𝐻
def
= ∅

• 𝐻 ′
is defined as follows:

N𝐻 ′
def
= {𝛽1, 𝛽2, 𝛽3, 𝛽4}

R𝐻 ′
def
= ⟨𝛽1, 𝛽2⟩

E𝐻 ′
def
= {(𝛽1 → 𝛽3) , (𝛽1 → 𝛽4) , (𝛽2 → 𝛽3) , (𝛽2 → 𝛽4)}

𝑙𝐻 ′
def
= {(𝛽3, 𝑐), (𝛽4, 𝑑)}

We assume that all nodes are of the same sort and that all nodes are

distinct. Then𝐻 is a subgraph of𝐺 , and𝐻 ′
is substitutable for𝐻 in𝐺 .

The DRL-graph𝐺 [𝐻 ′/𝐻] is represented in Figure 2, where 𝑙𝐺 [𝐻 ′/𝐻] =
{(𝛼1, 𝑎), (𝛽1, 𝑓 (𝑥)), (𝛽2, 𝑓 (𝑏)), (𝛽3, 𝑐), (𝛽4, 𝑑), (𝛼4, 𝑏)}.

Proposition 17. If 𝐻 ′
is substitutable for 𝐻 in 𝐺 , then by letting

𝜇
def
= 𝜇𝐻→𝐻 ′

𝐺
and 𝐺 ′ def

= 𝐺 [𝐻 ′/𝐻], we have 𝜇 (R𝐺) = R𝐺′ and

𝜇 (R𝐻) = R𝐻 ′ .

Proposition 18. If 𝐻 ′
is substitutable for 𝐻 in 𝐺 , then by letting

𝐺 ′ def
= 𝐺 [𝐻 ′/𝐻], we have:
• N𝐺′ \ N𝐻 ′ = N𝐺 \ N𝐻 ;

• N∗
𝐺′ \ N𝐻 ′ = N∗

𝐺
\ N𝐻 .

Proof. We have N𝐺′ \ N𝐻 ′ = [(N𝐺 \ N𝐻) ∪ N𝐻 ′] \ N𝐻 ′ =

[N𝐺 \ N𝐻] \ N𝐻 ′ = N𝐺 \ N𝐻 by Proposition 14. Consider a node

𝛼 ∈ N𝐺 ; we show that 𝛼 ∈ R𝐺 \ N𝐻 if and only if 𝛼 ∈ R𝐺′ \ N𝐻 ′ ;

together with the previous result this will prove the second item of

the proposition. First assume that 𝛼 ∈ R𝐺 \N𝐻 and let 𝜇 denote the

mapping from𝐻 to𝐻 ′
in𝐺 . Then by definition, we have 𝜇 (𝛼) = 𝛼 ∈

R𝐺′ and by Proposition 14, 𝛼 ∉ N𝐻 ′ ; hence the result. Conversely,

if 𝛼 ∈ R𝐺′ \ N𝐻 ′ then 𝛼 ∈ N𝐺′ \ N𝐻 ′ = N𝐺 \ N𝐻 by the first item

of the proposition, and by definition, 𝛼 = 𝜇 (𝛼 ′) for some 𝛼 ′ ∈ R𝐺 .

Since 𝛼 ∉ N𝐻 , necessarily 𝛼 ′ = 𝛼 , hence the result. □

Observe that, with the notations of Definition 15, if 𝛼 ∈ N∗
𝐺′ \

N𝐻 ′ = N∗
𝐺
\ N𝐻 , then necessarily 𝜇 (𝛼) = 𝛼 , so that 𝜇−1 (𝛼) = 𝛼

and 𝑙𝐺′ (𝛼) = 𝑙𝐺 (𝜇−1 (𝛼)).

Lemma 19. Let 𝐺 be a DRL-graph, let 𝐻 be a DRL-subgraph of 𝐺

and let 𝐻 ′
be a DRL-graph substitutable for 𝐻 in 𝐺 . Then, 𝐺 [𝐻 ′/𝐻]

is a DRL-graph and 𝐻 ′ ⪯ 𝐺 [𝐻 ′/𝐻].

Proof. Observe that the function 𝜇 in Definition 15 is injective,

since R𝐻 ′ is repetition-free and no node in N𝐺 \ N𝐻 may occur in

R𝐻 ′ , because N𝐺 ∩ N𝐻 ′ ⊆ N𝐻 by hypothesis. We show that the

domain of 𝜇 contains all nodes occurring either in R𝐺 or in an edge

in E𝐺 \ E𝐻 . By Condition 5 of Definition 4, the nodes in R𝐺 occur

in either R𝐻 or N𝐺 \ N𝐻 .

The function 𝑙𝐺′ is well-defined: if 𝛼 ∈ N∗
𝐻 ′ and 𝛼 = 𝜇 (𝛼 ′) for

𝛼 ′ ∈ N∗
𝐺
\ N𝐻 , then we have 𝛼 ′ ∉ N𝐻 ′ (because N𝐺 ∩ N𝐻 ′ ⊆

N𝐺), hence 𝛼
′ ≠ 𝛼 , and in this case, by definition of 𝜇, 𝛼 occurs

in R𝐻 ′ , hence may not occur in N∗
𝐻 ′ , a contradiction. Thus it is

straightforward to check that 𝐺 [𝐻 ′/𝐻] is a DRL-graph.
We prove that 𝐻 ′ ⪯ 𝐺 ′

, with 𝐺 ′ def
= 𝐺 [𝐻 ′/𝐻]:

(1) N𝐻 ′ ⊆ N𝐺′ = (N𝐺 \ N𝐻) ∪ N𝐻 ′ .

(2) If (𝛼 → 𝛽) ∈ E𝐻 ′ then (𝛼 ⇄ 𝛽) ∈ E𝐺′ = 𝜇 (E𝐺 \ E𝐻) ∪ E𝐻 ′ .

(3) If 𝛼, 𝛽 ∈ N𝐻 ′ and (𝛼 → 𝛽) ∈ E𝐺′ , then by definition of

E𝐺′ , either (𝛼 → 𝛽) ∈ E𝐻 ′ and the proof is completed, or

(𝛼 → 𝛽) ∈ 𝜇 (E𝐺 \ E𝐻). In the latter case, we have 𝛼 =

𝜇 (𝛼 ′), 𝛽 = 𝜇 (𝛽 ′) with (𝛼 ′ → 𝛽 ′) ∈ E𝐺 \ E𝐻 . We show

that 𝛼 ′ ∈ N𝐻 . If 𝛼 = 𝛼 ′
, then we have 𝛼 ∈ N𝐻 ′ ∩ N𝐺 ,

thus 𝛼 = 𝛼 ′ ∈ N𝐻 (since 𝐻 ′
is substitutable for 𝐻 in 𝐺).

Otherwise, 𝛼 ≠ 𝛼 ′
, hence by definition of 𝜇, 𝛼 ′

occurs in

R𝐻 , thus 𝛼
′ ∈ N𝐻 . Similarly, 𝛽 ′ ∈ N𝐻 , and since 𝐻 ⪯ 𝐺

we deduce that (𝛼 ′ → 𝛽 ′) ∈ E𝐻 , contradicting the fact that

(𝛼 ′ → 𝛽 ′) ∈ E𝐺 \ E𝐻 .

(4) Assume that (𝛼 ⇄ 𝛽) ∈ E𝐺′ , 𝛼 ∈ N𝐻 ′ and 𝛽 ∉ N𝐻 ′ . By

definition of E𝐺′ this entails that (𝛼 ⇄ 𝛽) ∈ 𝜇 (E𝐺 \ E𝐻)
and 𝛼 = 𝜇 (𝛼 ′), 𝛽 = 𝜇 (𝛽 ′), for some 𝛼 ′, 𝛽 ′ ∈ N𝐺 . If 𝛼 = 𝛼 ′

then 𝛼 ∈ N𝐻 ′ ∪ N𝐺 , and since 𝐻 ′
is substitutable for 𝐻 in

𝐺 , we have 𝛼 ∈ N𝐻 , thus, by definition of 𝜇, 𝛼 occurs in R𝐻

(since 𝛼 ∈ dom(𝜇)). Otherwise, 𝛼 ≠ 𝛼 ′
, and 𝛼 occurs in R𝐻 ′

by definition of 𝜇.

(5) Let 𝛼 ∈ N𝐻 ′ be a node occurring in R𝐺′ . We have 𝛼 =

𝜇 (𝛼 ′) for some node occurring in R𝐺 . By definition of 𝜇,

either 𝛼 occurs in R𝐻 ′ and the proof is completed, or 𝛼 = 𝛼 ′

with 𝛼 ∉ N𝐻 , which contradicts the hypothesis that 𝐻 ′
is

substitutable for 𝐻 in 𝐺 .

(6) By definition of 𝑙𝐺′ , we have 𝑙𝐻 ′ = 𝑙𝐺′ |N∗
𝐻 ′ .

□

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

3.2 Properties of the Replacement Operation
We establish some basic properties of the replacement operation,

all of which are similar to their counterparts for the replacement

operation on first-order terms.

Proposition 20. Let 𝐺 be a DRL-graph and let 𝐻 ⪯ 𝐺 . Then 𝐻

is substitutable for 𝐻 in 𝐺 and 𝐺 [𝐻/𝐻] = 𝐺 .

Proof. By definition,N𝐺∩N𝐻 ⊆ N𝐻 thus𝐻 is substitutable for

𝐻 in 𝐺 . The conditions of Definition 15 (with 𝐻 = 𝐻 ′
) entail that 𝜇

is the identity onN𝐺 \N∗
𝐻
and thatN𝐺′ = (N𝐺 \N𝐻) ∪N𝐻 = N𝐺 ,

R𝐺′ = R𝐺 , E𝐺′ = (E𝐺 \ E𝐻) ∪ E𝐻 = E𝐺 and 𝑙𝐺′ = 𝑙𝐺 (since

𝑙𝐻 = 𝑙𝐺 |N∗
𝐻
). □

Proposition 21. Let 𝐺,𝐻 and 𝐻 ′
be DRL-graphs, with 𝐻 ⪯ 𝐺

and 𝐻 ′
is substitutable for 𝐻 in 𝐺 . Let 𝜇 be an N -mapping with

domain N𝐺 ∪ N𝐻 ′ . Then 𝜇 (𝐻 ′) is substitutable for 𝜇 (𝐻) in 𝜇 (𝐺),
and:

𝜇 (𝐺 [𝐻 ′/𝐻]) = 𝜇 (𝐺) [𝜇 (𝐻 ′)/𝜇 (𝐻)]

Proof. We haveN𝜇 (𝐺) ∩N𝜇 (𝐻 ′) = 𝜇 (N𝐺) ∩ 𝜇 (N𝐻 ′) = 𝜇 (N𝐺 ∩
N𝐻 ′) by injectivity of 𝜇, thus N𝜇 (𝐺) ∩ N𝜇 (𝐻 ′) ⊆ 𝜇 (N𝐻) = N𝜇 (𝐻)
(since N𝐺 ∩ N𝐻 ′ ⊆ N𝐻 , as 𝐻

′
is substitutable for 𝐻 in 𝐺). Conse-

quently, 𝜇 (𝐻 ′) is substitutable for 𝜇 (𝐻) in 𝜇 (𝐺).
Let 𝐺 ′ def

= 𝐺 [𝐻 ′/𝐻] and 𝐺 ′′ def
= 𝜇 (𝐺) [𝜇 (𝐻 ′)/𝜇 (𝐻)]. We show

that 𝜇 (𝐺 ′) = 𝐺 ′′
. Let R𝐻 = ⟨𝛼1, . . . , 𝛼𝑛⟩, R𝐻 ′ = ⟨𝛼 ′

1
, . . . , 𝛼 ′

𝑛⟩, and:

𝜇 ′ = {𝛼𝑖 ↦→ 𝛼 ′
𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝛼 ↦→ 𝛼 | 𝛼 ∈ N𝐺 \ N𝐻 }

𝜇 ′′ = {𝜇 (𝛼𝑖) ↦→ 𝜇 (𝛼 ′
𝑖) | 1 ≤ 𝑖 ≤ 𝑛}∪{𝛼 ↦→ 𝛼 | 𝛼 ∈ N𝜇 (𝐺) \N𝜇 (𝐻) }

Observe that 𝜇 ′′ = 𝜇 ◦ 𝜇 ′ ◦ 𝜇−1. We have:

•
N𝜇 (𝐺′) = 𝜇 (N𝐺′) = 𝜇 ((N𝐺 \ N𝐻) ∪ N𝐻 ′)

= 𝜇 (N𝐺 \ N𝐻) ∪ 𝜇 (N𝐻 ′)
= (𝜇 (N𝐺) \ 𝜇 (N𝐻)) ∪ 𝜇 (N𝐻 ′) by injectivity of 𝜇

= N𝐺′′

•
E𝜇 (𝐺′) = 𝜇 (E𝐺′) = 𝜇 (𝜇′ (E𝐺 \ E𝐻) ∪ E𝐻 ′)

= 𝜇 (𝜇′ (E𝐺 \ E𝐻)) ∪ 𝜇 (E𝐻 ′)) = 𝜇 (𝜇′ (E𝐺 \ E𝐻)) ∪ E𝜇 (𝐻 ′)
= (𝜇 (𝜇′ (E𝐺)) \ 𝜇 (𝜇′ (E𝐻))) ∪ E𝜇 (𝐻 ′) by injectivity of 𝜇, 𝜇′

= (E𝜇 (𝜇′ (𝐺)))) \ E𝜇 (𝜇′ (𝐻))) ∪ E𝜇 (𝐻 ′)

Further,

E𝐺′′ = 𝜇 ′′(E𝜇 (𝐺) \ E𝜇 (𝐻)) ∪ E𝜇 (𝐻 ′)
= (E𝜇′′ (𝜇 (𝐺)) \ E𝜇′′ (𝜇 (𝐻))) ∪ E𝜇 (𝐻 ′)
= (E𝜇 (𝜇′ (𝐺)) \ E𝜇 (𝜇′ (𝐻))) ∪ E𝜇 (𝐻 ′)

Hence E𝜇 (𝐺′) = E𝐺′′ .

• R𝜇 (𝐺′) = 𝜇 (R𝐺′) = 𝜇 (𝜇 ′(R𝐺)) = 𝜇 ′′(𝜇 (R𝐺)) = 𝜇 ′′(R𝜇 (𝐺))) =
R𝐺′′ .

• Assume that 𝛼 = 𝜇 ′′(𝛼 ′), with 𝛼 ′ ∈ N∗
𝜇 (𝐺) \ N

∗
𝜇 (𝐻) . Then

𝛼 ′ = 𝜇 (𝛼 ′′), where 𝛼 ′′ ∈ N∗
𝐺

\ N∗
𝐻
, and 𝜇 (𝜇 ′(𝛼 ′′)) =

𝜇 ′′(𝛼 ′) = 𝛼 . Furthermore, 𝑙𝐺′′ (𝛼) = 𝑙𝜇 (𝐺) (𝛼 ′) = 𝑙𝐺 (𝛼 ′′) =
𝑙𝐺′ (𝜇 ′(𝛼 ′′)) = 𝑙𝜇 (𝐺′) (𝛼), because 𝜇−1 (𝛼) = 𝜇 ′(𝛼 ′′). If 𝛼 ∈
N∗
𝜇 (𝐻 ′) , then 𝛼 = 𝜇 (𝛼 ′), with 𝛼 ′ ∈ N∗

𝐻
. Moreover, we have

𝑙𝐺′′ (𝛼) = 𝑙𝜇 (𝐻 ′) (𝛼) = 𝑙𝐻 ′ (𝛼 ′) = 𝑙𝐺′ (𝛼) = 𝑙𝜇 (𝐺′) (𝛼). Finally,
if 𝛼 = 𝜇 (𝛼 ′) is not of one of the two forms above, then it is

easy to check that 𝛼 ′ ∉ N∗
𝐻 ′ , and that there is no 𝛼 ′′

such

that 𝛼 ′ = 𝜇 ′(𝛼 ′′), with 𝛼 ′′ ∈ N∗
𝐺
\ N𝐻 . Thus 𝑙𝐺′′ (𝛼) and

𝑙𝐺′ (𝛼 ′) are both undefined.

□

A similar property holds for substitutions:

Proposition 22. Let 𝐺,𝐻 and 𝐻 ′
be DRL-graphs, where 𝐻 ⪯ 𝐺

and𝐻 ′
is substitutable for𝐻 in𝐺 . Let 𝜎 be a substitution with domain

V(𝐺) ∪ V(𝐻 ′). Then 𝜎 (𝐻 ′) is substitutable for 𝜎 (𝐻) in 𝜎 (𝐺), and:
𝜎 (𝐺 [𝐻 ′/𝐻]) = 𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)]

Proof. Since a substitution only affects the labels of the DRL-

graphs, the first property is immediate, and we only have to prove

that, for every node 𝛼 ∈ (N𝐺 \ N𝐻) ∪ N𝐻 ′ , 𝑙𝜎 (𝐺 [𝐻 ′/𝐻]) (𝛼) =

𝑙𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)] (𝛼). By definition, we have 𝑙𝜎 (𝐺 [𝐻 ′/𝐻]) (𝛼) =

𝜎 (𝑙𝐺 [𝐻 ′/𝐻]) (𝛼)). Let 𝜇
def
= 𝜇𝐻→𝐻 ′

𝐺
, we distinguish several cases.

If 𝛼 ∈ N∗
𝐻 ′ then 𝑙𝜎 (𝐺 [𝐻 ′/𝐻]) (𝛼) = 𝑙𝐻 ′ (𝛼). Moreover, we also

have If 𝛼 ∈ N∗
𝜎 (𝐻 ′) , thus 𝑙𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)] (𝛼) = 𝑙𝜎 (𝐻 ′) (𝛼) =

𝜎 (𝑙𝐻 ′ (𝛼)) and the proof is completed.

If 𝛼 ∈ R𝐻 ′ , then 𝑙𝜎 (𝐺 [𝐻 ′/𝐻]) (𝛼) = 𝑙𝐺 (𝜇−1 (𝛼)). Further, we
have 𝛼 ∈ R𝜎 (𝐻 ′) , thus 𝑙𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)] (𝛼) = 𝑙𝜎 (𝐺) (𝜇−1 (𝛼)) =

𝜎 (𝑙𝐻 ′ (𝜇−1 (𝛼))) and the proof is completed.

Finally, if 𝛼 ∉ N𝐻 ′ , then by definition 𝑙𝜎 (𝐺 [𝐻 ′/𝐻]) (𝛼) = 𝑙𝐺 (𝛼),
and𝛼 ∉ N𝜎 (𝐻 ′) , thus 𝑙𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)] (𝛼) = 𝑙𝜎 (𝐺) (𝛼) = 𝜎 (𝑙𝐻 ′ (𝛼)).

□

The next lemma shows that renaming the nodes of some sub-

graph does not affect the graphs obtained by replacing this sub-

graph.

Lemma 23. Let 𝐺,𝐻 and 𝐻 ′
be DRL-graphs, with 𝐻 ⪯ 𝐺 and 𝐻 ′

is substitutable for 𝐻 in 𝐺 . Let 𝜇 be an N -mapping of domain N𝐺

such that 𝜇 (𝛼) = 𝛼 if 𝛼 ∈ N𝐺 \ N𝐻 . Then:

𝜇 (𝐺) [𝐻 ′/𝜇 (𝐻)] = 𝐺 [𝐻 ′/𝐻]

Proof. Let 𝐺 ′ def
= 𝐺 [𝐻 ′/𝐻], 𝐺 ′′ def

= 𝜇 (𝐺) [𝐻 ′/𝜇 (𝐻)], R𝐻
def
=

⟨𝛼1, . . . , 𝛼𝑛⟩, R𝐻 ′
def
= ⟨𝛼 ′

1
, . . . , 𝛼 ′

𝑛⟩ and consider the following N-

mappings:

𝜇1
def
= {𝛼𝑖 ↦→ 𝛼 ′

𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝛼 ↦→ 𝛼 | 𝛼 ∈ N𝐺 \ N𝐻 }
and

𝜇2
def
= {𝜇 (𝛼𝑖) ↦→ 𝛼 ′

𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝛼 ↦→ 𝛼 | 𝛼 ∈ N𝜇 (𝐺) \ N𝜇 (𝐻) }.
By injectivity of 𝜇, we have N𝜇 (𝐺) \ N𝜇 (𝐻) = 𝜇 (N𝐺) \ 𝜇 (N𝐻) =
𝜇 (N𝐺 \ N𝐻) = N𝐺 \ N𝐻 , since 𝜇 (𝛼) = 𝛼 if 𝛼 ∈ N𝐺 \ N𝐻 . Thus

𝜇2 ◦ 𝜇 = 𝜇1. We show that 𝐺 ′ = 𝐺 ′′
:

• By Definition 15 (1), N𝐺′ = (N𝐺 \ N𝐻) ∪ N𝐻 ′ and N𝐺′ =

(N𝜇 (𝐺) \ N𝜇 (𝐻)) ∪ N𝐻 ′ = (N𝐺 \ N𝐻) ∪ N𝐻 ′ = N𝐺′ .

