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This document contains the first part of the M2R course RAPA: Automated
Reasoning: Principle and Applications. It presents the basis of first-order logic
and automated deduction: syntax, semantics, transformation into clausal form,
unification and the Resolution calculus (with selection functions and atom or-
dering). Some basic properties of the Resolution calculus are also investigated
(w.r.t. complexity and termination).

This document is self-contained but additional references are provided for
the interested reader. More details and additional explanations can be found in
[5, 6]. [8] is an advanced textboook on the Resolution calculus and the Handbook
of Automated Reasoning [12] covers the main lines of research in this field.

1 First Order Logic

First-order logic (FOL) is a formal language for expressing properties. Propo-
sitional logic allows one to express basic statements (s.t. “Paris is a town” or
“Berlin is a town” or “Paris is the capital of France”) and to combine them with
logical connectives: ¬ (not), ∨ (or), ∧ (and), ⇒ (implies) and ⇔ (equivalence).
First-order logic extends this language by using predicate symbols and quantifi-
cation over individuals. For instance, the property “to be a town” may be ex-
pressed by a predicate symbol Town, which can be applied to different individu-
als: Town(Paris),Town(Berlin), . . . Using quantification, it is possible to express
the property: “all countries have a capital”: ∀x[Country(x)⇒ ∃yCapital(y, x)]
(meaning: “for every x, if x is a country, then there exists a y such that y is the
capital of x”).

However, it is not possible in first order logic to express quantification over
sets of individuals or over functions. For instance, the induction principle is not
expressible in first-order logic: ∀P [P (0) ∧ ∀xP (x) ⇒ P (succ(x))] ⇒ ∀xP (x) is
not a sentence of FOL, due to the quantification over the sets of natural numbers
P . Similarly, the property ∀f∃xf(x) = x (every function has a fixpoint) is not
expressible in FOL.
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1.1 Syntax

A first-order language L is a set containing:

• A set of constant symbols, usually denoted by a, b, c, . . .

• A set of function symbols f, g, h, . . .

• A set of propositional variables P,Q,R, . . .

• A set of predicate symbols, also denoted by P,Q,R, . . .

Each function or predicate symbol is associated to a unique natural number
called its arity (number of arguments).

Throughout this document, we assume that a first-order language L is given,
together with a set of variables V , disjoint from the symbols in L. Terms and
formulae are defined relatively to these sets.

Definition 1 (Terms) The set of terms is the smallest set that satisfies the
following properties:

• Every constant symbol is a term.

• Every variable is a term.

• If t1, . . . , tn are terms and if f is a function symbol of arity n then
f(t1, . . . , tn) is a term.

We emphasize that this definition is inductive (“. . . smallest set that . . . ”).
All the terms must be of one of the above forms and infinite terms of the form
f(f(f(. . .))) are forbidden.

Alternatively, terms can be seen as trees labeled by symbols in L.

Remark 2 For the sake of uniformity, one can also view constant symbols as
function symbols of arity 0 (nullary functions). If this convention is used, the
first line in Definition 1 may be deleted. An expression of the form f(t1, . . . , tn)
where n = 0 is to be read as the constant f .

We denote by Var(t) the set of variables occurring in the term t. This set is
inductively defined as follows:

Var(t) = {t} if t is a variable
Var(t) = ∅ if t is a constant symbol
Var(t) =

⋃n

i=1 Var(ti) if t is of the form f(t1, . . . , tn)

First-order formulae are built inductively from terms using the predicate
symbols and propositional variables in L and the logical symbols ∨ (or), ∧
(and), ⇒ (implication), ⇔ (equivalence), ∀, ∃ (quantification).

Definition 3 (Formulae) The set of formulae is the smallest set that satisfies
the following properties:
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• Every propositional variable is a formula.

• “true” and “false” are formulae.

• If t1, . . . , tn are terms and P is a predicate symbol of arity n then
P (t1, . . . , tn) is a formula.

• If φ is a formula then (¬φ) is also a formula.

• If φ1, φ2 are formulae, then (φ1∧φ2), (φ1∨φ2), (φ1 ⇒ φ2) and (φ1 ⇒ φ2)
are formulae.

• If φ is a formula and x is a variable, then (∀xφ) and (∃xφ) are formulae.

In the above definition, formulae are always written with parentheses. In
practice, some parentheses may of course be omitted, and the usual priority
rules are used to reconstruct the corresponding formula. The priority rank is as
follows: ∀, ∃ > ¬ > ∧ > ∨ >⇒. For instance ¬P ∧Q ∨ R ⇒ P should be read
as (((¬P ) ∧Q) ∨R)⇒ R.

A formula ψ is said to be a subformula of φ if ψ is either φ or a formula
occurring inside φ (the formal definition is left to the reader).

Formulae that contain no logical symbols (i.e. that are propositional vari-
ables or of the form P (t1, . . . , tn) where P is a predicate symbol) are called
atoms (or atomic formulae). A formula that is either an atomic formula or the
negation of a atomic formula is called a literal.

For instance, the formula (P ∨ (∀xQ(f(x)))) ⇒ (∃x¬R(x, x)) contains 3
atoms: P,Q(f(x)) and R(x, x). All these atoms are literals, as well as ¬R(x, x).
We say that a variable x is free in a formula φ if it occurs in φ, but not on the
scope of a quantifier ∀x or ∃x. Formally, we denote by FVar(φ) the set of free
variables of φ, defined as follows:

FVar(φ) = ∅ If φ is equal to true or false
FVar(φ) = ∅ if φ is a propositional variable
FVar(φ) =

⋃n

i=1 Var(ti) if φ is of the form P (t1, . . . , tn)
FVar(φ) = FVar(ψ) if φ is ¬ψ
FVar(φ) = FVar(ψ1) ∪ FVar(ψ2) if φ is ψ1 ⋆ ψ2 with ⋆ ∈ {∨,∧,⇒,⇔}
FVar(φ) = FVar(ψ) \ {x} if φ is ∃xψ or ∀xφ

A formula is said to be closed if it has no free variable. A variable occurring
on the scope of a quantifier is said to be bound. Note that the same variable
may be free and bound simultaneously, for instance x in p(x)∨ ∀x p(x). In this
case, the two occurrences of x denote different objects (the first occurrence of
x is a free variable, whose value is unknown, whereas the second one ranges
over the whole domain). In practice, to avoid confusion, the variables should be
renamed: p(x) ∨ ∀y p(y).
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1.2 Substitutions

A substitution is a function mapping every variable to a term. The domain of
a substitution σ is the set of variables x s.t. σ(x) 6= x (usually the domain
is assumed to be finite). A substitution σ of domain x1, . . . , xn is denoted as
follows: {x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

A substitution is said to be a renaming if for every variable x, σ(x) is a
variable, and if σ is injective.

If σ and θ are substitutions of disjoint domains, then σ∪θ denotes the union

of σ and θ: (σ∪θ)(x)
def

= σ(x) if x ∈ dom(σ) and (σ∪θ)(x)
def

= θ(x) if x ∈ dom(θ).
The image of a term t by a substitution σ is obtained by replacing any

variable x occurring in t by σ(x). It is usually denoted by tσ. Formally:

aσ
def

= a if a is a constant symbol.

xσ
def

= σ(x) if x is a variable.

f(t1, . . . , tn)σ
def

= f(t1σ, . . . , tnσ)

Substitutions can also be applied to formulae, exactly in the same way.
However, a difficulty occurs when the formula contains quantifiers, because in
this case there can be conflicts between the variables in the domain of the
substitution and the bound variables occurring in the formula. The following
example will clarify this. Assume that the substitution {x 7→ a} is applied to
the formula ∀x p(x). The variable x occurring in the formula should not be
replaced by a. Indeed, since it occurs on the scope of a quantifier, it has no link
to the variable x occurring in the substitution which is a free variable (although
both variables have the same name they do not represent the same objects -
from a programming point of view one could write that they do not occur in
the same environment).

Thus, the formula should be renamed into (for example): ∀y p(y) before the
substitution can be applied. The result is ∀y p(y).

Similarly, assume that a substitution {x 7→ f(y)} is applied to the formula
∀x∃yP (x, y). Once again, the variable y occurring in the substitution (more
precisely in the term f(y)) is different from the bound variable y in the formula.
The result should be: ∀x∃y′P (f(y), y′) (and not ∀x∃yP (f(y), f(y)) which has
a different meaning).

Formally, we denote by Var(σ) the set of variables occurring either in the
domain of σ or in a term t = σ(x), for some x ∈ dom(σ). If the bound variables
do not occur in Var(σ) then the substitution is applied normally (as for terms),
by replacing any variable x by σ(x):
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pσ
def

= p if p is a propositional variable

φσ
def

= φ if φ is equal to true or false

p(t1, . . . , tn)σ
def

= p(t1σ, . . . , tnσ)

(¬φ)σ
def

= ¬(φσ)

(φ1 ⋆ φ2)σ
def

= φ1σ ⋆ φ2σ where ⋆ is either ∧,∨,⇒ or ⇔

(∃xφ)σ
def

= (∃x)φσ if x 6∈ Var(σ)

(∀xφ)σ
def

= (∀x)φσ if x 6∈ Var(σ)

If a bound variable occurs in Var(σ), then it should be renamed before
applying σ, as shown that the following definitions:

(∃xφ)σ
def

= (∃x′)φ{x 7→ x′}σ
if x ∈ Var(σ) and x′ is a new variable not occurring in φ or in Var(σ)

(∀xφ)σ
def

= (∀x′)φ{x 7→ x′}σ
if x ∈ Var(σ) and x′ is a new variable not occurring in φ or in Var(σ)

If t is a term (or formula) and σ is a substitution, then tσ is called an instance
of t.

If σ, θ are two substitutions, then σθ denotes the composition of σ and θ (σ
is applied first). If γ = σθ then σ is said to be more general than γ and γ is
said to be an instance of σ.

1.3 Semantics

Semantics associate a truth value (true or false) to a given formula. It is of
course impossible in general to associate a unique truth value to a given formula
because this value depends on the meaning of the non logical symbols occurring
in the formula.

For instance, the formula P ∧¬P should obviously have the truth value false,
regardless of the meaning of P because P cannot be false and true simultane-
ously (in boolean algebra P.P is 0). Similarly, Q(a) ⇒ Q(a) should be true.
But what is the meaning of the formula: ∃xf(x) = x ? Obviously it depends
on f . If for instance f is the successor function x 7→ x + 1 then the formula is
false (there is no x that is its own successor), but if f is x 7→ 2 × x, then the
formula should be true (x = 0).

Thus, before affecting a truth value to a formula, it is necessary to specify the
meaning of the symbols in L (the meaning of the logical symbols ∨,∧,⇒,⇔, ∀, ∃
is fixed). This is what we call an interpretation.

More formally:

Definition 4 (Interpretation)
An interpretation is defined by a domain DI that is a non empty set and

by a function mapping:
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• Each constant symbol a to an element aI ∈ DI .

• Each function symbol f of arity n to a function fI from Dn
I into DI.

• Each propositional variable P to a truth value PI (PI is either true or
false).

• Each predicate symbol P of arity n to a function PI from Dn
I into

{true, false} (since this function has only two possible values, one could
simply denote it by the set of the tuples that are associated to true).

• Each variable x to an element xI of DI .

Once the meaning of the constant and function symbols and of the variables
are known, it is easy to define the value of all terms, by induction:

Definition 5 (Value of a Term) If t is a term and I is an interpretation then
[t]I (the value of the term t in I) is inductively defined as follows:

• If t is a constant symbol a then [t]I
def

= aI .

• If t is a variable x then [t]I
def

= xI .

