Linear Algebra 1:
 Computing canonical forms in exact linear algebra

Clément Pernet,
LIG/INRIA-MOAIS, Grenoble Université, France
ECRYPT II: Summer School on Tools, Mykonos, Grece, June 1st, 2012

Introduction : matrix normal forms

Given a transformation $B=f(A)$,

- Identifiy invariants
- Unique representant of an equivalence class
- Simplify computations (structured form)

Different types:

Equivalence over a field: $B=U A$, where U is invertible

- Reduced echelon form:

$$
E=\left[\begin{array}{lllllll}
1 & * & 0 & * & * & 0 & * \\
& & 1 & * & * & 0 & * \\
& & & & & 1 & *
\end{array}\right]
$$

- Gauss-Jordan elimination

Introduction : matrix normal forms

Given a transformation $B=f(A)$,

- Identifiy invariants
- Unique representant of an equivalence class
- Simplify computations (structured form)

Different types:

Equivalence over a ring: $B=U A$, where $\operatorname{det}(U)= \pm 1$

- Hermite normal form:

$$
0 \leq x_{*, j}<p_{j}
$$

$$
H=\left[\begin{array}{ccccccc}
p_{1} & * & x_{1,2} & * & * & x_{1,3} & * \\
& p_{2} & * & * & x_{2,3} & * \\
& & & & p_{3} & * \\
& & & & & &
\end{array}\right] \text {, with }
$$

Introduction : matrix normal forms

Given a transformation $B=f(A)$,

- Identifiy invariants
- Unique representant of an equivalence class
- Simplify computations (structured form)

Different types:

Similarity over a field: $B=U^{-1} A U$

- Frobenius normal form (or canonical rational form):

$$
F=\left[\begin{array}{llll}
C_{P_{0}} & C_{P_{1}} & & \\
& & \ddots & \\
& & & C_{P_{k}}
\end{array}\right] \text {, with } p_{i+1} \mid p_{i} \text { and } P_{0}=\operatorname{MinPoly}(A) .
$$

- Krylov method or ZigZag elimination

Motivation

Equivalence over a field: Gaussian elimination

- Reduced echelon form, rank profile: PolSys-Gröbner basis.
- Linear system solving: sieves, index calculus, ...

Equivalence over a ring: lattice reduction

- Hermite normal form: \mathbb{Z}-modules and their saturation
- short vector problem:
- hard problem
- help improve computational complexities

Complexities

Matrix multiplication: door to fast linear algebra

- over a field: $\left.\left.\mathcal{O}\left(n^{\omega}\right) \cdot \omega \in\right] 2.3727,3\right]$ (exponent of linear algebra)
- over $\mathbb{Z}: \mathcal{O}\left(n^{\omega} M(\log \|A\|)\right)=\mathcal{O}^{\sim}\left(n^{\omega} \log \|A\|\right)$

Equivalence over a field: Reduced echelon form

- Gauss-Jordan:

Complexities

Matrix multiplication: door to fast linear algebra

- over a field: $\left.\left.\mathcal{O}\left(n^{\omega}\right) \cdot \omega \in\right] 2.3727,3\right]$ (exponent of linear algebra)
- over $\mathbb{Z}: \mathcal{O}\left(n^{\omega} M(\log \|A\|)\right)=\mathcal{O}^{\sim}\left(n^{\omega} \log \|A\|\right)$

Equivalence over a field: Reduced echelon form

- Gauss-Jordan:

Equivalence over \mathbb{Z} : Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
- [Domich \& Al. 87], [Illiopoulos 89]:
- [Micciancio \& Warinschi01]:
-

$$
\begin{array}{r}
\in P \\
\mathcal{O} \sim\left(n^{6} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{4} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{5} \log \|A\|^{2}\right), \\
\mathcal{O}^{\sim}\left(n^{3} \log \|A\|\right) \text { heur. } \\
\mathcal{O}^{\sim}\left(n^{\omega+1} \log \|A\|\right)
\end{array}
$$
\]

Complexities

Matrix multiplication: door to fast linear algebra

- over a field: $\left.\left.\mathcal{O}\left(n^{\omega}\right) \cdot \omega \in\right] 2.3727,3\right]$ (exponent of linear algebra)
- over $\mathbb{Z}: \mathcal{O}\left(n^{\omega} M(\log \|A\|)\right)=\mathcal{O}^{\sim}\left(n^{\omega} \log \|A\|\right)$

Equivalence over a field: Reduced echelon form

- Gauss-Jordan:

Equivalence over \mathbb{Z} : Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
- [Domich \& Al. 87], [Illiopoulos 89]:
- [Micciancio \& Warinschi01]:
-

$$
\begin{array}{r}
\in P \\
\mathcal{O}^{\sim}\left(n^{6} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{4} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{5} \log \|A\|^{2}\right), \\
\mathcal{O}^{\sim}\left(n^{3} \log \|A\|\right) \text { heur. } \\
\mathcal{O}^{\sim}\left(n^{\omega+1} \log \|A\|\right)
\end{array}
$$
\]

Similarity over a field: Frobenius normal form

-
- [P. \& Storjohann07]: Las Vegas without U
$\mathcal{O}\left(n^{\omega}\right)$