• By Definition 15 (2), R𝐺′ = 𝜇1 (R𝐺) and R𝐺′′ = 𝜇2 (R𝜇 (𝐺)) =
𝜇2 (𝜇 (R𝐺)) = 𝜇1 (R𝐺) = R𝐺′ .

• By Definition 15 (3), E𝐺′ = 𝜇1 (E𝐺 \ E𝐻) ∪ E𝐻 ′ and E𝐺′′ =

𝜇2 (E𝜇 (𝐺) \E𝜇 (𝐻)) ∪E𝐻 ′ = 𝜇2 (𝜇 (E𝐺) \ 𝜇 (E𝐻)) ∪E𝐻 ′ . Since

𝜇 is injective, we deduce that E𝐺′′ = 𝜇2 (𝜇 (E𝐺 \E𝐻))∪E𝐻 ′ =

𝜇1 (E𝐺 \ E𝐻) ∪ E𝐻 ′ = E𝐺′ .

• Let 𝛼 ∈ N∗
𝐺
\ N∗

𝐻
, with 𝛼 = 𝜇1 (𝛼 ′), hence 𝛼 = 𝜇2 (𝜇 (𝛼)).

By Definition 15 (4), we have 𝑙𝐺′ (𝛼) = 𝑙𝐺 (𝛼 ′) and 𝑙𝐺′′ (𝛼) =
𝑙𝜇 (𝐺) (𝜇 (𝛼 ′)) = 𝑙𝐺 (𝛼 ′) = 𝑙𝐺′ (𝛼). If 𝛼 ∈ N∗

𝐻 ′ , then, again by

Definition 15 (4), we have 𝑙𝐺′ (𝛼) = 𝑙𝐺′′ (𝛼) = 𝑙𝐻 ′ (𝛼).

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

□

This entails that the replacement of a subgraph by an isomorphic

subgraph preserves isomorphism:

Corollary 24. Let 𝐺,𝐻,𝐻 ′, 𝐻 ′′
be DRL-graphs, where 𝐻 ⪯ 𝐺 ,

𝐻 ′
1
and 𝐻 ′

2
are substitutable for 𝐻 in 𝐺 and 𝐻 ′

1
∼ 𝐻 ′

2
. Then:

𝐺 [𝐻 ′
1
/𝐻] ∼ 𝐺 [𝐻 ′

2
/𝐻]

Proof. Since 𝐻 ′
1
∼ 𝐻 ′

2
, there exists an N -mapping 𝜇 of domain

N𝐻 ′
2

such that 𝐻 ′
1
= 𝜇 (𝐻 ′

2
). Consider the extension 𝜇 ′ of 𝜇 to N𝐺 ,

such that: 𝜇 ′(𝛼) = 𝛼 if 𝛼 ∈ N𝐺 \N𝐻 and all the nodes inN𝐻 \N𝐻 ′
2

are mapped to pairwise distinct nodes not occurring in 𝐺 or 𝐻 ′
1
.

Observe that 𝜇 is well-defined, since N𝐺 ∩ N𝐻 ′
2

⊆ N𝐻 , as 𝐻
′
2
is

substitutable for 𝐻 in 𝐺 . We show that 𝜇 ′ is injective. Let 𝛼, 𝛼 ′

such that 𝜇 ′(𝛼) = 𝜇 ′(𝛼 ′). If 𝛼, 𝛼 ′ ∈ N𝐻 ′
2

then 𝜇 ′(𝛼) = 𝜇 (𝛼) and
𝜇 ′(𝛼 ′) = 𝜇 (𝛼 ′) hence 𝛼 = 𝛼 ′

as 𝜇 is injective. If 𝛼, 𝛼 ′ ∈ N𝐺 \ N𝐻

then 𝜇 ′(𝛼) = 𝛼 and 𝜇 ′(𝛼 ′) = 𝛼 ′
hence 𝛼 = 𝛼 ′

. If 𝛼, 𝛼 ′ ∈ N𝐻 \ N𝐻 ′
2

then we have 𝛼 = 𝛼 ′
by definition of 𝜇 ′. If 𝛼 ∈ N𝐻 \ N𝐻 ′

2

and

𝛼 ′ ∉ N𝐻 \N𝐻 ′
2

, then by definition of 𝜇 ′, 𝜇 ′(𝛼 ′) ∈ N𝐺 ∪ 𝜇 ′(N𝐻 ′
2

) =
N𝐺 ∪ N𝐻 ′

1

and 𝜇 ′(𝛼) ∉ N𝐺 ∪ N𝐻 ′
1

, which contradicts the fact

that 𝜇 ′(𝛼) = 𝜇 ′(𝛼 ′). The only remaining case is (by symmetry):

𝛼 ∈ N𝐻 ′
2

and 𝛼 ′ ∈ N𝐺 \ N𝐻 . Then 𝜇 ′(𝛼) = 𝜇 (𝛼) ∈ N𝐻 ′
1

and

𝜇 ′(𝛼 ′) = 𝛼 ′ ∈ N𝐺 , hence, since 𝐻
′
1
is substitutable for 𝐻 in 𝐺 , we

must have 𝛼 ′ ∈ N𝐻 , contradicting the fact that 𝛼 ′ ∈ N𝐺 \ N𝐻 .

We get, by Proposition 21, since 𝜇 ′ coincides with 𝜇 on N𝐻 ′
2

:

𝜇 ′(𝐺 [𝐻 ′
2
/𝐻]) = 𝜇 ′(𝐺) [𝜇 ′(𝐻 ′

2
)/𝜇 ′(𝐻)] = 𝜇 ′(𝐺) [𝐻 ′

1
/𝜇 ′(𝐻)] .

By definition of 𝜇 ′, 𝜇 ′(𝛼) = 𝛼 holds for any node 𝛼 ∈ N𝐺 \ N𝐻 ,

hence, by Lemma 23, we deduce:

𝜇 ′(𝐺 [𝐻 ′
2
/𝐻]) = 𝐺 [𝐻 ′

1
/𝐻] .

Therefore, 𝐺 [𝐻 ′
1
/𝐻] ∼ 𝐺 [𝐻 ′

2
/𝐻]. □

The next lemma states a form of transitivity of the replacement

operation: replacing 𝐻 by 𝐼 and then 𝐼 by 𝐼 ′ is equivalent to replac-

ing 𝐻 by 𝐼 ′.

Lemma 25. Let 𝐺 , 𝐻 , 𝐼 , 𝐼 ′, where 𝐻 ⪯ 𝐺 , 𝐼 is substitutable for 𝐻

in 𝐺 and 𝐼 ′ is substitutable for 𝐼 in 𝐺 [𝐼/𝐻]. Then 𝐼 ′ is substitutable
for 𝐻 in 𝐺 and 𝐺 [𝐼/𝐻] [𝐼 ′/𝐼] = 𝐺 [𝐼 ′/𝐻].

Proof. Let𝐺 ′ def
= 𝐺 [𝐼/𝐻]. We show that 𝐼 ′ is substitutable for𝐻

in𝐺 , i.e., thatN𝐺 ∩N𝐼 ′ ⊆ N𝐻 . By definitionN𝐺′ = (N𝐺 \N𝐻)∪N𝐼 ,

we show that (N𝐺 \ N𝐻) ∩ N𝐼 ′ = ∅. We have

(N𝐺 \ N𝐻) ∩ N𝐼 ′ ⊆ [(N𝐺 \ N𝐻) ∪ N𝐼] ∩ N𝐼 ′ = N𝐺′ ∩ N𝐼 ′ ⊆ N𝐼 ,

because 𝐼 ′ is substitutable for 𝐼 in 𝐺 ′
by hypothesis. We deduce

that (N𝐺 \N𝐻) ∩N𝐼 ′ ⊆ (N𝐺 \N𝐻) ∩N𝐼 . But (N𝐺 \N𝐻) ∩N𝐼 = ∅
by Proposition 14, hence the result.

We show that 𝐺 ′[𝐼 ′/𝐼] = 𝐺 [𝐼 ′/𝐻]. We define 𝜇
def
= 𝜇𝐻→𝐼

𝐺
, 𝜇 ′

def
=

𝜇𝐼→𝐼 ′
𝐺′ and 𝜇 ′′

def
= 𝜇𝐻→𝐼 ′

𝐺
. Note that 𝜇 ′′ = 𝜇 ′ ◦𝜇. Indeed, by definition

we have dom(𝜇) = dom(𝜇 ′). Furthermore, for every 𝛼 ∈ dom(𝜇), if
𝛼 ∈ N𝐺 \N𝐻 then 𝜇 (𝛼) = 𝜇 ′(𝛼), and 𝛼 ∉ N𝐼 (since 𝐼 is substitutable

for𝐻 in𝐺), hence 𝜇 ′′(𝛼) = 𝛼 . If 𝛼 ∈ dom(𝜇) and 𝛼 ∉ N𝐺 \N𝐻 , then

𝛼 = 𝛼𝑖 , for some 𝑖 = 1, . . . , 𝑛, with R𝐻 = ⟨𝛼1, . . . , 𝛼𝑛⟩. By definition,
𝜇 (𝛼𝑖) = 𝛼 ′

𝑖
, with R𝐼 = ⟨𝛼 ′

1
, . . . , 𝛼 ′

𝑛⟩ and 𝜇 ′(𝛼 ′
𝑖
) = 𝛼 ′′

𝑖
, 𝜇 ′′(𝛼𝑖) = 𝛼 ′′

𝑖
with R𝐼 ′ = ⟨𝛼 ′′

1
, . . . , 𝛼 ′′

𝑛 ⟩.

(1) We have

N𝐺′ [𝐼 ′/𝐼] = (N𝐺′ \ N𝐼) ∪ N𝐼 ′

= [((N𝐺 \ N𝐻) ∪ N𝐼) \ N𝐼] ∪ N𝐼 ′

= [(N𝐺 \ N𝐻) \ N𝐼] ∪ N𝐼 ′

= (N𝐺 \ N𝐻) ∪ N𝐼 ′

= N𝐺 [𝐼 ′/𝐻] ,

where the second to last equality is obtained using the fact

that, by Proposition 14, (N𝐺 \ N𝐻) ∩ N𝐼 = ∅.
(2) We have R𝐺′ [𝐼 ′/𝐼] = 𝜇 ′(R𝐺′) = 𝜇 ′(𝜇 (R𝐺)) = 𝜇 ′′(R𝐺).
(3) We show that 𝜇 (E𝐺 \E𝐻) ∩E𝐼 = ∅. Suppose for a contradic-

tion that (𝛼 ′ ⇄ 𝛽 ′) ∈ 𝜇 (E𝐺 \ E𝐻) ∩ E𝐼 . Then 𝛼 ′, 𝛽 ′ ∈ N𝐼 ,

and there exist nodes 𝛼, 𝛽 such that 𝛼 ′ = 𝜇 (𝛼) and 𝛽 ′ = 𝜇 (𝛽),
with (𝛼 ⇄ 𝛽) ∈ E𝐺 \ E𝐻 . Since (𝛼 ⇄ 𝛽) ∉ E𝐻 , necessar-
ily, {𝛼, 𝛽} ⊈ N𝐻 , by Definition 4 (3). Assume w.l.o.g. that

𝛼 ∈ N𝐺 \ N𝐻 . Then by definition 𝛼 ′ = 𝛼 ∈ N𝐼 . But this is

impossible because (N𝐺 \ N𝐻) ∩ N𝐼 = ∅ by Proposition 14.

We deduce that

E𝐺′ [𝐼 ′/𝐼] = 𝜇 ′(E𝐺′ \ E𝐼) ∪ E𝐼 ′
= 𝜇 ′ ([𝜇 (E𝐺 \ E𝐻) ∪ E𝐼] \ E𝐼) ∪ E𝐼 ′
= 𝜇 ′ (𝜇 (E𝐺 \ E𝐻) \ E𝐼) ∪ E𝐼 ′
= 𝜇 ′′(E𝐺 \ E𝐻) ∪ E𝐼 ′
= E𝐺 [𝐼 ′/𝐻] ,

where the second to last equality is obtained using the fact

that 𝜇 (E𝐺 \ E𝐻) ∩ E𝐼 = ∅ and that 𝜇 ′′ = 𝜇 ′ ◦ 𝜇.
(4) Let 𝛼 ∈ N𝐺′ [𝐼 ′/𝐼] .

• If 𝛼 ∈ N∗
𝐺′ [𝐼 ′/𝐼] \ N𝐼 ′ , then by Proposition 18 we have

𝛼 ∈ N∗
𝐺′ [𝐼 ′/𝐼] \N𝐼 ′ if and only if 𝛼 ∈ N∗

𝐺′ \N𝐼 if and only

if 𝛼 ∈ N∗
𝐺
\ N𝐻 if and only if 𝛼 ∈ N∗

𝐺 [𝐼 ′/𝐻] \ N𝐼 ′ . Thus

𝑙𝐺′ [𝐼 ′/𝐼] (𝛼) = 𝑙𝐺 (𝛼) = 𝑙𝐺 [𝐼 ′/𝐻] (𝛼).
• If 𝛼 ∈ N∗

𝐼 ′ then 𝑙𝐺′ [𝐼 ′/𝐼] (𝛼) = 𝑙𝐼 ′ (𝛼) = 𝑙𝐺 [𝐼 ′/𝐻] (𝛼).
• If 𝛽

def
= 𝜇 ′−1 (𝛼) ∈ N∗

𝐺′ ∩ R𝐼 then by definition of 𝜇, we

must have 𝜇−1 (𝛽) ∈ R𝐻 . We cannot have 𝛽 ∈ R𝐺 because

otherwise we would have 𝛽 ∈ R𝐺′ ; hence 𝜇−1 (𝛽) ∈ N∗
𝐺
∩

R𝐻 . Since 𝜇 ′′ = 𝜇 ′ ◦ 𝜇, we deduce that 𝜇 ′′−1 (𝛼) = 𝜇−1 (𝛽)
and 𝑙𝐺′ [𝐼 ′/𝐼] (𝛼) = 𝑙𝐺′ (𝛽) = 𝑙𝐺 (𝜇−1 (𝛽)) = 𝑙𝐺 [𝐼 ′/𝐻] (𝛼).

By Proposition 18 we have 𝛼 ∈ N∗
𝐺′ [𝐼 ′/𝐼] \ N𝐼 ′ if and only if

𝛼 ∈ N∗
𝐺′ \ N𝐼 if and only if 𝛼 ∈ N∗

𝐺
\ N𝐻 . This proves that

𝑙𝐺′ [𝐼 ′/𝐼] (𝛼) = 𝑙𝐺 [𝐼 ′/𝐻] (𝛼).
□

In particular, replacing 𝐻 by 𝐻 ′
and then 𝐻 ′

by 𝐻 is equivalent

to doing nothing:

Corollary 26. Assume𝐻 ′
is substitutable for𝐻 in𝐺 and let𝐺 ′ def

=

𝐺 [𝐻 ′/𝐻]. Then 𝐻 is substitutable for 𝐻 ′
in 𝐺 ′

and 𝐺 ′[𝐻/𝐻 ′] = 𝐺 .

Proof. We have N𝐺′ ∩ N𝐻 = [(N𝐺 \ N𝐻) ∪ N𝐻 ′] ∩ N𝐻 =

N𝐻 ′ ∩N𝐻 ⊆ N𝐻 ′ , which show that 𝐻 is substitutable for 𝐻 ′
in𝐺 ′

.

By Lemma 25 and Proposition 20, we deduce that𝐺 [𝐻 ′/𝐻] [𝐻/𝐻 ′] =
𝐺 [𝐻/𝐻] = 𝐺 . □

The next lemma states that the replacement operation does not

affect the subgraph that are disjoint from the replaced DRL-graph.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

Lemma 27. Consider the graphs𝐺,𝐻,𝐻 ′, 𝐼 , and assume that 𝐻 ⪯
𝐺 , 𝐼 ⪯ 𝐺 and 𝐻 ′

is substitutable for 𝐻 in 𝐺 . If N𝐻 ∩ N𝐼 = ∅ then

𝐼 ⪯ 𝐺 [𝐻 ′/𝐻].

Proof. Let𝐺 ′ def
= 𝐺 [𝐻 ′/𝐻] and 𝜇 def

= 𝜇𝐻→𝐻 ′
𝐺

. Note that since 𝐻 ′

is substitutable for 𝐻 in 𝐺 , we have

N𝐻 ′ ∩ N𝐼 ⊆ N𝐻 ′ ∩ N𝐺 ⊆ N𝐻 ∩ N𝐼 = ∅,
and that since N𝐻 ∩ N𝐼 = ∅, if 𝛼 ∈ N𝐼 then 𝜇 (𝛼) = 𝛼 . We verify

that 𝐼 ⪯ 𝐺 ′
:

(1) Since 𝐼 ⪯ 𝐺 , by definition N𝐼 ⊆ N𝐺 . By hypothesis N𝐻 ∩
N𝐼 = ∅, thus N𝐼 ⊆ N𝐺 \ N𝐻 ⊆ N𝐺′ .

(2) If (𝛼 → 𝛽) ∈ E𝐼 then (𝛼 → 𝛽) ∈ E𝐺 , because 𝐼 ⪯ 𝐺 . Since

N𝐻∩N𝐼 = ∅ by hypothesis, (𝛼 → 𝛽) ∉ E𝐻 . Thus (𝛼 → 𝛽) ∈
(E𝐺\E𝐻)∪E𝐻 ′ , and since 𝜇 (𝛼) = 𝛼 and 𝜇 (𝛽) = 𝛽 , we deduce

that (𝛼 → 𝛽) ∈ 𝜇 (E𝐺 \ E𝐻) ∪ E𝐻 ′ = E𝐺′ .

(3) Let 𝛼, 𝛽 ∈ N𝐼 , and assume that (𝛼 → 𝛽) ∈ E𝐺′ = 𝜇 (E𝐺 \
E𝐻) ∪ E𝐻 ′ . SinceN𝐻 ′ ∩N𝐼 = ∅, we cannot have (𝛼 → 𝛽) ∈
E𝐻 ′ . Since 𝜇 (𝛼) = 𝛼 and 𝜇 (𝛽) = 𝛽 , necessarily (𝛼 → 𝛽) ∈
E𝐺 \ E𝐻 ⊆ E𝐺 , and since 𝐼 ⪯ 𝐺 , we deduce that (𝛼 → 𝛽) ∈
E𝐼 .

(4) Assume that (𝛼 ⇄ 𝛽) ∈ E𝐺′ = 𝜇 (E𝐺 \E𝐻)∪E𝐻 ′ , where 𝛼 ∈
N𝐼 and 𝛽 ∉ N𝐼 . Then 𝜇 (𝛼) = 𝛼 and sinceN𝑎𝑔𝑟𝑎𝑝ℎ𝐵′∩N𝐼 = ∅,
we cannot have (𝛼 ⇄ 𝛽) ∈ E𝐻 ′ . Let 𝛽 ′

def
= 𝜇−1 (𝛽), note that

we cannot have 𝛽 ∈ N𝐼 because otherwise we would have

𝜇 (𝛽 ′) = 𝛽 ′ = 𝛽 ∉ N𝐼 . Thus, (𝛼 ⇄ 𝛽 ′) ∈ E𝐺 \ E𝐻 ⊆ E𝐺 , and
since 𝐼 ⪯ 𝐺 , we deduce that 𝛼 ∈ R𝐼 .

(5) Assume 𝛼 ∈ R𝐺′ ∩ N𝐼 = 𝜇 (R𝐺) ∩ N𝐼 . Then since 𝜇 (𝛼) = 𝛼 ,

we have 𝛼 ∈ R𝐺 ∩ N𝐼 , hence 𝛼 ∈ R𝐼 because 𝐼 ⪯ 𝐺 .

(6) Consider 𝛼 ∈ N∗
𝐼
⊆ N∗

𝐺
. Then by hypothesis, 𝛼 ∈ N∗

𝐺
\ N𝐻

and by Proposition 18 we have 𝛼 ∈ N∗
𝐺′ \N𝐻 ′ . By definition,

𝑙𝐺′ (𝛼) = 𝑙𝐺 (𝛼) = 𝑙𝐼 (𝛼), because 𝐼 ⪯ 𝐺 .

□

Further, the result of the replacement of two disjoint subgraphs

does not depend on the order in which the replacement operations

are performed:

Lemma 28. Let𝐺 ,𝐻𝑖 , 𝐻
′
𝑖
be DRL-graphs for 𝑖 = 1, 2, where𝐻𝑖 ⪯ 𝐺

and 𝐻 ′
𝑖
is substitutable for 𝐻𝑖 in 𝐺 . If N𝐻 ′

1

∩ N𝐻 ′
2

= N𝐻1
∩ N𝐻2

=

∅ then, for 𝑖, 𝑗 ∈ {1, 2} with 𝑖 ≠ 𝑗 , 𝐻 ′
𝑖
is substitutable for 𝐻𝑖 in

𝐺 [𝐻 ′
𝑗
/𝐻 𝑗] and

(𝐺 [𝐻 ′
1
/𝐻1]) [𝐻 ′

2
/𝐻2] = (𝐺 [𝐻 ′

2
/𝐻2]) [𝐻 ′

1
/𝐻1] .