• If t is of the form f(t1, . . . , tn) then [t]I
def
= fI([t1]I , . . . , [tn]I).

Note that the value of a term is always an element of the domain, by defini-
tion.

Once the range of the variables (domain) and the meaning of terms are
known, it is easy to define the truth value of a formula.

We need to introduce a notation: if I is an interpretation, then the expression
I{x← v} (where x is a variable or a constant and v is an element of the domain
DI of I) denotes an interpretation J which is identical to I (same domain and
same interpretation of all symbols), except for the interpretation of x that is

defined as follows: xJ
def

= v.

Definition 6 (Value of a Formula) If φ is a formula and I is an interpretation,
then [φ]I (the truth value of φ in I) is defined as follows:

• If φ is a propositional variable P , then [φ]I
def

= PI .

• If φ is of the form P (t1, . . . , tn) then [φ]I
def

= PI([t1]I , . . . , [tn]I).

• If φ is of the form ¬ψ then [φ]I
def

=

{

true if [ψ]I = false
false otherwise

• If φ is of the form ψ1 ∧ ψ2 then:

[φ]I
def
=

{

true if [ψ1]I = true and [ψ2]I = true
false otherwise
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• If φ is of the form ψ1 ∨ ψ2 then:

[φ]I
def

=

{

true if [ψ1]I = true or [ψ2]I = true
false otherwise

• If φ is of the form ψ1 ⇒ ψ2 then:

[φ]I
def
=

{

true if [ψ1]I = false or [ψ2]I = true
false otherwise

This means that ψ1 ⇒ ψ2 is equivalent to ¬ψ1 ∨ ψ2.

• If φ is of the form ψ1 ⇔ ψ2 then:

[φ]I
def
=

{

true if [ψ1]I = [ψ2]I
false otherwise

• If φ is of the form ∀x ψ then:

[φ]I
def

=

{

true if for any element v ∈ DI , [ψ]I{x←v} = true
false otherwise

Essentially, φ is true iff ψ is true regardless of the value of x.

• If φ is of the form ∃x ψ then:

[φ]I
def

=

{

true if there exists v ∈ DI such that [ψ]I{x←v} = true
false otherwise

Notice that for the sake of simplicity we assume that I gives a value to all
constant/function/predicate symbols in the language and to all variables. But,
obviously, the truth value of a formula φ in an interpretation I depends only on
the value of the symbols and of the variables (freely) occurring in φ (the values
of the remaining symbols are irrelevant). In particular, the value of a closed
formula does not depend on variables.

We write I |= φ (or I validates φ) iff [∀x1 . . .∀xnφ]I = true, where
{x1, . . . , xn} is the set of the free variables in φ. Then I is called a model
of φ. Notice that the free variables are universally quantified. This implies that
the interpretation of the variables in the model is irrelevant (the formula must
be true for all possible values of the variables).

If S is a set of formulae, then we write I |= S iff for all φ ∈ S, I |= φ.
A formula (or set of formulae) φ is said to be satisfiable if it has a model,

unsatisfiable otherwise. It is said to be valid if every interpretation is a model.
Obviously, φ is valid iff ¬φ is unsatisfiable. Two formulae φ, ψ are said to be
equivalent (written φ ≡ ψ) iff for any interpretation I, [φ]I = [ψ]I (i.e. if
I |= (φ ⇔ ψ)). A formula ψ is said to be a logical consequence of φ iff for any
interpretation I s.t. [φ]I = true we have [ψ]I = true. This is written φ |= ψ

Beware that the same notation denotes two distinct relations: “the formula ψ
is a logical consequence of φ” is denoted by φ |= ψ and “the interpretation I is
a model of φ” by I |= φ.

Two important points deserve to be emphasized because they are often mis-
understood:
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Remark 7 If I is an interpretation and φ1, φ2 are formulae, then the fact that
I |= φ1 ∨ φ2 does not imply that there exists i ∈ {1, 2} s.t. I |= φi, although
we have [φ1 ∨ φ2]I = true iff [φ1]I = true or [φ2]I = true. Indeed, φ1, φ2

may contain free variables and the index i s.t. φi is true can depend on the
interpretation of these variables. For instance if Even and Odd are interpreted
as the usual predicates on natural numbers, then we have I |= Even(x)∨Odd(x)
but I 6|= Even(x) and I 6|= Odd(x) (every natural number is either even or odd,
but it is not true that all natural numbers are even, nor that all natural numbers
are odd).

Of course, if φ1 ∨ φ2 is closed then the above property is true.

Remark 8 Similarly, if ψ, φ1, φ2 are formulae, then we can have ψ |= φ1 ∨φ2

but ψ 6|= φ1 and ψ 6|= φ2, even if φ1, φ2 are closed. The reason is that ψ |= φ1∨φ2

means that for any model I of ψ there exists i ∈ {1, 2} s.t. I |= φi, but the index
i such that φi is true can depend on I. Assume for instance that ψ is true,

that φ1 is a propositional variable P and that φ2
def

= ¬P . Then ψ |= P ∨ ¬P but
ψ 6|= P and ψ 6|= ¬P .

There are alternative (equivalent) ways of defining the semantics of a first-
order formula.

Sometimes, the interpretation of the free variables is not included in the
interpretation itself, but is given separately by a another function (often called
a valuation). Our definition is more uniform.

In order to avoid having to assign values to variables, we could also replace
quantified variables by new (“fresh”) constant symbols before interpreting them.
The value of an existential formula would then be defined as follows: [∃xφ]I =
true iff there exists an element v ∈ DI s.t. [φ{x 7→ c}]I{c←v} = true, where
c is a new constant symbol, not occurring in φ. The definition for universal
quantifiers is similar.

All these definitions are of course equivalent (this can be shown by an easy
induction on the formulae).

The following lemmata state easy consequences of the definition, namely
the possibility of replacing, in a formula, a subformula by an equivalent one,
without affecting the truth value. Similarly, a variable may be replaced by a
term having the same value.

Lemma 9 (Replacement Lemma) Let φ be a formula. Let ψ be a subformula
occurring in φ. Let ψ′ be a formula equivalent to ψ and let φ′ be a formula
obtained from φ by replacing the formula ψ by ψ′.

φ is equivalent to φ′.

Proof The proof is by an easy induction on the size of the formula. It is left
to the reader as an exercise. �

Lemma 10 Let I be an interpretation, x be a variable, t be a term and φ be
a formula (or term).

If xI = [t]I then [φ]I = [φ{x 7→ t}]I .
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Proof This is an immediate consequence of the definition (the detailed proof
is by an easy induction on the size of φ). �

Corollary 11 Let φ be a formula, x be a variable and t be a term.
The formulae (∀x φ)⇒ φ{x 7→ t} and φ{x 7→ t} ⇒ (∃x φ) are valid.

Proof We only give he proof for the first formula. Let I be an interpretation.
We have to show that [∀xφ ⇒ φ{x 7→ t}]I = true. We assume, w.l.o.g. that x
does not occur in t (if it is the case then we simply rename the formula ∀xφ into
the equivalent formula ∀x′φ{x 7→ x′} where x′ occurs neither in φ not in t).

By definition [∀xφ ⇒ φ{x 7→ t}]I = true iff either [∀xφ]I = false or [φ{x 7→
t}]I = true. Thus we assume that [∀xφ]I = true. Let v = [t]I and let J =
I{x ← v}. By definition of the interpretation of ∀xφ we have [φ]J = true. By
definition of J we have xJ = [t]I = [t]J (since x does not occur in t, the value
of t is the same in I and in J).

By Lemma 10 we deduce that [φ{x 7→ t}]J = true. But since φ{x 7→ t} does
not contain x, we have [φ{x 7→ t}]I = [φ{x 7→ t}]J = true. �

2 Clausal Normal Form

2.1 Clauses

Definition 12 A clause is a formula of the form
∨n

i=1 Li where the L1, . . . , Ln

are literals (i.e. atoms or negations of atoms).

We may have n = 0, then the clause is empty. The empty clause is denoted
by �. By convention, it is equivalent to false (empty disjunction).

Alternative notations are commonly used to denote clauses in the literature.
A clause is often considered as a set (or multiset) of literals (the disjunction is
then implicit). This is possible since disjunction is commutative and associative.
Thus the meaning of a clause does not depend on the order of the literals.

A clause may be also considered as an implication, by regrouping the negative
literals before an implication sign: ¬φ1 ∨ . . .∨¬φn ∨ψ1 ∨ . . .∨ψm is equivalent
to φ1 ∧ . . . φn ⇒ ψ1 ∨ . . .∨ψm. For instance the clause ¬P (x)∨Q(x, y)∨¬R(y)
may be written {¬P (x), Q(x, y),¬R(y)} or P (x) ∧ R(y) ⇒ Q(x, y). In Prolog
notation, this is written: Q(x, y) : −P (x), R(y).

2.2 Transformation into Clausal Form

It is possible to transform any formula φ into a set (conjunction) of clauses S
that is sat-equivalent to φ, i.e. such that φ is satisfiable iff S is satisfiable. S is
called a clausal form of φ (the clausal form is non unique).

In order to transform formulae into sets of clauses, one has to:

1. Eliminate all occurrences of the logical symbols ⇒ and ⇔. Fortunately
these symbols can easily by expressed using ∨ and ∧ only.
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2. Put all negation symbols before atoms. Negations of complex formulae
must be eliminated. This is possible by De Morgan’s laws which transform
negations of conjunctions into disjunctions of negations and conversely.

3. Eliminate existential quantifiers. This is the most difficult part and the
only step that does not preserve equivalence.

4. Apply the distributivity rule in order to obtain conjunctions of disjunc-
tions and put all universal quantifiers before disjunctions. Then, universal
quantifiers can be simply eliminated (since any free variable is already im-
plicitly universally quantified).

We present an algorithm in order to construct a clausal form of any formula.
This algorithm is defined as a set of transformation rules, operating on formulae.
These rules are applied in an indeterministic way, on the considered formula or
on its subformulae.

2.2.1 Equivalence Preserving Rules

The first set of rules eliminates all occurrences of ⇒ and ⇔ (step 1 above).

CF⇒ φ⇒ ψ → (¬φ ∨ ψ)
CF⇔ φ⇔ ψ → (¬φ ∨ ψ) ∧ (¬ψ ∨ φ)

There is an other way of eliminating the symbol ⇔:

CF ′⇔ φ⇔ ψ → (φ ∧ ψ) ∨ (¬ψ ∧ ¬φ)

Theoretically these two rules are equivalent. The first one (CF⇔) is more
natural (since one want to eventually obtain conjunctions of disjunctions), but
the second one (CF ′⇔) is more efficient if the symbol⇔ occurs in the scope of an
odd number of negation symbols. For instance, consider the formula ¬(P ⇔ Q).
One get, by applying CF ′⇔, the formula: ¬[(P ∧ Q) ∨ (¬P ∧ ¬Q)]. By De
Morgan’s law (see below) this formula is transformed into: (¬P ∨¬Q)∧(P ∨Q),
which is in clausal form (it is a conjunction of clauses). The reader can easily
check that applying CF⇔ yields a more complex derivation.

The second set of rules removes the negations occurring behind a complex
formula (step 2).

CF¬¬ ¬¬φ → φ

CF¬∧ ¬(φ ∧ ψ) → (¬φ) ∨ (¬ψ)
CF¬∨ ¬(φ ∨ ψ) → (¬φ) ∧ (¬ψ)
CF¬∃ ¬(∃xφ) → ∀x(¬φ)
CF¬∀ ¬(∀xφ) → ∃x(¬φ)

Finally, the following rules apply the distributivity axiom and put all quan-
tifiers behind disjunctions:

10



CF∨∧ φ ∨ (φ1 ∧ φ2) → (φ ∨ φ1) ∧ (φ ∨ φ2)
CF ∀∧ ∀x(φ ∧ ψ) → (∀xφ) ∧ (∀xψ)
CF∨∀ φ ∨ (∀xψ) → (∀y)(φ ∨ ψ{x→ y})

where y is either x if x 6∈ FVar(φ), or a new variable not occurring in φ, ψ,
if x ∈ Var(φ).