Complexities

Matrix multiplication: door to fast linear algebra

- over a field: $\left.\left.\mathcal{O}\left(n^{\omega}\right) \cdot \omega \in\right] 2.3727,3\right]$ (exponent of linear algebra)
- over $\mathbb{Z}: \mathcal{O}\left(n^{\omega} M(\log \|A\|)\right)=\mathcal{O}^{\sim}\left(n^{\omega} \log \|A\|\right)$

Equivalence over a field: Reduced echelon form

- Gauss-Jordan:

Equivalence over \mathbb{Z} : Hermite normal form

- [Kannan \& Bachem 79]:
- [Chou \& Collins 82]:
- [Domich \& Al. 87], [Illiopoulos 89]:
- [Micciancio \& Warinschi01]:
-

$$
\begin{array}{r}
\in P \\
\mathcal{O}^{\sim}\left(n^{6} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{4} \log \|A\|\right) \\
\mathcal{O}^{\sim}\left(n^{5} \log \|A\|^{2}\right), \\
\mathcal{O}^{\sim}\left(n^{3} \log \|A\|\right) \text { heur. } \\
\mathcal{O}^{\sim}\left(n^{\omega+1} \log \|A\|\right)
\end{array}
$$
\]

Similarity over a field: Frobenius normal form

- [Storjohann00]((%5Cmathcal%7BO%7D%5E%7B%5Csim%7D%5Cleft(n%5E%7B%5Comega%7D%5Cright))):
- [P. \& Storjohann07]: Las Vegas without U

Motivation

Algorithmic building blocks in the design of efficient computation of exact linear algebra normal forms.

In brief

Reductions to a building block
Matrix Mult: block rec. $\sum_{i=1}^{\log n} n\left(\frac{n}{2^{i}}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Gauss, REF)
Matrix Mult: Iterative $\sum_{k=1}^{n} n\left(\frac{n}{k}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Frobenius)
Linear Sys: over \mathbb{Z}
(Hermite Normal Form)
Size/dimension compromises

- Hermite normal form : rank 1 updates reducing the determinant
- Frobenius normal form : degree k, dimension n / k for $k=1 \ldots n$

Motivation

Algorithmic building blocks in the design of efficient computation of exact linear algebra normal forms.

In brief

Reductions to a building block
Matrix Mult: block rec. $\sum_{i=1}^{\log n} n\left(\frac{n}{2^{i}}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Gauss, REF)
Matrix Mult: Iterative $\sum_{k=1}^{n} n\left(\frac{n}{k}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Frobenius)
Linear Sys: over \mathbb{Z}
(Hermite Normal Form)

Size/dimension compromises

- Hermite normal form : rank 1 updates reducing the determinant
- Frobenius normal form : degree k, dimension n / k for $k=1 \ldots n$

Study originating from, the design of the libraries

- FFLAS-FFPACK: dense over word size \mathbb{Z}_{p}.
- M4RI: dense over GF(2) (see Martin Albrecht's Talk)
- LinBox: dense/sparse/black-box over $\mathbb{Z}, \mathbb{Z}_{p}$

Outline

Reduced Echelon forms and Gaussian elimination
Gaussian elimination based matrix decompositions
Relations between decompositions
Algorithms

Hermite normal form
Micciancio \& Warinschi algorithm
Double Determinant
AddCol

Frobenius normal form
Krylov method
Algorithm
Reduction to matrix multiplication

Outline

Reduced Echelon forms and Gaussian elimination
 Gaussian elimination based matrix decompositions
 Relations between decompositions
 Algorithms

Hermite normal form
 Micciancio \& Warinschi algorithm Double Determinant AddCol

Reduced echelon form and Gaussian elimination

Gaussian elimination < Reduction to red. Echelon form

- Extensively studied for numerical computations
- Specificities of exact computations:
- No partial/full pivoting
- Rank profile matters
- size of coefficients (e.g. compressed in GF(2))
\Rightarrow asymmetry

LU decomposition

- L unit lower triangular,
- U non-sing upper triangular

Exists for

- matrices having the generic rank profile (every leading principal minor is non zero)

LUP, PLU decomposition

- P a permutation matrix

Exists for

- Any non-singular matrix
- Or any matrix with generic row rank profile

LUP, PLU decomposition

- P a permutation matrix

Exists for

- Any non-singular matrix
- Or any matrix with generic row rank profile

LSP, LQUP, PLUQ decompositions

- S: semi-upper triangular,
- Q permutation matrix

Exists for

- any $m \times n$ matrix

LSP, LQUP, PLUQ decompositions

- S: semi-upper triangular,
- Q permutation matrix

Exists for

- any $m \times n$ matrix

LSP, LQUP, PLUQ decompositions

- S: semi-upper triangular,
- Q permutation matrix

Exists for

- any $m \times n$ matrix

Echelon form decomposition

Row Echelon Form $X A=R$

- X, Y : non-singular transformation matrices
- R, C : matrices in row/col echelon form

Echelon form decomposition

Row Echelon Form $X A=R$

Column Echelon Form $A Y=C$

- X, Y : non-singular transformation matrices
- R, C : matrices in row/col echelon form

Reduced echelon form decomposition

Row Reduced Echelon Form $X A=R$

- X, Y : non-singular transformation matrices
- R, C : matrices in reduced row/col echelon form

Reduced echelon form decomposition

Row Reduced Echelon Form $X A=R$

Column Reduced Echelon Form $A Y=C$

- X, Y : non-singular transformation matrices
- R, C : matrices in reduced row/col echelon form

CUP and PLE decompositions

- C: column echelon form
- E: row echelon form

Exists for

- any $m \times n$ matrix

CUP and PLE decompositions

- C: column echelon form
- E: row echelon form

Exists for

- any $m \times n$ matrix

Relations: up to permutations

From LSP to LQUP

$$
S=Q U
$$

Fact

The first $r=\operatorname{rank}(A)$ values of the permutation Q are monotonically increasing.

