Adaptive decoding for dense and sparse evaluation/interpolation codes

Clément PERNET INRIA/LIG-MOAIS, Grenoble Université joint work with M. Comer, E. Kaltofen, J-L. Roch, T. Roche

Séminaire Calcul formel et Codes, IRMAR, Rennes 23 Novembre, 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

High performance exact computations Chinese remaindering Motivation

Sparse Interpolation with errors

Berlekamp/Massey algorithm with errors Sparse Polynomial Interpolation with errors Relations to Reed-Solomon decoding

Dense interpolation with errors

Decoding CRT codes: Mandelbaum algorithm Amplitude codes Adaptive decoding Experiments

(ロ) (同) (三) (三) (三) (○) (○)

Outline

Introduction

High performance exact computations Chinese remaindering Motivation

Sparse Interpolation with errors

Berlekamp/Massey algorithm with errors Sparse Polynomial Interpolation with errors Relations to Reed-Solomon decoding

Dense interpolation with errors

Decoding CRT codes: Mandelbaum algorithm Amplitude codes Adaptive decoding Experiments

(ロ) (同) (三) (三) (三) (○) (○)

High Performance Algebraic Computations (HPAC)

(ロ) (同) (三) (三) (三) (○) (○)

Domain of Computation

- ▶ $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- ▶ \mathbb{Z}_p , GF $(p^k) \Rightarrow$ specific arithmetic

•
$$K[X]$$
 for $K = \mathbb{Z}_p, ...$

High Performance Algebraic Computations (HPAC)

Domain of Computation

- ▶ $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- ▶ \mathbb{Z}_p , GF $(p^k) \Rightarrow$ specific arithmetic
- K[X] for $K = \mathbb{Z}_p, \dots$

Application domains:

Computational number theory:

- computing tables of elliptic curves, modular forms,
- testing conjectures

...

Crypto: Algebraic attacks (Quadratic sieves, Groebner bases, index calculus,...)

Graph theory: testing conjectures (graph isomorphism,...) Representation theory

HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:

over \mathbb{Z} : Chinese Remainder Algorithm: $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$ over K[X]: Evaluation/interpolation: $K[X] \to K$

Embarassingly parallel

Lifting schemes $\mathbb{Z} \to \mathbb{Z}/p^k\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$

Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

- Matrix product over \mathbb{Z}_p, K
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration

HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:

over \mathbb{Z} : Chinese Remainder Algorithm: $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$ over K[X]: Evaluation/interpolation: $K[X] \to K$

Embarassingly parallel

Lifting schemes $\mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$

Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

- Matrix product over \mathbb{Z}_p, K
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration

Chinese remainder algorithm

If m_1, \ldots, m_k pariwise relatively prime:

$$\mathbb{Z}/(m_1\ldots m_k)\mathbb{Z}\equiv \mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}$$

Computation of y = f(x) for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^m$

beginCompute an upper bound β on |f(x)|;Pick $m_1, \ldots m_k$, pairwise prime, s.t. $m_1 \ldots m_k > \beta$;for $i = 1 \ldots k$ do $\carcel{eq:compute}$ Compute $y_i = f(x \mod m_i) \mod m_i$ Compute $y = CRT(y_1, \ldots, y_k)$

$$CRT: \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z} \to \mathbb{Z}/(m_1 \dots m_k)\mathbb{Z}$$

$$(x_1, \dots, x_k) \mapsto \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi$$
where
$$\begin{cases} \Pi = \prod_{i=1}^k m_i \\ \Pi_i = \Pi/m_i \\ Y_i = \Pi_i^{-1} \mod m_i \end{cases}$$

э

Chinese remainder algorithm

If m_1, \ldots, m_k pariwise relatively prime:

$$\mathbb{Z}/(m_1\ldots m_k)\mathbb{Z}\equiv \mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}$$

Computation of y = f(x) for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^m$

beginCompute an upper bound
$$\beta$$
 on $|f(x)|$;Pick $m_1, \ldots m_k$, pairwise prime, s.t. $m_1 \ldots m_k > \beta$;for $i = 1 \ldots k$ do $\carcel{eq:compute}$ Compute $y_i = f(x \mod m_i) \mod m_i$; /* Evaluation */Compute $y = CRT(y_1, \ldots, y_k)$; /* Interpolation */

$$CRT: \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z} \to \mathbb{Z}/(m_1 \dots m_k)\mathbb{Z}$$

$$(x_1, \dots, x_k) \mapsto \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi$$
where
$$\begin{cases} \Pi = \prod_{i=1}^k m_i \\ \Pi_i = \Pi/m_i \\ Y_i = \Pi_i^{-1} \mod m_i \end{cases}$$