These rules must be applied modulo the usual associative and commutative
properties of ∨,∧. For instance CF∨∧ can be applied on (P ∧Q) ∨ R yielding
(P ∨R) ∧ (Q ∨R).

In the rule CF∨∀, renaming x into y in the case where x occurs in φ is
essential in order to avoid conflicts on the variable names. Consider for instance
the formula (∀xP (x)) ∨ (∀xQ(x)). By the first application of the rule (on the
subformula (∀xP (x)) one get: ∀x(P (x) ∨ (∀xQ(x))) (no renaming is necessary
since x is not free in ∀xQ(x)). Afterwards, the rule is applied again, now with
the subformula (∀xQ(x)). Here, x freely occurs in P (x), thus one has to rename
x into a new variable y, yielding the clause: ∀x, y(P (x) ∨Q(y)).

If the renaming is not performed, then one gets ∀x(P (x) ∨Q(x)) which has
a different meaning (incorrect in the sense that the semantics of the original
formula are not preserved).

Lemma 13 The rules CF⇒, CF⇔, CF¬¬, CF¬∧, CF¬∨, CF¬∃, CF¬∀,
CF∨∧, CF∨∀ and CF ∀∧ preserve equivalence, i.e. if φ, ψ are two formulae
and if ψ is obtained from φ by applying one of these rules (on any subformula
in φ) then ψ and φ are equivalent.

Proof The proof is a straightforward consequence of Definition 6 and of
Lemma 9. One has to check in each case that the left-hand side is equivalent to
the right-hand side. This is left as an exercise to the reader. �

If a formula φ is irreducible by the rules for negation CF¬¬, CF¬∧, CF¬∨,
CF¬∃ and CF¬∀ and by the rules CF⇒ and CF⇔ (i.e. if these rules cannot
be applied on any subformula of φ) then φ is said in negation normal form.
Intuitively, φ is built from literals using only the connectives ∨,∧, ∀, ∃.

2.2.2 Skolemisation

We now show how to eliminate existential quantifiers.
The skolemisation rule (from the Norvegian mathematician Thoralf Al-

bert Skolem, 1887-1963) is a rule transforming existential formulae into sat-
equivalent formulae without ∃. The idea is, given a formula (∃xφ) to introduce
a function f associating to the free variables y1, . . . , yn in (∃xφ), the element x
s.t. φ holds (if it exists). Then x can be simply replaced by f(y1, . . . , yn).

In the particular case where (∃xφ) contains no free variables, then x is simply
replaced by a constant a.

This idea is formalized by the following rule:

CF ∃ ∃xφ → φ{x 7→ f(y1, . . . , yn)}

Where:
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• y1, . . . , yn is the set of variables that are free in ∃xφ (we may have n = 0,
in this case f(y1, . . . , yn) is to be read as f).

• f is a new function symbol (or a constant symbol if n = 0) not occurring

in the whole formula1.

• ∃xφ does not occur on the scope of a symbol ¬,⇒ or ⇔.

In order to prove that CF ∃ preserves satisfiability, we need the following:

Lemma 14 Let φ be a formula. Let ψ be a subformula occurring in φ but not
on the scope of a connective ¬,⇔ or ⇒. Let I be an interpretation and let ψ′

be a formula s.t. I |= ψ ⇒ ψ′. Let φ′ be the formula obtained by replacing ψ by
ψ′ in the formula φ.

We have either [φ]I = false or [φ′]I = true.

Proof We reason by induction on the size of φ. By definition φ contains the
formula ψ. One of the following conditions holds:

• φ is ψ. Then we must have φ′ = ψ′ and the property holds by definition
since I |= ψ ⇒ ψ′.

• If φ is not ψ, then φ must be a complex formulae, containing ψ and its root
symbol is either ∨,∧ or a quantification. We consider each case separately:

∨: φ is of the form γ1∨γ2, where one of the two formulae γ1, γ2 contains
ψ. Assume, without loss of generality, that ψ occurs in γ1. By
definition φ is of the form γ′1 ∨ γ2 where γ′1 is obtained by replacing
ψ by ψ′ in γ1.

We assume that [φ]I = true and we show that [φ′]I = true. By
definition of the semantics, there exists i ∈ {1, 2} s.t. [γi]I = true.
If i = 2 then we have [φ′]I = true since φ′ = γ′1 ∨ γ2. Otherwise,
we apply the induction hypothesis on γ1, γ

′
1 (this is possible since

γ′1 is strictly smaller than φ). Since [γ1]I = true, we deduce that
[γ′1]I = true, hence that [φ′]I = true.

∧: The proof is similar if φ is of the form γ1 ∧ γ2.

∃: φ is of the form ∃xγ, where γ contains ψ. By definition φ is of the
form ∃xγ′ where γ′ is obtained by replacing ψ by ψ′ in γ.

We assume that [φ]I = true and we show that [φ′]I = true. By
definition of the semantics, there exists an element e ∈ DI s.t. [γi] =
true where I ′ = I{x← e}. We apply the induction hypothesis on the
formulae γ, γ′ and on the interpretation I ′ to deduce that [γ′]I′ = true
(note that we have I ′ |= ψ ⇒ ψ′, since I ′ and I are identical on non
variable symbols). Therefore, [φ′]I = true.

∀: The proof is similar if φ is of the form ∀xγ.
�

1not only in φ, but also in the whole formula containing φ
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Lemma 15 The rule CF ∃ preserves satisfiability, i.e. if ψ, ψ′ are two formu-
lae and if ψ′ is obtained from ψ by applying the rule CF ∃ then ψ is satisfiable
iff ψ′ is satisfiable. Moreover, any model of ψ′ is a model of ψ.

Proof

By definition ψ′ is obtained from ψ by replacing a formula ∃xφ by another
formula φ{x → f(y1, . . . , yn)}, where y1, . . . , yn are the free variables in ∃xφ
and f is a symbol not occurring in ψ.

• Assume that ψ′ is satisfiable. Then there exists an interpretation I s.t.
I |= ψ′. By Corollary 11, the formula φ{x→ f(y1, . . . , yn} ⇒ ∃xφ is true
in any interpretation, in particular in I. Thus we can apply Lemma 14
and we deduce that I |= ψ.

• Assume that ψ is satisfiable. Then there exists an interpretation I s.t.
I |= ψ. We now construct an interpretation J , satisfying ψ′. J is identical
to I, except for the interpretation of f . In order to define the interpreta-
tion of f , we have to specify the value of fJ(e1, . . . , en), for each n-tuple
(e1, . . . , en) ∈ Dn

I . We choose for fJ(e1, . . . , en) an element e (arbitrarily
chosen) s.t. I[x ← e, y1 ← e1, . . . , yn ← en] |= φ. If no such element
exists, then the interpretation of fJ(e1, . . . , en) is chosen arbitrarily.

By construction, J |= ∃xφ ⇒ φ{x → f(y1, . . . , yn)}. Moreover J |= φ

(since I |= φ, f does not occur in φ and I, J are identical on any symbol
distinct from f). Thus we can apply Lemma 14 and we deduce that
J |= ψ′.

�

We denote by CF the set of rules: CF⇒, CF⇔, CF¬¬, CF¬∧, CF¬∨,
CF¬∃, CF¬∀, CF∨∧, CF∨∀, CF ∀∧ and CF ∃

Lemma 16 The non deterministic application of the rules in CF terminates.

Proof We introduce a measure mCF , mapping any first-order formula φ to a
natural number mCF (φ) and s.t. the value of mCF decreases each time a rule in
CF is applicable. Since the measure is positive, it cannot decrease indefinitely
hence there is no infinite derivation.

mCF (φ)
def

= 2 If φ is atomic

mCF (φ⇔ ψ)
def

= 1 +mCF ((φ ∧ ψ) ∨ (¬φ ∧ ¬ψ))

mCF (φ⇒ ψ)
def

= 1 +mCF (¬φ ∨ ψ)

mCF (φ ∨ ψ)
def

= mCF (φ) ×mCF (ψ)

mCF (φ ∧ ψ)
def

= 1 +mCF (φ) +mCF (ψ)

mCF (¬φ)
def

= mCF (φ)mCF (φ)

mCF (∃xφ)
def

= 1 +mCF (φ)

mCF (∀xφ)
def

= 2×mCF (φ) + 1

The fact that m really decreases is left as an exercise to the reader. It suffices
to check, for each rule in CF , that the value of the left-hand side is strictly
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greater than the value of the right-hand side. Notice that by construction, we
have m(φ) ≥ 2 for every formula φ. �

Lemma 17 Any closed formula that is irreducible by the rules in CF is a
conjunction of (universally quantified) clauses.

Proof If a negation occurs in the front of a complex subformula then one of
the negation rules applies. Thus the negations only occur in literals.

By irreducibility w.r.t. the rules CF⇒, CF⇔ and CF ∃, the formula only
contains the connectives ¬,∨,∧, ∀ (otherwise one of the above rules necessarily
applies, which is impossible since the formula is assumed to be irreducible).

If a conjunction or a universal quantifier occurs in a disjunction then the
rule CF∨∧ or CF∨∀ applies. Thus the only disjunctive subformulae must be
disjunctions of literals.

Finally, if a universal quantifier occurs behind a conjunction then the rule
CF ∀∧ applies.

Hence the formula is a conjunction (possibly empty, and possibly of length
1) of (universally quantified) clauses.

In order to obtain a set of clauses, it suffices to replace the conjunction
of formulae by a set of formulae and to remove all universal quantifiers (this
obviously preserves equivalence since free variables are implicitly universally
quantified).

�

2.3 Complexity and Renaming

The clausal transformation algorithm can increase the size of the formula, as
evidenced by the following example:

φ =

n
∨

i=1

(ai ∧ bi)

Applying the Distributivity on φ produces the following set of clauses:

a1 ∨ a2 ∨ . . . ∨ an−1 ∨ an

a1 ∨ a2 ∨ . . . ∨ an−1 ∨ bn
a1 ∨ a2 ∨ . . . ∨ bn−1 ∨ an

a1 ∨ a2 ∨ . . . ∨ bn−1 ∨ bn
. . .

b1 ∨ b2 ∨ . . . ∨ bn−1 ∨ an

b1 ∨ b2 ∨ . . . ∨ bn−1 ∨ bn

2n clauses are produced. Thus the transformation algorithm is at least
exponential. A similar explosion of the size of the formula may happen with
equivalences: the reader should try for instance to compute the clausal form of
the formula (a1 ⇔ (a2 ⇔ . . . (an−1 ⇔ an))).
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In order to reduce the complexity, it is necessary to avoid the duplication of
subformulae. This can be done by introducing additional predicate symbols, in
order to give a “name” to a given subformula.

More precisely, a formula φ of free variables x1, . . . , xn can be replaced by an
atom P (x1, . . . , xn), where the equivalence P (x1, . . . , xn)⇔ φ is added into the
formula as an axiom. The interest is that P (x1, . . . , xn) may be reused several
times in the formula, without having to repeat the whole formula φ.