Proof. By Lemma 27, 𝐻1 ⪯ 𝐺 [𝐻 ′
2
/𝐻2] and 𝐻2 ⪯ 𝐺 [𝐻 ′

1
/𝐻1].

We show that 𝐻 ′
1
is substitutable for 𝐻1 in 𝐺 [𝐻 ′

2
/𝐻2]; the proof

that 𝐻 ′
2
is substitutable for 𝐻2 in 𝐺 [𝐻 ′

1
/𝐻1] is symmetric. Let 𝛼 ∈

N𝐻 ′
1

∩ N𝐺 [𝐻 ′
2
/𝐻2] = N𝐻 ′

1

∩
[
(N𝐺 \ N𝐻2

) ∪ N𝐻 ′
2

]
. By hypothesis

N𝐻 ′
1

∩ N𝐻 ′
2

= ∅, hence 𝛼 ∈ N𝐺 \ N𝐻2
⊆ N𝐺 , and since 𝐻 ′

1
is

substitutable for 𝐻1 in𝐺 , we deduce that 𝛼 ∈ N𝐻1
, hence the result.

Let 𝐺 ′
𝑖

def
= 𝐺 [𝐻 ′

𝑖
/𝐻𝑖] and 𝐺 ′′

𝑖

def
= 𝐺 ′

3−𝑖 [𝐻
′
𝑖
/𝐻𝑖]. We show that

𝐺 ′′
1

= 𝐺 ′′
2
. First note that N𝐻1

∩ N𝐻 ′
2

= N𝐻2
∩ N𝐻 ′

1

= ∅. Indeed,
since 𝐻1 ⪯ 𝐺 and 𝐻 ′

2
is substitutable for 𝐻2, we haveN𝐻1

∩N𝐻 ′
2

⊆
N𝐻1

∩ N𝐺 ∩ N𝐻 ′
2

⊆ N𝐻1
∩ N𝐻2

= ∅. For 𝑖 = 1, 2, we define

𝜇𝑖
def
= 𝜇

𝐻𝑖→𝐻 ′
𝑖

𝐺
and 𝜇 ′

𝑖

def
= 𝜇

𝐻𝑖→𝐻 ′
𝑖

𝐺′
3−𝑖

. Note that by definition, for 𝑖 = 1, 2,

if 𝛼 ∈ R𝐻𝑖
then 𝜇𝑖 (𝛼) = 𝜇 ′

𝑖
(𝛼) ∈ R𝐻 ′

𝑖
, so that 𝜇3−𝑖 (𝛼) = 𝛼 and

𝜇 ′
3−𝑖 (𝜇𝑖 (𝛼)) = 𝜇𝑖 (𝛼). Similarly, if 𝛼 ∈ N𝐺 \ (N𝐻1

∪ N𝐻2
) then for

𝑖 = 1, 2, 𝜇𝑖 (𝛼) = 𝜇 ′
𝑖
(𝛼) = 𝛼 .

• We haveN𝐺′′
1

= (N𝐺′
2

\N𝐻1
) ∪N𝐻 ′

1

= ((N𝐺 \N𝐻2
) ∪N𝐻 ′

2

) \
N𝐻1

) ∪N𝐻 ′
1

. SinceN𝐻1
∩N𝐻 ′

2

= N𝐻2
∩N𝐻 ′

1

= ∅, we deduce
that

N𝐺′′
1

= ((N𝐺 ∪ N𝐻 ′
1

∪ N𝐻 ′
2

) \ (N𝐻1
∪ N𝐻2

)
= ((N𝐺 \ N𝐻1

) ∪ N𝐻 ′
1

) \ N𝐻2
) ∪ N𝐻 ′

2

= (N𝐺′
1

\ N𝐻2
) ∪ N𝐻 ′

2

= N𝐺′′
2

.

• By definition we have R𝐺′′
1

= 𝜇 ′
1
(R𝐺′

2

) = 𝜇 ′
1
(𝜇2 (R𝐺)) and

R𝐺′′
2

= 𝜇 ′
2
(R𝐺′

1

) = 𝜇 ′
2
(𝜇1 (R𝐺)). Consider 𝛼 ∈ N𝐺 . If 𝛼 ∈

R𝐻𝑖
for 𝑖 = 1, 2, then we have

𝜇 ′
1
(𝜇2 (𝛼)) = 𝜇 ′

1
(𝛼) = 𝜇1 (𝛼) = 𝜇 ′

2
(𝜇1 (𝛼)) .

Otherwise 𝛼 ∈ R𝐺 \ (N𝐻1
∪ N𝐻2

), so that

𝜇 ′
1
(𝜇2 (𝛼)) = 𝜇 ′

1
(𝛼) = 𝛼 = 𝜇1 (𝛼) = 𝜇 ′

2
(𝜇1 (𝛼)).

We conclude that R𝐺′′
1

= R𝐺′′
2

.

• For 𝑖 = 1, 2, we have 𝜇3−𝑖 (E𝐻𝑖
) = E𝐻𝑖

and 𝜇 ′
3−𝑖 (E𝐻 ′

𝑖
) = E𝐻 ′

𝑖
,

hence

E𝐺′′
1

= 𝜇 ′
2
(E𝐺′

2

\ E𝐻2
) ∪ E𝐻 ′

2

= 𝜇 ′
2
((𝜇1 (E𝐺 \ E𝐻1

) ∪ E𝐻 ′
1

) \ E𝐻2
) ∪ E𝐻 ′

2

= 𝜇 ′
2
(𝜇1 (E𝐺 \ E𝐻1

) \ E𝐻2
) ∪ E𝐻 ′

1

∪ E𝐻 ′
2

= 𝜇 ′
2
(𝜇1 (E𝐺 \ (E𝐻1

∪ E𝐻2
)) ∪ E𝐻 ′

1

∪ E𝐻 ′
2

= 𝜇 ′
1
(𝜇2 (E𝐺 \ (E𝐻1

∪ E𝐻2
)) ∪ E𝐻 ′

1

∪ E𝐻 ′
2

= E𝐺′′
2

The second to last line stems from the relation ∀𝛼 ∈ N𝐺 ,

𝜇 ′
1
(𝜇2 (𝛼) = 𝜇 ′

2
(𝜇1 (𝛼)) established in the previous item.

• Since N𝐺′′
1

= N𝐺′′
2

and R𝐺′′
1

= R𝐺′′
2

, we have N∗
𝐺′′

1

= N∗
𝐺′′

2

.

We show that for all 𝛼 ∈ N∗
𝐺′′

1

, 𝑙𝐺′′
1

(𝛼) = 𝑙𝐺′′
2

(𝛼).
– By Proposition 18 we haveN∗

𝐺′′
2

\ (N𝐻 ′
1

∪N𝐻 ′
2

) = N∗
𝐺′′

1

\
(N𝐻 ′

1

∪N𝐻 ′
2

) = N∗
𝐺′

2

\ (N𝐻1
∪N𝐻 ′

2

) = N∗
𝐺
\ (N𝐻1

∪N𝐻2
).

Thus, if 𝛼 ∈ N∗
𝐺′′

2

\ (N𝐻 ′
1

∪ N𝐻 ′
2

) then 𝑙𝐺′′
1

(𝛼) = 𝑙𝐺 (𝛼) =
𝑙𝐺′′

2

(𝛼).
– If 𝛼 ∈ N∗

𝐻 ′
2

then 𝑙𝐺′′
1

(𝛼) = 𝑙𝐺′
2

(𝛼) = 𝑙𝐻 ′
2

(𝛼) = 𝑙𝐺′′
2

(𝛼). The
case where 𝛼 ∈ N∗

𝐻 ′
1

is proved in a similar way.

– If 𝛼 ∈ N∗
𝐺′′

1

∩ R𝐻 ′
1

then 𝛼 ∈ N∗
𝐺′′

2

\ N𝐻 ′
2

and 𝛼 = 𝜇1 (𝛽) =
𝜇 ′
1
(𝛽) for some element 𝛽 ∈ R𝐻1

. Since 𝛽 ∈ N∗
𝐺′

2

\ N𝐻 ′
2

=

N∗
𝐺
\ N𝐻2

(Proposition 18), we have 𝑙𝐺′′
1

(𝛼) = 𝑙𝐺′
2

(𝛽) =

𝑙𝐺 (𝛽) = 𝑙𝐺′
1

(𝛼) = 𝑙𝐺′′
2

(𝛼). The case where 𝛼 ∈ N∗
𝐺′′

2

∩R𝐻 ′
2

is proved in a similar way.

□

Finally, replacements can be embedded:

Lemma 29. Let 𝐺 , 𝐻 and 𝐼 be DRL-graphs such that 𝐼 ⪯ 𝐻 ⪯
𝐺 , and let 𝐼 ′ be a DRL-graph substitutable for 𝐼 in 𝐺 . Then 𝐼 ′ is
substitutable for 𝐼 in 𝐻 , 𝐻 [𝐼 ′/𝐼] is substitutable for 𝐻 in 𝐺 , and:

𝐺 [𝐼 ′/𝐼] = 𝐺 [𝐻 [𝐼 ′/𝐼]/𝐻]

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Proof. We haveN𝐻 ∩N𝐼 ′ ⊆ N𝐺 ∩N𝐼 ′ ⊆ N𝐼 (since 𝐼
′
is substi-

tutable for 𝐼 in𝐺). Therefore, 𝐼 ′ is substitutable for 𝐼 in 𝐻 . Similarly,

N𝐺∩N𝐻 [𝐼 ′/𝐼] ⊆ N𝐺∩(N𝐻∪N𝐼 ′) = N𝐻∪(N𝐺∩N𝐼 ′) ⊆ N𝐻∪N𝐼 =

N𝐻 , hence 𝐻 [𝐼 ′/𝐼] is substitutable for 𝐻 in 𝐺 .

Let 𝐺 ′ def
= 𝐺 [𝐼 ′/𝐼], 𝐻 ′ def

= 𝐻 [𝐼 ′/𝐼] and 𝐺 ′′ def
= 𝐺 [𝐻 ′/𝐻]; we show

that 𝐺 ′ = 𝐺 ′′
.

Let 𝜇1
def
= 𝜇𝐼→𝐼 ′

𝐺
, 𝜇2

def
= 𝜇𝐼→𝐼 ′

𝐻
and 𝜇3

def
= 𝜇𝐻→𝐻 ′

𝐺
. Note that by

definition, 𝜇2 is the restriction of 𝜇1 to the nodes in (N𝐻 \N𝐼)∪R𝐼 =

N𝐻 \ N∗
𝐼
. We show that for all 𝛼 ∈ N𝐺 \ N∗

𝐻
= (N𝐺 \ N𝐻) ∪ R𝐻 ,

we have 𝜇3 (𝛼) = 𝜇1 (𝛼). If 𝛼 ∈ N𝐺 \ N𝐻 then since N𝐼 ⊆ N𝐻 , we

have 𝜇3 (𝛼) = 𝜇1 (𝛼) = 𝛼 . Otherwise, 𝛼 ∈ R𝐻 and by Proposition 17,

𝜇3 (𝛼) = 𝜇2 (𝛼). Since R𝐻 ⊆ N𝐻 \ N∗
𝐼
by Proposition 6, we deduce

that 𝜇3 (𝛼) = 𝜇2 (𝛼) = 𝜇1 (𝛼).
• By Definition 15 (1), N𝐺′′ = (N𝐺 \ N𝐻) ∪ N𝐻 ′ = (N𝐺 \
N𝐻) ∪ (N𝐻 \ N𝐼) ∪ N𝐼 ′ = (N𝐺 \ N𝐼) ∪ N𝐼 ′ = N𝐺′ .

• By Definition 15 (2), R𝐺′′ = 𝜇3 (R𝐺) and R𝐺′ = 𝜇1 (R𝐺).
Since R𝐺 ⊆ N𝐺 \ N∗

𝐻
by Proposition 6, we have 𝜇3 (R𝐺) =

𝜇1 (R𝐺) so that R𝐺′′ = R𝐺′ .

• Consider an edge (𝛼 ⇄ 𝛽) in E𝐻 \ E𝐼 . Then since 𝐼 ⪯ 𝐻 ,

we cannot have {𝛼, 𝛽} ⊆ N𝐼 and if 𝛼 ∈ N𝐼 then necessarily

𝛼 ∈ R𝐼 . This shows that {𝛼, 𝛽} ⊆ N𝐻 \ N∗
𝐼
and therefore,

𝜇2 (E𝐻 \ E𝐼) = 𝜇1 (E𝐻 \ E𝐼). The fact that 𝜇3 (E𝐺 \ E𝐻) =
𝜇1 (E𝐺 \ E𝐻) is proved in a similar way. We have

E𝐺′′ = 𝜇3 (E𝐺 \ E𝐻) ∪ E𝐻 ′

= 𝜇3 (E𝐺 \ E𝐻) ∪ 𝜇2 (E𝐻 \ E𝐼) ∪ E𝐼 ′
= 𝜇1 (E𝐺 \ E𝐻) ∪ 𝜇1 (E𝐻 \ E𝐼) ∪ E𝐼 ′
= 𝜇1 ((E𝐺 \ E𝐻) ∪ (E𝐻 \ E𝐼)) ∪ E𝐼 ′ (𝜇1 is injective)

= 𝜇1 (E𝐺 \ E𝐼) ∪ E𝐼 ′
= E𝐺′

• Consider a node 𝛼 ∈ N∗
𝐺′ . SinceN𝐺′ = N𝐺′′ and R𝐺′ = R𝐺′′ ,

we also have 𝛼 ∈ N∗
𝐺′′ . First assume that 𝛼 ∈ N∗

𝐺′ \ N𝐼 ′ , so

that 𝑙𝐺′ (𝛼) = 𝑙𝐺 (𝛼).
– If 𝛼 ∈ N∗

𝐺′′ \ N𝐻 ′ then by definition 𝑙𝐺′′ (𝛼) = 𝑙𝐺 (𝛼).
– If 𝛼 ∈ N∗

𝐻 ′ then since 𝛼 ∉ N𝐼 ′ by hypothesis and 𝐻 ⪯ 𝐺 ,

we have 𝑙𝐺′′ (𝛼) = 𝑙𝐻 ′ (𝛼) = 𝑙𝐻 (𝛼) = 𝑙𝐺 (𝛼).
– If 𝜇−1

3
(𝛼) ∈ N∗

𝐺
∩R𝐻 then 𝑙𝐺′′ (𝛼) = 𝑙𝐺 (𝜇−1

3
(𝛼)). But since

𝛼 ∉ N𝐼 , we must have 𝜇−1
3

(𝛼) = 𝜇−1
2

(𝛼) = 𝛼 , hence the

result.

Assume that 𝛼 ∈ N∗
𝐼 ′ , so that 𝑙𝐺′ (𝛼) = 𝑙𝐼 ′ (𝛼).

– We cannot have 𝛼 ∈ N∗
𝐺′′ \ N𝐻 ′ because N∗

𝐼 ′ ⊆ N𝐻 ′ .

– If 𝛼 ∈ N∗
𝐻 ′ then 𝑙𝐺′′ (𝛼) = 𝑙𝐻 ′ (𝛼) = 𝑙𝐼 ′ (𝛼) because 𝛼 ∈ N∗

𝐼 ′
by hypothesis.

– We cannot have 𝜇−1
3

(𝛼) ∈ N∗
𝐺
∩ R𝐻 because otherwise

we would have 𝛼 ∈ 𝜇3 (R𝐻) = R𝐻 ′ and since 𝐼 ′ ⪯ 𝐻 ′
,

necessarily 𝛼 ∈ R𝐼 ′ .

Now assume that 𝛼 ∈ N∗
𝐺′ ∩ R𝐼 ′ , i.e., 𝜇

−1
1

(𝛼) ∈ N∗
𝐺
∩ R𝐼 , so

that 𝑙𝐺′ (𝛼) = 𝑙𝐺 (𝜇−1
1

(𝛼)).
– We cannot have 𝛼 ∈ N∗

𝐺′′ \ N𝐻 ′ because R𝐼 ′ ⊆ N𝐻 ′ .

– If 𝛼 ∈ N∗
𝐻 ′ then we have 𝑙𝐺′′ (𝛼) = 𝑙𝐻 ′ (𝛼) = 𝑙𝐻 (𝜇−1

2
(𝛼)) =

𝑙𝐻 (𝜇−1
1

(𝛼)) = 𝑙𝐺 (𝜇−1
1

(𝛼)).
– If 𝜇−1

3
(𝛼) ∈ N∗

𝐺
∩R𝐻 ⊆ N∗

𝐺
\N∗

𝐻
then we have 𝑙𝐺′′ (𝛼) =

𝑙𝐺 (𝜇−1
3

(𝛼)) = 𝑙𝐺 (𝜇−1
1

(𝛼)) because 𝜇1 and 𝜇3 coincide on

N∗
𝐺
\ N∗

𝐻
.

□

3.3 Graph Merging
We introduce the notion of a merge of two graphs. Intuitively, the

merge of graphs𝐺1 and𝐺2 will be any graph𝐺 containing all nodes

and edges occurring in either 𝐺1 or 𝐺2, possibly along with some

additional edges.

Definition 30. Two DRL-graphs𝐺1 and𝐺2 are label-compatible

iff the set of pairs {⟨𝑙𝐺1
(𝛽), 𝑙𝐺2

(𝛽))⟩ | 𝛽 ∈ N𝐺1
∩ N𝐺2

} admits an

mgu.

Given two label-compatible DRL-graphs 𝐺1,𝐺2 with mgu 𝜎 and

a set of edges 𝐸 of the form (𝛼 ⇄ 𝛽) such that 𝛼 ∈ R𝐺1
\ N𝐺2

and

𝛽 ∈ R𝐺2
\ N𝐺1

, the 𝐸-merge of 𝐺1 and 𝐺2 is the graph 𝐺 defined as

follows:

• N𝐺
def
= N𝐺1

∪ N𝐺2
;

• R𝐺
def
= (R𝐺1

∪ R𝐺2
) \ (N∗

𝐺1

∪N∗
𝐺2

) (the order of the nodes in
R𝐺 is chosen arbitrarily);

• E𝐺
def
= E𝐺1

∪ E𝐺2
∪ 𝐸;

• for every node 𝛼 ∈ N𝐺𝑖
with 𝑖 = 1, 2, 𝑙𝐺 (𝛼) def

= 𝜎 (𝑙𝐺𝑖
(𝛼)).

A merge of two label-compatible DRL-graphs 𝐺1, 𝐺2 is a DRL-graph

𝐺 that is an 𝐸-merge of𝐺1 and𝐺2, for some set 𝐸 of edges of the form

(𝛼 ⇄ 𝛽) such that 𝛼 ∈ R𝐺1
\ N𝐺2

and 𝛽 ∈ R𝐺2
\ N𝐺1

.

It is easy to check that merges can be constructed using usual

unification algorithms.

Proposition 31. Assume 𝐻,𝐻 ′ ⪯ 𝐺 and consider the set of edges

𝐸
def
= {(𝛼 ⇄ 𝛽) | 𝛼 ∈ R𝐻 \ N𝐻 ′, 𝛽 ∈ R𝐻 ′ \ N𝐻 , (𝛼 ⇄ 𝛽) ∈ E𝐺 } .

Then 𝐻 and 𝐻 ′
are label-compatible and if 𝐺 ′

is the 𝐸-merge of 𝐻

and 𝐻 ′
, then 𝐺 ′ ⪯ 𝐺 .

Proof. It is straightforward to verify that 𝐻 and 𝐻 ′
are label-

compatible, with the empty mgu. We show that 𝐺 ′ ⪯ 𝐺 , using the

fact that, by hypothesis, 𝐻,𝐻 ′ ⪯ 𝐺 .

(1) By Definition 30, we have N𝐺′ = N𝐻 ∪ N𝐻 ′ ⊆ N𝐺 .

(2) All the edges in 𝐸 are also in E𝐺 , it is thus straightforward
to verify that E𝐺′ ⊆ E𝐺 .