Chinese remaindering and evaluation/interpolation

Evaluate *P* in *a*

 \leftrightarrow

Reduce P modulo X - a

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chinese remaindering and evaluation/interpolation

Evaluate P in a	\leftrightarrow	Reduce P modulo $X - a$
Polynomials		
Evaluation: $P \mod X - a$ Evaluate $P \ln a$		
Interpolation: $P = \sum_{i=1}^{k} y_i \frac{\prod_{j \neq i} (X-a_j)}{\prod_{j \neq i} (a_i - a_j)}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Chinese remaindering and evaluation/interpolation

Eva - -	aluate P in a	$\leftrightarrow \qquad \qquad Reduce \ P \ modulo \ X - a$
-	Polynomials	Integers
-	Evaluation: $P \mod X - a$ Evaluate $P \ln a$	N mod m "Evaluate" N in m
-	Interpolation: $P = \sum_{i=1}^{k} y_i \frac{\prod_{j \neq i} (X-a_j)}{\prod_{j \neq i} (a_i - a_j)}$	$N = \sum_{i=1}^{k} y_i \prod_{j \neq i} m_j (\prod_{j \neq i} m_j)^{-1[m_i]}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the m_i : such that $m_1 \dots m_k > \beta$

Deterministic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the m_i : such that $m_1 \dots m_k > \beta$

Early termination

Probabilistic Monte Carlo

Deterministic

- For each new modulo m_i:
 - reconstruct $y_i = f(x) \mod m_1 \times \cdots \times m_i$
 - If $y_i == y_{i-1} \Rightarrow$ terminated

Advantage:

- Adaptive number of moduli depending on the output value
- Interesting when
 - pessimistic bound: sparse/structured matrices, ...
 - no bound available

Motivation

ABFT: Algorithm Based Fault Tolerance

HPC: clusters, grid, P2P, cloud computing

Parallelization based on Evaluation/Interpolation scheme

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Need to tolerate:

- soft errors (cosmic rays,...)
- malicious corruption

Signal processing

Sparse polynomial interpolation

Distinction between noise and outliers

Symbolic-numeric methods

Dense/Sparse interpolation with errors

Problem 1: Dense interpolation with errors over \mathbb{Z}

Given (y_i, m_i) for $i = 1 \dots n$, Find $Y \in \mathbb{Z}$ such that $Y = y_i \mod m_i$ except on $\leq e$ values.

Problem 2: Sparse interpolation with errors over K[X]

Given (y_i, x_i) for $i = 1 \dots n$, Find a *t*-sparse poly. *f* such that $f(x_i) = y_i$ except on $\leq e$ values.

(ロ) (同) (三) (三) (三) (○) (○)

State of the art

Dense interpolation

	Interpolation	Interpolation with errors
over K[X]	Lagrange	Generalized Reed-Solomon codes
over \mathbb{Z}	CRT	CRT codes

Sparse Interpolation

	Interpolation	Interpolation with errors	
over <i>K</i> [<i>X</i>]	Ben-Or & Tiwari	?	
over \mathbb{Z}	?	?	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

State of the art

Dense	interpo	lation

	Interpolation	Interpolation with errors
over K[X]	Lagrange	Generalized Reed-Solomon codes
over \mathbb{Z}	CRT	CRT codes

Sparse Interpolation

	Interpolation	Interpolation with errors	
over <i>K</i> [<i>X</i>]	Ben-Or & Tiwari	?	
over \mathbb{Z}	?	?	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Contribution

Sparse interpolation code over K[X]

- Iower bound on the necessary number of evaluations
- optimal unique decoding algorihtm
- list decoding variant

Dense interpolation code over \mathbb{Z}

- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy

(日) (日) (日) (日) (日) (日) (日)

Outline

Introduction

High performance exact computations Chinese remaindering Motivation

Sparse Interpolation with errors

Berlekamp/Massey algorithm with errors Sparse Polynomial Interpolation with errors Relations to Reed-Solomon decoding

Dense interpolation with errors

Decoding CRT codes: Mandelbaum algorithm Amplitude codes Adaptive decoding Experiments

(ロ) (同) (三) (三) (三) (○) (○)

Preliminaries

Linear recurring sequences

Sequence $(a_0, a_1, \ldots, a_n, \ldots)$ such that

$$\forall j \ge 0 \ a_{j+t} = \sum_{i=0}^{t-1} \lambda_i a_{i+j}$$

(日) (日) (日) (日) (日) (日) (日)

generating polynomial: $\Lambda(z) = z^t - \sum_{i=0}^{t-1} \lambda_i z^i$ minimal generating polynomial: $\Lambda(z)$ of minimal degree linear complexity of $(a_i)_i$: the minimal degree of Λ