Formally, this is done by the following rule:

ψ → ψ′ ∧ ∀x1, . . . , xn(P (x1, . . . , xn)⇔ φ)

where φ is a subformula of ψ, x1, . . . , xn is the set of free variables in φ and
ψ′ is obtained from ψ by replacing any subformula of the form ψ{xi → ti |
i ∈ [1..n]} by P (t1, . . . , tn) (in particular, if n = 0 then P is a propositional
variable).

By applying this rule before the distributivity rule or equivalence rule in
order to avoid duplicating complex formulae it is possible to obtain a transfor-
mation algorithm which is linear w.r.t. the size of the initial formula (in number
of clauses, quadratic in size).

For instance, the new distributivity rule may be written as follows:

φ ∨ (ψ1 ∧ ψ2) → (P (x1, . . . , xn) ∨ ψ1) ∧ (P (x1, . . . , xn) ∨ ψ2)

If φ is a complex formula of free variables x1, . . . , xn and P is a new predicate
symbol. The axiom ∀x1, . . . , xn(P (x1, . . . , xn) ⇔ φ) is added to the whole
formula (of course it must also be transformed into clausal form).

For instance, applying the previous naming rule on the formula φ =
∨n

i=1(ai ∧ bi) produces the following clause form:

n
∨

i=1

pi ∧
n
∧

i=1

[(¬pi ∨ ai) ∧ (¬pi ∨ bi) ∧ (¬ai ∨ ¬bi ∨ pi)].

pi is a “name” for the formula ai∧ bi. (¬pi∨ai)∧ (¬pi∨ bi)∧ (¬ai∨¬bi∨pi)
is the clausal form of pi ⇔ ai ∧ bi.

Systematic application of the renaming rule on each subformula is called a
structural clausal transformation [10]. The reader can consult [3] or [9] for more
details.

3 Unification

The goal of the unification algorithm is, given two terms t and s, to check
whether there exists a substitution σ s.t. the terms tσ and sσ are syntactically
equal (and if it is the case to compute the corresponding set of substitutions σ).
If tσ = sσ then σ is called a unifier of t and s, and two terms having a unifier
are said to be unifiable.
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For instance, f(x, a) and f(b, y) are unifiable and the (unique) unifier is
{x → b, y → a} (a, b denote distinct constant symbols and x, y are variables).
The terms f(x, a) and f(b, x) have no unifier (since x cannot be equal to a

and b simultaneously). Similarly, x and f(x) have no unifier (since a term
cannot strictly occur in itself) and f(x) and g(y) are unifiable only if f = g.
f(x, y) and f(u, v) have several unifiers: {x 7→ u, y 7→ v} is a unifier, but also
{x 7→ a, y 7→ a, u 7→ a, v 7→ a}, . . . (actually there exist an infinite number of
distinct unifiers).

More formally, a unification problem is a formula of the form
∧n

i=1 φi (with
possibly n = 1), where for every i ∈ [1..n] φi is either false or true or an equation
of the form ti

.
= si. A substitution σ is said to be a solution of

∧n

i=1 φi if for
every i ∈ [1..n] either φi = true or φi = (ti

.
= si) and tiσ = siσ. The set of

solutions of a problem φ is denoted by sol(φ).
We denote by Runif the following set of rules, operating on unification prob-

lems:

Trivial t
.
= t → true

Occur Check x
.
= t → false

If x ∈ Var(t) and x 6= t

Decomposition f(t1, . . . , tn)
.
= f(s1, . . . , sn) →

∧n

i=1 ti
.
= si

Clash f(t1, . . . , tn)
.
= g(s1, . . . , sm) → false

If f 6= g

Replacement x
.
= t ∧ φ → x

.
= t ∧ φ{x→ t}

If x is a variable not occurring in t, x occurs in φ
and either t is not a variable or t occurs in φ

Simplification true ∧ φ → φ

Failure false ∧ φ → false

The rules are to be applied modulo the commutativity of
.
= and the com-

mutativity and associativity of ∧. For instance, the problem z
.
= g(x) ∧ a

.
=

x ∧ y
.
= f(x) may be reduced to z

.
= g(a) ∧ a

.
= x ∧ y ∧ f(a).

Lemma 18 The non deterministic application of the rules in Runif terminates

on every unification problem φ.

Proof A variable x is said to be solved in a unification problem ψ if ψ is of
the form x

.
= t ∧ ψ′, where x occurs neither in t nor in ψ′.

We introduce the following measure munif on unification problems.

munif(φ) = (v, s) where v is the number of unsolved variables in φ and s is

the size of φ (i.e. the number of symbols of L occurring in φ). The reader can
easily check that no rule can increase v. Moreover, all the rules, except the
Replacement rule, strictly decrease s. The Replacement rule may increase s
(since t is duplicated), but decreases v strictly (since x becomes solved).

Thus munif decreases each time a rule in Runif is applied. Since munif is

bounded it cannot decrease indefinitely, hence Runif terminates. �
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Lemma 19 Let φ be a unification problem and let ψ be a problem obtained by
applying a rule in Runif on φ. sol(φ) = sol(ψ).

Proof It is easy to check that each rule preserves the set of solutions. The
detailed proof is left as an exercise for the reader. �

A unification problem φ is said to be solved if it is either false or true or
a formula of the form

∧n

i=1 xi
.
= ti where the variables x1, . . . , xn occurs only

once in φ.
If φ is false then it has no solution. If φ is true then any substitution is a

solution. If φ is
∧n

i=1 xi
.
= ti, then it is clear that φ has an obvious solution: the

substitution {xi → ti | i ∈ [1..n]}. Moreover, this substitution is also a most
general one, i.e. any solution of φ is an instance of the previous substitution.

Lemma 20 If φ is irreducible by the rules in Runif then φ is solved.

Proof φ is of the form
∧n

i=1 φi. By irreducibility w.r.t. the simplification
and failure rules, if φi = false or φi = true for some i ∈ [1..n] then we must have
i = 1 and in this case we have φ = false or φ = true thus φ is solved.

Thus we assume that for every i ∈ [1..n] φi is of the form ti
.
= si. If the head

symbol of both ti and si are function symbols, then either the Decomposition
rule or the Clash rule applies (if the head symbols are the same the the Decom-
position rule applies, otherwise the Clash rule applies). Consequently, one of
the term ti or si must be a variable. We assume, w.l.o.g. that ti is a variable
xi. If xi occurs in si then either the rule Trivial applies (if xi = ti) or the Occur
Check applies (if xi 6= ti). Thus xi does not occur in ti. Finally, if xi occurs
elsewhere in the formula, then the Replacement rule applies.

Therefore φ is solved. �

The previous results show that every unification problem having a solution
has a most general solution (i.e. a solution that is more general than any
solution). In particular, if t, s are two unifiable terms, then t and s have a most
general unifier (m.g.u.) σ, i.e. a substitution s.t. any unifier of t and s is an
instance of σ. Clearly, this m.g.u. is unique, up to a renaming of variables. The
rules in Runif provide an algorithm to check whether two terms are unifiable or

not and if possible to compute the m.g.u..

Complexity

The unification algorithm is exponential, as evidenced by the following ex-
ample: t = f(x1, x2, . . . , xn), s = f(f(x0, x0), f(x1, x1), . . . , f(xn−1, xn−1).
We obtain the substitution: x1 → f(x0, x0), x2 → f(f(x0, x0), f(x0, x0)),
x3 → f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0))) etc.

The size of the obtained term is exponential in n.
However, this high complexity can be easily reduced by using structure shar-

ing: identical terms can be shared between the terms in which they occur instead
to being duplicated. This is done by using directly acyclic graphs (DAG) in or-
der to represent complex terms, which can easily be encoded by pointers or
references.
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Using this convention, it is easy to show that the unification algorithm is
polynomial (see [1] for more details). Informally, the number of distinct sub-
terms does not increase.

4 Herbrand Theorem

A term or a clause is said to be ground if it contains no variables. A substitution
σ is said to be ground if for every x ∈ dom(σ), xσ is ground.

The Herbrand Theorem (by the French Mathematician Jacques Herbrand,
1908-1931) relates the satisfiability of a set of clauses S to the one of the set of
its ground instances.

If S is a set of clauses then Sinst denotes the set of ground instances of S,
i.e. the set of clauses Cσ, s.t. C is a clause in S, and σ is a ground substitution
of domain Var(C).

We assume that the language L contains at least a constant symbol. In this
case, Sinst is necessarily non empty, if S 6= ∅.

Definition 21 (Herbrand Interpretation) An interpretation I is said to be an
Herbrand interpretation iff:

• Its domain is the set of ground terms (it is non empty if the the language
contains at least a constant symbol).

• For every function symbol f of arity n and for every n-tuple (t1, . . . , tn)

of ground terms, we have fI(t1, . . . , tn)
def

= f(t1, . . . , tn).

By the previous definition, the domain and the interpretation of function
symbols are fixed. Thus a Herbrand interpretation I is uniquely defined by
giving the interpretation of predicate symbols, i.e. by specifying the set of
ground atoms that are true in I. Thus a Herbrand interpretation is often seen
as a set of ground atoms.

Moreover the interpretation of a ground term t in a Herbrand interpretation
is t itself:

Lemma 22 For any ground term t and for any Herbrand interpretation I,

[t]I
def
= t.

Proof By a straightforward induction on the size of t. �

This implies that a clause is false in a Herbrand interpretation iff it has a
ground instance that is false:

Lemma 23 If C is a clause and I is a Herbrand interpretation s.t. I 6|= C,
then there exists a ground substitution σ of domain Var(C) s.t. I 6|= Cσ.

Proof

Let x1, . . . , xn be the free variables in C. We have I 6|= C, thus by definition
there exist v1, . . . , vn ∈ DI s.t. [C]J = false, where J = I{xi ← vi | i ∈ [1..n]}.
By definition, v1, . . . , vn are ground terms. Moreover by Lemma 22, [vi]J = vi.
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Let σ = {xi 7→ vi | i ∈ [1..n]}. By Lemma 10, we have [C]J = [Cσ]J . Since
x1, . . . , xn do not occur in Cσ we have [Cσ]J = [Cσ]I . Thus [Cσ]I = false,
hence I 6|= Cσ. �

Theorem 24 (Herbrand) Let S be a set of clauses. S is unsatisfiable iff Sinst
is unsatisfiable. Moreover if S is satisfiable then S has a Herbrand model.

Proof Clearly, every instance of a clause occurring in S is a logical conse-
quence of S. Thus S |= Sinst and if S is satisfiable then Sinst is also satisfiable.

Now, assume that Sinst is satisfiable. Then Sinst has a model I. Let J be
the Herbrand interpretation s.t. for any n-ary predicate symbol P and for any
n-tuple of ground terms t1, . . . , tn, PJ (t1, . . . , tn) = true iff I |= P (t1, . . . , tn).
By Lemma 22, this implies that J |= P (t1, . . . , tn) iff I |= P (t1, . . . , tn). Thus
for every ground literal L, we have J |= L iff I |= L.

Assume that J 6|= S. Then there exists a clause C ∈ S s.t. J 6|= C.
By Lemma 23 there exists a ground substitution σ of the variables in C s.t.
J 6|= Cσ. But Cσ ∈ Sinst thus I |= Cσ. There exists a literal L in C s.t.
I |= Lσ. But then by definition of J we have J |= Lσ thus J |= Cσ, which is
impossible.

Thus J |= S. �

A clause is said to be unit if it contains exactly one literal. The next theorem
introduces an efficient way of checking the satisfiability of a set of unit clauses.
The class of sets of unit clauses is called the Herbrand class.

Theorem 25 A set of unit (pairwise variable-disjoint) clauses S is unsatisfi-
able iff it contains two unit clauses L and ¬L′, s.t. L,L′ are unifiable.

Proof If S is unsatisfiable then Sinst is unsatisfiable (by Herbrand’s theo-
rem).