Relations: up to permutations

From LQUP to CUP

$$
C=L Q
$$

Relations: up to permutations

From LQUP to CUP

$$
C=L Q
$$

\mathbf{Q}
\mathbf{Q}
\mathbf{U}

From LQUP to PLE
Using transposition:

$$
\operatorname{PLE}\left(A^{T}\right)=C U P(A)^{T}
$$

Relations:

From LQUP to PLUQ

$$
P \leftrightarrow Q, L \leftarrow=Q^{T} L Q
$$

Algorithms: main types

Three ways to group operations:

1. simple iterative

- Apply the standard Gaussian elimination in dimension n
- Main loop for $\mathrm{i}=1$ to n

2. block algorithms
2.1 block iterative (Tile)

- Apply Gaussian elimination in dimension n / k over blocks of size k
- Main loop: for $\mathrm{i}=1$ to n / k
2.2 block recursive
- Apply Gaussian elimination in dimension 2 recursively on blocks of size $n / 2^{i}$
- Main loop: for $\mathrm{i}=1$ to 2

Type of algorithms

Data locality: prefer block algorithms

- cache aware: block iterative
- cache oblivious: block recursive

Base case efficieny: simple iterative
Asymptotic time complexity: block recursive
Parallelization: block iterative

Block recursive gaussian elimination

Author	Year	Computation	Requirement
Strassen	69	Inverse	gen. rank prof.
Bunch, Hopcroft	74	LUP	gen. row rank
lbarra, Moran, Hui	82	LSP, LQUP	none
Schönage, Keller-Gerig	85	StepForm	none
Storjohann	00	Echelon, RedEch	none
here	11	CUP,PLE,PLUQ	none

Block recursive gaussian elimination

Author	Year	Computation	Requirement
Strassen	69	Inverse	gen. rank prof.
Bunch, Hopcroft	74	LUP	gen. row rank
Ibarra, Moran, Hui	82	LSP, LQUP	none
Schönage, Keller-Gerig	85	StepForm	none
Storjohann	00	Echelon, RedEch	none
here	11	CUP,PLE,PLUQ	none

Comparison according to:

- No requirement on the input matrix

Block recursive gaussian elimination

Author	Year	Computation	Requirement
Strassen	69	Inverse	gen. rank prof.
Bunch, Hopcroft	74	LUP	gen. row rank
Ibarra, Moran, Hui	82	LSP, LQUP	none
Schönage, Keller-Gerig	85	StepForm	none
Storjohann	00	Echelon, RedEch	none
here	11	CUP,PLE,PLUQ	none

Comparison according to:

- No requirement on the input matrix
- Rank sensitive complexity

Block recursive gaussian elimination

Author	Year	Computation	Requirement
Strassen	69	Inverse	gen. rank prof.
Bunch, Hopcroft	74	LUP	gen. row rank
Ibarra, Moran, Hui	82	LSP, LQUP	none
Schönage, Keller-Gerig	85	StepForm	none
Storjohann	00	Echelon, RedEch	none
here	11	CUP,PLE,PLUQ	none

Comparison according to:

- No requirement on the input matrix
- Rank sensitive complexity
- Memory allocations
- Constant factor in the time complexity

Memory requirements:

Definition

In place = output overrides the input and computation does not need extra memory (considering Matrix multiplication $C \leftarrow C+A B$ as a black box)

Remark: a unit lower triangular and an upper triangular matrix can be stored on the same $m \times n$ storage!

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Compute $F=C^{-1} E$
Compute $G=D-B F$
Compute $H=A^{-1} G$
Return $\left[\begin{array}{l}H \\ F\end{array}\right]$

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Compute $F=C^{-1} E$
Compute $G=D-B F$
Compute $H=A^{-1} G$
Return $\left[\begin{array}{c}H \\ F\end{array}\right]$

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Compute $F=C^{-1} E$
Compute $G=D-B F$
Compute $H=A^{-1} G$
Return $\left[\begin{array}{c}H \\ F\end{array}\right]$

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Compute $F=C^{-1} E$
Compute $G=D-B F$
Compute $H=A^{-1} G$
Return $\left[\begin{array}{c}H \\ F\end{array}\right]$

Preliminaries

TRSM: TRiangular Solve with Matrix

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Compute $F=C^{-1} E$
Compute $G=D-B F$
Compute $H=A^{-1} G$
(Recursive call)
(MM)
(Recursive call)
Return $\left[\begin{array}{l}H \\ F\end{array}\right]$

- $\mathcal{O}\left(n^{\omega}\right)$
- In place

The CUP decomposition

1. Split A Row-wise

The CUP decomposition

1. Split A Row-wise
2. Recursive call on A_{1}

The CUP decomposition

1. Split A Row-wise
2. Recursive call on A_{1}
3. $G \leftarrow A_{21} U_{1}^{-1}$ (trsm)

The CUP decomposition

1. Split A Row-wise
2. Recursive call on A_{1}
3. $G \leftarrow A_{21} U_{1}^{-1}$ (trsm)
4. $H \leftarrow A_{22}-G \times V(\mathrm{MM})$