(3) Assume that (𝛼 → 𝛽) ∈ E𝐺 , where 𝛼, 𝛽 ∈ N𝐺′ . If 𝛼, 𝛽 ∈ N𝐻

or𝛼, 𝛽 ∈ N𝐻 ′ then (𝛼 → 𝛽) ∈ E𝐺′ since𝐻,𝐻 ′ ⪯ 𝐺 . Suppose

that 𝛼 ∈ N𝐻 \ N𝐻 ′ and 𝛽 ∈ N𝐻 ′ \ N𝐻 . Since 𝐻,𝐻 ′ ⪯ 𝐺 ,

by Definition 4 (4), necessarily 𝛼 ∈ R𝐻 and 𝛽 ∈ R𝐻 ′ , hence

(𝛼 → 𝛽) ∈ 𝐸 ⊆ E𝐺′ . The case where 𝛼 ∈ N𝐻 \ N𝐻 ′ and

𝛽 ∈ N𝐻 ′ \ N𝐻 is proved in a similar way.

(4) Consider (𝛼 ⇄ 𝛽) ∈ E𝐺 , where 𝛼 ∈ N𝐺′ and 𝛽 ∉ N𝐺′ .

Assume 𝛼 ∈ N𝐻 , the case where 𝛼 ∈ N𝐻 ′ is proved in a

similar way. Since 𝛽 ∉ N𝐺′ we have 𝛽 ∉ N𝐻 , hence 𝛼 ∈ R𝐻

byDefinition 4 (4). It cannot be the case that𝛼 ∈ N∗
𝐻 ′ because

otherwise we would have 𝛼 ∈ N𝐻 ′ and 𝛽 ∉ N𝐻 ′ , so that

𝛼 ∈ R𝐻 ′ , a contradiction. We conclude that 𝛼 ∈ R𝐺′ .

(5) Consider a node 𝛼 ∈ R𝐺 ∩ N𝐺′ and suppose w.l.o.g. that

𝛼 ∈ N𝐻 . Since𝐻 ⪯ 𝐺 , by Definition 4 (5) necessarily𝛼 ∈ R𝐻 .

If 𝛼 ∈ N𝐻 ′ then 𝛼 ∈ R𝐻 ′ , we deduce that 𝛼 ∈ R𝐻 \ (N∗
𝐻
∪

N∗
𝐻 ′) ⊆ R𝐺′ .

(6) By definition (since the considered substitution 𝜎 is empty)

𝑙𝐺′ is the restriction of 𝑙𝐺 to N∗
𝐺′ .

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

□

3.4 Restricting the Class of Graphs: C-Relations
Depending on the intended applications, it is sometimes necessary

to further restrict the considered class of graphs. For instance, if

graphs are intended to model standard circuits obtained by com-

posing gates associated with inputs and outputs, then it might be

necessary to dismiss cyclic graphs, which have no obvious seman-

tics in this particular context. We shall thus consider an arbitrary

but fixed class of DRL-graphs C, which is assumed to be closed

under isomophism. The class C should be provided by a user, de-

pending on the considered application (an example is provided in

Section 8 to model possibly cyclic circuits).

To perform equational reasoning, we need to ensure that the

replacement of a subgraphwithin aDRL-graph inC results in a DRL-

graph that is still in C. It is clear that this property will not hold in

general, even if the considered subgraph is also in C. For instance,
the replacement of a subgraph in a non-cyclic DRL-graph may

create new paths in the DRL-graph, which may create a cycle. To

overcome this issue, we shall consider a restriction of the subgraph

relation, denoting the particular subgraphs on which replacement

is allowed. This relation is called a C-relation and will be denoted

by ⪯C . In the following we only state the abstract properties that

must be fulfilled by the relation ⪯C , its actual definition will depend
on the considered application and on the class C. In most cases,

⪯C will coincide with ⪯ on graphs in C (this is the case for the

class defined in Definition 62). However, we prefer, for the sake of

generality, not to make this assumption.

Definition 32. Let C be a set of DRL-graphs, such that 𝐺 ∈
C ∧𝐺 ∼ 𝐺 ′ ⇒ 𝐺 ′ ∈ C. A C-relation ⪯C is a reflexive and transitive

binary relation included in ⪯ and satisfying the following properties:

(1) If 𝐻 ⪯C 𝐺 then 𝐺 ∈ C and 𝐻 ∈ C.
(2) If 𝐻 ⪯C 𝐺 , 𝐻 ′ ∈ C and 𝐻 ′

is substitutable for 𝐻 in 𝐺 then

𝐻 ′ ⪯C 𝐺 [𝐻 ′/𝐻] (thus 𝐺 [𝐻 ′/𝐻] ∈ C).
(3) If 𝐻 ⪯C 𝐺 , then 𝜇 (𝐻) ⪯C 𝜇 (𝐺), for every N -mapping 𝜇.

(4) If 𝐻 ⪯C 𝐺 , 𝐼 ⪯C 𝐺 , 𝐻 and 𝐼 are disjoint, 𝐼 ′ ∈ C and 𝐼 ′ is
substitutable for 𝐼 in 𝐺 , then 𝐻 ⪯C 𝐺 [𝐼 ′/𝐼].

(5) If𝐺𝑖 ⪯C 𝐺 , for 𝑖 = 1, 2, then there exists a merge𝐺 ′
of𝐺1 and

𝐺2, such that 𝐺 ′ ⪯C 𝐺 .

(6) If 𝐺 ⪯C 𝐻 then for every substitution 𝜎 , 𝜎 (𝐺) ⪯C 𝜎 (𝐻).

In the following we consider a fixed set of DRL-graphs C, closed
under isomorphism, and a fixed C-relation ⪯C . Note that in partic-

ular, if C is closed under merging, then the intersection of ⪯ with

C2
is always a C-relation.

3.5 Graph Rewrite Systems
In what follows, we define the notion of a graph rewrite system

that is based on the replacement operation. Note that the rewrite

relation is parameterized by ⪯C , as the replacement of a subgraph

𝐻 within 𝐺 is allowed only if 𝐻 ⪯C 𝐺 .

Definition 33. A DRL-graph rewrite rule is a pair written𝐺 →
𝐻 , where 𝐺 and 𝐻 are DRL-graphs such that R𝐺 and R𝐻 are root-

compatible. A DRL-graph rewrite system is a set of DRL-graph

rewrite rules.

Definition 34. If R is a DRL-graph rewrite system then we write

𝐺 →R 𝐺 ′
iff there exists a rule 𝐻 → 𝐻 ′ ∈ R, a substitution 𝜎 and an

N -mapping 𝜇 of domainN𝐻 ∪N𝐻 ′ such that the following conditions

hold:

• 𝜎 (𝜇 (𝐻)) ⪯C 𝐺 ,

• 𝜎 (𝜇 (𝐻 ′)) is substitutable for 𝜎 (𝜇 (𝐻)) in 𝐺 , and
• 𝐺 ′ ∼ 𝐺 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))].

We denote by →+
R
the transitive closure of →R .We write 𝐺 →𝑘

R
𝐺 ′

if there exists a sequence of DRL-graphs 𝐻𝑖 (for 𝑖 = 1, . . . , 𝑘) with

𝐻1 ∼ 𝐺 , 𝐻𝑘 ∼ 𝐺 ′
and for every 𝑖 ∈ ⟦1, 𝑘 − 1⟧, 𝐻𝑖 →R 𝐻𝑖+1. By

a slight abuse of notation, we also denote by →∗
R
the least relation

containing→+
R
and ∼.

Note that→∗
R
is the reflexive and transitive closure of→R , if the

latter is viewed as a relation on equivalence classes of DRL-graphs

w.r.t. ∼.
The next proposition and lemma state that →R is compatible

with isomorphism and graph embedding.

Proposition 35. If 𝐺 →R 𝐺 ′
and 𝐺 ′′ ∼ 𝐺 , then 𝐺 ′′ →R 𝐺 ′

.

Proof. By definition of the relation→R , there exists a rule𝐻 →
𝐻 ′ ∈ R, a substitution 𝜎 and anN -mapping 𝜇 of domainN𝐻 ∪N𝐻 ′

such that 𝜎 (𝜇 (𝐻)) ⪯C 𝐺 , 𝜎 (𝜇 (𝐻 ′)) is substitutable for 𝜎 (𝜇 (𝐻))
in 𝐺 , and 𝐺 ′ ∼ 𝐺 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))]. Since 𝐺 ′′ ∼ 𝐺 , there exists

an N-mapping 𝜇 ′ such that 𝐺 ′′ = 𝜇 ′(𝐺). By Definition 32 (3), we

have 𝜇 ′(𝜎 (𝜇 (𝐻))) ⪯C 𝜇 ′(𝐺). By Proposition 21, 𝜇 ′(𝜎 (𝜇 (𝐻 ′))) is
substitutable for 𝜇 ′(𝜎 (𝜇 (𝐻))) in 𝜇 ′(𝐺), and
𝜇′ (𝐺 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))]) = 𝜇′ (𝐺) [𝜇′ (𝜎 (𝜇 (𝐻 ′)))/𝜇′ (𝜎 (𝜇 (𝐻)))]

= 𝐺′′ [𝜇′ (𝜎 (𝜇 (𝐻 ′)))/𝜇′ (𝜎 (𝜇 (𝐻)))] .

Thus𝐺 ′ ∼ 𝐺 ′′[𝜇 ′(𝜎 (𝜇 (𝐻 ′)))/𝜇 ′(𝜎 (𝜇 (𝐻)))]. Since 𝜇 ′(𝜎 (𝜇 (𝐻))) =
𝜎 (𝜇 ′ ◦ 𝜇 (𝐻)) and 𝜇 ′(𝜎 (𝜇 (𝐻 ′))) = 𝜎 (𝜇 ′ ◦ 𝜇 (𝐻 ′)), by Definition 34

we deduce that 𝐺 ′′ →R 𝐺 ′
.

□

Lemma 36. Let R be a DRL-graph rewrite system. Let 𝐺 be a DRL-

graph and 𝐼 be a DRL-subgraph of 𝐺 , with 𝐼 ⪯C 𝐺 . If 𝐼 →𝑘
R
𝐼 ′ for

some 𝑘 ≥ 0 and 𝐼 ′ is substitutable for 𝐼 in 𝐺 , then 𝐺 →𝑘
R
𝐺 [𝐼 ′/𝐼].

Proof. The proof is by induction on 𝑘 . If 𝑘 = 0, then the proof is

an immediate consequence of Proposition 20. Assume that 𝑘 >

0. By Definition 33, there exist a rule 𝐻 → 𝐻 ′ ∈ R, a substi-

tution 𝜎 and an N-mapping 𝜇 of domain N𝐻 ∪ N𝐻 ′ such that

𝜎 (𝜇 (𝐻)) ⪯C 𝐼 , 𝜎 (𝜇 (𝐻 ′)) is substitutable for 𝜎 (𝜇 (𝐻)) in 𝐼 , and

𝐼 ′′ ∼ 𝐼 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))] with 𝐼 ′′ →𝑘−1
R

𝐼 ′. We assume w.l.o.g.

that:

• TheN -mapping 𝜇 is such thatN𝜇 (𝐻 ′)∩N𝐺 ⊆ N𝐼 , so that the

graph 𝐼 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))] is substitutable for 𝐼 in𝐺 (such

an N -mapping is guaranteed to exists because N𝐻 ⊆ N𝐼);

• N𝐼 ′′ ∩ N𝐺 = ∅, so that 𝐼 ′′ is substitutable for 𝐼 in 𝐺 .

By Corollary 24 we have 𝐺 [𝐼 ′′/𝐼] ∼ 𝐺 [𝐼 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))]/𝐼],
and by Lemma 29,

𝐺 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))] = 𝐺 [𝐼 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))]/𝐼] .
We deduce that 𝐺 [𝐼 ′′/𝐼] ∼ 𝐺 [𝜎 (𝜇 (𝐻 ′))/𝜎 (𝜇 (𝐻))].

By Definition 32, ⪯C is transitive and since we have 𝐼 ⪯C 𝐺

and 𝜎 (𝜇 (𝐻)) ⪯C 𝐼 , we deduce that 𝜎 (𝜇 (𝐻)) ⪯C 𝐺 , which proves

that 𝐺 →R 𝐺 [𝐼 ′′/𝐼]. By Definition 32 (2) we have 𝐼 ′′ ⪯C 𝐺 and

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

by the induction hypothesis, 𝐺 [𝐼 ′′/𝐼] →𝑘−1
R

𝐺 [𝐼 ′/𝐼]. Therefore,
𝐺 →𝑘

R
𝐺 [𝐼 ′/𝐼].

□

4 GRAPH FORMULAS
In this section we introduce DRLG-literals, which are either equa-

tions or disequations between graphs and DRLG-formulas, that are

sets of DRLG-literals.

Definition 37. A DRLG-equation is an unordered pair writ-

ten 𝐺 ≈ 𝐻 , where 𝐺,𝐻 are root-compatible DRL-graphs. A DRLG-

disequation is the negation of a DRL-graph equation, written𝐺 0 𝐻 .

A DRLG-literal can be either one of a DRLG-equation, a DRLG-

disequation or ⊥ (standing for false). The set of variables occurring in

a DRLG-literal L is defined as follows: V(𝐺 ≈ 𝐻) = V(𝐺 0 𝐻) =
V(𝐺) ∪ V(𝐻) and V(⊥) = ∅. All substitutions and N -mappings 𝜇

are extended to DRLG-literals as follows: 𝜇 (𝐺 ⊲⊳ 𝐻) = 𝜇 (𝐺) ⊲⊳ 𝜇 (𝐻),
for ⊲⊳∈ {≈, 0}, and 𝜇 (⊥) = ⊥.

If L,L′
are DRLG-literals, we write L ∼ L′

iff either L = L′
or

L = (𝐺 ⊲⊳ 𝐻), L′ = (𝐺 ′ ⊲⊳ 𝐻 ′), 𝐺 ∼ 𝐺 ′
and 𝐻 ∼ 𝐻 ′

.

A DRLG-formula is a set of DRLG-literals.

Remark 38. Note that disjunctions are not allowed in our syntax.

Considering disjunctions of DRLG-literals would actually be straight-

forward (with the classical semantics), but it would not bring much

generality in our context, because nodes could not be shared between

the considered DRLG-literals (only variables could be shared). Stronger

forms of disjunction could be considered but it is not clear how their

semantics would be defined. This is why formulas are defined as con-

junctions of literals. Depending on the application, disjunctions can

of course be encoded at the object level by specific nodes within the

graphs, with appropriate axioms. The graph languages considered

in quantum computing (such as the ZX calculus) do not allow for

disjunctions.

Definition 39. For any DRLG-formula 𝑆 , we denote by 𝐼𝑔 (𝑆) the
set of ground instances of a DRLG-literal in 𝑆 , i.e., the set of DRLG-

literals 𝜎 (L) where L ∼ L′
for some L′ ∈ 𝑆 and 𝜎 is a ground

substitution of domain V(L).
We write L →R L′

if L = 𝐺 ⊲⊳ 𝐻 , L′ = 𝐺 ′ ⊲⊳ 𝐻 and 𝐺 →R 𝐺 ′
.

5 SEMANTICS
Depending on the considered application, graphs may be associated

with various semantics. For instance, in quantum programming,

ZX-diagrams are associated with complex matrices. In classical

circuits, graphs may be associated with operators with multiple

inputs and outputs. In the present paper, for the sake of genericity,

we make no assumption on the way DRL-graphs are interpreted,

and we only assume that the chosen semantics is compatible with

the replacement of DRL-subgraphs. This leads to the notion of a

DRLG-congruence, which lifts the usual notion of congruence to

DRL-graphs.

Definition 40. A binary relation ⊲⊳ on DRL-graphs is closed

under isomorphisms if 𝐺 ⊲⊳ 𝐺 ′ ∧ 𝐻 ∼ 𝐺 ∧ 𝐻 ′ ∼ 𝐺 ′ ⇒ 𝐻 ⊲⊳ 𝐻 ′
.

Definition 41. A binary relation ⊲⊳ on DRL-graphs is closed

under embeddings if for all DRL-graphs𝐺,𝐻,𝐻 ′
such that 𝐻 ⪯C 𝐺 ,

𝐻 ′
is substitutable for 𝐻 in 𝐺 and 𝐻 ⊲⊳ 𝐻 ′

, we have 𝐺 ⊲⊳ 𝐺 [𝐻 ′/𝐻].

Definition 42. A DRLG-congruence↭ is an equivalence rela-

tion between ground DRL-graphs that is closed under isomorphisms

and embeddings.

Definition 43. A DRLG-congruence↭ validates 𝜙 if:

• 𝜙 is a ground DRLG-equation 𝐺 ≈ 𝐻 and 𝐺 ↭ 𝐻 ;

• 𝜙 is a ground DRLG-disequation 𝐺 0 𝐻 and 𝐺 ̸↭ 𝐻 ;

• 𝜙 is a formula and↭ validates all DRLG-literals in 𝐼𝑔 (𝜙).
If a DRLG-congruence validates 𝜙 then it is a model of 𝜙 , and we

say that 𝜙 is satisfiable. We write 𝜙 |= 𝜓 (and say that𝜓 is a logical

consequence of 𝜙) if every model of 𝜙 is a model of 𝜙 ′
, and 𝜙 ≡ 𝜓 if

𝜙 |= 𝜓 and𝜓 |= 𝜙 .

Proposition 44. For any set of DRLG-equations 𝐸, there exists a

DRLG-congruence↭𝐸 that is the minimal (w.r.t. ⊆) model of 𝐸.

Proof. It is easy to check that ifM is a set of models of 𝐸, then

the relation defined as the intersection of all the relations inM is

also a model of 𝐸. Further, 𝐸 has at least one model, containing all

pairs of root-compatible ground DRL-graphs. Hence↭𝐸 can be

defined as the intersection of all the models of 𝐸. □

We now prove that the satisfiability problem is undecidable for

ground DRLG-formulas. The result emphasizes the difference with

the usual ground equational logic (on terms) which is well-known

to be decidable

Theorem 45. The satisfiability problem is undecidable for ground

DRLG-formulas.

Proof. The proof goes by a reduction from the halting problem

for Turing machines (TM). Let𝑀 be a deterministic TM of the form

(𝑄, Γ, 𝑏, Σ, 𝑞0, 𝐹 , 𝛿), where𝑄 is the set of states, 𝑞0 is the initial state,

𝐹 ⊆ 𝑄 is the set of final states, 𝑏 is the blank symbol, Γ is the

alphabet, Σ ⊆ Γ is the set of input symbols and 𝛿 : (𝑄 \ 𝐹) × Γ →
𝑄 × Γ × {𝐿, 𝑅} the transition function. We assume, w.l.o.g., that

𝑄 ∩ Γ = ∅. The configurations are tuples 𝑐 = (𝑞,𝑤,𝑤 ′), where 𝑞 is a

state and𝑤,𝑤 ′ ∈ Γ+ denotes the part of the tape before and after the
head, respectively (we assume that𝑤,𝑤 ′

are nonempty for technical

convenience). Any such configuration, with𝑤 = 𝑤1𝑤𝑛 ,𝑤
′ =

𝑤 ′
1
.𝑤 ′

𝑚 and 𝑤𝑖 ,𝑤
′
𝑗
∈ Γ, may be encoded into a graph 𝐺 (𝑐)

defined as follows (where 𝑠, ℎ, 𝑒 are pairwise distinct symbols not

occurring in Γ ∪𝑄):

N𝐺 (𝑐) = {𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛽1, . . . , 𝛽𝑛, 𝛽 ′
1
, . . . , 𝛽 ′𝑚}

R𝐺 (𝑐) = ⟨⟩
E𝐺𝑐 = {(𝛽𝑖 → 𝛽𝑖+1) | 𝑖 = 1, . . . , 𝑛 − 1}

∪ {
(
𝛽 ′
𝑗
→ 𝛽 ′

𝑗+1

)
| 𝑗 = 1, . . . ,𝑚 − 1}

∪ {(𝛼1 → 𝛽1) , (𝛽𝑛 → 𝛼2) ,
(
𝛼2 → 𝛽 ′

1

)
,
(
𝛽 ′𝑚 → 𝛼3

)
}

𝑙𝐺 (𝑐) (𝛽𝑖) = 𝑤𝑖 (for 𝑖 = 1, . . . , 𝑛)

𝑙𝐺 (𝑐) (𝛽 ′𝑗) = 𝑤 ′
𝑗
(for 𝑗 = 1, . . . ,𝑚)

𝑙𝐺 (𝑐) (𝛼0) = 𝑞 𝑙𝐺 (𝑐) (𝛼1) = 𝑠 𝑙𝐺 (𝑐) (𝛼2) = ℎ 𝑙𝐺 (𝑐) (𝛼3) = 𝑒

The transition function is encoded by the followingDRLG-equations:

𝑞1 ℎ 𝑖 𝑘 ≈ 𝑞2 𝑗 ℎ 𝑘

𝑞1 ℎ 𝑖 𝑒 ≈ 𝑞2 𝑗 ℎ 𝑏 𝑒

for all 𝑞1, 𝑖, 𝑞2, 𝑗, 𝑘 such that 𝛿 (𝑞1, 𝑖) = (𝑞2, 𝑗, 𝑅) and 𝑘 ∈ Γ. The
second rule encodes the fact that the tape is infinite: if the head

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

is at the end of the word, a new blank symbol must be created

to ensure that there are always symbols after the head (i.e., 𝑤 ′

must be nonempty in any configuration (𝑞,𝑤,𝑤 ′)). Similar rules

are defined for the left movement (for all 𝑞1, 𝑖, 𝑞2, 𝑗, 𝑘 such that

𝛿 (𝑞1, 𝑖) = (𝑞2, 𝑗, 𝐿) and 𝑘, 𝑙 ∈ Γ):

𝑞1 𝑙 𝑘 ℎ 𝑖 ≈ 𝑞2 𝑙 ℎ 𝑘 𝑗

𝑞1 𝑠 𝑏 ℎ 𝑖 ≈ 𝑞2 𝑠 𝑏 ℎ 𝑏 𝑗

We also define rules to delete useless blank symbols at the end or

at the beginning of the tape:

𝑠 𝑏 𝑏 ≈ 𝑠 𝑏

𝑏 𝑏 𝑒 ≈ 𝑏 𝑒

Let 𝐸 be the set of such DRLG-equations. It is easy to check that,

for all configurations 𝑐, 𝑐 ′, 𝐺 (𝑐)↭𝐸 𝐺 (𝑐 ′) if either 𝑐 is reachable
from 𝑐 ′ or 𝑐 ′ is reachable from 𝑐 . We assume, w.l.o.g., that the

considered TM only ends in a configuration (𝑞𝑓 , 𝑏, 𝑏) (i.e., the TM
clears the tape and ends in a single fixed final state 𝑞𝑓). Then, the

TM terminates on the empty word iff 𝐸, enriched by the following

DRLG-disequation, is unsatisfiable:

𝑞0 𝑠 𝑏 ℎ 𝑏 𝑒 0 𝑞𝑓 𝑠 𝑏 ℎ 𝑏 𝑒

□

6 A PROOF PROCEDURE
6.1 Inference Rules
Wedefine a set of inference rules that can be viewed as an adaptation

of the Superposition calculus to graph formulas. Similarly to the

Superposition calculus, this set of inference rules is designed to

saturate a set of DRLG-literals in order to derive ⊥ when the set is

unsatisfiable.