Assume that Sinst contains two complementary unit clauses A and ¬A.
Then by definition S contains two clauses L and ¬L′ s.t. there exist two ground
substitutions σ and θ of domains Var(L) and Var(L′) respectively s.t. Lσ = A

and L′θ = A. Since L,¬L′ are variable-disjoint, we can define the substitution
η = σ ∪ θ. η is a unifier of L,L′, thus L,L′ are unifiable.

Now assume that Sinst does not contain any pair of complementary literals.
We consider the Herbrand interpretation I s.t. I |= A iff A ∈ Sinst. Obviously,
I validates all positive literals in Sinst (by definition). Moreover, if ¬A is a
negative literal in Sinst s.t. I 6|= ¬A, then we have I |= A, thus A ∈ Sinst,
which contradicts our assumption since Sinst would contain A and ¬A. Thus
I |= Sinst which contradicts the fact that Sinst is unsatisfiable.

�

5 The Resolution Calculus

The Resolution calculus (initially introduced by Robinson [13]) is a proof proce-
dure for first-order formulae in clausal form, especially developed for automated
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theorem proving. It is the most efficient and commonly used proof procedure
(for non equational theorem proving) and it is the basis of several efficient the-
orem provers. In contrast to other logical calculi such as the sequent calculus or
the semantic tableaux, it is very uniform (only two inference rules) which makes
the implementation and control much easier.

The Resolution calculus provides a (non terminating) algorithm for checking
whether a given set of clauses S is unsatisfiable. It works by refutation (re-
ductio at absurdum): inference rules are repeatedly applied on S in order to
derive new clauses (that are all logical consequences of S), until a contradiction
(i.e. an empty clause �) is obtained (which immediately entails that S is unsat-
isfiable). Selection strategies (for reducing the branching of the procedure)
and redundancy elimination rules (for eliminating useless clauses) help to
reduce the search space.

This algorithm is only a semi-decision procedure: if the set of clauses is
unsatisfiable then a contradiction is eventually obtained, but if S is satisfiable
then an infinite number of clauses may be deduced and the algorithm may run
forever. As we shall see in the last part of the course, there is no decision
procedure for first-order logic.

5.1 Inference Rules

The Resolution calculus is defined by the two following inference rules: Resolu-
tion and Factorisation (they are sometimes combined into a unique rule).

We assume given a selection function sel, mapping each clause C to a set
of literals occurring in C. These literals are said to be selected. We will show
the usefulness of this selection function latter. Intuitively selected literals are
the only literals on which one has the right to apply the inference rules. Thus
sel is used to control (and to restrict) the application of the inference rules. In
the most simple case, sel(C) may be defined as the set of literals occurring in
C (= no control).

5.1.1 Resolution

A clause R is said to be a sel-resolvent of two clauses C and D, if the following
conditions hold:

• C and D share no variable (i.e. Var(C) ∩ Var(D) = ∅).

• C and D are of the form L∨C′ and ¬L′∨D′ respectively. C′ and D′ may
be empty, then we have C = L or D = ¬L′.

• L and L′ are unifiable, with a m.g.u. σ.

• Lσ and ¬L′σ are selected in Cσ and Dσ respectively.

• R is (C′ ∨D′)σ.
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Notice that Condition 1 is essential. If the clauses share variables, then one
has to rename them before applying the Resolution rule.

Alternatively, the rule may be depicted as follows (with the same meaning):

L ∨ C ¬L′ ∨D
(C ∨D)σ

where σ is the m.g.u. of L and L′ and where Lσ ∈ sel((L ∨ Cσ)), ¬L′σ ∈
sel((¬L′ ∨D)σ).

5.1.2 Factorisation

A clause F is said to be a sel-factor of a clause C iff the following holds:

• C is of the form L ∨ L′ ∨D.

• L and L′ are unifiable, with a m.g.u. σ.

• Lσ is selected in Cσ.

• F = (L ∨D)σ.

Notice that L,L′ may be negative. Alternatively, the rule may be depicted
as follows:

L ∨ L′ ∨ C
(L ∨C)σ

where σ is the m.g.u. of L and L′ and where Lσ ∈ sel((L ∨ L′ ∨ C)σ).

5.1.3 Immediate Consequence Operator

As usual, the AC properties of ∨ must be taken into account. For instance the
resolution rule is applicable between P ∨Q and R ∨ ¬Q, and deduces P ∨R.

A set of clauses S is said to be variable-disjoint iff for every pair (C,D) ∈ S2,
if C 6= D then Var(C) ∩ Var(D) = ∅ (i.e. the clauses in S share no variable).

Note that for every set of clauses S, there exists a set of clauses S′ that is
equivalent to S and variable-disjoint: it suffices to rename the variables that are
shared by distinct clauses.

If S is a variable-disjoint set of clauses, we denote by Ressel(S) the set of sel-
resolvent of clauses in S. If S is not variable-disjoint then Ressel(S) is defined
as the set Ressel(S

′) where S′ is a variable-disjoint set of clauses equivalent to
S (the renaming is chosen arbitrarily).

We denote by Factsel(S) the set of sel-factors of clauses in S and by Dsel(S)

the set Dsel(S)
def

= Ressel(S) ∪ Factsel(S).

Example 26 Assume for instance that S = {P (x, a) ∨ Q(x),¬P (b, y) ∨
R(y), R(u)∨R(v)∨R′(u, v)} and that sel(C) = C for any clause C. S is variable-
disjoint. The reader can check that Dsel(S) is {Q(b) ∨R(a), R(u) ∨R′(u, u)}.
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If S′ = {P (x) ∨ Q(y),¬P (x) ∨ Q(y)} then S′ is not variable-disjoint. We
have Dsel(S

′) = {Q(y) ∨Q(y′)} (and not {Q(y) ∨Q(y)} !).
Since the two clauses in S′ share variables, one has to rename them before

applying the Resolution rule. We obtain the set {P (x) ∨ Q(y), P (x′) ∨ Q(y′)},
on which the Resolution rule can be applied. Of course there are many ways of
performing the renaming, but the obtained clauses are all equivalent.

A derivation from S is a sequence of clauses C1, . . . , Cn s.t. for any i ∈ [1..n],
Ci ∈ Dsel(S ∪ {C1, . . . , Ci−1}). We write S ⊢sel C if there exists a derivation
C1, . . . , Cn from S s.t. Cn = C.

5.2 Soundness

The following theorem shows that the rules are correct (or sound), i.e. that all
the clauses that are deduced using the previous rules are logical consequences
of the premises.

Theorem 27 Let S be a set of clauses. S |= Dsel(S).

Proof Let C ∈ Dsel(S). Let I be a model of S. We have to show that
[C]I = true.

C is either a resolvent of two clauses in S or a factor of a clause in S. We
consider the two cases separately.

• If C is deduced by resolution, then C is of the form (C′ ∨D′)σ, where S
contains two clauses of the form L∨C′ and ¬L′∨D′, and where Lσ = L′σ.
We have I |= S hence I |= L ∨ C′ and I |= ¬L′ ∨ D′. By Lemma 11,
I |= (L∨C′)σ and I |= (¬L′∨D′)σ. Thus [(L∨C′)σ]I = [(¬L′∨C′)σ]I =
true. If [Lσ]I = true then we have [¬L′σ]I = false, hence [D′σ]I = true.
Otherwise, we have [C′σ]I = true. In both cases we have [C′σ ∨D′σ]I =
true, i.e. [C]I = true.

• If C is deduced by factorisation: the proof is left as an exercise to the
reader.

�

Corollary 28 If S ⊢sel � then S is unsatisfiable.

Proof Using Theorem 27, we can easily show that for any derivation
C1, . . . , Cn from S, we have S |= Cn (by an easy induction on n). Moreover, if
S |= � then clearly S is unsatisfiable, since � is equivalent to false. �

As we shall see the converse of Corollary 28 also holds: if S is unsatisfiable
then S ⊢sel �. This property is called refutational completeness. It ensures
that if a set of clauses in unsatisfiable, then a contradiction will eventually be
found by applying the Resolution and Factorisation rule.
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5.3 Redundancy Elimination Rules

In this section, we introduce some criteria for detecting and removing useless
clauses (this is called redundancy elimination).

Definition 29 A clause is said to be a tautology if it is of the form L∨¬L∨C.

Clearly, all tautology are valid (and all valid clauses are tautologies).

Definition 30 A clause C is said to be subsumed by a clause D if there exists
a substitution σ s.t. C is of the form Dσ ∨ D′ (modulo the AC properties of
∨)2.

Obviously, this implies that D |= C (but the converse does not hold: for
instance P (x)∨¬P (f(f(x))) is a logical consequence of P (x)∨¬P (f(x)) but is
not subsumed).

Definition 31 A clause C is said to be redundant w.r.t. a set of clauses S iff
C is either a tautology or subsumed by a clause in S. It is said to be strictly
redundant w.r.t. a set of clauses S iff either C is a tautology or if it is subsumed
by a clause D in S s.t. C does not subsume D.

As we shall see, clauses that are strictly redundant are useless, in the sense
that they are not needed for deriving the empty clause. Thus they can be simply
ignored.

6 Refutational Completeness of the Resolution

Calculus

A set of clauses S is said to be sel-saturated (or simply saturated, if sel is
implicit) iff every clause C ∈ Dsel(S) is redundant w.r.t. S.

In this section we shall show that any saturated clause set not containing � is
satisfiable. This implies that the Resolution calculus is refutationally complete:
if one computes the whole set of clauses that can be derived from a given set
of clauses S by Resolution and Factorisation (i.e. the set {C | S ⊢sel C}, then
this set is obviously saturated, thus it is unsatisfiable iff it contains �. Some
additional conditions are required on the selection function in order to ensure
the desired property.

The redundancy criteria shows that the clauses that are redundant w.r.t.
clauses that have already been deduced are not useful (hence can be ignored).

6.1 Ground Case

In this section we handle the particular case in which the clauses are ground
(i.e. contain no variable).

2If C, D are viewed as sets then we may write Dσ ⊆ C.
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We assume that a total ordering on ground atoms < is given. This ordering
is extended to literals simply by ignoring the negation symbol: ¬A < B iff
A < B iff A < ¬B.

A literal L is said to be maximal in a clause C if there is no literal L′ in C

s.t. L′ > L.
We assume that the selection function satisfies the following property: for

any clause C, either sel(C) contains all maximal literals in C, or sel(C)
contains at least a negative literal in C.

Lemma 32 Let S be a set of ground clauses. If S is saturated and unsatisfiable
then S contains �.

Proof Assume that S is saturated and does not contain �. We construct an
Herbrand interpretation I that satisfies S. I is constructed by specifying the
value of each atom in I. This is done by induction on the ordering <.

Let A be an atom. Assume that the value of any atom B < A has been
constructed. We distinguish two cases:

• If there exists a clause L1 ∨ . . .∨Ln ∨A ∈ S s.t. A is selected in L1∨ . . .∨
Ln ∨ A and for every i ∈ [1..n] we have A > Li and [Li]I = false, then

[A]I
def

= true. Notice that L1, . . . , Ln have a truth value at this point since
they are strictly smaller than A.

• Otherwise, [A]I = false.

We show that I |= S. Let C be a clause in S. Assume that C is not true in
I. Let C be the smallest clause having this property (w.r.t. to the ordering <,
i.e. we choose, among all the clauses of S that are false in I, the one containing
the smallest possible literals). This means that any clause D ∈ S s.t. D is
smaller than C is true in I.