The CUP decomposition

1. Split A Row-wise
2. Recursive call on A_{1}
3. $G \leftarrow A_{21} U_{1}^{-1}$ (trsm)
4. $H \leftarrow A_{22}-G \times V$ (MM)
5. Recursive call on H

The CUP decomposition

1. Split A Row-wise
2. Recursive call on A_{1}
3. $G \leftarrow A_{21} U_{1}^{-1}$ (trsm)
4. $H \leftarrow A_{22}-G \times V$ (MM)
5. Recursive call on H
6. Row permutations

Memory: LSP vs LQUP vs PLUQ vs CUP

Decomposition	In place
LSP	N
LQUP	N
PLUQ	Y
CUP	Y

Echelon forms

From CUP to ColumnEchelon form

$$
\begin{aligned}
Y & =P^{T}\left[\begin{array}{cc}
U_{1} & U_{2} \\
& I_{n-r}
\end{array}\right]^{-1} \\
& =P^{T}\left[\begin{array}{cc}
U_{1}^{-1} & -U_{1}^{-1} U_{2} \\
& I_{n-r}
\end{array}\right]
\end{aligned}
$$

Additional operations:

$$
-U^{-1} U_{2} \text { trsm (triangular system solve) in-place }
$$

Echelon forms

From CUP to ColumnEchelon form

$$
\begin{aligned}
Y & =P^{T}\left[\begin{array}{cc}
U_{1} & U_{2} \\
& I_{n-r}
\end{array}\right]^{-1} \\
& =P^{T}\left[\begin{array}{cc}
U_{1}^{-1} & -U_{1}^{-1} U_{2} \\
& I_{n-r}
\end{array}\right]
\end{aligned}
$$

Additional operations:
$-U^{-1} U_{2}$ trsm (triangular system solve) in-place U_{1}^{-1} : trtri (triangular inverse)

Echelon forms

From CUP to ColumnEchelon form

$$
\begin{aligned}
Y & =P^{T}\left[\begin{array}{cc}
U_{1} & U_{2} \\
& I_{n-r}
\end{array}\right]^{-1} \\
& =P^{T}\left[\begin{array}{cc}
U_{1}^{-1} & -U_{1}^{-1} U_{2} \\
& I_{n-r}
\end{array}\right]
\end{aligned}
$$

Additional operations:
$-U^{-1} U_{2}$ trsm (triangular system solve) in-place U_{1}^{-1} : trtri (triangular inverse) in-place

From CUP to Column Echelon form

TRTRI: triangular inverse

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
U_{1}^{-1} & -U_{1}^{-1} U_{2} U_{3}^{-1} \\
U_{3}^{-1}
\end{array}\right]
$$

1: if $n=1$ then
2: $\quad U \leftarrow U^{-1}$
3: else
4: $\quad U_{2} \leftarrow U_{3}^{-1} U_{2}$
TRSM
5: $\quad U_{2} \leftarrow-U_{2} U_{3}^{-1}$
TRSM
6: $\quad U_{1} \leftarrow U_{1}^{-1}$
7: $\quad U_{3} \leftarrow U_{3}^{-1}$
8: end if

Reduced Echelon forms

From Col. Echelon form to Reduced Col. Echelon form

$$
Z=Y\left[\begin{array}{ll}
M & \\
& I_{n-r}
\end{array}\right]^{-1}
$$

Similarly, from PLE to RowEchelon form
Again reduces to:

$$
\begin{aligned}
& U^{-1} X: \text { TRSM, in-place } \\
& U^{-1}: \text { TRTRI, in-place }
\end{aligned}
$$

Reduced Echelon forms

From Col. Echelon form to Reduced Col. Echelon form

$$
Z=Y\left[\begin{array}{ll}
M & \\
& I_{n-r}
\end{array}\right]^{-1}
$$

Similarly, from PLE to RowEchelon form
Again reduces to:

$$
\begin{aligned}
U^{-1} X & : \text { TRSM, in-place } \\
U^{-1} & : \text { TRTRI, in-place } \\
U L & : \text { TRTRM, }
\end{aligned}
$$

Reduced Echelon forms

From Col. Echelon form to Reduced Col. Echelon form

$$
Z=Y\left[\begin{array}{ll}
M & \\
& I_{n-r}
\end{array}\right]^{-1}
$$

Similarly, from PLE to RowEchelon form
Again reduces to:

$$
\begin{aligned}
U^{-1} X & : \text { TRSM, in-place } \\
U^{-1} & : \text { TRTRI, in-place } \\
U L & : \text { TRTRM, }
\end{aligned}
$$

Reduced Echelon forms

From Col. Echelon form to Reduced Col. Echelon form

$$
Z=Y\left[\begin{array}{ll}
M & \\
& I_{n-r}
\end{array}\right]^{-1}
$$

Similarly, from PLE to RowEchelon form
Again reduces to:

$$
\begin{aligned}
U^{-1} X & : \text { TRSM, in-place } \\
U^{-1} & : \text { TRTRI, in-place } \\
U L & : \text { TRTRM, in-place }
\end{aligned}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