Hamming weight: weight(x) = #{ $i|x_i \neq 0$ } Hamming distance: $d_H(x, y)$ = weight(x - y)

Berlekamp/Massey algorithm

Input:
$$(a_0, \ldots, a_{n-1})$$
 a sequence of field elements.
Output: $\Lambda(z) = \sum_{i=0}^{L_n} \lambda_i z^i$ a monic polynomial of minimal degree
 $L_n \leq n$ such that $\sum_{i=0}^{L_n} \lambda_i a_{i+j} = 0$ for
 $j = 0, \ldots, n - L_n - 1$.

• Guarantee : BMA finds Λ of degree *t* from $\leq 2t$ entries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Problem Statement

Berlkamp/Massey with errors

Suppose $(a_0, a_1, ...)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.

Given $(b_0, b_1, \dots) = (a_0, a_1, \dots) + \varepsilon$, where weight $(\varepsilon) \leq E$:

- 1. How to recover $\Lambda(z)$ and (a_0, a_1, \dots) ?
- 2. How many entries required for
 - a unique solution ?
 - a list of solutionse including (a_0, a_1, \dots) ?

Problem Statement

Berlkamp/Massey with errors

Suppose $(a_0, a_1, ...)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.

Given $(b_0, b_1, \dots) = (a_0, a_1, \dots) + \varepsilon$, where weight $(\varepsilon) \leq E$:

- 1. How to recover $\Lambda(z)$ and (a_0, a_1, \dots) ?
- 2. How many entries required for
 - a unique solution ?
 - a list of solutionse including (a_0, a_1, \dots) ?

Coding Theory formulation

(日)(1)<

Let C be the set of all sequences of linear complexity t.

- 1. How to decode C ?
- 2. What are the best correction capacities ?
 - for unique decoding
 - list decoding

Case E = 1, t = 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Where is the error?

Case E = 1, t = 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Where is the error?

Case E = 1, t = 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Where is the error?

Case E = 1, t = 2

Where is the error? A unique solution is not guaranteed with t = 2, E = 1 and n = 11

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generalization to any $E \ge 1$

Let
$$\overline{0} = (\overbrace{0, \dots, 0}^{t-1 \text{ times}})$$
. Then
 $s = (\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0}, -1)$

is generated by $z^t - 1$ or $z^t + 1$ up to E = 1 error. Then

$$(\underbrace{s, s, \ldots, s}_{E \text{ times}}, \overline{0}, 1, \overline{0})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is generated by $z^t - 1$ or $z^t + 1$ up to *E* errors. \Rightarrow ambiguity with n = 2t(2E + 1) - 1 values.

Generalization to any $E \ge 1$

Let $\overline{0} = (\overbrace{0, \dots, 0}^{t-1 \text{ times}})$. Then $s = (\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0}, -1)$

is generated by $z^t - 1$ or $z^t + 1$ up to E = 1 error. Then

$$\underbrace{(\overline{s,s,\ldots,s},\overline{0},1,\overline{0})}^{E \text{ times}}$$

is generated by $z^t - 1$ or $z^t + 1$ up to *E* errors. \Rightarrow ambiguity with n = 2t(2E + 1) - 1 values.

Theorem

Necessary condition for unique decoding:

$$n \ge 2t(2E+1)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Majority Rule Berlekamp/Massey algorithm

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The Majority Rule Berlekamp/Massey algorithm

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(2E + 1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$. Output: $\Lambda(z)$ and (a_0, \ldots, a_{n-1}) .

begin

Run BMA on 2E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment; Perform majority vote to find $\Lambda(z)$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Majority Rule Berlekamp/Massey algorithm

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(2E + 1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$. Output: $\Lambda(z)$ and (a_0, \ldots, a_{n-1}) .

begin

Run BMA on 2E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment; Perform majority vote to find $\Lambda(z)$;

Use a *clean* segment to *clean-up* the sequence ; return $\Lambda(z)$ and $(a_0, a_1, ...)$;

Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$ Input: (a_0, \dots, a_{n-1}) , where $n \geq t+1$ Input: *E*, the maximum number of corrections to make Input: *k*, such that (a_k, a_{k+2t-1}) is clean Output: (b_0, \dots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \dots, a_{n-1})