We claim that for any clause D that is smaller than C and redundant w.r.t.
S, we have I |= D. Indeed, either D is a tautology (then D is valid and I |= D)
or S contains a clause D′ subsuming D. But in this caseD′ must be also smaller
than C (since D′ is a subclause of D and D is smaller than C) thus we have
I |= D′. Since D′ |= D, we deduce I |= D.

Now, assume that sel(C) contains a negative literal ¬L. Then C = ¬L∨C′.
Since I 6|= C, we have I 6|= C′ and I |= L. By definition of I, I |= L implies
that S contains a clause of the form L1 ∨ . . .∨Ln ∨L s.t. L is selected, and for
every i ∈ [1..n] we have I |= ¬Li and Li < L. Then the Resolution rule applies
on this clause and C and generates the clause: L1 ∨ . . . ∨ Ln ∨ C′. Since S is
saturated, this clause must be redundant in S. We have I 6|= L1 ∨ . . . ∨Ln ∨C′

(since I |= ¬Li and I 6|= C′). Moreover, L1 ∨ . . . ∨ Ln ∨ C′ is strictly smaller
than C (since a literal ¬L has been replaced by n literals L1, . . . , Ln that are
strictly smaller). By definition of C this is impossible.

Thus sel(C) contains no negative literal. Consequently, sel(C) contains all
the maximal literals in C. Let L be a maximal literal in C (L exists since C is
non empty). Obviously, L is positive. We have C = L ∨ C′.
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If C′ contains a literal that is not smaller than L, then either C′ contains L
or C′ contains ¬L (since < is total on ground atoms). If C′ contains ¬L then
C is valid, which is impossible since I 6|= C. If C′ contains L, it is of the form
C′ = L ∨ C′′ then the Factorisation rule applies on C and generates a clause
L∨C′′. Since S is saturated, L∨C′′ is redundant in S, which is impossible since
I 6|= L ∨ C′′ and L ∨ C′′ is strictly smaller than C (an occurrence of a literal L
has been deleted).

Consequently, every literal L′ in C′ is strictly smaller than L. Moreover,
we have I 6|= L′ (since I 6|= C) and L is selected in C. By definition of I, this
implies that [L]I = true, thus I |= C, which contradicts the definition of C. �

6.2 Non Ground Case

We now extend the previous result to the case in which the clauses contain vari-
ables. For the non ground case, we assume that the selection function satisfies
the following property (Lifting property): if L ∨ C is a clause and if there

exists a substitution η s.t. Lη is selected in (L ∨ C)η, then L must be

selected in L ∨ C.

This property entails that the inferences that can be performed at the ground
level (i.e. on ground instances of the considered set of clauses) can be “lifted”
to the non ground level. More precisely, the clauses that can be obtained by ap-
plying the inference rules on ground instances of a set of clauses S are instances
of clauses that can be deduced from S. More formally:

Lemma 33 Let S be a set of clauses. For every clause C ∈ Dsel(Sinst), there
exists a clause D ∈ Dsel(S) s.t. C is an instance of D.

Proof C is obtained by applying either the Resolution rule or the Factorisa-
tion rule. We distinguish two cases:

• If C is obtained by applying the Resolution rule, then C is of the form
C′ ∨D′, where Sinst contains two clauses L ∨ C′ and ¬L ∨D′ (since the
clauses are ground there is no unifier). Moreover, L and ¬L are selected
in L∨C′ and ¬L∨D′ respectively. By definition, since L∨C′ and ¬L∨D′

occurs in Sinst, they must be instances of some clauses in S. Thus there
exist two clauses L′ ∨C′′ and ¬L′′ ∨D′′ in S and two substitutions θ and
θ′ s.t. L′θ = L,L′′θ′ = L,C′′θ = C′ and D′′θ′ = D′. We assume, w.l.o.g,
that L′ ∨ C′′ and ¬L′′ ∨ D′′ share no variable (this is possible since the
shared variables are renamed before applying the Resolution rule). Then
η = θ ∪ θ′ is a unifier of L′ and L′′. Let σ be the m.g.u. of L′, L′′. By
definition, η is an instance of σ, i.e. there exists a substitution η′ s.t.
η = ση′.

By the Lifting property on sel, since L is selected in L ∨ C′ and since
(L′ ∨ C′′)ση′ = (L ∨ C′), L′σ must be selected in (L′ ∨ C′′)σ. Similarly,
¬L′′σ is selected in (¬L′′ ∨ D′′)σ. Consequently, the Resolution rule is
applicable between L′ ∨ C′′ and ¬L′′ ∨D′′. The resolvent is (C′′ ∨D′′)σ.
Thus (C′′ ∨D′′)σ ∈ Dsel(S). Moreover, (C′′ ∨D′′)ση′ = (C ∨D).
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• If C is obtained by the Factorisation rule: the proof is similar (it is left to
the reader).

�

This property is essential for completeness. It implies the following:

Lemma 34 If a set of clauses S is saturated, then Sinst is saturated.

Proof Let C be a clause in Dsel(Sinst). By Lemma 33, there exist a clause
D ∈ Dsel(S) and a substitution σ s.t. Dσ = C. By definition of the notion of
saturated set, D is redundant in S. If D is a tautology then Dσ = C is also a
tautology, thus C is redundant in Sinst. Otherwise, there exists a clause D′ in
S that subsumes D, i.e. there exists a substitution θ s.t. D = D′θ ∨ D′′, for
some clause D′′. Then C = Dσ = D′θσ ∨D′′σ. By definition D′θσ ∨D′′σ is in
Sinst thus C is subsumed by a clause in Sinst hence is redundant. �

We deduce easily the following:

Theorem 35 (Refutational Completeness) Let S be a saturated set of clauses.
S is unsatisfiable iff � ∈ S.

Proof If S is saturated, then by Lemma 34, Sinst is saturated. Moreover
since S is unsatisfiable, by the Herbrand theorem Sinst is also unsatisfiable. By
Lemma 32, � ∈ Sinst. Thus � ∈ S.

�

7 Constructing Saturated Clause Sets

In this section, we present a concrete algorithm to compute efficiently satu-
rated clause sets (applying randomly the inference rules would of course be very
inefficient).

We divide the clause set at hand into two parts: the active part and the
passive part. Initially, all clauses are active. At each step, an active clause
is chosen (the so-called “given clause”) and shifted from the active set to the
passive set. Then, all the resolvents of this clause with a passive clause (including
the given clause itself) are computed, together with the factors of the obtained
clause sets. These clauses are added to the active set. The process is iterated
using another given clause until the empty clause has been generated or until
the set of passive clauses is empty.

This algorithm is complete, in the sense that the whole set of generated
clauses is saturated (of course this set is infinite in general), provided that the
given clauses are chosen in a fair way, i.e. that no clause can stay in the active
set forever (all the clauses in the active set are eventually chosen as the given
clause). The simplest way to be sure that this property holds is to consider the
passive list as a queue, with a FIFO policy (First In First Out). Other, more
sophisticated, choice strategies can be used, for instance it is possible to select
as a given clause the clause with the smallest number of symbols (in order to
promote simpler inferences).
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In order to reduce the search space, the redundancy rules are applied as soon
as possible in order to delete useless clauses.

We use the following functions:

• NonRedundant(S) is the set of clauses C ∈ S that are not strictly redun-
dant in S.

• Simplify(S, S′) is the set of clauses C ∈ S that are not strictly redundant
w.r.t. S′.

• Resolvents(C, S) is the set of clauses produced by applying the Resolution
rule between the clause C and a clause in S (in one step).

• Factors(S) denotes the smallest set of clauses containing S and stable by
the Factorisation rule (i.e. the set of clauses that are obtained by applying
recursively the Factoring rule on S and on clauses in Factors(S)). This
set is obviously finite, since the Factorisation rule decreases the number
of literals in a clause.

Algorithm 1 A Resolution-based Theorem Prover

Require: S is a (finite) set of clauses
active← Factors(NonRedundant(S))
passive← ∅
while active 6= ∅ ∧� 6∈ active do

Choose a clause given cl ∈ active
active← active \ {given cl}
passive← passive ∪ {given cl}
new cl← Factors(Resolvents(given cl, passive))
new cl← NonRedundant(new cl)
new cl← Simplify(new cl, passive)
new cl← Simplify(new cl, active)
active← Simplify(active,new cl)
passive← Simplify(passive,new cl)
active := active ∪ new cl

end while

if � ∈ active then

statut← unsat
else

statut← sat
end if

return statut

This algorithm can easily be completed in order to return – in case S is
unsatisfiable – the whole derivation leading to the empty clauses (as a proof of
the unsatisfiability of S). To this aim, it suffices to attach to each generated
clause the list of its premises and the inference rule that has been applied.
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8 Complexity of the Resolution Calculus

A formula is said to be propositional if all the atoms occurring in it are propo-
sitional variables (then there is no quantifier and no variable). The problem of
checking whether a set of propositional clauses (or a set of propositional formu-
lae) is satisfiable or not is called SAT. The truth value of a propositional formula
only depends on the truth value of the propositional variables in it, thus there
is only 2n possible interpretations, where n denotes the number of propositional
variables. Thus SAT can be solved in exponential time.

Obviously, the same holds if the considered formula contains no variable and
no quantifier (set of ground clauses). The complexity is 2n where n denotes the
number of atoms.

It is known that all NP problems (i.e. all problems that can be solved in
polynomial time using a non deterministic algorithm) can be reduced to SAT
(this has been proven by Stephen Cook in [4] and approximatively in the same
time by Leonid Levin).

The exact complexity of SAT is not known (this is a very important open
problem), but it is usually conjectured to be non polynomial (P 6= NP ). In this
section, we identify some classes of (ground) clauses on which the Resolution
calculus is efficient in the sense that it generates only a polynomial number of
clauses.

A clause is said to be Krom if it contains at most 2 literals.

Theorem 36 Let S be a set of ground Krom clauses. The number of distinct
non valid and non empty clauses that can be generated from S by the Resolution
calculus is at most 2× n2 where n is the number of atoms in S.

Proof Obviously, the only clauses that can be obtained by Resolution or
Factorisation from clauses of length at most 2 are also of length ≤ 2. Moreover,
there is only 2×n clause of length 1 (n positive literals and n negative literals),
and n × (2n − 2) clauses of length 2 not containing two literals with the same
atom. �

This implies that the Resolution calculus decides the class of Krom propo-
sitional clauses in polynomial time.

A clause is said to be Horn if it contains at most a positive literal. A set of
clauses S is Horn if any clause in S is Horn.

Let sel+ be a selection function s.t. for any clause C containing at least a
negative literal, sel+(C) only contains one negative literal in C. sel+ is often
called a positive selection function and the corresponding Resolution strategy is
called Positive Resolution.

Theorem 37 Let S be a Horn set of ground clauses. Then the number of
distinct clauses that can be generated from S by the sel+-Resolution calculus
is at most ΣC∈Sneg(C), where neg(C) denotes the number of negative literals
occurring in the clause C.

Proof Let L ∨ C and ¬L ∨ D be two clauses in S on which the Resolution
rule can be applied. Obviously, L must be selected thus C contains no negative
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literal. Since L ∨ C is Horn, C is empty. Thus the resolvent is D. There-
fore, the application of the Resolution rule on S has the effect of removing the
(unique) selected negative literal in a clause. The Factorisation has a similar
effect (removing an occurrence of a negative selected literal).

Since only one negative literal may be selected in each clause, only neg(C)
may be removed from each clause C. Therefore the total number of clauses that
can be obtained is ΣC∈Sneg(C). �

The two previous results do not extend to the non ground case: it is not
difficult to see that the satisfiability problem is undecidable for non ground
sets of Krom or Horn clauses (even for clauses that are both Horn and Krom).
Actually 3 clauses only are sufficient to get an undecidable problem: one binary
Horn clause with a positive literal and a negative one, and two unit clauses (one
positive and one negative) [7].