Definition 46. A binary relation ⊲⊳ on DRL-graphs is closed

under substitutions if for all DRL-graphs𝐺,𝐻 such that𝐺 ⊲⊳ 𝐻 , and

for every substitution 𝜎 , we have 𝜎 (𝐺) ⊲⊳ 𝜎 (𝐻).

Definition 47. A graph reduction order ≥ is a preorder on DRL-

graphs that satisfies the following properties:

• The associated order >, defined as 𝐺 > 𝐻 ⇐⇒ (𝐺 ≥
𝐻 ∧ 𝐻 ̸≥ 𝐺), is well-founded.

• ≥ and > are closed under embeddings, substitutions and iso-

morphisms.

• For all ground DRL-graphs 𝐺,𝐻 , we have either 𝐺 ≥ 𝐻 or

𝐻 ≥ 𝐺 .

We write 𝐺 ≃ 𝐻 for 𝐺 ≥ 𝐻 ∧𝐺 ≤ 𝐻 .

Example 48. For instance the relation 𝐺 ≥ 𝐻 ⇐⇒ |N𝐺 | ≥
|N𝐻 | is a graph reduction order.

Let ≤ be a graph reduction order. We consider the following 3

rules, which apply modulo a renaming of nodes and variables.

Positive Unit Superposition (S+).

𝐺 ≈ 𝐺 ′ 𝐻 ≈ 𝐻 ′

𝐼 [𝜎 (𝐺 ′)/𝜎 (𝐺)] ≈ 𝐼 [𝜎 (𝐻 ′)/𝜎 (𝐻)]
IfV(𝐺 ≈ 𝐺 ′) ∩ V(𝐻 ≈ 𝐻 ′) = ∅, N𝐺 ∩ N𝐻 ≠ ∅, 𝐼 is a merge of 𝐺

and 𝐻 with mgu 𝜎 , 𝜎 (𝐺) ⪯C 𝜎 (𝐼) ,𝜎 (𝐺 ′) ⪯C 𝜎 (𝐼), 𝐺 ′
and 𝐻 ′

are

respectively substitutable for𝐺 and 𝐻 in 𝐼 , 𝐼 [𝜎 (𝐺 ′)/𝜎 (𝐺)] ̸> 𝐼 and

𝐼 [𝜎 (𝐻 ′)/𝜎 (𝐻)] ̸> 𝐼 .

Negative Unit Superposition (S−).

𝐺 0 𝐺 ′ 𝐻 ≈ 𝐻 ′

𝜎 (𝐺) [𝜎 (𝐻 ′)/𝜎 (𝐻)] 0 𝜎 (𝐺 ′)
IfV(𝐺 0 𝐺 ′) ∩ V(𝐻 ≈ 𝐻 ′) = ∅, 𝜎 is a most general substitution

such that 𝜎 (𝐻) ⪯C 𝜎 (𝐺), 𝐻 ′
is substitutable for 𝐻 in 𝐺 , 𝜎 (𝐺 ′) ̸>

𝜎 (𝐺) and 𝜎 (𝐻 ′) ̸> 𝜎 (𝐻).

Reflection (R). Two DRL-graphs 𝐺 and 𝐻 are label-unifiable iff

there exists a substitution 𝜎 such that 𝜎 (𝐺) = 𝜎 (𝐻).

𝐺 0 𝐻

⊥ If 𝐺 and 𝐻 are label-unifiable.

For every DRLG-formula 𝑆 , we denote by Sup(𝑆) the set of the
DRLG-literals deducible from 𝑆 by one of the above rules (in one

step). Let Sup∗ (𝑆) def
=
⋃∞

𝑖=0 Sup
𝑖 (𝑆), with:

Sup𝑖 (𝑆) def
=

𝑆 if 𝑖 = 0

𝑆 ∪ Sup(𝑆) if 𝑖 = 1

Sup1 (Sup𝑖−1 (𝑆)) otherwise
We show that all the inference rules are sound, in the sense

that every deduced DRLG-literal is a logical consequence of the

premises.

Theorem 49 (Soundness). The rules S+, S−and R are sound, i.e.,

for every DRLG-formula 𝑆 , 𝑆 |= Sup(𝑆). Thus if ⊥ ∈ Sup∗ (𝑆) then 𝑆
is unsatisfiable.

Proof. The proof goes by an easy inspection of each rule, using

the fact that DRLG-congruences are closed under embeddings and

closed under substitutions. We only detail the proof for the rule S+,
the other cases are similar. Let↭ be a DRLG-congruence satisfying

𝐺 ≈ 𝐺 ′
and 𝐻 ≈ 𝐻 ′

. Let L = 𝐼 [𝜎 (𝐺 ′)/𝜎 (𝐺)] ≈ 𝐼 [𝜎 (𝐻 ′)/𝜎 (𝐻)]
be a DRLG-literal deduced from 𝐺 ≈ 𝐺 ′

and 𝐻 ≈ 𝐻 ′
and S+

and let 𝜃 be a ground substitution of domain V(L). We have to

prove that↭ is a model of L𝜃 , i.e., that 𝜃 (𝐼 [𝜎 (𝐺 ′))/𝜎 (𝐺)] ↭
𝜃 (𝐼 [𝜎 (𝐻 ′)/𝜎 (𝐻)]). Consider any ground substitution 𝜃 ′ of domain

V(𝐺)∪V(𝐺 ′)∪V(𝐻)∪V(𝐻 ′) and coincidingwith𝜎◦𝜃 on all vari-
ables inV(L). Since↭ is a model of𝐺 ≈ 𝐺 ′

and𝐻 ≈ 𝐻 ′
, we have,

by Definition 43: 𝜃 ′(𝐺)↭ 𝜃 ′(𝐺 ′) and 𝜃 ′(𝐻)↭ 𝜃 ′(𝐺 ′). Since 𝐼 is a
merge of𝐺 and 𝐻 ,𝐺 ⪯C 𝐼 and 𝐻 ⪯C 𝐼 . By Definition 32 (6), we de-

duce that 𝜃 ′(𝐺) ⪯C 𝜃 ′(𝐼) and 𝜃 ′(𝐻) ⪯C 𝜃 ′(𝐼). By Proposition

22, we have 𝜃 ′(𝜎 (𝐼) [𝜎 (𝐺 ′)/𝜎 (𝐺)]) = 𝜃 ′(𝐼) [𝜃 ′(𝐺 ′)/𝜃 ′(𝐺)] and

𝜃 ′(𝜎 (𝐼) [𝜎 (𝐻 ′)/𝜎 (𝐻)]) = 𝜃 ′(𝐼) [𝜃 ′(𝐻 ′)/𝜃 ′(𝐻)]. Since↭ is closed

under embeddings and since 𝜃 ′(𝐺) ↭ 𝜃 ′(𝐺 ′), we deduce that

𝜃 ′(𝐼) [𝜃 ′(𝐺 ′)/𝜃 ′(𝐺)] ↭ 𝜃 ′(𝐼). Similarly, 𝜃 ′(𝐼) [𝜃 ′(𝐻 ′)/𝜃 ′(𝐻)] ↭
𝜃 ′(𝐼). Therefore𝜃 ′(𝜎 (𝐼) [𝜎 (𝐺 ′)/𝜎 (𝐺)])↭ 𝜃 ′(𝜎 (𝐼) [𝜎 (𝐻 ′)/𝜎 (𝐻)]),
which entails the result. □

6.2 Redundancy
We now define a notion of redundancy, which is useful to dismiss

useless DRLG-literals. It is similar to the one of [1] but more restric-

tive (in the sense that fewer formulas may be deleted). As explained

before, this is due to the fact that total reduction orders are difficult

to define for DRL-graphs; in fact, the existence of such orders is an

open problem.

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Definition 50. For every DRLG-formula 𝑆 we denote by R
>
𝑆
(resp.

R𝑆) the set of rules 𝐺 → 𝐻 where 𝐺 ≈ 𝐻 ∈ 𝐼𝑔 (𝑆) and 𝐺 > 𝐻 (resp.

𝐺 ≥ 𝐻).

Proposition 51. If𝐺 →∗
R𝑆

𝐻 then𝐺 ≥ 𝐻 , and if𝐺 →+
R
>
𝑆

𝐻 then

𝐺 > 𝐻 .

Definition 52. A ground DRLG-literal L is redundant w.r.t. a

DRLG-formula 𝑆 if one of the following conditions hold.

(1) ⊥ ∈ 𝑆

(2) L is of the form 𝐺 ≈ 𝐻 where 𝐺 ∼ 𝐻 .

(3) There exist a DRLG-literal L′ ∈ 𝑆 and a substitution 𝜎 such

that 𝜎 (L′) ∼ L.

(4) There exists a DRLG-literal L′
such that L →

R
>
𝑆
L′

and L′

is redundant w.r.t. 𝑆 .

Definition 53. A DRLG-formula 𝑆 is saturated if all DRLG-

literals in 𝐼𝑔 (Sup(𝑆)) are redundant w.r.t. 𝑆 .

7 COMPLETENESS
In this section we prove the completeness of our calculus, in other

words, that if a saturated DRLG-formula is unsatisfiable, then it

necessarily contains ⊥. Throughout this section, we assume that 𝑆

denotes a fixed DRLG-formula.

Our first goal is to show that if 𝑆 is saturated and contains no

contradiction then the relation →R𝑆
is confluent (Lemma 57). This

result will allow us to use this relation as a basis for defining a

DRLG-congruence satisfying 𝑆 (Definition 58). Note that showing

local confluence is not sufficient since →R𝑆
is not necessarily well-

founded (this is an essential difference with the usual completeness

proofs for standard Superposition calculi, for which total reduction

orders exist). We consider a restriction of →∗
R𝑆

obtained by bound-

ing the number of steps for which the rewritten graph is greater or

equal to some given DRL-graph 𝐺 .

Definition 54. Let 𝐺 be a DRL-graph. We write 𝐻 →𝑛
|𝐺 𝐻 ′

iff there exists a sequence 𝐼𝑖 (𝑖 = 1, . . . ,𝑚) with 𝐼1 = 𝐻 , 𝐼𝑚 = 𝐻 ′
,

𝐼𝑖 →R𝑆
𝐼𝑖+1 for all 𝑖 = 1, . . . ,𝑚 − 1 and there are at most 𝑛 indices 𝑖

in ⟦1,𝑚 − 1⟧ such that 𝐼𝑖+1 ̸< 𝐺 .

Proposition 55. We have the following properties:

(1) If 𝐻 →∗
R𝑆

𝐼 then 𝐻 →𝑛
|𝐺 𝐼 , for some 𝑛 ∈ N.

(2) If 𝐻 →𝑛
|𝐺 𝐼 then 𝐻 →𝑚

|𝐺 𝐼 for all𝑚 ≥ 𝑛.

(3) If 𝐻 < 𝐺 and 𝐻 →∗
R𝑆

𝐼 then 𝐻 →0

|𝐺 𝐼 .

(4) If 𝐻 ≤ 𝐺 and 𝐻 →∗
R
>
𝑆

𝐼 then 𝐻 →0

|𝐺 𝐼 .

(5) If 𝐻 →𝑛
|𝐺 𝐻 ′

and 𝐻 ′ →𝑚
|𝐺 𝐼 then 𝐻 →𝑛+𝑚

|𝐺 𝐼 .

Proof. The results follow immediately from the definition of

→𝑛
|𝐺 and Proposition 51. □

The following lemma states a form of local confluence:

Lemma 56. Assume that 𝑆 is saturated and ⊥ ∉ 𝑆 . Let 𝐺,𝐺1,𝐺2

be ground DRL-graphs such that𝐺 →R𝑆
𝐺𝑖 (for 𝑖 = 1, 2). There exists

a DRL-graph 𝐺 ′
and numbers 𝜂𝑖 ∈ {0, 1} such that 𝐺𝑖 →𝜂𝑖

|𝐺 𝐺 ′
, for

all 𝑖 = 1, 2. Furthermore, if𝐺 > 𝐺𝑖 for some 𝑖 = 1, 2 then 𝜂1 = 𝜂2 = 0.

Proof. By definition of →R𝑆
there exist rules 𝐻𝑖 → 𝐻 ′

𝑖
in

R𝑆 , substitutions 𝜎𝑖 and N-mappings 𝜇𝑖 such that, for 𝑖 = 1, 2,

𝜎𝑖 (𝜇𝑖 (𝐻𝑖)) ⪯C 𝐺 , 𝜎𝑖 (𝜇𝑖 (𝐻 ′
𝑖
)) is substitutable for 𝜎𝑖 (𝜇𝑖 (𝐻𝑖)) in 𝐺 ,

and 𝐺𝑖 ∼ 𝐺 [𝜎 (𝜇𝑖 (𝐻 ′
𝑖
))/𝜎 (𝜇𝑖 (𝐻𝑖))].

Let 𝑖 ∈ {1, 2}. Since R𝑆 is ground we have 𝜎𝑖 = i𝑑 , and since

𝐼𝑔 (𝑆) (hence R𝑆) is closed under isomorphisms, we may assume

that 𝜇𝑖 = i𝑑 , so that 𝐺𝑖 = 𝐺 [𝐻 ′
𝑖
/𝐻𝑖]. Furthermore, by definition

of R𝑆 , we have 𝐻𝑖 ≥ 𝐻 ′
𝑖
and since ≥ is closed under embeddings,

𝐺 ≥ 𝐺𝑖 .

We distinguish two cases.

• Assume thatN𝐻1
∩N𝐻2

= ∅. By Lemmas 27 and 28, for every

𝑖, 𝑗 ∈ {1, 2} with 𝑖 ≠ 𝑗 , we have 𝐻𝑖 ⪯ 𝐺 𝑗 , 𝐻
′
𝑖
is substitutable

for 𝐻𝑖 in 𝐺 𝑗 and:

𝐺2 [𝐻 ′
1
/𝐻1] = 𝐺1 [𝐻 ′

2
/𝐻2] . (1)

ByDefinition 32 (4), we have𝐻𝑖 ⪯C 𝐺 𝑗 , thus𝐺𝑖 →R 𝐺𝑖 [𝐻 ′
𝑗
/𝐻 𝑗],

so that 𝐺𝑖 →𝜂𝑖
|𝐺 𝐺𝑖 [𝐻 ′

𝑗
/𝐻 𝑗], where:

𝜂𝑖 =

{
1 if 𝐺𝑖 [𝐻 ′

𝑗
/𝐻 𝑗] ≃ 𝐺

0 otherwise

Note that by Equation 1 we necessarily have 𝜂1 = 𝜂2. Since

𝐻 𝑗 ≥ 𝐻 ′
𝑗
and ≥ is closed under embeddings, we have 𝐺𝑖 ≥

𝐺𝑖 [𝐻 ′
𝑗
/𝐻 𝑗]. If𝐺 > 𝐺𝑖 , for some 𝑖 = 1, 2, then𝐺 > 𝐺𝑖 [𝐻 ′

𝑗
/𝐻 𝑗],

thus by definition 𝜂𝑖 = 0. By Equation 1, we obtain the stated

result.

• Assume that N𝐻1
∩ N𝐻2

≠ ∅. By definition of R𝑆 , there

exist DRLG-literals 𝐼𝑖 ≈ 𝐼 ′
𝑖
in 𝑆 , groundsubstitutions 𝜃𝑖 and

N-mappings 𝜈𝑖 (for 𝑖 = 1, 2) such that 𝐻𝑖 = 𝜃𝑖 (𝜈𝑖 (𝐼𝑖)) and
𝐻 ′
𝑖
= 𝜃𝑖 (𝜈𝑖 (𝐼 ′𝑖)). We may assume that 𝐼1 ≈ 𝐼 ′

1
and 𝐼2 ≈ 𝐼 ′

2
are

variable-disjoint, so that 𝜃1 and 𝜃2 have disjoint domains.

By Definition 32 (5), 𝜈1 (𝐼1) and 𝜈2 (𝐼2) admit a merge 𝐼 , with

mgu 𝜃 , such that (𝜃1 ∪ 𝜃2) = 𝜃 ′ ◦ 𝜃 , for some substitution

𝜃 ′, and 𝜃 ′(𝐼) ⪯C 𝐺 . Since 𝐼𝑔 (𝑆) is closed by node renaming,

we may also assume, w.l.o.g., that 𝜈𝑖 (𝐼 ′𝑖) ∩ N𝐺 ⊆ N𝜈𝑖 (𝐼𝑖) ,
so that 𝜈𝑖 (𝐼 ′𝑖) is substitutable for 𝜈𝑖 (𝐼𝑖) in 𝐼 and also that

𝐼 [𝜈𝑖 (𝐼 ′𝑖)/𝜈𝑖 (𝐼𝑖)] is substitutable for 𝐼 in 𝐺 .
Let 𝑖 ∈ {1, 2} and assume that 𝐼 [𝜃 (𝜈𝑖 (𝐼 ′𝑖))/𝜃 (𝜈𝑖 (𝐼𝑖))] >

𝐼 . Then, since the order > is closed under substitutions,

we have 𝜃 ′(𝐼 [𝜃 (𝜈𝑖 (𝐼 ′𝑖))/𝜃 (𝜈𝑖 (𝐼𝑖))] > 𝜃 ′(𝐼), and therefore

𝜃 ′(𝐼) [𝜃𝑖 (𝜈𝑖 (𝐼 ′𝑖))/𝜃𝑖 (𝜈𝑖 (𝐼𝑖))] > 𝜃 ′(𝐼). We get

𝐺 [𝜃 ′(𝐼) [𝜃𝑖 (𝜈𝑖 (𝐼 ′𝑖))/𝜃𝑖 (𝜈𝑖 (𝐼𝑖))]/𝜃
′(𝐼)] > 𝐺

because ≥ is closed under embeddings, thus, by Lemma 29,

𝐺 [𝜃𝑖 (𝜈𝑖 (𝐼 ′𝑖))/𝜃𝑖 (𝜈𝑖 (𝐼𝑖))] > 𝐺.

Therefore, 𝐺 [𝐻 ′
𝑖
/𝐻𝑖] > 𝐺 , which contradicts the fact that

𝐻𝑖 ≥ 𝐻 ′
𝑖
.

Consequently, we have 𝐼 [𝜃 (𝜈𝑖 (𝐼 ′𝑖))/𝜃 (𝜈𝑖 (𝐼𝑖))] ̸> 𝐼 (for 𝑖 =

1, 2). This entails that the rule S+ is applicable on 𝐼1 ≈ 𝐼 ′
1

and 𝐼2 ≈ 𝐼 ′
2
(up to the node renamings 𝜈1, 𝜈2), yielding the

DRLG-literal:

𝐼 [𝜃 (𝜈1 (𝐼 ′1))/𝜃 (𝜈1 (𝐼1))] ≈ 𝐼 [𝜃 (𝜈2 (𝐼 ′2))/𝜃 (𝜈2 (𝐼2))] .