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$ **Input**: $(a_0, ..., a_{n-1})$, where $n \ge t+1$ **Input**: *E*, the maximum number of corrections to make **Input**: k, such that (a_k, a_{k+2t-1}) is clean **Output**: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1}) begin $(b_0,\ldots,b_{n-1}) \leftarrow (a_0,\ldots,a_{n-1}); e, j \leftarrow 0;$ $i \leftarrow k + 2t$; while i < n - 1 and $e \le E$ do if Λ does not satisfy (b_{i-t+1}, \ldots, b_i) then Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1$; return $(b_0, ..., b_{n-1})$. *e*

くしゃ 本語 マイボット ボー うらう

Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$ **Input**: $(a_0, ..., a_{n-1})$, where $n \ge t+1$ **Input:** *E*, the maximum number of corrections to make **Input**: k, such that (a_k, a_{k+2t-1}) is clean **Output**: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1}) begin $(b_0,\ldots,b_{n-1}) \leftarrow (a_0,\ldots,a_{n-1}); e, j \leftarrow 0;$ $i \leftarrow k + 2t$; while i < n - 1 and e < E do if Λ does not satisfy (b_{i-t+1}, \ldots, b_i) then Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1$; $i \leftarrow k - 1$; while i > 0 and e < E do if Λ does not satisfy (b_i, \ldots, b_{i+t-1}) then Fix b_i using $z^t \Lambda(1/z)$ as a LFSR; $e \leftarrow e + 1$; return $(b_0, ..., b_{n-1}), e$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
Algorithm SequenceCleanUp

Input: $\Lambda(z) = z^t + \sum_{i=0}^{t-1} \lambda_i x^i$ where $\Lambda(0) \neq 0$ **Input**: $(a_0, ..., a_{n-1})$, where $n \ge t+1$ **Input:** *E*, the maximum number of corrections to make **Input**: k, such that (a_k, a_{k+2t-1}) is clean **Output**: (b_0, \ldots, b_{n-1}) generated by Λ at distance $\leq E$ to (a_0, \ldots, a_{n-1}) begin $(b_0,\ldots,b_{n-1}) \leftarrow (a_0,\ldots,a_{n-1}); e, j \leftarrow 0;$ $i \leftarrow k + 2t$: while i < n - 1 and e < E do if Λ does not satisfy (b_{i-t+1}, \ldots, b_i) then Fix b_i using $\Lambda(z)$ as a LFSR; $e \leftarrow e + 1$; $i \leftarrow k - 1$; while i > 0 and e < E do if Λ does not satisfy (b_i, \ldots, b_{i+t-1}) then Fix b_i using $z^t \Lambda(1/z)$ as a LFSR; $e \leftarrow e + 1$; return $(b_0, ..., b_{n-1}), e$

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

 \Rightarrow only one error

$$(a_0,\ldots,a_{k-2},b_{k-1}\neq a_{k-1},a_k,a_{k+1},a_{2t-1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

will be identified by the majority vote (2-to-1 majority).

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

$$E = 3: (0, 1, 0, 2, 0, 4, 0, 8, ...) \Rightarrow \Lambda(z) = z^2 - 2$$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$E = 3: (0, 1, 0, 2, 0, 4, 0, 8, ...) \Rightarrow \Lambda(z) = z^2 - 2$$

 $(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4, 0, 8, 0, 16, 0, 32, \dots)$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$E = 3: (0, 1, 0, 2, 0, 4, 0, 8, ...) \Rightarrow \Lambda(z) = z^2 - 2$$

$$(\underbrace{1,1,2,2}_{z^2-2},\underbrace{4,4,0,8}_{z^2+2z-2},\underbrace{0,16,0,32}_{z^2-2},\dots)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$E = 3: (0, 1, 0, 2, 0, 4, 0, 8, ...) \Rightarrow \Lambda(z) = z^2 - 2$$

$$(\underbrace{1, 1, 2, 2}_{z^2-2}, \underbrace{4, 4, 0, 8}_{z^2+2z-2}, \underbrace{0, 16, 0, 32}_{z^2-2}, \dots)$$

 $(1,1,2,2)\ \mbox{is deceptive.}$ Applying $\mbox{SequenceCleanUp}\ \mbox{with this clean segment produces}$

$$(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, \dots)$$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$E = 3: (0, 1, 0, 2, 0, 4, 0, 8, ...) \Rightarrow \Lambda(z) = z^2 - 2$$

$$(\underbrace{1, 1, 2, 2}_{z^2-2}, \underbrace{4, 4, 0, 8}_{z^2+2z-2}, \underbrace{0, 16, 0, 32}_{z^2-2}, \dots)$$

 $(1,1,2,2)\ \mbox{is deceptive.}$ Applying $\mbox{SequenceCleanUp}\ \mbox{with this clean segment produces}$

 $(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, \dots)$

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment instead.