9 Termination of the Resolution Calculus

Clearly, the Resolution calculus does not terminate in general. The set of clauses
that can be deduced from a given set of clauses may be infinite (as we shall see
in the last part of the course, first order logic is not decidable). For instance
the reader can check that the Resolution rule applied with a positive selection
strategy on S = {P (a),¬P (x)∨P (f(x))} generates an infinite number of clauses
of the form P (fn(a)), where n ∈ N. Of course S is satisfiable (constructing a
model of S is a trivial exercise).

Sometimes, termination can be ensured by chosen an appropriate selection
strategy. For instance, if one select the literal P (f(x)) in the second clause of S
(instead of selected ¬P (x)) then no Resolution inferences are applicable hence
the calculus terminates. This can be done by orienting the atoms in such a
way that we have P (x) < P (f(x)), and by selecting the maximal literal in each
clause.

There exist some syntactic classes of sets of clauses for which the Resolution
calculus terminates (i.e. generates only a finite number of distinct clauses).
This implies that the calculus is a decision procedure for these classes (that are
of course less expressive than full first order logic). A trivial example is the
Herbrand class (set of unit clauses): in this case the only resolvent that can be
generated in the empty clause (thus either � can be derived in one step or the
set of clauses is satisfiable).

In this section, we provide other, more interesting, examples:

9.1 Horn clauses without Functions

Theorem 38 Let S be a set of Horn clauses containing no function symbol.
The number of clauses that can be generated from S using a positive selection
function sel+ is finite (up to a renaming of variables).

Proof We have shown (see Theorem 37) that the sel+-Resolution rule can
only be applied if one of the premises is a unit positive clause. The obtained
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clause is simply obtained by removing one of the negative literals from the other
premise and by applying the m.g.u.. Thus the resolvent is a Horn clause, and
its length is smaller than the one of the premises. The same holds for the
Factorisation rule.

Consequently, the length of the generated clauses is bounded. Since the
clauses contain no function symbols, there can be only a finite number of clauses
of a fixed length (up to a renaming of variables). �

Unfortunately the previous result does not hold if the clauses are non Horn.
For instance, let us consider the set of clauses S = {q(x, y) ∨ p(x, y),¬p(u, v) ∨
p(u,w) ∨ p(w, v)}. It is easy to check that for all n = N, we have:

S ⊢sel+ q(x1, xn) ∨
n−1
∨

i=1

p(xi, xi+1),

where x1, . . . , xn are distinct variables (this can be proven by an easy induction
on n).

9.2 Monadic Formulae

Definition 39 A formula is said to be monadic iff it contains no con-
stant/function symbol and if all the predicate symbols are of arity 1.

In this section, we provide a selection function ensuring termination of the
Resolution calculus on any set of clauses obtained from a monadic formula. We
assume that the formula is in prenex form, i.e. of the form Q1x1, . . . , Q1xnφ,
where Q1, . . . , Qn are quantifiers (∃ or ∀) and φ is quantifier-free (this is clearly
not restrictive because any formula can be transformed into an equivalent for-
mula in prenex form).

We firstly introduce some notations.
Let t, s be two terms. We write t � s if one of the following holds:

• s is of the form f(s1, . . . , sn) for some function symbol f and si = t for
some i ∈ [1..n],

• or if t, s are respectively of the form f(t1, . . . , tn) and g(t1, . . . , tm) where
m ≥ n (we may have f = g).

The reader can easily check that � is transitive. We write t ≺ s iff t � s

and s 6� s. ≺ is a strict ordering. We write t ∼ s if t � s and s � t.

Proposition 40 Let L,L′ be two literals and let σ be a substitution. If L � L′

then Lσ � L′σ.

Proof Immediate. �
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If p(t) and q(s) are two monadic atoms, we write p(t) � q(s) (resp. p(t) ≺
q(s)) iff t � s (resp. t ≺ s). This relation is extended to literals by ignoring the
negation symbol.

We first analyse the clauses occurring in the clausal form of a monadic prenex
formulae, and we show that they fulfill some particular useful properties.

Definition 41 A clause C is said to be regular w.r.t. a vector of variables
x1, . . . , xn if all the atoms in L are of the form p(t) where t is:

• Either a variable xi where i ∈ [1..n].

• Or of the form f(x1, . . . , xm) for some m ∈ [1..n].

Lemma 42 If φ is a monadic formula in prenex form and S is a clausal form
of φ then all clauses in S are regular.

Proof φ is of the form Q1x1, . . . , Qixnψ, where ψ is quantifier free and con-
tains no function symbols and no constant. Let y1, . . . , ym = xi1 , . . . , xim

the
subsequence of x1, . . . , xn s.t. Qij

= ∀, for every j ∈ [1..m].
The atoms in the clausal form of φ are obtained from atoms in φ by skolemi-

sation (skolemisation is the only rule that can affect atoms, the remaining rules
only affect the logical part of the formula). All the atoms in φ are of the
form p(xi) for some i ∈ [1..n]. If xi occurs in y1, . . . , ym then p(xi) is not af-
fected by skolemisation. Otherwise xi is replaced by a skolem term of the form
f(y1, . . . , yk) for some k ∈ [1..m] (where k is the greatest index s.t. ik < i).

Thus all the clauses in φ are regular w.t.t. y1, . . . , ym. �

We assume that the ordering < satisfies the following property: if p(t) ≺ q(s)
then p(t) < q(s). This implies that if L is maximal in C, then for every L′

occurring in C, we have L 6≺ L′. For every clause C, we define sel(C) as the set
of maximal literals in C.

The following definition and lemma state an interesting property of the max-
imal literals occurring in a regular clause.

Definition 43 A clause C is said to be decomposable iff it is of the form
C = C1 ∨ C2 where C1, C2 are non empty and where Var(C1) ∩ Var(C2) = ∅.

For instance p(x) ∨ q(y) ∨ r(x) is decomposable (with C1 = p(x) ∨ r(x) and
C2 = q(y)) but p(x) ∨ q(y) ∨ r(x, y) is not.

Proposition 44 Let C be a regular, non decomposable clause.
If L is maximal in C, then Var(C) ⊆ Var(L).

Proof C is regular w.r.t. a sequence of variables x1, . . . , xn. We assume,
w.l.o.g., that the variables x1, . . . , xn occur in C (the variables not occurring in
C may be simply deleted from the sequence x1, . . . , xn).

By definition, the atoms in C are either of the form p(xi) for some i ∈ [1..n]
or of the form p(f(x1, . . . , xm)) where m ∈ [1..n].

Let j ∈ [1..n] be an index s.t. xj does not occur in a complex term in C.
Clearly, all the atoms containing xj must of be form q(xj) for some predicate
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symbol q. Let C1 be the disjunction of the literals in C that are of the form
q(xj) or ¬q(xj) and let C2 be the disjunction of the remaining literals.

By definition Var(C1) ∩ Var(C2) = ∅ (C1 only contains the variable xj and
C2 does not contain xj). Since C is non decomposable and C1 6= �, we must
have C2 = �, thus C = C1. Therefore, xj is the unique variable in C (we have
j = 1 = n) and Var(L) = Var(C) = {xj}.

Now, assume that all the variables in x1, . . . , xn occur in a complex term.
This means that there must exists in L∨C an atom of the form p(f(x1, . . . , xn)),
where p is a predicate symbol and f a function symbol. Since L is maximal,
we have L 6≺ p(f(x1, . . . , xn)), thus the atom in L must also be of the form
q(g(x1, . . . , xn)) for some predicate symbol q and some function symbol g (indeed
if the atom is of the form q(xi) for some i ∈ [1..n] of q(g(x1, . . . , xm)) for some
m < n, we would have L ≺ p(f(x1, . . . , xn)) hence L < p(f(x1, . . . , xn)).

Therefore, L contains all the variables in C.
�

Roughly speaking, the idea of the proof could be summarized as follows:

• We show that the class of regular clause is stable by Resolution and Fac-
torisation (i.e. that if S is regular, then Dsel(S) is also regular).

• We show that the number of distinct regular clauses is finite (up to a
renaming of variables).

These two points together ensure termination. Unfortunately, the first point
does not hold !

Consider for example the clauses p(f(x)) ∨ ¬q(y) and q(g(u)) ∨ q(v). Both
clauses are regular (w.r.t. x, y and u, v respectively) but the resolvent p(f(x))∨
q(g(u)) is not. However, the resolvent can be “decomposed” into a disjunction
of variable-disjoint clauses p(f(x)) and q(g(u)) that are both regular.

Therefore, we need to replace the notion of regularity by a weaker notion,
called “weak regularity”.

Definition 45 A clause is said to be weakly regular iff it is of the form
∨n

i=1 Ci where the C1, . . . , Cn are regular and non decomposable and for ev-
ery pair (i, j) ∈ [1..n]2, if i 6= j then Var(Ci) ∩ Var(Cj) = ∅ (the Ci’s share no
variable).

Proposition 46 Every regular clause is also weakly regular.

Proof This is obvious, since any clause can be decomposed into a disjunction
of variable-disjoint clauses and since every subclause of a regular clause is itself
regular, by definition. �

Then next lemma shows that the class of weakly regular clauses is stable by
Resolution and Factorisation.

Lemma 47 If S is weakly regular, then Dsel(S) is weakly regular.
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Proof Let C ∈ Dsel(S). Assume that C is obtained by Resolution from
two clauses D and E in S. By definition, D,E are of the form p(t) ∨ D′ and
¬p(s) ∨ E′, where σ is the m.g.u. of t and s and C = (D′ ∨ E′)σ.

Since D,E are weakly regular,D′ and E′ are respectively of the formD1∨D2

and E1 ∨ E2 where p(t) ∨ D1 and ¬p(s) ∨ E1 are regular (w.r.t. to sets of
variables x1, . . . , xn and y1, . . . , ym respectively) and non decomposable, and
where Var(p(t) ∨D1) ∩ Var(D2) = Var(¬p(s) ∨ E1) ∩ Var(E2) = ∅.

We have C = D1σ∨D2∨E1σ∨E2, and Var(D1σ∨E1σ)∩Var(D2∨E2) = ∅.
D2 ∨ E2 is almost regular. It suffices to show that (D1 ∨ E1)σ is regular.

We distinguish several cases.

• If both t and s are variables: t = x and s = y. σ is the substitution
{y 7→ x} (or equivalently {x 7→ y}). Since p(t) and q(s) are maximal, by
Proposition 44, all the atoms in D1 are of the form q(x) and all the atoms
in E1 are of the form q′(y). Consequently, (D1∨E1)σ only contains atoms
of the form q(x) (or q(y)), thus is regular.

• If t is a variable x and s is of the form f(y1, . . . , ym). All the atoms in D1

are of the form q(x).

In this case, σ is {x 7→ s}. Thus we have E1σ = E1. Moreover, all the
atoms in D1σ are of the form q(s). Clearly, D1σ ∨ E1 is regular w.r.t.
y1, . . . , ym.

• The proof is similar if s is a variable and t a complex term.

• If t, s are both complex, then we must have t = f(x1, . . . , xi) and s =
f(y1, . . . , yj). The m.g.u. of t, s is of the form {yi 7→ xi | i ∈ [1..n]} (up
to a renaming).

Moreover since p(t) and ¬p(s) are both maximal in their clause we must
have i = n and j = m. All the variables in E1 occurs in y1, . . . , ym, thus
E2σ is regular w.r.t. x1, . . . , xn and D1 ∨ E1σ is also regular.