Since 𝑆 is saturated and ⊥ ∉ 𝑆 , there exist DRL-graphs 𝐽𝑖
(for 𝑖 = 1, 2) such that either 𝐽1 = 𝐽2 or 𝐽1 ≈ 𝐽2 ∈ 𝐼𝑔 (𝑆), and
𝜃 ′(𝐼 [𝜃 (𝜈𝑖 (𝐼 ′𝑖))/𝜃 (𝜈𝑖 (𝐼𝑖))]) →∗

R
>
𝑆

𝐽𝑖 . We assume that 𝐽1 ≈
𝐽2 ∈ 𝐼𝑔 (𝑆), the proof if 𝐽1 = 𝐽2 is similar and simpler. Since

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

≥ is total on ground DRL-graphs, we have either 𝐽1 ≥ 𝐽2
or 𝐽2 ≥ 𝐽1. Assume by symmetry that 𝐽1 ≥ 𝐽2, so that

R𝑆 contains a rule 𝐽1 → 𝐽2. Using Lemmas 25 and 36, we

get 𝐺 [𝜃 ′(𝐼 [𝜃 (𝜈𝑖 (𝐼 ′𝑖))/𝜃 (𝜈𝑖 (𝐼𝑖))])/𝜃
′(𝐼)] →∗

R
>
𝑆

𝐺 [𝐽𝑖/𝜃 ′(𝐼)],
i.e., (by Lemma 29) 𝐺𝑖 →∗

R
>
𝑆

𝐺 [𝐽𝑖/𝜃 ′(𝐼)]. We deduce that

𝐺2 →0

|𝐺 𝐺 [𝐽2/𝜃 ′(𝐼)], and (due to the rule 𝐽1 → 𝐽2),𝐺1 →𝜂

|𝐺
𝐺 [𝐽2/𝜃 ′(𝐼)], where

𝜂 =

{
0 if 𝐺 [𝐽2/𝜃 ′(𝐼)] < 𝐺

1 otherwise

Note that if 𝐺𝑖 < 𝐺 , for some 𝑖 = 1, 2 then necessarily

𝐺 [𝐽2/𝜃 ′(𝐼)] < 𝐺 (as 𝐺𝑖 ≤ 𝐺), hence 𝜂 = 0. Thus we get the

result, with 𝐺 ′ = 𝐺 [𝐽2/𝜃 ′(𝐼)], 𝜂1 = 𝜂 and 𝜂2 = 0.

□

We write 𝐺1 ↓R𝑆 𝐺2 if there exists a DRL-graph 𝐻 such that

𝐺𝑖 →∗
R𝑆

𝐻 , for all 𝑖 = 1, 2.

Lemma 57. If 𝑆 is saturated and ⊥ ∉ 𝑆 , then the relation→R𝑆
is

confluent.

Proof. Assume that there exist DRL-graphs 𝐺,𝐺1,𝐺2 such that

𝐺 →∗
R𝑆

𝐺𝑖 for 𝑖 = 1, 2 and 𝐺1 ↓̸R𝑆 𝐺2. W.l.o.g., we assume that

𝐺 is a minimal (w.r.t. <) DRL-graph such that DRL-graphs 𝐺1,𝐺2

satisfying the above properties exist. Thus, for every DRL-graph

𝐺 ′
such that 𝐺 ′ < 𝐺 , if 𝐺 ′ →∗

R𝑆
𝐺 ′
𝑖
for 𝑖 = 1, 2 then 𝐺 ′

1
↓R𝑆 𝐺 ′

2
.

By definition of the relation→𝑛
|𝐺 , there exist natural numbers 𝑛𝑖

(for 𝑖 = 1, 2) such that 𝐺 →𝑛𝑖
|𝐺 𝐺𝑖 . We prove, by induction on the

set (𝑛1, 𝑛2), that for every DRL-graph 𝐻 ≃ 𝐺 , if 𝐻 →𝑛𝑖
|𝐺 𝐺𝑖 for

𝑖 = 1, 2 then there exists a DRL-graph𝐺 ′
such that for 𝑖 = 1, 2, we

have 𝐺𝑖 →𝑛3−𝑖
|𝐺 𝐺 ′

. Note that this immediately entails the required

result, by taking 𝐻 = 𝐺 . First assume that 𝐻 ∈ {𝐺1,𝐺2}, say,
𝐻 = 𝐺1. Then by taking 𝐺 ′ def

= 𝐺2 we have 𝐺1 →𝑛2

|𝐺 𝐺2, and by

Proposition 55 (2), 𝐺2 →𝑛1

|𝐺 𝐺2, hence the result. We now assume

that 𝐻 →R𝑆
𝐻𝑖 →∗

R𝑆
𝐺𝑖 . Note that we have 𝐻𝑖 →𝑚𝑖

|𝐺 𝐺𝑖 where by

Proposition 55, either 𝐻𝑖 ≃ 𝐻 ≃ 𝐺 , 𝑛𝑖 > 0 because 𝐻𝑖 ̸< 𝐺 and

𝑚𝑖 = 𝑛𝑖 − 1; or 𝐻𝑖 < 𝐺 and 𝑛𝑖 =𝑚𝑖 = 0. By Lemma 56, there exists

𝐼 such that: 𝐻𝑖 →𝜂𝑖
|𝐺 𝐼 , with 𝜂1, 𝜂2 ∈ {0, 1} and if 𝐻𝑖 < 𝐺 for some

𝑖 = 1, 2 then 𝜂1 = 𝜂2 = 0.

Let 𝑖 ∈ {1, 2}, we have 𝐻𝑖 →𝜂𝑖
|𝐺 𝐼 and 𝐻𝑖 →𝑚𝑖

|𝐺 𝐺𝑖 .

• If 𝐻𝑖 < 𝐺 , then by minimality of𝐺 there exists a DRL-graph

𝐼𝑖 such that 𝐼 →∗
R𝑆

𝐼𝑖 and 𝐺𝑖 →∗
R𝑆

𝐼𝑖 . By Proposition 51

we have 𝐼 ,𝐺𝑖 ≤ 𝐻𝑖 < 𝐺 , hence 𝐼 →0

|𝐺 𝐼𝑖 and 𝐺𝑖 →0

|𝐺
𝐼𝑖 by Proposition 55 (3), and 𝐼 →𝑚𝑖

|𝐺 𝐼𝑖 and 𝐺𝑖 →𝜂𝑖
|𝐺 𝐼𝑖 by

Proposition 55 (2).

• If 𝐻𝑖 ≃ 𝐺 , then𝑚𝑖 = 𝑛𝑖 − 1 < 𝑛𝑖 . Moreover, we have either

𝑛3−𝑖 ≥ 1 ≥ 𝜂𝑖 or 𝑛3−𝑖 = 0, and in the latter case 𝐻3−𝑖 < 𝐺 ,

so that 𝜂𝑖 = 0 by Lemma 56. In both cases, the pair (𝑚𝑖 , 𝜂𝑖)
is strictly smaller than the pair (𝑛1, 𝑛2). Consequently, by
the induction hypothesis, there exists a DRL-graph 𝐼𝑖 such

that 𝐼 →𝑚𝑖

|𝐺 𝐼𝑖 and 𝐺𝑖 →𝜂𝑖
|𝐺 𝐼𝑖 .

Thus in both cases we get that for 𝑖 = 1, 2, 𝐼 →𝑚𝑖

|𝐺 𝐼𝑖 and𝐺𝑖 →𝜂𝑖
|𝐺 𝐼𝑖 ,

for some graphs 𝐼𝑖 .We again distinguish two cases.

• If 𝐼 < 𝐺 , then by minimality of 𝐺 there exists a DRL-graph

𝐺 ′
such that for 𝑖 = 1, 2, 𝐼𝑖 →∗

R𝑆
𝐺 ′

, hence 𝐼𝑖 →0

|𝐺 𝐺 ′
by

Proposition 55 (3). Since𝐺𝑖 →𝜂𝑖
|𝐺 𝐼𝑖 , we deduce that𝐺𝑖 →𝜂𝑖

|𝐺
𝐺 ′

by Proposition 55 (5). If 𝜂1 = 𝜂2 = 0 then this entails

that 𝐺𝑖 →𝑛3−𝑖
|𝐺 𝐺 ′

and the proof is completed. Otherwise, by

definition of 𝜂𝑖 , we have 𝐻1 ≃ 𝐻2 ≃ 𝐺 , hence 𝑛1, 𝑛2 > 0 and

𝑛1, 𝑛2 ≥ 𝜂1, 𝜂2, thus we also have 𝐺𝑖 →𝑛3−𝑖
|𝐺 𝐺 ′

.

• If 𝐼 ≃ 𝐺 , then necessarily 𝐻𝑖 ≃ 𝐺 for all 𝑖 = 1, 2, thus𝑚𝑖 =

𝑛𝑖 − 1 and, by applying again the induction hypothesis, there

exists𝐺 ′
such that 𝐼𝑖 →𝑚3−𝑖

|𝐺 𝐺 ′
, hence by Proposition 55 (5)

𝐺𝑖 →𝑚3−𝑖+𝜂𝑖
|𝐺 𝐺 ′

. Since 𝜂𝑖 ≤ 1, we deduce that 𝐺𝑖 →𝑛3−𝑖
|𝐺 𝐺 ′

,

and the proof is completed.

□

Definition 58. We denote by↭𝑆 the relation defined as follows:

𝐺 ↭𝑆 𝐻 iff there exists a DRL-graph 𝐼 such that 𝐺 →∗
R𝑆

𝐼 and

𝐻 →∗
R𝑆

𝐼

Lemma 59. If 𝑆 is saturated and does not contain ⊥ then↭𝑆 is a

DRLG-congruence.

Proof. It is clear that ↭𝑆 is reflexive and symmetric. Since

∼=→0

R𝑆
by definition, it is also closed under isomorphisms.

We now show that ↭𝑆 is transitive. If 𝐺1 ↭𝑆 𝐺2 ↭𝑆 𝐺3

then there exist 𝐻1 and 𝐻2 such that 𝐺1 →∗
R𝑆

𝐻1, 𝐺2 →∗
R𝑆

𝐻1,

𝐺2 →∗
R𝑆

𝐻2, and 𝐺3 →∗
R𝑆

𝐻2. Since →∗
R𝑆

is confluent by Lemma

57, we deduce that there exists a DRL-graph 𝐼 such that 𝐻1 →∗
R𝑆

𝐼 ,

𝐻2 →∗
R𝑆

𝐼 . By transitivity of →∗
R𝑆

we get that 𝐺1 →∗
R𝑆

𝐼 and

𝐺3 →∗
R𝑆

𝐼 , hence 𝐺1↭𝑆 𝐺3.

There remains to prove that↭𝑆 is closed under embeddings.

Consider 𝐺,𝐻,𝐻1, 𝐻2 where 𝐻 ⪯C 𝐺 , 𝐻1 ↭𝑆 𝐻2 and 𝐻1, 𝐻2 are

substitutable for 𝐻 in 𝐺 . By definition of↭𝑆 there exists a DRL-

graph 𝐼 such that 𝐻𝑖 →∗
R𝑆

𝐼 , for 𝑖 = 1, 2. W.l.o.g. we assume that 𝐼 is

disjoint from 𝐺 and 𝐻𝑖 , hence substitutable for 𝐻𝑖 in 𝐺 [𝐻𝑖/𝐻]. Let
𝑖 = 1, 2, by Lemma 36 we have 𝐺 [𝐻𝑖/𝐻] →∗

R𝑆
𝐺 [𝐻𝑖/𝐻] [𝐼/𝐻𝑖] and

by Lemma 25 we deduce that 𝐺 [𝐻𝑖/𝐻] →∗
R𝑆

𝐺 [𝐼/𝐻]. Therefore,
𝐺 [𝐻1/𝐻]↭𝑆 𝐺 [𝐻2/𝐻]. □

Lemma 60. If 𝑆 is saturated and does not contain ⊥ then↭𝑆 is a

model of 𝑆 .

Proof. Let 𝐺 ≈ 𝐺 ′
be a DRLG-equation in 𝑆 and let 𝜃 be a

ground substitution of the variables in𝐺,𝐺 ′
. By definition, we have

𝜃 (𝐺) ≈ 𝜃 (𝐺 ′) ∈ 𝐼𝑔 (𝑆). Since ≥ is total on ground DRL-graphs,

either 𝜃 (𝐺) ≥ 𝜃 (𝐺 ′) or 𝜃 (𝐺 ′) ≥ 𝜃 (𝐺). We assume by symmetry

that 𝜃 (𝐺) ≥ 𝜃 (𝐺 ′), so that R𝑆 contains a rule 𝜃 (𝐺) → 𝜃 (𝐺 ′). Then
by definition of↭𝑆 , we have 𝜃 (𝐺) ↭𝑆 𝜃 (𝐺 ′), hence↭𝑆 is a

model of 𝐺 ≈ 𝐺 ′
.

Now consider a ground DRLG-disequation𝐺 0 𝐺 ′
that is redun-

dant w.r.t. 𝑆 ; we prove that 𝐺 ̸↭𝑆 𝐺 ′
. This is sufficient to obtain

the result, since all the ground instances of a DRLG-disequation

occurring in 𝑆 are redundant w.r.t. 𝑆 . Assume for a contradiction

that 𝐺 ↭𝑆 𝐺 ′
, so that there exists 𝐻 such that 𝐺 →𝑛

R𝑆
𝐻 and

𝐺 ′ →𝑛′
R𝑆

𝐻 , for some 𝑛, 𝑛′ ∈ N. The proof is by induction on the

pair ({𝐺,𝐺 ′}, {𝑛, 𝑛′}), ordered by the lexicographic and multiset

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

extension of the ordering < and of the usual order on natural num-

bers.

• If there exists 𝐼 such that 𝐺 →
R
>
𝑆
𝐼 and 𝐼 0 𝐺 ′

is redundant

w.r.t. 𝑆 then by Proposition 51, 𝐼 < 𝐺 , thus by the induction

hypothesis 𝐼 ̸↭𝑆 𝐺 ′
. By definition of↭𝑆 we have 𝐺 ↭𝑆 𝐼 ,

hence 𝐺 ̸↭𝑆 𝐺 ′
.

• The proof is similar if there exists 𝐼 such that𝐺 ′ →
R
>
𝑆
𝐼 and

𝐺 0 𝐼 is redundant w.r.t. 𝑆 .

• Otherwise, 𝐺 0 𝐺 ′
must be an instance of a DRLG-literal in

𝑆 , i.e., there exist a DRLG-disequation 𝐻 0 𝐻 ′
occurring in

𝑆 (up to a renaming of nodes) and a substitution 𝜎 such that

𝐺 = 𝜎 (𝐻) and 𝐺 ′ = 𝜎 (𝐻 ′). We distinguish two cases.

– If 𝑛 = 𝑛′ = 0 then 𝜎 (𝐻) ∼ 𝜎 (𝐻 ′), thus 𝐻 and 𝐻 ′
are

label-unifiable (up to a renaming of nodes). Consequently,

the rule R applies. Since 𝑆 is saturated, this entails that

⊥ ∈ 𝑆 , which contradicts the hypotheses of the lemma.

– Otherwise, we have either 𝑛 > 0 or 𝑛′ > 0. Assume that

𝐺 > 𝐺 ′
, 𝑛 = 0 and 𝑛′ > 0. Then we have 𝐺 ∼ 𝐻 , thus

𝐺 ′ →𝑛′
R𝑆

𝐺 and 𝐺 ′ ≥ 𝐺 by Proposition 51, a contradic-

tion. The case where 𝐺 ′ > 𝐺 , with 𝑛 > 0 and 𝑛′ = 0

is symmetric. Now assume that 𝑛 > 0 and that 𝐺 ≥ 𝐺 ′

(the proof where 𝑛′ > 0 and 𝐺 ′ ≥ 𝐺 is symmetric). Then

there exists a DRLG-equation 𝐽 ≈ 𝐽 ′ in 𝑆 (up to a renam-

ing of nodes) and a substitution 𝜃 such that 𝜃 (𝐽) ⪯C 𝐺 ,

𝐺 →R𝑆
𝐺 [𝜃 (𝐽 ′)/𝜃 (𝐽)] →𝑛−1

R𝑆
𝐼 and 𝜃 (𝐽) ≥ 𝜃 (𝐽 ′). We as-

sume, w.l.o.g., that 𝐽 ≈ 𝐽 ′ and𝐻 0 𝐻 ′
share no variable, so

that 𝜎 and 𝜃 have disjoint domains. Let𝛾 be a most general

substitution such that 𝛾 (𝐽) ⪯C 𝛾 (𝐻). By definition, there

exists 𝛾 ′ such that (𝜎∪𝜃) = 𝛾 ′◦𝛾 . Since 𝜃 (𝐽) ≥ 𝜃 (𝐽 ′), and
≥ is closed under substitutions, we have 𝛾 (𝐽 ′) ̸> 𝛾 (𝐺 ′)
(as otherwise we would have 𝛾 ′(𝛾 (𝐽 ′)) > 𝛾 ′(𝛾 (𝐺 ′)), i.e.,
𝜃 (𝐽 ′) > 𝜃 (𝐽)). Similarly, since 𝐺 ≥ 𝐺 ′

and ≥ is closed un-

der substitutions, we deduce that 𝛾 (𝐻 ′) ̸> 𝛾 (𝐻). This
entails that the rule S− is applicable on 𝐻 0 𝐻 ′

and

𝐽 ≈ 𝐽 ′, yielding: L : (𝛾 (𝐻) [𝛾 (𝐽 ′)/𝛾 (𝐽)] 0 𝛾 (𝐻 ′). Then
𝐺 [𝜃 (𝐽 ′)/𝜃 (𝐽)] ≈ 𝐺 ′

is an instance of L, and since 𝑆 is

saturated, it must be redundant w.r.t. 𝑆 . By the induction

hypothesis, we deduce that 𝐺 [𝜃 (𝐽 ′)/𝜃 (𝐽)] ↭𝑆 𝐺 ′
, thus

𝐺 ↭𝑆 𝐺 ′
.

□

Theorem 61 (Completeness). Any saturated DRLG-formula not

containing ⊥ is satisfiable.

Proof. This follows immediately from Lemma 60. □

8 AN APPLICATION TO CIRCUITS
8.1 A Class of DRL-Graphs
In this section we consider a class of graphs, denoted by Circuits,

which intuitively consists of graphs that represent gates. Informally,

a gate with 𝑛 entries and𝑚 outputs is represented in this class by a

graph with 2(𝑛 +𝑚) + 1 nodes:

• one node that contains the information about the number of

entries and outputs;

• 𝑛 nodes that represent the entries and𝑚 nodes that represent

the outputs;

• 𝑛 +𝑚 root nodes that are used for rewriting operations.

We also define the notion of a subcircuit and show that it is a C-
relation, thus guaranteeing the completeness of the proof procedure

defined in Section 6.

Definition 62. We denote by Circuits the class of graphs 𝐺

satisfying the following properties:

(1) The set of labels is N \ {0}.
(2) There are sorts gate𝑚𝑛 , into and from denoting gates with 𝑛

entries and𝑚 outputs, input ports, and output ports respec-

tively.

(3) For each node 𝛼 of sort gate𝑚𝑛 there exist exactly 𝑛 nodes

𝛼1, . . . , 𝛼𝑛 of sort into labeled with 1, . . . , 𝑛 respectively and

𝑚 nodes 𝛼 ′
1
, . . . , 𝛼 ′

𝑚 of sort from labeled with 1, . . . ,𝑚 respec-

tively, and edges (𝛼𝑖 → 𝛼) and
(
𝛼 → 𝛼 ′

𝑗

)
for every 𝑖 ∈ ⟦1, 𝑛⟧

and 𝑗 ∈ ⟦1,𝑚⟧.
(4) All nodes of sort into have exactly one incoming and at most

one outgoing edge; all nodes of sort from have exactly one

outgoing and at most one incoming edge.

(5) Every node of sort into which is labeled by 𝑖 ∈ N \ {0} admits

one outgoing edge, the target of which is a node of sort gate𝑚𝑛 ,

where 𝑖 ≤ 𝑛.

(6) Every node of sort from which is labeled by 𝑖 ∈ N \ {0} admits

one incoming edge, the source of which is a node of sort gate𝑚𝑛 ,

where 𝑖 ≤ 𝑚.

(7) All the other edges are of the form (𝛼 → 𝛽) where 𝛼 is of sort

from and 𝛽 is of sort into.
(8) R𝐺 is of the form 𝑅𝑓 ·𝑅𝑖 , where every node in the sequence 𝑅𝑓

is of sort from and admits no incoming edge, and every node

in the sequence 𝑅𝑖 is of sort into and admits no outgoing edge.

The sequence 𝑅𝑓 is denoted by Rin
𝐺
, and 𝑅𝑖 by Rout

𝐺
.

Intuitively, Rin
𝐺

denotes the inputs of 𝐺 and Rout
𝐺

its outputs.