Success of the sequence clean-up

Theorem

If $n \ge t(2E + 1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \le E$ in algorithm SequenceCleanUp.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Success of the sequence clean-up

Theorem

If $n \ge t(2E + 1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \le E$ in algorithm SequenceCleanUp.

Corollary

 $n \ge 2t(2E + 1)$ is a necessary and sufficient condition for unique decoding of Λ and the corresponding sequence.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

Also works with an upper bound $t \leq T$ on deg Λ .

List decoding for $n \ge 2t(E+1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

List decoding for $n \ge 2t(E+1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(E+1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \dots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates begin

Run BMA on E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;

(日) (日) (日) (日) (日) (日) (日)

List decoding for $n \ge 2t(E+1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(E+1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \dots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates begin

Run BMA on E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;

foreach $\Lambda_i(z)$ do

Use a *clean* segment to *clean-up* the sequence;

Withdraw Λ_i if no clean segment can be found.

return the list $(\Lambda_i(z), (a_0^{(i)}, ..., a_{n-1}^{(i)}))_i$;

Properties

• The list contains the right solution $(\Lambda, (a_0, \ldots, a_{n-1}))$

Properties

- The list contains the right solution $(\Lambda, (a_0, \ldots, a_{n-1}))$
- ▶ n ≥ 2t(E + 1) is the tightest bound to ensure to enable syndrome decoding (BMA on a clean sequence of length 2t).

Example

$$n = 2t(E+1) - 1 \text{ and } \varepsilon = (\underbrace{0, \dots, 0}_{2t-1}, 1, \underbrace{0, \dots, 0}_{2t-1}, 1, \dots, 1, \underbrace{0, \dots, 0}_{2t-1}).$$

Then $(a_0, \dots, a_{n-1}) + \varepsilon$ has no length $2t$ clean segment.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sparse Polynomial Interpolation

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sparse Polynomial Interpolation

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_i = f(p^i)$ for p a primitive element,
- and let $\Lambda(z) = \prod_{i=1}^{t} (z p^{e_i})$.
- Then $\Lambda(z)$ is the minimal generator of $(a_0, a_1, ...)$.

 \Rightarrow only need 2*t* entries to find $\Lambda(z)$ (using BMA)

Sparse Polynomial Interpolation

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_i = f(p^i)$ for p a primitive element,
- and let $\Lambda(z) = \prod_{i=1}^{t} (z p^{e_i})$.
- Then $\Lambda(z)$ is the minimal generator of (a_0, a_1, \dots) .

⇒only need 2*t* entries to find $\Lambda(z)$ (using BMA) ⇒only need 2T(2E + 1) with $e \le E$ errors and $t \le T$.

Ben-Or & Tiwari's Algorithm

Input: (a_0, \ldots, a_{2t-1}) where $a_i = f(p^i)$ Input: *t*, the numvber of (non-zero) terms of $f(x) = \sum_{j=1}^{t} c_j x^{e_j}$ Output: f(x)begin Run BMA on (a_0, \ldots, a_{2t-1}) to find $\Lambda(z)$ Find roots of $\Lambda(z)$ (polynomial factorization) Recover e_i by repeated division (by p)

Recover c_j by solving the transposed Vandermonde system

$$\begin{bmatrix} (p^0)^{e_1} & (p^0)^{e_2} & \dots & (p^0)^{e_t} \\ (p^1)^{e_1} & (p^1)^{e_2} & \dots & (p^1)^{e_t} \\ \vdots & \vdots & & \vdots \\ (p^t)^{e_1} & (p^t)^{e_2} & \dots & (p^t)^{e_t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_t \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{t-1} \end{bmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

 $\mathsf{DFT}_{\omega}(v) = \mathsf{Vandemonde}(\omega^0, \omega^1, \omega^2, \dots)v = Eval_{\omega^0, \omega^1, \omega^2, \dots}(v)$

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathsf{DFT}_{\omega}(v) = \mathsf{Vandemonde}(\omega^0, \omega^1, \omega^2, \dots)v = Eval_{\omega^0, \omega^1, \omega^2, \dots}(v)$

Univariate Ben-Or & Tiwari as a corollary

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathsf{DFT}_{\omega}(v) = \mathsf{Vandemonde}(\omega^0, \omega^1, \omega^2, \dots)v = Eval_{\omega^0, \omega^1, \omega^2, \dots}(v)$

- Univariate Ben-Or & Tiwari as a corollary
- Reed-Solomon codes: evaluation of a sparse error ⇒BMA

