Adaptive decoding for dense and sparse
evaluation/interpolation codes

Clément PERNET
INRIA/LIG-MOAIS, Grenoble Université
joint work with
M. Comer, E. Kaltofen, J-L. Roch, T. Roche

Séminaire Calcul formel et Codes, IRMAR, Rennes
23 Novembre, 2012

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

High Performance Algebraic Computations (HPAC)

Domain of Computation
» 7,Q =variable size
» Z,,GF(p*) =specific arithmetic
» K[X]forK =7,

High Performance Algebraic Computations (HPAC)

Domain of Computation
» 7,Q =variable size
» Z,,GF(p*) =specific arithmetic
» K[X]forK =Z,,,

Application domains:

Computational number theory:

» computing tables of elliptic curves, modular forms,
» testing conjectures
Crypto: Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)
Graph theory: testing conjectures (graph isomorphism,...)
Representation theory

HPAC: rules of thumb

Deal with size of arithmetic
Evaluation/interpolation schemes:

over Z: Chinese Remainder Algorithm:
7 —7Z/mZ — Z/mZ X - X L|mZ

over K[X|: Evaluation/interpolation: K[X] — K
» Embarassingly parallel

Lifting schemes Z — Z/p*Z — 7./pZ
» Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

» Matrix product over Z,, K
» Eliminations: Gauss, Gram-Schmidt (LLL), ...
» Krylov iteration

HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:

over Z: Chinese Remainder Algorithm:
7 —7Z/mZ — Z/mZ X - X L|mZ

over K[X]: Evaluation/interpolation: K[X] — K
» Embarassingly parallel

Lifting schemes Z — Z/p*Z — 7./pZ
» Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

» Matrix product over Z,, K
» Eliminations: Gauss, Gram-Schmidt (LLL), ...
» Krylov iteration

Chinese remainder algorithm
If my,...,m pariwise relatively prime:

Z)my ... m)Z=7L/mZx - XL/mZ

Computation of y = f(x) for f € Z[X],x € Z"

begin
Compute an upper bound S on |f(x)];
Pick my, ... my, pairwise prime, s.t. m; ...m; > (;
fori=1...kdo
L Compute y; = f(x mod m;) mod m;

Compute y = CRT(y1, ...,)

CRT: Z/m\Zx ---xZ/mZ — ZJ/(my...m)Z
(xl,...,xk) — ZlexiHiYi mod II

n = Ilm
where II, = H/m,

Y, = Hi_1 mod m;

Chinese remainder algorithm
If my,...,m pariwise relatively prime:

Z)(my... m)L=7/mZX - XL/mlZ

Computation of y = f(x) for f € Z[X],x € Z"

begin
Compute an upper bound S on |f(x)];
Pick my, ... my, pairwise prime, s.t. m; ...m; > (;
fori=1...kdo
L Compute y; = f(x mod m;) mod m; ; /* Evaluation =/

Compute y = CRT(y1, - .., yk); /* Interpolation =/

CRT: Z/m\Zx - - XZ/mZ — Z[/(my...m)Z
(xl, . ,xk) — Zf:l x;11;Y; mod II
I = [l m
where ¢ II; = II/m;
Y, = Hi_1 mod m;

Chinese remaindering and evaluation/interpolation

Evaluate P in a o Reduce P modulo X — a

Chinese remaindering and evaluation/interpolation

Evaluate P in a o Reduce P modulo X — a

Polynomials

Evaluation:
P mod X —a
Evaluate P in a

Interpolation:

_ \k . [Tz (X—q))
P=2li1Yi H;;Ei(“i_“j)

Chinese remaindering and evaluation/interpolation

Evaluate P in a & Reduce P modulo X — a
Polynomials | Integers
Evaluation:
P mod X —a N mod m
Evaluate P in a “Evaluate” N in m

Interpolation:
k [](X—a) k —1[m;
P=3 i H;j;(“i_ajj) N=3 1V Hj;éi mj(Hj;éi m;) tmi]

Early termination
Classic Chinese remaindering Deterministic

» bound S on the result
» Choice of the m;: such that m; ...my > 3

Early termination
Classic Chinese remaindering Deterministic

» bound S on the result
» Choice of the m;: such that m; ...my > 3

Early termination Probabilistic Monte Carlo

» For each new modulo m;:

» reconstruct y; = f(x) mod my X --- X m;
» Ify; ==y, =terminated

Advantage:

» Adaptive number of moduli depending on the output value
» Interesting when

» pessimistic bound: sparse/structured matrices, ...
» no bound available

Motivation

ABFT: Algorithm Based Fault Tolerance
HPC: clusters, grid, P2P, cloud computing
» Parallelization based on Evaluation/Interpolation scheme

Need to tolerate:
» soft errors (cosmic rays,...)
» malicious corruption

Signal processing

» Sparse polynomial interpolation

Distinction between noise and outliers
» Symbolic-numeric methods

Dense/Sparse interpolation with errors

Problem 1: Dense interpolation with errors over Z
Given (y;,m;) fori=1...n,

Find Y € Z such that Y = y; mod m; except on < e values.
Problem 2: Sparse interpolation with errors over K|[X]

Given (y;,x;) fori=1...n,
Find a t-sparse poly. f such that f(x;) = y; except on < e values.

State of the art

Dense interpolation

\ Interpolation Interpolation with errors
over K[X] | Lagrange Generalized Reed-Solomon codes
over Z CRT CRT codes

Sparse Interpolation

\ Interpolation Interpolation with errors
over K[X] | Ben-Or & Tiwari ?

over Z ? ?

State of the art

Dense interpolation

\ Interpolation Interpolation with errors
over K[X] | Lagrange Generalized Reed-Solomon codes
over Z CRT CRT codes

Sparse Interpolation

\ Interpolation Interpolation with errors
over K[X] | Ben-Or & Tiwari ?

over Z ? ?

Contribution

Sparse interpolation code over K[X]

» lower bound on the necessary number of evaluations
» optimal unique decoding algorihtm
» list decoding variant

Dense interpolation code over Z

» finer bounds on the correction capacity
» adaptive decoding using the best effective redundancy

Outline

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Preliminaries

Linear recurring sequences

Sequence (ag, ay, ..., ay,,...) such that

] >0 ajrr = Z Ai idi+j

generating polynomial: A(z) =7 — Zﬁ;}) izt
minimal generating polynomial: A(z) of minimal degree
linear complexity of (a;);: the minimal degree of A

Hamming weight: weight(x) = #{ilx; # 0}
Hamming distance: dg(x,y) = weight(x — y)

Berlekamp/Massey algorithm

Input: (ao,...,a,—1) a sequence of field elements.

Output: A(z) = Zf;o \;z' a monic polynomial of minimal degree
L, < nsuch that >k Ny = 0 for
j=0,....n—L,— 1.

» Guarantee : BMA finds A of degree 1 from < 27 entries.

Problem Statement
Berlkamp/Massey with errors

Suppose (ap,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (by,by,...) = (ao, a1, ...) + &, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...) ?

2. How many entries required for

» a unique solution ?
» a list of solutionse including (ag, a;,...) ?

Problem Statement
Berlkamp/Massey with errors

Suppose (ap,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (by,by,...) = (ao, a1, ...) + &, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...) ?

2. How many entries required for

» a unique solution ?
» a list of solutionse including (ag,ay,...) ?

Coding Theory formulation

Let C be the set of all sequences of linear complexity r.

1. How to decode C ?
2. What are the best correction capacities ?

» for unique decoding
» list decoding

How many entries to guarantee uniqueness?

Case E=1,t=2

(a:) A(z)
0, 1, 0, 1, 0, 1, 0, —1, 0, 1, 0)|2—22+*+2°

Where is the error?

How many entries to guarantee uniqueness?

Case E=1,t=2

Where is the error?

How many entries to guarantee uniqueness?

Case E=1,t=2

(a:;)
(0, 1, O, 1, O, 1,
o, 1, o, 1, 0, 1,
(0, I, 0, —1, O, 1,

Where is the error?

A(z)
2272474420
—1+47

1+22

How many entries to guarantee uniqueness?

Case E=1,t=2

Where is the error?