From Echelon to Reduced Echelon

TRTRM: triangular triangular multiplication

$$
\left[\begin{array}{ll}
U_{1} & U_{2} \\
& U_{3}
\end{array}\right]\left[\begin{array}{ll}
L_{1} & \\
L_{2} & L_{3}
\end{array}\right]=\left[\begin{array}{cc}
U_{1} L_{1}+U_{2} L_{2} & U_{2} L_{3} \\
U_{3} L_{2} & U_{3} L_{3}
\end{array}\right]
$$

$$
\begin{array}{lr}
\text { 1: } X_{1} \leftarrow U_{1} L_{1} & \text { TRTRM } \\
\text { 2: } X_{1} \leftarrow X_{1}+U_{2} L_{2} & \text { MM } \\
\text { 3: } X_{2} \leftarrow U_{2} L_{3} & \text { TRMM } \\
\text { 4: } X_{3} \leftarrow U_{3} L_{2} & \text { TRMM } \\
\text { 5: } X_{4} \leftarrow U_{3} L_{3} & \text { TRTRM }
\end{array}
$$

- $\mathcal{O}\left(n^{\omega}\right)$
- In place

Example: in place matrix inversion

Example: in place matrix inversion

$$
A=L U
$$

Example: in place matrix inversion

$$
A U^{-1}=L
$$

Example: in place matrix inversion

$$
A\left(U^{-1} L^{-1}\right)=I
$$

Experiments

Direct computation of the Reduced Echelon form

- Strassen 69: inverse of generic matrices
- Storjohann 00: Gauss-Jordan generalization for any rank profile

Matrix Inversion [Strassen 69]

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & \\
C A^{-1} & I
\end{array}\right]
$$

Direct computation of the Reduced Echelon form

- Strassen 69: inverse of generic matrices
- Storjohann 00: Gauss-Jordan generalization for any rank profile

Matrix Inversion [Strassen 69]

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & \\
C A^{-1} & I
\end{array}\right]
$$

1: Compute $E=A^{-1}$
(Recursive call)
2: Compute $F=D-C E B$
(MM)

3: Compute $G=F^{-1}$
(Recursive call)
4: Compute $H=-E B$
5: Compute $J=H G$
6: Compute $K=C E$
7: Compute $L=E+J K$
8: Compute $M=G K$ (MM)

9: Return $\left[\begin{array}{cc}E & J \\ M & G\end{array}\right]$

Strassen-Storjohann's Gauss-Jordan elimination

Problem

Needs to perform operations of the form $A \leftarrow A B$
\Rightarrow not doable in place by a usual matrix multiplication algorithm

Strassen-Storjohann's Gauss-Jordan elimination

Problem

Needs to perform operations of the form $A \leftarrow A B$
\Rightarrow not doable in place by a usual matrix multiplication algorithm
Workaround [Storjohann]:

1. Decompose $B=L U$
2. $A \leftarrow A L$
3. $A \leftarrow A U$

Rank sensitive time complexity

Fact

Algorithms LSP, CUP, LQUP, PLUQ, ... have a rank sensitive computation time: $\mathcal{O}\left(m n r^{\omega-2}\right)$

Time complexity: comparing constants

$$
\mathcal{O}\left(n^{\omega}\right)=C_{\omega} n^{3}
$$

Algorithm	Constant C_{ω}	C_{3}	$C_{\log _{2} 7}$	in-place
MM	C_{ω}	2	6	\times
TRSM	$\frac{C_{\omega}}{2 \omega-1-2}$	1	4	v
TRTRI	$\frac{c_{\omega}}{\left(2^{\omega-1}-2\right)\left(2^{\omega-1}-1\right)}$	$\frac{1}{3} \approx 0.33$	$\frac{8}{5}=1.6$	V
TRTRM, CUP PLUQ LQUP,	$\frac{C_{\omega}}{2 \omega-1-2}-\frac{c_{\omega}}{2 \omega-2}$	$\frac{2}{3} \approx 0.66$	$\frac{14}{5}=2.8$	v
Echelon	$\frac{C_{\omega}}{2 \omega-2-1}-\frac{3 C_{\omega}}{2 \omega-2}$	1	$\frac{22}{5} \approx 4.4$	v
RedEchelon	$\frac{c_{\omega}\left(2^{\omega-1}+2\right)}{\left(2^{\omega}-1\right.}$	2	$\frac{44}{5}=8.8$	v
StepForm	$\frac{5 C_{\omega}}{2^{\omega-1}-1}+\frac{c_{\omega}}{\left(2^{\omega-1}-1\right)\left(2^{\omega-2}-1\right)}$	4	$\frac{76}{5}=15.2$	\times
GJ*	$\frac{c_{\omega}}{2^{\omega-2}-1}$	2	8	\times

*: GJ: GaussJordan alg of [Storjohann00]((%5Cmathcal%7BO%7D%5E%7B%5Csim%7D%5Cleft(n%5E%7B%5Comega%7D%5Cright))) computing the reduced echelon form

Applications to standard linalg problems

Problem	Using	C_{ω}	C_{3}	$C_{\log _{2} 7}$	In place
Rank					
RankProfile	GJ	$\frac{C_{\omega}}{2^{\omega-2}-1}$	2	8	\times
IsSingular	CUP	$\frac{C_{\omega}}{2^{\omega-1}-2}-\frac{C_{\omega}}{2^{\omega}-2}$	0.66	2.8	V
Det					
Solve	GJ	$\frac{C_{\omega}}{2^{\omega-2}-1}$	2	8	\times
Inverse	CUP	$\frac{C^{\omega}-1}{\left(2^{\omega-1}-2\right)\left(2^{\omega-1}-1\right)}$	2	8.8	V