Reed-Solomon codes as Evaluation codes

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Reed-Solomon codes as Evaluation codes

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Sparse interpolation with errors

Find f from
$$(f(w^1), \ldots, f(w^n)) + \varepsilon$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Sparse interpolation with errors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Find f from
$$(f(w^1), \ldots, f(w^n)) + \varepsilon$$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega} = \text{Vandermonde}(\omega, \omega^2, \dots, \omega^n)$. Then $(V_{\omega})^{-1} = \frac{1}{n}V_{\omega^{-1}}$

Given g, find f, t-sparse and an error ε such that

$$g = V_{\omega}f + \varepsilon$$
$$V_{\omega^{-1}}g = nf + V_{\omega^{-1}}\epsilon$$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega} = \text{Vandermonde}(\omega, \omega^2, \dots, \omega^n)$. Then $(V_{\omega})^{-1} = \frac{1}{n}V_{\omega^{-1}}$

Given g, find f, t-sparse and an error ε such that

Reed-Solomon decoding: unique solution provided ε has 2tconsecutive trailing 0's \Leftrightarrow clean segment of length 2t $\Leftrightarrow n \ge 2t(E+1)$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega} = \text{Vandermonde}(\omega, \omega^2, \dots, \omega^n)$. Then $(V_{\omega})^{-1} = \frac{1}{n}V_{\omega^{-1}}$

Given g, find f, t-sparse and an error ε such that

Reed-Solomon decoding: unique solution provided ε has 2tconsecutive trailing 0's \Leftrightarrow clean segment of length 2t $\Leftrightarrow n \ge 2t(E+1)$

> BUT: location of the syndrome, is a priori unknown ⇒no uniqueness

Numeric Sparse Interpolation

numerical evaluations (with noise) of a sparse polynomial

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and outliers

Symbolic numeric approach [Giesbrecht, Labahn &Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned

Numeric Sparse Interpolation

numerical evaluations (with noise) of a sparse polynomial

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and outliers

Symbolic numeric approach [Giesbrecht, Labahn &Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria

Numeric Sparse Interpolation

numerical evaluations (with noise) of a sparse polynomial

(日) (日) (日) (日) (日) (日) (日)

and outliers

Symbolic numeric approach [Giesbrecht, Labahn &Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria
- Better: track two perturbed executions
 divergence = termination

Outline

Introduction

High performance exact computations Chinese remaindering Motivation

Sparse Interpolation with errors

Berlekamp/Massey algorithm with errors Sparse Polynomial Interpolation with errors Relations to Reed-Solomon decoding

Dense interpolation with errors

Decoding CRT codes: Mandelbaum algorithm Amplitude codes Adaptive decoding Experiments

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

CRT codes : Mandelbaum algorithm over $\ensuremath{\mathbb{Z}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

CRT codes : Mandelbaum algorithm over $\ensuremath{\mathbb{Z}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

CRT codes : Mandelbaum algorithm over $\ensuremath{\mathbb{Z}}$

where $m_1 \times \cdots \times m_n > x$ and $x_i = x \mod m_i \forall i$

Definition

$$(n,k)\text{-code: } C = \begin{cases} (x_1,\ldots,x_n) \in \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n} \text{ s.t. } \exists x, \begin{cases} x < m_1 \ldots m_k \\ x_i = x \mod m_i \forall i \end{cases} \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Principle

Property

$X \in C$ iff $X < \Pi_k$.

Redundancy : r = n - k

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
ABFT with Chinese remainder algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Properties of the code

Error model:

- Error: E = X' X
- Firror support: $I = \{i \in 1 \dots n, E \neq 0 \mod m_i\}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Impact of the error: $\Pi_F = \prod_{i \in I} m_i$

Properties of the code

Error model:

- Error: E = X' X
- Firror support: $I = \{i \in 1 \dots n, E \neq 0 \mod m_i\}$
- Impact of the error: $\Pi_F = \prod_{i \in I} m_i$

```
Detects up to r errors:
```

```
If X' = X + E with X \in C, \#I \leq r,
```

then $X' > \prod_k$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Redundancy r = n k, distance: r + 1
- ▶ ⇒can correct up to $\left|\frac{r}{2}\right|$ errors in theory
- More complicated in practice...