A(z)
2272474420
—1+47

1+22

A unique solution is not guaranteed witht =2, E=1andn =11

Generalizationto any E > 1
t—1 times

Let 0 = (0,...,0). Then

s=(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 or 7/ + 1 up to E = 1 error.
Then

E times

(5,5,...,5,0,1,0)

is generated by z/ — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Generalizationto any E > 1
t—1 times

Let 0 = (0,...,0). Then

s=(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 or 7/ + 1 up to E = 1 error.
Then

E times

(5,5,...,5,0,1,0)

is generated by z/ — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Theorem
Necessary condition for unique decoding:

n>2(2E + 1)

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)
f_&
N N N |

A Ay A Ay As

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

f_&

N I | |
A Ay A, Ay As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.

Output: A(z) and (ag, . .., a,1).

begin

Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
Perform majority vote to find A(z);

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)
f_&
N I | |
A Ay A, Ay As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.

Output: A(z) and (ag, . .., a,1).

begin

Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;

Perform majority vote to find A(z);

Use a clean segment to clean-up the sequence ;

return A(z) and (ap, a1, ...);

Algorithm SequenceCleanUp

Input: A(z) = 7' + 3/, Aix' where A(0) # 0

Input: (ag,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make

Input: &, such that (ax, ax12—1) is clean

Output: (b, ...,b,_1) generated by A at distance < E to
(ao, ..., an—1)

Algorithm SequenceCleanUp

Input: A(z) = 7' + 3/, Aix' where A(0) # 0

Input: (ag,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: &, such that (ax, ax12—1) is clean

Output: (b, ...,b,_1) generated by A at distance < E to

(ao, ..., an—1)
begin
(b()7 - ,bnfl) < (Cl(), . ,a,,,l); e,j < O,
i< k+ 2t

whilei<n—-1ande < Edo
if A does not satisfy (b;_,41,...,b;) then
| Fix b; using A(z) as a LFSR; e e+ 1;

| return (by,...,b,_1),€

Algorithm SequenceCleanUp

Input: A(z) = 7' + 3/, Aix' where A(0) # 0

Input: (ag,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: &, such that (ax, ax12—1) is clean

Output: (b, ...,b,_1) generated by A at distance < E to

begin

I+

i+

(b, - .

(ao, ..., an—1)

bu_1) (ao,...,an-1); €,j < 0;
k + 2t;

whilei<n—-1ande < E do

if A does not satisfy (b;_,41,...,b;) then
L Fix b; using A(z) as a LFSR; e + e + 1;

k—1;

whilei > 0ande < E do

if A does not satisfy (b;,...,biy,—1) then
L Fix b; using Z/A(1/z) as a LFSR; e + e + 1;

return (bg,...,b,—1),e

Algorithm SequenceCleanUp

Input: A(z) = 7' + 3/, Aix' where A(0) # 0

Input: (ag,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: %, such that (a, ax12,—1) is clean

Output: (b, ...,b,_1) generated by A at distance < E to

begin

I+

i+

(b, - .

(ao, ..., an—1)

bu_1) (ao,...,an-1); €,j < 0;
k + 2t;

whilei<n—-1ande < E do

if A does not satisfy (b;_,41,...,b;) then
L Fix b; using A(z) as a LFSR; e + e + 1;

k—1;

whilei > 0ande < E do

if A does not satisfy (b;,...,biy,—1) then
L Fix b; using Z/A(1/z) as a LFSR; e + e + 1;

return (by,...,b,—1),e

Finding a clean segment: case E = 1

=-only one error

(ag, ..., ax—2,br—1 # ax—1, ag, ag+1,az—1)

will be identified by the majority vote (2-to-1 majority).

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2*-2

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2>-2

(1,1,2,2,4,4,0,8,0,16,0,32,...)

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2>-2

(1,1,2,2,4,4,0,8,0,16,0,32,...)
——— e N —
22-2 24272 22-2

Finding a clean segment: case E > 2
Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp
Example

E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2>-2

——

2-2 224272 22
(1,1,2,2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1,1,2,2,4,4,0,8,0,16,0,32,...)
——— ——

(1,1,2,2,4,4,8,8,16,16,32,32,64, . ..)

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2>-2

(1,1,2,2,4,4,0,8,0,16,0,32,...)
——— e N —
22-2 24272 22-2

(1,1,2,2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1,1,2,2,4,4,8,8,16,16,32,32,64, . ..)

E > 3 ? contradiction. Try (0, 16,0, 32) as a clean segment
instead.

Success of the sequence clean-up

Theorem

Ifn > 1(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e < E in algorithm
SequenceCleanUp.