Summary

Outline

Reduced Echelon forms and Gaussian elimination Gaussian elimination based matrix decompositions Relations between decompositions Algorithms

Hermite normal form
Micciancio \& Warinschi algorithm
Double Determinant
AddCol

Frobenius normal form
Krylov method
Algorithm
Reduction to matrix multiplication

Computing Hermite Normal form

Equivalence over a ring: $H=U A$, where $\operatorname{det}(U)= \pm 1$
Hermite normal form: $H=\left[\begin{array}{rrrl}p_{1} & * x_{1,2} & * & * x_{1,3} \\ & p_{2} & * * & * \\ & & x_{2,3} & * \\ & & p_{3} & *\end{array}\right]$, with $0 \leq x_{*, j}<p_{j}$
Reduced Echelon form over a Ring

Improving Micciancio-Warinshi algorihm

- $\mathcal{O}\left(n^{5} \log \|A\|\right)$ (heuristically: $\left.\mathcal{O}^{\sim}\left(n^{3} \log \|A\|\right)\right)$
- space: $\mathcal{O}\left(n^{2} \log \|A\|\right)$
\Rightarrow Good on random matrices, common in num. theory, crypto.

Computing Hermite Normal form

Equivalence over a ring: $H=U A$, where $\operatorname{det}(U)= \pm 1$
Hermite normal form: $H=\left[\begin{array}{cccccccc}p_{1} & * & x_{1,2} & * & * & x_{1,3} & * \\ & & p_{2} & * & * & x_{2,3} & * \\ & & & & & p_{3} & *\end{array}\right]$, with $0 \leq x_{*, j}<p_{j}$
Reduced Echelon form over a Ring

Improving Micciancio-Warinshi algorihm

- $\mathcal{O}\left(n^{5} \log \|A\|\right)$ (heuristically: $\left.\mathcal{O}^{\sim}\left(n^{3} \log \|A\|\right)\right)$
- space: $\mathcal{O}\left(n^{2} \log \|A\|\right)$
\Rightarrow Good on random matrices, common in num. theory, crypto. Implementation, reduction to building blocks:
- LinSys over \mathbb{Z},
- CUP and MatMul over \mathbb{Z}_{p}

Naive algorithm

1 begin

2	foreach i do
3	$\left(g, t_{i}, \ldots, t_{n}\right)=\operatorname{xgcd}\left(A_{i, i}, A_{i+1, i}, \ldots, A_{n, i}\right) ;$
4	$L_{i} \leftarrow \sum_{j=i+1}^{n} t_{j} L_{j}$;
5	for $j=i+1 \ldots n$ do
6	$\left\lfloor L_{j} \leftarrow L_{j}-\frac{A_{j, i}}{g} L_{i} ;\right.$
7	for $j=1 \ldots i-1$ do
8	$\left\lfloor L_{j} \leftarrow L_{j}-\left\lfloor\frac{A_{j, i}}{g}\right\rfloor L_{i} ;\right.$

/* eliminate */
/* reduce */

$$
\left[\begin{array}{ccccccc}
p_{1} & * & x_{1,2} & * & * & x_{1,3} & * \\
& & p_{2} & * & * & x_{2,3} & * \\
& & & & & p_{3} & *
\end{array}\right]
$$

Computing modulo the determinant [Domich \& AI. 87]

Property

For A non-singular: $\max _{i} \sum_{j} H_{i j} \leq \operatorname{det} H$

Example

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
-5 & 8 & -3 & -9 & 5 & 5 \\
-2 & 8 & -2 & -2 & 8 & 5 \\
7 & -5 & -8 & 4 & 3 & -4 \\
1 & -1 & 6 & 0 & 8 & -3
\end{array}\right], H=\left[\begin{array}{cccccc}
1 & 0 & 3 & 237 & -299 & 90 \\
0 & 1 & 1 & 103 & -130 & 40 \\
0 & 0 & 4 & 352 & -450 & 135 \\
0 & 0 & 0 & 486 & -627 & 188
\end{array}\right] \\
\operatorname{det} A=1944
\end{gathered}
$$

Computing modulo the determinant [Domich \& AI. 87]

Property

For A non-singular: $\max _{i} \sum_{j} H_{i j} \leq \operatorname{det} H$

Example

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
-5 & 8 & -3 & -9 & 5 & 5 \\
-2 & 8 & -2 & -2 & 8 & 5 \\
7 & -5 & -8 & 4 & 3 & -4 \\
1 & -1 & 6 & 0 & 8 & -3
\end{array}\right], H=\left[\begin{array}{cccccc}
1 & 0 & 3 & 237 & -299 & 90 \\
0 & 1 & 1 & 103 & -130 & 40 \\
0 & 0 & 4 & 352 & -450 & 135 \\
0 & 0 & 0 & 486 & -627 & 188
\end{array}\right] \\
\operatorname{det} A=1944
\end{gathered}
$$

Moreover, every computation can be done modulo $d=\operatorname{det} A$:

$$
\begin{aligned}
& U^{\prime}\left[\begin{array}{cc}
A & \\
d I_{n} & I_{n}
\end{array}\right]=\left[\begin{array}{ll}
H & \\
& I_{n}
\end{array}\right] \\
& \Rightarrow \mathcal{O}\left(n^{3}\right) \times M(n(\log n+\log \|A\|))=\mathcal{O}^{\sim}\left(n^{4} \log \|A\|\right)
\end{aligned}
$$