Correction

- $\blacktriangleright \quad \forall i \notin I : E \mod m_i = 0$
- *E* is a multiple of Π_V : $E = Z \Pi_V = Z \prod_{i \notin I} m_i$
- $gcd(E,\Pi) = \Pi_V$

Property

The Extended Euclidean Algorithm, applied to (Π, E) and to $(X' = X + E, \Pi)$, performs the same first iterations until $r_i < \Pi_V$.

$$\begin{array}{c|c}
\Pi \\
\hline \Pi \\
\hline X' \\
\hline X \\
\hline E \\
\hline X' \\
\hline E \\
\hline X' \\
\hline E \\
\hline U_{i-1}\Pi + v_{i-1}E = \Pi_{v} \\
u_{i}\Pi + v_{i}E = 0 \\
\hline U_{i}\Pi + v_{i}X' = r_{i} \\
\hline U_{i}\Pi + v_{i}X' = r_{i} \\
\hline V_{i}X = r_{i} \\
\hline V_{i}$$

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- ▶ Polynomial time algorithm if $e \le (n-k) \frac{\log m_{\min} \log 2}{\log m_{\max} + \log m_{\min}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- ▶ Polynomial time algorithm if $e \le (n-k) \frac{\log m_{\min} \log 2}{\log m_{\max} + \log m_{\min}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact $\prod_{i \in I} m_i$ Example: $m_1 = 3, m_2 = 5, m_3 = 3001$

- Mandelbaum: only corrects 1 error provided X < 3</p>
- Adaptive: also corrects
 - 1 error mod 3 if X < 333</p>
 - 1 error mod 5 if X < 120</p>
 - 2 errors mod 2 and 3 if X < 13</p>

Generalized point of view: amplitude code

Over a Euclidean ring A with a Euclidean function ν , multiplicative and sub-additive, ie such that

$$\nu(ab) = \nu(a)\nu(b)$$

$$\nu(a+b) \leq \nu(a) + \nu(b)$$

eg.

• over
$$\mathbb{Z}$$
: $\nu(x) = |x|$

• over
$$K[X]: \nu(P) = 2^{\deg(P)}$$

Definition

Error impact between *x* and *y*: $\Pi_F = \prod_{i \mid x \neq y[m_i]} m_i$ Error amplitude: $\nu(\Pi_F)$

・ロト・西・・田・・田・・日・

Amplitude codes

Distance

$$\begin{array}{rcccc} \Delta : & \mathcal{A} \times \mathcal{A} & \rightarrow & \mathbb{R}_+ \\ & (x,y) & \mapsto & \sum_{i \mid x \neq y[m_i]} \log_2 \nu \left(m_i \right) \end{array}$$

$$\Delta(x, y) = \log_2 \nu(\Pi_F)$$

Definition ((n, k)-amplitude code)

Given $\{m_i\}_{i\leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_+$ The set

$$C = \{ x \in \mathcal{A} : \nu(x) < \kappa \},\$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $n = \log_2 \prod_{i \le m} m_i, k = \log_2 \kappa$. is a (n, k)-amplitude code.

Definition ((n, k)-amplitude code)

Given $\{m_i\}_{i\leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_+$ The set

$$C = \{ x \in \mathcal{A} : \nu(x) < \kappa \},\$$

 $n = \log_2 \prod_{i \le m} m_i, k = \log_2 \kappa$. is a (n, k)-amplitude code.

Property (Quasi MDS)

 $\forall (x, y) \in C$

$$\Delta(x, y) > n - k - 1$$

 \Rightarrow correction capacity = maximal amplitude of an error that can be corrected

Definition ((n, k)-amplitude code)

Given $\{m_i\}_{i\leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_+$ The set

 $C = \{ x \in \mathcal{A} : \nu(x) < \kappa \},\$

 $n = \log_2 \prod_{i \le m} m_i, k = \log_2 \kappa$. is a (n, k)-amplitude code.

Property (Quasi MDS)

 $\forall (x,y) \in C, \ \mathcal{A} = \mathbf{K}[\mathbf{X}]$

$$\Delta(x, y) \ge n - k + 1$$

 \sim Singleton bound

 \Rightarrow correction capacity = maximal amplitude of an error that can be corrected

A D F A 同 F A E F A E F A Q A

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Amplitude decoding, with static correction capacity Amplitude based decoder over *R*

Input: Π, X' **Input**: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude **Output**: $X \in R$: corrected message s.t. $\nu(X)4\tau^2 < \nu(\Pi)$ begin $u_0 = 1, v_0 = 0, r_0 = \Pi;$ $u_1 = 0, v_1 = 1, r_1 = X';$ i = 1: while $(\nu(r_i) > \nu(\Pi)/2\tau)$ do Let $r_{i-1} = q_i r_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i ; $u_{i+1} = u_{i-1} - q_i u_i$ $v_{i+1} = v_{i-1} - q_i v_i;$ i = i + 1;return $X = \frac{r_i}{v_i}$

reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity Amplitude based decoder over *R*