Example 63. The empty DRL-graph ∅
def
= (∅, ⟨⟩, ∅, ∅), is in Cir-

cuits, with Rin
∅

= Rout
∅

= ⟨⟩.

Definition 64. Given a node 𝛼 in Rin
𝐺
, we denote by trg𝐺 (𝛼)

(or simply trg(𝛼) when there is no ambiguity) the node 𝛽 such that

(𝛼 → 𝛽) ∈ E𝐺 . Given a node 𝛼 in Rout
𝐺

, we denote by src𝐺 (𝛼) (or
simply src(𝛼) when there is no ambiguity) the node 𝛽 such that

(𝛽 → 𝛼) ∈ E𝐺 .

Since every node 𝛼 in Rin
𝐺

is of sort from, the node 𝛽 such that

(𝛼 → 𝛽) ∈ E𝐺 exists and is unique; similarly, if 𝛼 in Rout
𝐺

then the

node 𝛽 such that (𝛽 → 𝛼) ∈ E𝐺 exists and is unique.

Definition 65. 𝐻 is a subcircuit of a DRL-graph 𝐺 ∈ Circuits,

denoted by 𝐻 ⪯C 𝐺 , if and only if 𝐻 ⪯ 𝐺 and 𝐻 ∈ Circuits.

Lemma 66. Assume that 𝐻 ⪯C 𝐺 , let 𝐻 ′
be a DRL-graph in Cir-

cuits that is substitutable for 𝐻 in 𝐺 and let 𝐺 ′ def
= 𝐺 [𝐻 ′/𝐻]. Then

𝐺 ′ ∈ Circuits.

Proof. Let 𝜇
def
= 𝜇𝐻→𝐻 ′

𝐺
(see Definition 15), we prove that 𝐺 ′ ∈

Circuits. Items (1) and (2) of the Definition 62 are immediate to

verify.

Item 3 Let 𝛼 ∈ N𝐺′ be a node of sort gate𝑚𝑛 . Note that 𝛼 can-

not be in R𝐺 ∪R𝐻 ′ . If 𝛼 ∈ N𝐻 ′ , then because𝐻 ′ ∈ Circuits,

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

it is guaranteed that there exist exactly 𝑛 nodes 𝛼1, . . . , 𝛼𝑛
of sort into labeled with 1, . . . , 𝑛 respectively and𝑚 nodes

𝛼 ′
1
, . . . , 𝛼 ′

𝑚 of sort from labeled with 1, . . . ,𝑚 respectively,

and edges (𝛼𝑖 → 𝛼) and
(
𝛼 → 𝛼 ′

𝑗

)
in E𝐻 ′ for all 𝑖 ∈ ⟦1, 𝑛⟧

and 𝑗 ∈ ⟦1,𝑚⟧. Since E𝐻 ′ ⊆ E𝐺′ , we have the result.

Otherwise, 𝛼 ∈ N𝐺 \ N𝐻 . Let 𝑖 ∈ ⟦1, 𝑛⟧, we prove that

there exists a node 𝛼 ′
𝑖
of sort into labeled with 𝑖 such that(

𝛼 ′
𝑖
→ 𝛼

)
∈ E𝐺′ . The proof for nodes of sort from is similar.

Since 𝐺 ∈ Circuits, there exists a node 𝛼𝑖 ∈ N𝐺 of sort

into labeled with 𝑖 such that (𝛼𝑖 → 𝛼) ∈ E𝐺 . Necessarily
(𝛼𝑖 → 𝛼) ∈ E𝐺 \ E𝐻 , and we have the result by taking

𝛼 ′
𝑖

def
= 𝜇 (𝛼𝑖).

Item 4 Consider a node 𝛼 ∈ N𝐺′ of sort into, and first as-

sume that 𝛼 ∈ N𝐺 \ N𝐻 , so that 𝜇 (𝛼) = 𝛼 and 𝛼 ∉ N𝐻 ′

by Proposition 14. By definition there exists a unique edge

(𝛼 ′ → 𝛼) ∈ E𝐺 \ E𝐻 , and since there can be no edge of the

form (𝛼 ′′ → 𝛼) in E𝐻 ′ ,𝛼 admits 𝜇 ((𝛼 ′ → 𝛼)) = (𝜇 (𝛼 ′) → 𝛼)
as a unique incoming edge. If 𝛼 ∈ N𝐻 ′ then by definition

𝜇 (𝛼) = 𝛼 and by Proposition 14, 𝛼 ∉ N𝐺 \ N𝐻 because

𝛼 ∉ N𝐻 . Since 𝐻 ∈ Circuits, the proof in this case is

straightforward.

The proof that 𝛼 admits at most one outgoing edge is carried

out in a similar way, and so are the proofs when 𝛼 is of sort

from.
Item 5 Consider a node 𝛼 ∈ N𝐺′ of sort into and labeled by

𝑖 . A case analysis depending on whether 𝛼 ∈ N𝐺 \ N𝐻 or

𝛼 ∈ N𝐻 ′ as in the previous point shows that the target of 𝛼

is of sort gate𝑚𝑛 for some 𝑛 ≥ 𝑖 .

Item 6 The proof is the same as in the previous case.

Item 7 Because 𝜇 preserves sorts, it is straightforward to prove

that all other edges are of the form (𝛼 → 𝛽) where 𝛼 is of

sort from and 𝛽 is of sort into.
Item 8 By definition we have R𝐺′ = 𝜇 (R𝐺), and since 𝐺 and

𝐻 ′
are both in Circuits, R𝐺′ is of the required form.

□

Lemma 67. Assume that 𝐻 ⪯C 𝐺 , 𝐻 ′ ⪯C 𝐺 and that 𝐻 and 𝐻 ′

are label-compatible. Then the 𝐸-merge of 𝐻 and 𝐻 ′
with

𝐸
def
= {(𝛼 ⇄ 𝛽) | 𝛼 ∈ R𝐻 \ N𝐻 ′, 𝛽 ∈ R𝐻 ′ \ N𝐻 , (𝛼 ⇄ 𝛽) ∈ E𝐺 }

is in Circuits.

Proof. Let 𝐺 ′
denote the 𝐸-merge of 𝐻 and 𝐻 ′

; by Proposition

31, 𝐺 ′ ⪯ 𝐺 . It is straightforward to verify that𝐺 ′ ∈ Circuits: the

existence of nodes and edges satisfying the requirements of the

definition of Circuits are deduced from the fact that 𝐻 and 𝐻 ′
are

both in Circuits, and the uniqueness properties are consequences

of the fact that 𝐻 and 𝐻 ′
are both subgraphs of 𝐺 which is in

Circuits. □

Lemma 68. The relation ⪯C is a C-relation, with C = Circuits.

Proof. First note that since 𝐻 ∈ Circuits, if 𝛼 ∈ N𝐺 \N𝐻 is of

sort into then there can be no edge (𝛼𝑖 → 𝛼) ∈ E𝐻 . Indeed, nec-
essarily, 𝛼𝑖 ∈ Rin

𝐻
and by definition, 𝛼𝑖 cannot admit any outgoing

edge. Similarly, if 𝛼 ∈ N𝐺 \ N𝐻 is of sort from then there can be

no edge (𝛼 → 𝛼𝑖) ∈ E𝐻 .

(1) By definition, if 𝐻 ⪯C 𝐺 then 𝐺,𝐻 ∈ Circuits.

(2) By Lemma 19 we have 𝐻 ′ ⪯ 𝐺 [𝐻 ′/𝐻] and by Lemma 66

𝐺 [𝐻 ′/𝐻] ∈ Circuits.

(3) It is clear that if𝐺 ∈ Circuits then 𝜇 (𝐺) ∈ Circuits for all

N -mappings 𝜇. By Proposition 9, we deduce that if 𝐻 ⪯C 𝐺

then 𝜇 (𝐻) ⪯C 𝜇 (𝐺).
(4) By Lemma 27 we have 𝐻 ⪯ 𝐺 [𝐼 ′/𝐼] and by Lemma 66,

𝐺 [𝐼 ′/𝐼] ∈ Circuits.

(5) If 𝐻 ⪯C 𝐺 and 𝐻 ′ ⪯C 𝐺 then the merge 𝐺 ′
of 𝐻 and 𝐻 ′

considered in Lemma 67 is such that 𝐺 ′ ⪯C 𝐺 .

□

8.2 Parallel and Sequential Composition
It is natural to construct a circuit by composing simpler compo-

nents. For instance the diagrams of the ZX calculus [12], formally

defined as morphisms in a dagger compact category, are built from

a set of generators via composition and monoidal product (modulo

equalities induced by the considered structure). We thus introduce

two standard composition operations: parallel and sequential com-

position. The empty graph is the neutral element for parallel compo-

sition, and we introduce the class of so-called identity graphs, which

can be viewed as neutral elements for sequential composition.

Definition 69. Consider two graphs 𝐺1,𝐺2 in Circuits, such

that N𝐺1
∩N𝐺2

= ∅. We define the parallel composition of𝐺1 and

𝐺2, denoted by 𝐺1 ⊗ 𝐺2, as the graph 𝐺3 constructed as follows.

(1) N𝐺3

def
= N𝐺1

∪ N𝐺2
;

(2) R𝐺3

def
= Rin

𝐺1

· Rin
𝐺2

· Rout
𝐺1

· Rout
𝐺2

;

(3) E𝐺3

def
= E𝐺1

∪ E𝐺2
;

(4) 𝑙𝐺3

def
= 𝑙𝐺1

∪ 𝑙𝐺2
.

It is straightforward to check that𝐺2 ⊗𝐺1 is a DRL-graph when

𝐺1 and 𝐺2 are disjoint.

Proposition 70. Parallel composition is an associative operation

on mutually disjoint DRL-graphs, and the empty DRL-graph ∅ is its

neutral element.

Proof. Immediate. □

Definition 71. Consider two graphs𝐺1,𝐺2 in Circuits, such that

N𝐺1
∩N𝐺2

= ∅, where Rout
𝐺1

= ⟨𝛼1, . . . , 𝛼𝑛⟩ and Rin
𝐺2

= ⟨𝛽1, . . . , 𝛽𝑛⟩.
We let Υ𝐺2

𝐺1

denote the mapping on N𝐺1
∪ N𝐺2

defined as follows:

• For all 𝑖 = 1, . . . , 𝑛, Υ𝐺2

𝐺1

(𝛼𝑖)
def
= trg𝐺2

(𝛽𝑖) and Υ𝐺2

𝐺1

(𝛽𝑖)
def
=

src𝐺1
(𝛼𝑖);

• For all other nodes 𝛼 ∈ N𝐺1
∪ N𝐺2

, Υ𝐺2

𝐺1

(𝛼) def
= 𝛼 .

We define the sequential composition of 𝐺1 and 𝐺2, denoted by

𝐺2 ◦𝐺1, as the graph 𝐺3 constructed as follows.

(1) N𝐺3

def
= Υ𝐺2

𝐺1

(N𝐺1
) ∪ Υ𝐺2

𝐺1

(N𝐺2
);

(2) R𝐺3

def
= Rin

𝐺1

· Rout
𝐺2

;

(3) E𝐺3

def
= Υ𝐺2

𝐺1

(E𝐺1
) ∪ Υ𝐺2

𝐺1

(E𝐺2
);

(4) 𝑙𝐺3

def
= 𝑙𝐺1

∪ 𝑙𝐺2
.

It is straightforward to check that 𝐺1 ◦𝐺2 is a DRL-graph when

𝐺1 and 𝐺2 satisfy the conditions of Definition 71.

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

𝛼
1

𝛼
2

𝛼
3

𝛼
4

𝛼
5

𝛼
6

𝛼
7

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝑣
1

𝑣
2

𝑣
3

Figure 3: Graphs 𝐺3, 𝐺1 and 𝐺2 in Example 72

𝛼
1

𝛼
2

𝛼
3

𝛼
4

𝛼
6

𝛽
2

𝑣
2

𝑣
3

𝛽
3

𝛽
4

𝛽
5

Figure 4: Sequential composition of𝐺2 ⊗𝐺1 and𝐺3 (Example
72)

Example 72. Consider the graph 𝐺3 defined as follows:

N𝐺3

def
= {𝛼1, . . . , 𝛼7}

R𝐺3

def
= ⟨𝛼1, 𝛼5, 𝛼7⟩

E𝐺3

def
= {(𝛼1 → 𝛼2) , (𝛼2 → 𝛼3) , (𝛼3 → 𝛼4) , (𝛼3 → 𝛼6)}

∪{(𝛼4 → 𝛼5) , (𝛼6 → 𝛼7)}
𝑙𝐺3

def
= {(𝛼2, 1), (𝛼3, 𝑓), (𝛼4, 1), (𝛼6, 2)}

This graph is an element of Circuits, 𝛼3 is of sort gate
2

1
, nodes 𝛼2, 𝛼5

and 𝛼7 are of sort into and nodes 𝛼1, 𝛼4 and 𝛼6 are of sort from.
We also consider the graphs 𝐺2 and 𝐺1, defined as follows:

N𝐺2

def
= {𝛽1, . . . , 𝛽5}

R𝐺2

def
= ⟨𝛽1, 𝛽5⟩

E𝐺2

def
= {(𝛽1 → 𝛽2) , (𝛽2 → 𝛽3) , (𝛽3 → 𝛽4) , (𝛽4 → 𝛽5)}

𝑙𝐺2

def
= {(𝛽2, 1), (𝛽3, 𝑔), (𝛽4, 1)}

N𝐺1

def
= {𝑣1, 𝑣2, 𝑣3}

R𝐺1

def
= ⟨𝑣1⟩

E𝐺1

def
= {(𝑣1 → 𝑣2) , (𝑣2 → 𝑣3)}

𝑙𝐺1

def
= {(𝑣2, 1), (𝑣3, ℎ)}

Node 𝛽3 is of sort gate
1

1
, nodes 𝛽1 and 𝛽4 are of sort from; and nodes

𝛽2 and 𝛽5 is of sort into. Node 𝑣3 is of sort gate
0

1
, node 𝑣1 is of sort

from and node 𝑣2 is of sort into. All graphs are depicted in Figure 3,

and the graph (𝐺2 ⊗ 𝐺1) ◦𝐺3 is depicted in Figure 4.

It is straightforward to check that by construction we have the

following result:

Proposition 73. Assume 𝐺2 ◦ 𝐺1 is well-defined. We have the

following properties:

• Rin
𝐺2◦𝐺1

= Rin
𝐺1

and Rout
𝐺2◦𝐺1

= Rout
𝐺2

.

• If 𝛼 ∈ Rin
𝐺2◦𝐺1

then trg𝐺2◦𝐺1

(𝛼) = Υ𝐺2

𝐺1

(trg𝐺1

(𝛼)).
• If 𝛼 ∈ Rout

𝐺2◦𝐺1

then src𝐺2◦𝐺1
(𝛼) = Υ𝐺2

𝐺1

(src𝐺2
(𝛼)).

Proposition 74. If the graphs 𝐺1, 𝐺2 and 𝐺3 in Circuits are

mutually disjoint and such that𝐺3 ◦𝐺2 and𝐺2 ◦𝐺1 are well-defined,

then the sequential compositions (𝐺3 ◦𝐺2) ◦𝐺1 and 𝐺3 ◦ (𝐺2 ◦𝐺1)
are well-defined and equal.

Proof. We assume

Rout
𝐺1

= ⟨𝛼1, . . . , 𝛼𝑛⟩ Rin
𝐺2

= ⟨𝛽1, . . . , 𝛽𝑛⟩
Rout
𝐺2

= ⟨𝛾1, . . . , 𝛾𝑚⟩ Rin
𝐺3

= ⟨𝛿1, . . . , 𝛿𝑚⟩

Let𝐻
def
= 𝐺2◦𝐺1 and 𝐼

def
= 𝐺3◦𝐺2. We begin by proving the following

statements.

(1) If 𝛼 ∈ N𝐺1
then Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(𝛼) = Υ𝐼
𝐺1

(𝛼). First assume that

𝛼 ∈ Rout
𝐺1

, i.e., that 𝛼 = 𝛼𝑖 for some 𝑖 = 1, . . . , 𝑛. Then

by construction we have Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(𝛼) = Υ𝐺3

𝐻
(trg𝐺2

(𝛽𝑖)),
and by Proposition 73, Υ𝐼

𝐺1

(𝛼) = trg𝐼 (𝛽𝑖) = Υ𝐺3

𝐺2

(trg𝐺2

(𝛽𝑖)).
Still by Proposition 73 we have Rout

𝐻
= Rout

𝐺2

, therefore,

Υ𝐺3

𝐻
(trg𝐺2

(𝛽𝑖)) = Υ𝐺3

𝐺2

(trg𝐺2

(𝛽𝑖)). Otherwise, since the con-
sidered graphs are pairwise disjoint and Rout

𝐻
= Rout

𝐺2

, we

have

Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(𝛼) = Υ𝐺3

𝐻
(𝛼) = 𝛼 = Υ𝐼𝐺1

(𝛼),

hence the result.

(2) If 𝛼 ∈ N𝐺2
then Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(𝛼) = Υ𝐼
𝐺1

◦ Υ𝐺3

𝐺2

(𝛼). First assume

that 𝛼 ∈ Rin
𝐺2

, i.e., that 𝛼 = 𝛽𝑖 for some 𝑖 = 1, . . . , 𝑛. Then by

Proposition 73 Rin
𝐺2

= Rin
𝐼

and

Υ𝐺3

𝐻
◦Υ𝐺2

𝐺1

(𝛼) = Υ𝐺3

𝐻
(src𝐺1

(𝛼𝑖)) = src𝐺1
(𝛼𝑖) = Υ𝐼𝐺1

(𝛼) = Υ𝐼𝐺1

◦Υ𝐺3

𝐺2

(𝛼) .

Now assume that 𝛼 ∈ Rout
𝐺2

, i.e., that 𝛼 = 𝛾𝑖 for some

𝑖 = 1, . . . ,𝑚. Then by Proposition 73 Rout
𝐺2

= Rout
𝐻

and

Υ𝐺3

𝐻
◦Υ𝐺2

𝐺1

(𝛼) = Υ𝐺3

𝐻
(𝛼) = trg𝐺3

(𝛿𝑖) = Υ𝐼𝐺1

(trg𝐺3

(𝛿𝑖)) = Υ𝐼𝐺1

◦Υ𝐺3

𝐺2

(𝛼) .

Otherwise we have

Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(𝛼) = Υ𝐺3

𝐻
(𝛼) = 𝛼 = Υ𝐼𝐺1

(𝛼) = Υ𝐼𝐺1

◦ Υ𝐺3

𝐺2

(𝛼),

hence the result.

(3) If𝛼 ∈ N𝐺3
then Υ𝐺3

𝐻
(𝛼) = Υ𝐼

𝐺1

◦Υ𝐺3

𝐺2

(𝛼). First assume that𝛼 ∈
Rin
𝐺3

, i.e., that 𝛼 = 𝛿𝑖 for some 𝑖 = 1, . . . ,𝑚. Then by construc-

tion we have Υ𝐼
𝐺1

◦Υ𝐺3

𝐺2

(𝛼) = Υ𝐼
𝐺1

(src𝐺2
(𝛾𝑖)), and by Proposi-

tion 73, Υ𝐺3

𝐻
(𝛼) = src𝐻 (𝛾𝑖) = Υ𝐺2

𝐺1

(src𝐺2
(𝛾𝑖)). Still by Propo-

sition 73 we have Rin
𝐼

= Rin
𝐺2

, therefore, Υ𝐺3

𝐻
(trg𝐺2

(𝛽𝑖)) =
Υ𝐺3

𝐺2

(trg𝐺2

(𝛽𝑖)). Otherwise, since the considered graphs are

pairwise disjoint and Rin
𝐼

= Rin
𝐺2

, we have

Υ𝐺3

𝐻
(𝛼) = 𝛼 = Υ𝐺3

𝐺2

(𝛼) = Υ𝐼𝐺1

◦ Υ𝐺3

𝐺2

(𝛼),

hence the result.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

Using the statements above, we deduce that:

E𝐼◦𝐺1
= Υ𝐼𝐺1

(E𝐺1
) ∪ Υ𝐼𝐺1

(E𝐼)

= Υ𝐼𝐺1

(E𝐺1
) ∪ Υ𝐼𝐺1

◦ Υ𝐺3

𝐺2

(E𝐺2
) ∪ Υ𝐼𝐺1

◦ Υ𝐺3

𝐺2

(E𝐺3
)

= Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(E𝐺1
) ∪ Υ𝐺3

𝐻
◦ Υ𝐺2

𝐺1

(E𝐺2
) ∪ Υ𝐺3

𝐻
(E𝐺3

)

= Υ𝐺3

𝐻
(E𝐻) ∪ Υ𝐺3

𝐻
(E𝐺3

)
= E𝐺3◦𝐻

We prove in a similar way that N𝐼◦𝐺1
= N𝐺3◦𝐻 . Since R𝐼◦𝐺1

=

R𝐺3◦𝐻 and 𝑙𝐼◦𝐺1
= 𝑙𝐺3◦𝐻 by construction, we have the result. □

We have the following commutation rule that shows that parallel

and sequential composition can be switched:

Lemma 75. Consider the pairwise disjoint graphs𝐺1,𝐺2,𝐺3,𝐺4 in

Circuits, and assume |Rin
𝐺1

| = |Rout
𝐺2

| and |Rin
𝐺3

| = |Rout
𝐺4

|. Then we

have:

(𝐺2 ⊗ 𝐺4) ◦ (𝐺1 ⊗ 𝐺3) = (𝐺2 ◦𝐺1) ⊗ (𝐺4 ◦𝐺3).