Success of the sequence clean-up

Theorem

Ifn > 1(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e < E in algorithm
SequenceCleanUp.

Corollary
n > 21(2E + 1) is a necessary and sufficient condition for unique
decoding of A and the corresponding sequence.

Remark
Also works with an upper boundt < T on deg A.

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e
N B

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)

fy%

I B N N
Al AZ A3

Input: (ag,...,a,-1) + ¢, where n = 21(E + 1), weight(¢) < E,
and (ao, - . .,a,—1) minimally generated by A of degree 1,
where A(0) # 0.

Output: (A;(z),s; = (a(()’), . ,afjll))l- a list of < E candidates

begin

Run BMA on E + 1 segments of 27 entries and record A;(z)

on each segment;

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)

fy%

I B N N
Al AZ A3

Input: (ag,...,a,-1) + ¢, where n = 21(E + 1), weight(¢) < E,
and (ao, - . .,a,—1) minimally generated by A of degree 1,
where A(0) # 0.

Output: (A;(z),s; = (a(()’), . ,afjll))l- a list of < E candidates

begin

Run BMA on E + 1 segments of 27 entries and record A;(z)

on each segment;

foreach A;(z) do

L Use a clean segment to clean-up the sequence;
Withdraw A; if no clean segment can be found.

| return the list (A,-(z),(ag),... at?))is

¥ 'n—1

Properties

» The list contains the right solution (A, (ao, . ..,a,—1))

Properties

» The list contains the right solution (A, (ao, . ..,a,—1))

» n > 2t(E + 1) is the tightest bound to ensure to enable
syndrome decoding (BMA on a clean sequence of length
2t).

Example

n=2(E+1)—1lande=(0,...,0,1,0,...,0,1...,1,0,...,0).
N—_—— N—— T’l_/
2t—1 2t—1 t—

Then (ay,...,a,—1) + € has no length 2¢ clean segment.

Sparse Polynomial Interpolation

xelF f(x)

f = Zizl Cl.xei

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Sparse Polynomial Interpolation

xXeF f(x)

f e Zizl Cl.xei

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.
Ben-Or/Tiwari 1988:
» Leta; = f(p') for p a primitive element,
» and let A(z) = [\, (z — p%).
» Then A(z) is the minimal generator of (ag, ay, ...).
=only need 27 entries to find A(z) (using BMA)

Sparse Polynomial Interpolation

x€F fx)+e

f= Z§:1 Cix“

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.
Ben-Or/Tiwari 1988:
» Leta; = f(p') for p a primitive element,
» and let A(z) = [T, (z — p*).
» Then A(z) is the minimal generator of (ag,ay,...).

=only need 27 entries to find A(z) (using BMA)
=only need 27(2E + 1) withe < Eerrorsand r < T.

Ben-Or & Tiwari’s Algorithm

Input: (ap,...,ax_1) where a; = f(p')

Input: 7, the numvber of (non-zero) terms of f(x) = >
Output: f(x) '
begin

Run BMA on (ay, . ..,ax—1) to find A(z)

Find roots of A(z) (polynomial factorization)
Recover ¢; by repeated division (by p)

Recover ¢; by solving the transposed Vandermonde system

P @ 0] [a] [
(p1>e] (pl)ez (pl)e, ¢ aj

t

i1 Cjx

(pt-)el (pt.)ez (pt-)e, c:; 01;1

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFT,,(v) = Vandemonde(w’,w',w?,...)v = Eval o 1 .2 (v)

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFT,,(v) = Vandemonde(w’,w',w?,...)v = Eval o 1 .2 (v)
» Univariate Ben-Or & Tiwari as a corollary

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFT,,(v) = Vandemonde(w’,w',w?,...)v = Eval o 1 .2 (v)
» Univariate Ben-Or & Tiwari as a corollary

» Reed-Solomon codes: evaluation of a sparse error
=BMA

Reed-Solomon codes as Evaluation codes

C={(f(wh).....f(w")|degf < k}

Evaluation
/\
[« T o JJLITT]TTT]I MM ITIT]
m=f(x), deg f <k ¢ =Eval(f), ¢,=f(w') error €
A\
| g el EEE BN
y=c+¢€

g =1+ Interp (&)
Interpolation

Reed-Solomon codes as Evaluation codes

C={(f(w"),....f(W")|degf < k}

Evaluation

/\
L« T o | LLITTTITTI M ITINT]
m=f(x), deg f <k c =Eval(f), ¢,=f(wi) error €
Y
H EEE BN
y=c+ €

g=1f+Interp (€)
Interpolation

BMA

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial f
Y
e T[T
g=Eval(f)+‘N_/y=c+f