Input: Π, X' **Input**: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude **Output**: $X \in R$: corrected message s.t. $\nu(X)4\tau^2 < \nu(\Pi)$ begin $u_0 = 1, v_0 = 0, r_0 = \Pi;$ $u_1 = 0, v_1 = 1, r_1 = X';$ i = 1;while $(\nu(r_i) > \nu(\Pi)/2\tau)$ do Let $r_{i-1} = q_i r_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i ; $u_{i+1} = u_{i-1} - q_i u_i;$ $v_{i+1} = v_{i-1} - q_i v_i;$ i = i + 1;return $X = \frac{r_i}{v_i}$

reaches the quasi-maximal correction capacity

► requires an *a priori* knowledge of τ ⇒How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

- ► With a fixed n, the correction capacity depends on a bound on v(X)
 - ⇒pessimistic estimate
 - \Rightarrow how to take advantage of all the available redundancy?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A first adaptive approach: divisibility check Termination criterion in the Extended Euclidean alg.:

•
$$u_{i+1}\Pi + v_{i+1}E = 0$$

 $\Rightarrow E = -u_{i+1}\Pi/v_{i+1}$
 \Rightarrow test if v_j divides Π

- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4\nu(v_i)^2}$
- But several candidates are possible
 ⇒discrimination by a post-condition on the result

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A first adaptive approach: divisibility check Termination criterion in the Extended Euclidean alg.:

•
$$u_{i+1}\Pi + v_{i+1}E = 0$$

 $\Rightarrow E = -u_{i+1}\Pi/v_{i+1}$
 \Rightarrow test if v_j divides Π

- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4\nu(v_i)^2}$
- But several candidates are possible
 ⇒discrimination by a post-condition on the result

Example

- ► x = 23 with 0 error
- ▶ x = 2 with 1 error

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

$$r_{i}$$

$$v_{i}X \qquad 2^{5}$$

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

$$r_{i}$$

$$v_{i}X \qquad 2^{i}$$

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

$$r_{i}$$

$$v_{i}X \qquad 2^{c}$$

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$u_{i}\Pi + v_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad u_{i}\Pi + v_{i}E = r_{i} - v_{i}X$$

$$r_{i}$$

$$v_{i}X \qquad 2^{i}$$

 $X = -r_i/v_i$

- At the final iteration: $\nu(r_i) = \nu(v_i X)$
- If necessary, a gap appears between r_{i-1} and r_i .
- ► ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Experiments

Size of the error	10	50	100	200	500	1000
g = 2	1/446	1/765	1/1118	2⁄1183	2⁄4165	1/7907
g = 3	1/244	1/414	1/576	2/1002	2⁄2164	1/4117
g = 5	1/53	1/97	1/153	2/262	1/575	1/1106
g = 10	1/1	1/3	1/9	1/14	1/26	1/35
g = 20	1/1	1/1	1/1	1/1	1/1	1/1

Table: Number of remaining candidates after the gap detection: c/d means *d* candidates with a gap > 2^g , and *c* of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26\,016$ (m = 1300 moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Conclusion

Adaptive decoding of CRT codes

- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy
- efficient termination heuristics

Sparse interpolation code over K[X]

- Iower bound on the necessary number of evaluations
- optimal unique decoding algorihtm
- list decoding variant

Perspectives

- Generalization to adaptive list decoding of CRT codes
- ► Tight bound on the size of the list when $n \ge 2t(E+1)$,

Sparse Cauchy interpolation with errors.

Bonus : Dense rational function interpolation with errors (Cauchy interpolation)

$$y_i = \frac{f(x_i)}{g(x_i)}$$

Rational function interpolation: Pade approximant

Find $h \in K[X]$ s.t. $h(x_i) = y_i$

Find f, g s.t. $hg = f \mod \prod (X - x_i)$

(interpolation) (Pade approx)

Bonus : Dense rational function interpolation with errors (Cauchy interpolation)

$$y_i = \frac{f(x_i)}{g(x_i)}$$

Rational function interpolation: Pade approximant

- Find $h \in K[X]$ s.t. $h(x_i) = y_i$
- Find f, g s.t. $hg = f \mod \prod (X x_i)$

(interpolation) (Pade approx)

Introducing an error of impact $\Pi_F = \prod_{i \in I} (X - x_i)$:

$$hg\Pi_F = f\Pi_F \mod \prod (X - x_i)$$

Property

If $n \ge \deg f + \deg g + 2e$, one can interpolate with at most e errors