Proof. We define the following graphs:

𝐻1

def
= 𝐺2 ◦𝐺1 𝐻2

def
= 𝐺4 ◦𝐺3 𝐻3

def
= 𝐻1 ⊗ 𝐻2

𝐼1
def
= 𝐺1 ⊗ 𝐺3 𝐼2

def
= 𝐺2 ⊗ 𝐺4 𝐼3

def
= 𝐼2 ◦ 𝐼1

and prove that 𝐻3 = 𝐼3.

First note that by construction, we have Rin
𝐼1

= Rin
𝐺1

· Rin
𝐺3

and

Rout
𝐼2

= Rout
𝐺2

· Rout
𝐺4

. Since |Rin
𝐺1

| = |Rout
𝐺2

| and |Rin
𝐺3

| = |Rout
𝐺4

| by
hypothesis, 𝐼3 is well-defined. Furthermore, because all graphs are

pairwise disjoint, it is straightforward to verify that Υ𝐼2
𝐼1

= Υ𝐺2

𝐺1

∪Υ𝐺4

𝐺3

.

(1)

N𝐻3
= N𝐻1

∪ N𝐻2

= Υ𝐺2

𝐺1

(N𝐺1
) ∪ Υ𝐺2

𝐺1

(N𝐺2
) ∪ Υ𝐺4

𝐺3

(N𝐺3
) ∪ Υ𝐺4

𝐺3

(N𝐺4
)

= Υ𝐼2
𝐼1
(N𝐺1

) ∪ Υ𝐼2
𝐼1
(N𝐺2

) ∪ Υ𝐼2
𝐼1
(N𝐺3

) ∪ Υ𝐼2
𝐼1
(N𝐺4

)

= Υ𝐼2
𝐼1
(N𝐺1

∪ N𝐺3
) ∪ Υ𝐼2

𝐼1
(N𝐺2

∪ N𝐺4
)

= Υ𝐼2
𝐼1
(N𝐼1) ∪ Υ𝐼2

𝐼1
(N𝐼2)

= N𝐼3 .

(2)

R𝐻3
= Rin

𝐻1

· Rin
𝐻2

· Rout
𝐻1

· Rout
𝐻2

= Rin
𝐺1

· Rin
𝐺3

· Rout
𝐺2

· Rout
𝐺4

= Rin
𝐼1

· Rout
𝐼2

= R𝐼3 .

(3)

E𝐻3
= E𝐻1

∪ E𝐻2

= Υ𝐺2

𝐺1

(E𝐺1
) ∪ Υ𝐺2

𝐺1

(E𝐺2
) ∪ Υ𝐺4

𝐺3

(E𝐺3
) ∪ Υ𝐺4

𝐺3

(E𝐺4
)

= Υ𝐼2
𝐼1
(E𝐺1

) ∪ Υ𝐼2
𝐼1
(E𝐺2

) ∪ Υ𝐼2
𝐼1
(E𝐺3

) ∪ Υ𝐼2
𝐼1
(E𝐺4

)

= Υ𝐼2
𝐼1
(E𝐺1

∪ E𝐺3
) ∪ Υ𝐼2

𝐼1
(E𝐺2

∪ E𝐺4
)

= Υ𝐼2
𝐼1
(E𝐼1) ∪ Υ𝐼2

𝐼1
(E𝐼2)

= E𝐼3 .

(4)

𝑙𝐻3
= 𝑙𝐻1

∪ 𝑙𝐻2

= 𝑙𝐺1
∪ 𝑙𝐺2

∪ 𝑙𝐺3
∪ 𝑙𝐺4

= 𝑙𝐼1 ∪ 𝑙𝐼2

= 𝑙𝐼3 .

□

We now define the class of identity graphs. Intuitively, these

graphs can be viewed as parallel compositions of wires. Their se-

quential composition with a graph leaves the latter unchanged, up

to a renaming of nodes.

Definition 76. A graph 𝐺 is an id-graph if it is of the following

form:

• N𝐺 = {𝛼1, 𝛼2}, R𝐺 = ⟨𝛼1, 𝛼2⟩, E𝐺 = {(𝛼1 → 𝛼2)}, 𝑙𝐺 = ∅,
• 𝛼1 is of sort from and 𝛼2 is of sort into.

The empty graph is an id0-graph and for 𝑘 > 0, a graph 𝐺 is an

id𝑘 -graph if it is of the form 𝐻 ⊗ 𝐻 ′
, where 𝐻 is an id-graph and 𝐻 ′

is an id𝑘−1-graph.

It is easy to check that 𝐺 is an id1-graph iff it is an id-graph and

that every id𝑘 -graph is in Circuits. In what follows, we will denote

by 𝐼𝑘 any id𝑘 -graph.

Proposition 77. Consider a graph 𝐺 in Circuits, and let 𝑛
def
=

Rout
𝐺

and𝑚
def
= Rin

𝐺
. Then 𝐺 ∼ (𝐺 ◦ 𝐼𝑛) and 𝐺 ∼ (𝐼𝑚 ◦𝐺).

Proof. Let 𝐻
def
= 𝐺 ◦ 𝐼𝑛 , we prove that 𝐺 ∼ 𝐻 , the proof for

the other statement is similar. Let Rin
𝐺

= ⟨𝛼1, . . . , 𝛼𝑛⟩, Rin
𝐼𝑛

=

⟨𝛽1, . . . , 𝛽𝑛⟩ and Rout
𝐼𝑛

= ⟨𝛽 ′
1
, . . . , 𝛽 ′𝑛⟩. Let Υ

def
= Υ𝐺

𝐼𝑛
. Note that by

construction, for all 𝑖 = 1, . . . , 𝑛, we have Υ(𝛽 ′
𝑖
) = trg(𝛼𝑖) and

Υ(𝛼𝑖) = src(𝛽 ′
𝑖
) = 𝛽𝑖 .

Consider an N -mapping 𝜇 such that for all 𝑖 = 1, . . . , 𝑛, 𝜇 (𝛽𝑖) =
𝛼𝑖 and for all 𝛼 ∈ N∗

𝐺
, 𝜇 (𝛼) = 𝛼 . We show that 𝜇 (𝐻) = 𝐺 .

•
N𝜇 (𝐻) = 𝜇 (Υ(N𝐺) ∪ Υ(N𝐼𝑛))

= 𝜇 ((N𝐺 \ {𝛼𝑖 | 𝑖 = 1, . . . , 𝑛}) ∪ {𝛽𝑖 | 𝑖 = 1, . . . , 𝑛})
= (N𝐺 \ {𝛼𝑖 | 𝑖 = 1, . . . , 𝑛}) ∪ {𝛼𝑖 | 𝑖 = 1, . . . , 𝑛}
= N𝐺 .

•
R𝜇 (𝐻) = 𝜇 (Rin

𝐺 · Rout
𝐼𝑛

) (2)

= 𝜇 (Rin
𝐼𝑛
) · 𝜇 (Rout

𝐺
) (3)

= Rin
𝐺 · Rout

𝐺
(4)

= R𝐺 . (5)

• Let 𝐸
def
= {(𝛼𝑖 → trg(𝛼𝑖)) | 𝑖 = 1, . . . , 𝑛}, so that no node 𝛼𝑖

occurs in E𝐺 \ 𝐸. We have:

E𝜇 (𝐻) = 𝜇 (Υ(E𝐺) ∪ Υ(E𝐼𝑛))
= 𝜇 (Υ(E𝐺 \ 𝐸)) ∪ 𝜇 (Υ(𝐸)) ∪ 𝜇 (Υ(E𝐼𝑛))
= 𝜇 (E𝐺 \ 𝐸) ∪ 𝜇 ({(𝛽𝑖 → trg(𝛼𝑖)) | 𝑖 = 1, . . . , 𝑛})
= (E𝐺 \ 𝐸) ∪ 𝐸

= E𝐺 .

A Superposition-Based Calculus for Diagrammatic Reasoning (Long Version) PPDP 2021, September 6–8, 2021, Tallinn, Estonia

• 𝑙𝐻 = 𝜇 (𝑙𝐺 ∪ 𝑙𝐼𝑛) = 𝜇 (𝑙𝐺) = 𝑙𝐺 .

□

Another class of graphs that are frequently used in the construc-

tion of circuits are swap-graphs, which intuitively permit to change

the order of wires.

Definition 78. A graph𝐺 is a swap-graph if it is of the following

form:

• N𝐺 = R𝐺 = ⟨𝛼1, 𝛼2, 𝛼3, 𝛼4⟩, E𝐺 = {(𝛼1 → 𝛼4) , (𝛼2 → 𝛼3)},
• 𝑙𝐺 = ∅ and the nodes 𝛼1 and 𝛼2 are of sort from and nodes 𝛼3
and 𝛼4 are of sort into.

We define the subclass of elementary circuits, which are com-

positions of so-called elementary gates, identity graphs and swap-

graphs.

Definition 79. A graph 𝐺 is an elementary gate if it is in Cir-

cuits and the following conditions hold:

• N𝐺 contains a single node of sort gate𝑚𝑛 , for some 𝑛 and𝑚.

• If (𝛼𝑖 → 𝛽𝑖) and
(
𝛼 𝑗 → 𝛽 𝑗

)
are edges such that 𝛽𝑖 occurs

before 𝛽 𝑗 in Rin
𝐺
, then 𝑙𝐺 (𝛼𝑖) < 𝑙𝐺 (𝛼 𝑗).

• If (𝛼𝑖 → 𝛽𝑖) and
(
𝛼 𝑗 → 𝛽 𝑗

)
are edges such that 𝛼𝑖 occurs

before 𝛼 𝑗 in Rout
𝐺

, then 𝑙𝐺 (𝛽𝑖) < 𝑙𝐺 (𝛽 𝑗).
A graph𝐺 is an elementary circuit if it is obtained by sequential and

parallel compositions from elementary gates, id-graphs and swap-

graphs.

Example 80. Graphs𝐺1,𝐺2 and𝐺3 in Example 72 are all elemen-

tary gates, hence (𝐺2 ⊗ 𝐺1) ◦𝐺3 is an elementary circuit.

The class of elementary circuits is general enough to encode

several classes of graphs that are used in diagrammatic reasoning,

including the orthogonal diagrams of [30] or the ZX calculus [12],

thus making it to use the proof procedure of Section 6 to automati-

cally verify formulas involving such graphs. In particular, the rules

of the ZX calculus may be viewed as a set of DRLG-equations 𝐸𝑍𝑋
on Circuits, and checking whether two ZX diagrams 𝐺 and 𝐻

(denoted by DRL-graphs in Circuits) are equivalent boils down to

checking whether the DRLG-formula 𝐸𝑍𝑋 ∪ {𝐺 0 𝐻 } is unsatisfi-
able. Note that some of the nodes occurring in the ZX diagrams are

labeled by real numbers in the interval (−2𝜋, 2𝜋] (a phase), which
cannot be denoted in our formalism. However, one may consider

the fragment callled 𝑍𝑋𝜋/4 which corresponds to the so called Clif-

ford+T quantum mechanics and is approximately universal, in the

sense that any quantum evolution (i.e., any unitary map) can be

approximated by a subset of gates that can be represented with a

ZX diagram where phases are multiples of
𝜋
4
. Thus only a finite

number of possible constants need to be considered [40].

9 DISCUSSION
We have defined an extension of the Superposition calculus to a

class of graphs that is general enough to encode the graph-based

languages that are used to perform diagrammatic reasoning on

quantum algorithms and protocols. This calculus is complete, mean-

ing that if a graph formula is unsatisfiable, then it is guaranteed

that the calculus will generate ⊥. We now intend to adapt an im-

plementation of the Saturation calculus to design a tool on which

we will be able to evaluate the efficiency of the calculus and inves-

tigate how it can be improved for specific subclasses of graphs –

for example, by defining suitable orderings for such subclasses in

order to reduce the search space as much as possible.

There are several lines of future work that would be interest-

ing to explore. We plan to investigate how variables representing

graphs can be introduced into the calculus. During the construction

of a refutation using a calculus that can handle such variables, these

variables would be instantiated by graphs with specific properties

that guarantee correctness, and would for example permit to auto-

matically synthesize circuits. Another promising topic is to extend

graph literals with constraints. This would permit to represent al-

gorithms in a more concise or natural way, while still being able to

automatically verify these algorithms.

REFERENCES
[1] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with

selection and simplification. Journal of Logic and Computation, 3(4):217–247,

1994.

[2] M. Backens and A. Kissinger. ZH: A complete graphical calculus for quantum

computations involving classical non-linearity. In 15th Annual Conference of

Quantum Physics and Logic (QPL), 2018. arXiv:1805.02175.

[3] H. P. Barendregt. Functional programming and lambda calculus. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal

Models and Semantics, pages 321–363. Elsevier and MIT Press, 1990.

[4] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, R. Kennaway, M. J.

Plasmeijer, andM. R. Sleep. Term graph rewriting. In PARLE, Parallel Architectures

and Languages Europe, Volume II: Parallel Languages, volume 259 of LNCS, pages

141–158. Springer, 1987.

[5] P. Baumgartner and U. Waldmann. Hierarchic superposition with weak ab-

straction. In M. P. Bonacina, editor, Automated Deduction - CADE-24 - 24th

International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,

2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 39–57.

Springer, 2013.

[6] A. Bentkamp, J. Blanchette, S. Cruanes, and U. Waldmann. Superposition for

lambda-free higher-order logic. Log. Methods Comput. Sci., 17(2), 2021.

[7] J. C. Blanchette, N. Peltier, and S. Robillard. Superposition with datatypes and

codatatypes. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, Automated

Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the

Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

volume 10900 of Lecture Notes in Computer Science, pages 370–387. Springer, 2018.

[8] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. Confluence of

graph rewriting with interfaces. In 26th European Symposium on Programming

(21/04/17 - 28/04/17), February 2017.

[9] J. H. Brenas, R. Echahed, and M. Strecker. Proving correctness of logically deco-

rated graph rewriting systems. In 1st International Conference on Formal Structures

for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, vol-

ume 52 of LIPIcs, pages 14:1–14:15. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2016.

[10] T. Carette, D. Horsman, and S. Perdrix. SZX-calculus: Scalable graphical quantum

reasoning. arXiv preprint arXiv:1905.00041, 2019.

[11] A. Clément and S. Perdrix. PBS-calculus: A graphical language for quantum-

controlled computations. arXiv preprint arXiv:2002.09387, 2020.

[12] B. Coecke and R. Duncan. Interacting quantum observables: categorical algebra

and diagrammatics. New Journal of Physics, 13(4):043016, apr 2011.

[13] B. Coecke and R. Duncan. Tutorial: Graphical calculus for quantum circuits. In

International Workshop on Reversible Computation, pages 1–13. Springer, 2012.

[14] A. Corradini, D. Duval, R. Echahed, F. Prost, and L. Ribeiro. The PBPO graph

transformation approach. J. Log. Algebr. Meth. Program., 103:213–231, 2019.

[15] A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout rewriting. In

Graph Transformations, ICGT 2006, volume 4178 of LNCS, pages 30–45. Springer,

2006.

[16] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Rubio, and C. L.

Talcott. Programming and symbolic computation in Maude. J. Log. Algebraic

Methods Program., 110, 2020.

[17] R. Echahed. Inductively sequential term-graph rewrite systems. In Graph Trans-

formations, ICGT 2008, volume 5214 of LNCS, pages 84–98. Springer, 2008.

[18] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. An EATCS Series.

Springer, 2006.

[19] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic ap-

proach. In 14th Annual Symposium on Switching and Automata Theory, Iowa City,

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

Iowa, USA, October 15-17, 1973, pages 167–180, 1973.

[20] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Hand-

book of Graph Grammars and Computing by Graph Transformations, Volume 1:

Foundations, pages 1–94. World Scientific, 1997.

[21] J. Gorard, M. Namuduri, and X. D. Arsiwalla. Zx-calculus and extended wolfram

model systems II: fast diagrammatic reasoning with an application to quantum

circuit simplification. CoRR, abs/2103.15820, 2021.

[22] A. Habel, K.-H. Pennemann, and A. Rensink. Weakest preconditions for high-

level programs. In Graph Transformations (ICGT), Natal, Brazil, volume 4178 of

LNCS, pages 445–460, Berlin, September 2006. Springer Verlag.

[23] A. Hadzihasanovic. The algebra of entanglement and the geometry of composi-

tion. PhD, University of Oxford, arXiv:1709.08086, 2017.

[24] M. Hanus. Functional logic programming: From theory to Curry. In A. Voronkov

and C. Weidenbach, editors, Programming Logics - Essays in Memory of Harald

Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 123–168.

Springer, 2013.

[25] J. Hullot. Canonical forms and unification. In W. Bibel and R. A. Kowalski,

editors, 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980,

Proceedings, volume 87 of Lecture Notes in Computer Science, pages 318–334.

Springer, 1980.

[26] G. Hutton. Programming in Haskell. Cambridge University Press, 2 edition, 2016.

[27] R. Kennaway, J. W. Klop, M. R. Sleep, and F. de Vries. On the adequacy of

graph rewriting for simulating term rewriting. ACM Trans. Program. Lang. Syst.,

16(3):493–523, 1994.

[28] D. Knuth and P. Bendix. Simple word problems in universal algebra. In J. Leech,

editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon

Press, 1970.

[29] Y. Lafont. Diagram rewriting and operads, 2009. Lecture given at the Thematic

school : Operads, CIRM, Luminy (Marseille).

[30] Y. Lafont and P. Rannou. Diagram rewriting for orthogonal matrices: A study

of critical peaks. In A. "Voronkov, editor, Rewriting Techniques and Applications,

pages 232–245. Springer Berlin Heidelberg, 2008.

[31] A. Leitsch. The resolution calculus. Springer. Texts in Theoretical Computer

Science, 1997.

[32] R. Milner, M. Tofte, and R. Harper. Definition of standard ML. MIT Press, 1990.

[33] D. Plump. Confluence of graph transformation revisited. In A. Middeldorp, V. van

Oostrom, F. van Raamsdonk, and R. C. de Vrijer, editors, Processes, Terms and

Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the

Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer Science,

pages 280–308. Springer, 2005.

[34] C. M. Poskitt and D. Plump. A Hoare calculus for graph programs. In 5th

International Conference on Graph Transformations (ICGT2010), volume 6372 of

LNCS, pages 139–154. Springer, 2010.

[35] A. Rensink. The GROOVE simulator: A tool for state space generation. In Second

International Workshop on Applications of Graph Transformations with Industrial

Relevance, AGTIVE 2003, volume 3062 of LNCS, pages 479–485. Springer, 2003.

[36] A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In Proceedings

of the International Joint Conference on Automated Reasoning (IJCAR’01), pages

376–380. Springer LNCS 2083, 2001.

[37] J. A. Robinson. A machine-oriented logic based on the resolution principle. J.

Assoc. Comput. Mach., 12:23–41, 1965.

[38] S. Schulz. The E Equational Theorem Prover. http://www4.informatik.tu-

muenchen.de/ schulz/WORK/eprover.html.

[39] D. Varró. Automated formal verification of visual modeling languages by model

checking. Journal of Software and Systems Modeling, 3(2):85–113, May 2004.

[40] R. Vilmart, S. Perdrix, and E. Jeandel. Completeness of the zx-calculus. Logical

Methods in Computer Science, 16, 2020.

[41] U. Waldmann. Cancellative abelian monoids and related structures in refutational

theorem proving (part I). J. Symb. Comput., 33(6):777–829, 2002.

[42] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt,

and D. Topic. System description: SPASS version 1.0.0. In Proceedings of the 16th

Conference on Automated Deduction (CADE-16), pages 378–382. Springer LNCS

1632, 2001.

	Abstract
	1 Introduction
	2 Basic Definitions and Notations
	3 Rooted Graphs
	3.1 Definitions
	3.2 Properties of the Replacement Operation
	3.3 Graph Merging
	3.4 Restricting the Class of Graphs: C-Relations
	3.5 Graph Rewrite Systems

	4 Graph Formulas
	5 Semantics
	6 A Proof Procedure
	6.1 Inference Rules
	6.2 Redundancy

	7 Completeness
	8 An Application to Circuits
	8.1 A Class of DRL-Graphs
	8.2 Parallel and Sequential Composition

	9 Discussion
	References