The proof for Factorisation is similar. �

Unfortunately, this do not give the desired result, since there is an infi-
nite number of weakly regular clauses. Indeed, the number of variables is not
bounded hence we can “repeat” different renamings of the same clause indefi-
nitely. For instance

∨n

i=1 p(xi) is weakly regular for any n.
However, if we closely inspect this clause, it is clear that the Factorisation

rule may be applied on the literals p(xn) and p(xn−1). This produces the clause
∨n−1

i=1 p(xi), which subsumes
∨n

i=1 p(xi).
If we assume that the Factorisation rule is applied in a systematic way on

each generated clause and that subsumption is used to delete redundant clauses
(which is always the case in practice, see for instance the algorithm in Section
7), then the previous clause will be immediately deleted.

This shows that we do not need to consider clauses containing two variants
of the same clause (up to a renaming of variables). With this proviso, it is easy
to see that the number of remaining clauses is finite.
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In order to formalize this idea, we need the following:

Definition 48 A clause C is said to be condensed, if there is no factor of C
that subsumes C.

As we have seen, non condensed clauses are redundant.

Lemma 49 The number of weakly regular condensed clauses is finite (up to a
renaming of variables).

Proof Any weakly regular clause can be decomposed into a disjunction
∨n

i=1 Ci, where the clauses are regular, non decomposable, and where C1, . . . , Cn

share no variables.
By definition of the notion of regular clauses, each clause Ci contains at most

m variables, where m is the greater arity of the function symbol in f (min. 1).
Indeed, if a variable x in Ci does not occur on the scope of a function symbol
then it must be the only variable in the clause (otherwise the clause could be
decomposed by isolating all the variables containing x).

If there exists i, j s.t. Ci and Cj are identical up to renaming of variables,
then clearly the Factorisation rule can be applied on the literals in Ci, Cj and
generates the clause

∨

k∈[1..n]\j Ck. This clause subsumes the clause
∨n

i=1 Ci.
Since the clause is condensed, this is impossible.

Thus we assume that all the Ci’s are distinct (up to a renaming).
The depth of the Ci is at most 2. Consequently the number of distinct Ci

is bounded (up to a renaming). Thus the number of distinct weakly regular
clauses is bounded. �

The previous results shows that the Resolution calculus is a decision proce-
dure for the monadic class (with the selection function above).

Splitting

Another way to get rid of decomposable clause that deserves to be mentioned
is to apply a splitting rule on sets of clauses. The following lemma shows that
this is possible:

Lemma 50 Let S be a set of clauses. Let C∨D be a clause in S s.t. Var(C)∩
Var(D) = ∅. S is unsatisfiable iff S ∪ {C} and S ∪ {D} are both unsatisfiable.

Proof If S ∪ {C} or S ∪ {D} is satisfiable then S is obviously satisfiable.
Assume that S has a model I. Assume that I 6|= S ∪ {C}inst and that I 6|=
S ∪ {D}inst. Since I |= S, we have I |= Sinst, thus there exists two ground
substitutions σ and θ of domains Var(C) and Var(D) respectively s.t. I 6|= Cσ

and I 6|= Dθ. Since Var(C) and Var(D), we can define the substitution η
def

= σ∪θ.
η is a ground substitution of Var(C ∨ D) thus (C ∨ D)η ∈ Sinst. We have
I 6|= (C ∨D)η, which is impossible since I |= Sinst.

Thus at least one of the set S ∪ {C}inst or S ∪ {D}inst is satisfiable, which
implies by the Herbrand theorem that either S∪{C} or S∪{D} is satisfiable. �

34



Using this lemma, a set of clauses containing a decomposable clause may be
replaced by two clause sets which have to be refuted separately (by a recursive
call to the theorem prover) in order to show that the original clause set is
unsatisfiable. Refutational completeness is preserved, since (intuitively) the
number of splitting rules that can be applied on a given clause set is finite.
The interested reader can consult [11] for a more sophisticated version of the
splitting rule.

10 Handling Equality

In the second part of the course, efficient techniques for handling equational
reasoning are introduced, based of rewriting. In this section, we simply show
that the satisfiability problem for a set of clauses with equality can be reduced
to the non equational satisfiability problem. This result allows us to use the
Resolution calculus as a semi decision procedure for equational set of clauses.

From a syntactic point of view, equality is a binary predicate symbol, usually
written in infix notation: t = s. It is often denoted by ≈ (in order to avoid
confusion with semantic equality).

Semantically, a formula of the form t = s should hold if and only if t and s
have the same value in the considered interpretation. This is formalised by the
following:

Definition 51 (E-Interpretation) An interpretation is said to be a E-
interpretation if for any pair of elements v, v′, v=Iv

′ is true iff v = v′.

The notion of E-model, E-satisfiability,. . . are defined accordingly.
This definition is fully satisfactory from a purely semantic point of view but

it has an important disadvantage: if we replace the notion of satisfiability by the
stronger notion of E-satisfiability, our previous completeness result is no more
valid. For instance S = {a = b, b = c, a 6= c} is clearly E-unsatisfiable (if a, b, c
are constant symbols), but the Resolution rule cannot be applied on S thus �

cannot be deduced.
This can be overcome by designing an additional inference rule for handling

equality, which essentially replaces equals by equals inside a term. This rule is
called paramodulation (or superposition). The reader can refer to [2] for details.

In this section, we show another idea, namely to add additional axioms in
order to encode the properties of the equality symbol. This is a “lazy” way of
handling the equality predicate, since one does not have to change the calculus
(and more importantly, the implementation !).

Obviously equality has the following properties:

• It is reflexive, i.e. t = t, for any term t.

• If is commutative, i.e. t = s iff s = t.

• It is transitive: if t = s and s = u then t = u.
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• If has the substitutivity property: if one replace, in a given term or
formula, a subterm t by a term s s.t. t = s, then the value of the term or
formula is not affected.

These properties can be easily expressed in first-order logic. We denote by
EQ the following set of axioms (x, y, z denotes variables):

x = x Reflexivity
x = y ∨ y 6= x Commutativity
x 6= y ∨ y 6= z ∨ x = z Transitivity
∨n

i=1 xi 6= yi ∨ f(x1, . . . , xn) = f(y1, . . . , yn) Substitutivity
f is a function symbol.
∨n

i=1 xi 6= yi ∨ ¬P (x1, . . . , xn) ∨ P (y1, . . . , yn) Substitutivity
P is a predicate symbol.

EQ may be infinite in principle, since there may be an infinite number of
function or predicate symbols (since we use first-order logic, we cannot quantify
over functions or predicates). However, one can limit oneself to the symbols
actually occurring in the given formula, in order to obtain a finite set of clauses.

It is easy to add EQ to the considered clause sets before applying the Res-
olution proof procedure. However, a problem remains: the above properties do
not ensure that =I is the identity, but merely that it is a congruence on the
considered language. For instance, let us consider the following interpretation
(on the language containing only the predicate symbol P and the function f):

DI
def

= N

PI(x) = true iff x is even
x=Iy = true if x+ y is even
fI(x) = x+ 1

The reader can check I |= EQ. However, I is not a E-interpretation.
Fortunately the next theorem states that any model satisfying EQ can be

reduced into a E-model, thus ensuring that satisfiability is preserved.

Theorem 52 Let I be an interpretation satisfying EQ. There exists a E-
interpretation I ′ s.t. for any formula φ, I |= φ iff I ′ |= φ.

Proof Obviously, =I is an equivalence relation. We denote by v the equiva-
lence class of any element v ∈ DI .

We define the interpretation I ′ as follows:

• DI′

def

= {v | v ∈ DI}. The domain of I ′ is the set of equivalence classes of
the domain of I.

• For any constant symbol (or variable) a, aI′

def

= aI .

• For any propositional variable P , PI′

def

= PI .
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• For any function symbol f of arity n and for any n-tuple (v1, . . . , vn) ∈ Dn
I′ :

fI′(v1, . . . , vn)
def

= fI(v′1, . . . , v
′
n), where for every i ∈ [1..n], v′i is an element

(arbitrarily chosen) occurring in the equivalence class vi.

• For any predicate symbol P of arity n and for any n-tuple (v1, . . . , vn) ∈

Dn
I′ : PI′(v1, . . . , vn)

def

= PI(v
′
1, . . . , v

′
n), where for every i ∈ [1..n], v′i is an

element (arbitrarily chosen) occurring in the equivalence class vi.

We show that for any term t and any formula φ, the following relations hold:
[t]I′ = [t]I and [φ]I′ = [φ]I .

The proof is by induction on the size of t and φ.
Terms:

• If t is a constant or a variable, then the property follows immediately from
the definition.

• Assume that t is a complex term of the form f(t1, . . . , tn). By the induc-
tion hypothesis, we have ∀i ∈ [1..n], [ti]I′ = [ti]I . Moreover, by definition
of I ′, we have [t]I′ = fI(v′1, . . . , v

′
n) where ∀i ∈ [1..n], v′i ∈ [ti]I′ . Thus

v′i=I [ti]I . By the substitutivity axiom we deduce that [t]I=IfI(v
′
1, . . . , v

′
n).

Thus [t]I′ = [t]I .

Formulae:

• If φ is a propositional variable then the proof follows directly from the
definition of I ′.

• Assume that φ is an atom of the form t = s. Then we have [φ]I = true iff
[t]I=I [t]I , i.e. iff [t]I = [s]I i.e. iff [t]I′ = [s]I′ .

• Assume that φ is an atom of the form P (t1, . . . , tn). By the induction
hypothesis, we have ∀i ∈ [1..n], [ti]I′ = [ti]I . Moreover, by definition of I ′,
we have [t]I′ = PI(v

′
1, . . . , v

′
n) where ∀i ∈ [1..n], v′i ∈ [ti]I′ . Thus v′i=I [ti]I .

By the substitutivity axiom we deduce that [t]I = PI(v
′
1, . . . , v

′
n). Thus

[t]I′ = [t]I .

• If φ is of the form ¬ψ, then by induction we have [ψ]I′ = [ψ]I . Thus
[φ]I′ = ¬[ψ]I′ = ¬[ψ]I = [¬ψ]I = [φ]I .

• If φ is of the form ψ1 ⋆ ψ2 where ⋆ is a logical connective ∨,∧,⇔,⇒ then
by induction we have [ψi]I′ = [ψi]I (i = 1, 2). Thus [φ]I′ = [ψ1]I′ ⋆ [ψ2]I′ =
[ψ1]I ⋆ [ψ2]I = [ψ1 ⋆ ψ2]I = [φ]I .

• If φ is of the form ∀xψ, then by induction we have [ψ]I{x←v}′ = [ψ]I{x←v}.
Moreover, it is clear, by definition of I ′, that I{x← v}′ = I ′{x← v}. [φ]I
is true iff for all v ∈ DI we have [φ]I{x←v} = true, i.e. [φ]I′{x←v} = true.
All elements in DI′ are of the form v for some v ∈ DI . Thus we have ∀v ∈
DI , [φ]I′{x←v} = true iff ∀v ∈ DI′ , [φ]I′{x←v} = true i.e. iff [φ]I′ = true.

• The proof is similar if φ = ∃xψ.
�
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Corollary 53 For any set of clauses S, S is E-unsatisfiable iff S ∪ EQ is
unsatisfiable.

Proof If S is E-satisfiable then obviously S ∪ EQ is satisfiable since the
identity satisfies EQ. If S∪EQ is satisfiable, then there exists an interpretation
I satisfying S and EQ. By Theorem 52, there exists a E-interpretation I ′

satisfying S. �

Although the previous result allows to use to Resolution calculus to handle
the equality predicate, from a practical point of view, it is more efficient to use
specific inference rules (which are based on the substitutivity property: replacing
equals by equals).
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