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On the average : only the last few columns are large
\Rightarrow Compute H^{\prime} close to H but with small determinant

Computing modulo the determinant

- Pessimistic estimate on the arithmetic size
- d large but most coefficients of H are small
- On the average : only the last few columns are large
\Rightarrow Compute H^{\prime} close to H but with small determinant [Micciancio \& Warinschi 01]

$$
\begin{gathered}
A=\left[\begin{array}{cc}
B & b \\
c^{T} & a_{n-1, n} \\
d^{T} & a_{n, n}
\end{array}\right] \\
d_{1}=\operatorname{det}\left(\left[\begin{array}{c}
B \\
c^{T}
\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}
B \\
d^{T}
\end{array}\right]\right) \\
g=\operatorname{gcd}\left(d_{1}, d_{2}\right)=s d_{1}+t d_{2} \text { Then }
\end{gathered}
$$

$$
\operatorname{det}\left(\left[\begin{array}{c}
B \\
s c^{T}+t d^{T}
\end{array}\right]\right)=g
$$

Micciancio \& Warinschi algorithm

1 begin
$2 \quad$ Compute $d_{1}=\operatorname{det}\left(\left[\begin{array}{c}B \\ c^{T}\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}B \\ d^{T}\end{array}\right]\right)$;

$$
(g, s, t)=\operatorname{xgcd}\left(d_{1}, d_{2}\right) ;
$$

Compute H_{1} the HNF of $\left[\begin{array}{c}B \\ s c^{T}+t d^{T}\end{array}\right] \bmod g ; \quad / *$ Modular HNF */
Recover H_{2} the HNF of $\left[\begin{array}{cc}B & b \\ s c^{T}+t d^{T} & s a_{n-1, n}+t a_{n, n}\end{array}\right] ; \quad \quad l^{*}$ AddCol */
Recover H_{3} the HNF of $\left[\begin{array}{cc}B & b \\ c^{T} & a_{n-1, n} \\ d^{T} & a_{n, n}\end{array}\right]$;

Micciancio \& Warinschi algorithm

1 begin
$2 \quad$ Compute $d_{1}=\operatorname{det}\left(\left[\begin{array}{c}B \\ c^{T}\end{array}\right]\right), d_{2}=\operatorname{det}\left(\left[\begin{array}{c}B \\ d^{T}\end{array}\right]\right)$;

$$
(g, s, t)=\operatorname{xgcd}\left(d_{1}, d_{2}\right)
$$

Compute H_{1} the HNF of $\left[\begin{array}{c}B \\ s c^{T}+t d^{T}\end{array}\right] \quad \bmod g ; \quad / *$ Modular HNF */
Recover H_{2} the HNF of $\left[\begin{array}{cc}B & b \\ s c^{T}+t d^{T} & s a_{n-1, n}+t a_{n, n}\end{array}\right] ; \quad \quad$ /* AddCol */
Recover H_{3} the HNF of $\left[\begin{array}{cc}B & b \\ c^{T} & a_{n-1, n} \\ d^{T} & a_{n, n}\end{array}\right]$;
/* AddRow */

Double Determinant

First approach: LU $\bmod p_{1}, \ldots, p_{k}+$ CRT

- Only one elimination for the $n-2$ first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2}$

Double Determinant

First approach: LU mod $p_{1}, \ldots, p_{k}+$ CRT

- Only one elimination for the $n-2$ first rows
- 2 updates for the last rows (triangular back substitution)
- k large such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2}$

Second approach: [Abbott Bronstein Mulders 99]

- Solve $A x=b$.
- $\delta=\operatorname{lcm}\left(q_{1}, \ldots, q_{n}\right)$ s.t. $x_{i}=p_{i} / q_{i}$

Then δ is a large divisor of $D=\operatorname{det} A$.

- Compute D / δ by LU $\bmod p_{1}, \ldots, p_{k}+$ CRT
- k small, such that $\prod_{i=1}^{k} p_{i}>n^{n} \log \|A\|^{n / 2} / \delta$

Double Determinant : improved

Property

Let $x=\left[x_{1}, \ldots, x_{n}\right]$ be the solution of $[A \mid c] x=d$. Then $y=\left[-\frac{x_{1}}{x_{n}}, \ldots,-\frac{x_{n-1}}{x_{n}}, \frac{1}{x_{n}}\right]$ is the solution of $[A \mid d] y=c$.

- 1 system solve
- 1 LU for each p_{i}
$\Rightarrow d_{1}, d_{2}$ computed at about the cost of 1 déterminant

AddCol

Problem

Find a vector e such that

$$
\left[\begin{array}{c|c}
H_{1} & e]=U\left[\begin{array}{cc}
B & b \\
s c^{T}+t d^{T} & s a_{n-1, n}+t a_{n, n}
\end{array}\right], ~
\end{array}\right.
$$

$$
e=U\left[\begin{array}{c}
b \\
s a_{n-1, n}+t a_{n, n}
\end{array}\right]
$$

$$
=H_{1}\left[\begin{array}{c}
B \\
s c^{T}+t d^{T}
\end{array}\right]^{-1}\left[\begin{array}{c}
b \\
s a_{n-1, n}+t a_{n, n}
\end{array}\right]
$$

\Rightarrow Solve a system.

- $n-1$ first rows are small
- last row is large

AddCol

Idea:

replace the last row by a random small one w^{T}.

$$
\left[\begin{array}{c}
B \\
w^{T}
\end{array}\right] y=\left[\begin{array}{c}
b \\
a_{n-1, n-1}
\end{array}\right]
$$

Let k be a basis of the kernel of B. Then

$$
x=y+\alpha k
$$

where

$$
\alpha=\frac{a_{n-1, n-1}-\left(s c^{T}+t d^{T}\right) \cdot y}{\left(s c^{T}+t d^{T}\right) \cdot k}
$$

\Rightarrow limits the expensive arithmetic to a few dot products

Outline

Reduced Echelon forms and Gaussian elimination
 Gaussian elimination based matrix decompositions
 Relations between decompositions
 Algorithms

Hermite normal form
Micciancio \& Warinschi algorithm
Double Determinant
AddCol

Frobenius normal form
Krylov method
Algorithm
Reduction to matrix multiplication

Krylov Method

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

Krylov Method

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

\Rightarrow if $d=n$,

$$
K^{-1} A K=C_{P_{c a r}^{A}}
$$

Krylov Method

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

\Rightarrow if $d=n$,

$$
K^{-1} A K=C_{P_{c a r}^{A}}
$$

$\Rightarrow\left[\right.$ Keller-Gehrig, alg. 2] computes K in $\mathcal{O}\left(n^{\omega} \log n\right)$

Definition (degree k Krylov matrix of several vectors v_{i})

$$
K=\left[\begin{array}{lll}
v_{1} & \ldots & A^{k-1} v_{1} \left\lvert\, \begin{array}{lll}
v_{2} & \ldots & A^{k-1} v_{2}
\end{array} \ldots\right. \\
\ldots & v_{l} & \ldots
\end{array} A^{k-1} v_{l}\right]
$$

Property

Hessenberg poly-cyclic form

Fact

If $\left(d_{1}, \ldots d_{l}\right)$ is lexicographically maximal such that

$$
K=\left[\left.\begin{array}{lll}
v_{1} & \ldots & A^{d_{1}-1} v_{1}
\end{array} \ldots \right\rvert\, \begin{array}{llll}
v_{l} & \ldots & A^{d_{l}-1} v_{l}
\end{array}\right]
$$

is non-singular, then

$$
A \times K=K \times
$$

Principle

k-shifted form:

Principle

$k+1$-shifted form:

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

How to transform from k to $k+1$-shifted form ?

Krylov normal extension

Krylov normal extension

for any k-shifted form

compute the $n \times(n+k)$ matrix

Krylov normal extension

for any k-shifted form

compute the $n \times(n+k)$ matrix

and form K by picking its first linearly independent columns.

The algorithm

- Form \bar{K} : just copy the columns of A_{k}

The algorithm

- Form \bar{K} : just copy the columns of A_{k}
- Compute K : rank profile of \bar{K}

The algorithm

- Form \bar{K} : just copy the columns of A_{k}
- Compute K : rank profile of \bar{K}
- Apply the similarity transformation $K^{-1} A_{k} K$

Example

Example

Example

Example

装

Example

$$
\sum
$$

Example

Lemma

If $\# F>2 n^{2}$, the transformation will succeed with high probability. Failure is detected.

Lemma

If $\# F>2 n^{2}$, the transformation will succeed with high probability. Failure is detected.

How to use fast matrix arithmetic ?

Permutations: compressing the dense columns

Permutations: compressing the dense columns

Reduction to Matrix multiplication

Similarity transformation: parenthesing

$$
K^{-1} A K=Q^{\prime-1}\left[\begin{array}{cc}
I & * \\
0 & *
\end{array}\right] P^{\prime-1} Q\left[\begin{array}{cc}
I & * \\
0 & *
\end{array}\right] P Q^{\prime}\left[\begin{array}{cc}
I & * \\
0 & *
\end{array}\right] P^{\prime}
$$

Reduction to Matrix multiplication

Similarity transformation: parenthesing

$$
K^{-1} A K=Q^{\prime-1}\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime-1} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime}
$$

Reduction to Matrix multiplication

Similarity transformation: parenthesing

$$
\begin{aligned}
K^{-1} A K=Q^{\prime-1} & \left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime-1} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Reduction to Matrix multiplication

Similarity transformation: parenthesing

$$
\begin{aligned}
K^{-1} A K=Q^{\prime-1} & \left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime-1} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Overall complexity: summing for each iteration:

$$
\sum_{k=1}^{n} k\left(\frac{n}{k}\right)^{\omega}=n^{\omega} \sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\omega-1}=\zeta(\omega-1) n^{\omega}=\mathcal{O}\left(n^{\omega}\right)
$$

A new type of reduction

A new type of reduction

A new type of reduction

New algorithm

dimension $=\frac{n}{2^{i}}$
degree $=2^{i}$
Keller-Gehrig 2

dimension $=\frac{n}{k}$
degree $=k$

Conclusion

Reductions to a building block

Matrix Mult: block rec. $\sum_{i=1}^{\log n} n\left(\frac{n}{2^{i}}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Gauss, REF)
Matrix Mult: Iterative $\sum_{k=1}^{n} n\left(\frac{n}{k}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right) \quad$ (Frobenius)
Linear Sys: over \mathbb{Z}
(Hermite Normal Form)

Size/dimension compromises

- Hermite normal form : rank 1 updates reducing the determinant
- Frobenius normal form : degree k, dimension n / k for $k=1 \ldots n$