Evaluation

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial f
Y
H BHEN BN
y=c+f

g=Eval(f) + ¢
Evaluation
BMA

Same problems?
Interchanging Evaluation and Interpolation
Let V,, = Vandermonde(w,w?, ... ,w"). Then (V,,)~' =1y __,
Given g, find f, t-sparse and an error ¢ such that

g = Vuf+e
Vo118 = nf+ V1€

Same problems?

Interchanging Evaluation and Interpolation

Let V,, = Vandermonde(w, w?, ..., w"). Then (V,)~' =1V,

Given g, find f, t-sparse and an error ¢ such that

g = Vuf te
V,-18 = nf + Ve
~~ S—~—

weight t error RS code word

Reed-Solomon decoding: unique solution provided ¢ has 2¢
consecutive trailing 0’s
< clean segment of length 27
Sn>2E+1)

Same problems?

Interchanging Evaluation and Interpolation

Let V,, = Vandermonde(w, w?, ..., w"). Then (V,,)~! = 1v, .,

Given g, find f, t-sparse and an error ¢ such that

g = Vuf te
V,-18 = nf + Ve

weight t error RS code word

Reed-Solomon decoding: unique solution provided ¢ has 2¢
consecutive trailing 0’s
< clean segment of length 27
Sn>2E+1)
BUT: location of the syndrome, is a priori unknown
=-N0 uniqueness

Numeric Sparse Interpolation

» numerical evaluations (with noise) of a sparse polynomial
» and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

» Interpolation/correction using Berlekamp-Massey
» Termination (zero-discrepancy) is ill-conditioned

Numeric Sparse Interpolation

» numerical evaluations (with noise) of a sparse polynomial
» and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

» Interpolation/correction using Berlekamp-Massey
» Termination (zero-discrepancy) is ill-conditioned
» But the conditioning is the termination criteria

Numeric Sparse Interpolation

» numerical evaluations (with noise) of a sparse polynomial
» and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

v

Interpolation/correction using Berlekamp-Massey
Termination (zero-discrepancy) is ill-conditioned
But the conditioning is the termination criteria

Better: track two perturbed executions
=-divergence = termination

v

v

v

Outline

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

rez — R

where my; x --- x m; > x and x; = x mod m; Vi

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

rez — DR

Xn

where m; x --- x m, > x and x; = x mod m; Vi

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

ez — EEIEETE

where m; x --- x m, > x and x; = x mod m; Vi

Definition
(n,k)-code: C =

x < mp...my
{(xl,...,x”)EZml X XZmn S.t Elx,{ xi = x mod m;Vi }

Principle

Property

X € CiffX < II,.

Hn:PIX"'XPn

— T
il oo} Jr]
—_—

My =p1 X -+ X pr

Redundancy : r=n —k

ABFT with Chinese remainder algorithm

Input A

X <11,

Solution x < II;

Encoding

—_—

Decoding

| ‘A:(Al,...An)

l Correction

‘ ‘ x=(xi,..., Xn)

Properties of the code

Error model:
» Error: E=X'—X
» Errorsupport: I={i€1...n,E#0 mod m;}
» Impact of the error: IIr = [],c, m

Properties of the code

Error model:
» Error: E=X'—X
» Error support: I ={ic1...n,E#0 mod m;}
» Impact of the error: Iy = [[,c, m;

Detects up to r errors:
If X’ = X + EwithX € C,#I <r,
then X’ > II,.

» Redundancy r = n — k, distance: r + 1
» =-can correct up to | ;| errors in theory
» More complicated in practice...

Correction

» Vi¢I:E modm =0

» Eis a multiple of IIy: E = ZIIy = ZHI.@ m;

» gcd(E,II) =1IIy

Property

The Extended Euclidean Algorithm, applied to (11, E) and to
(X' = X + E, 1), performs the same first iterations until r; < Ily.

upll + voE =11

Lo ommm -,
B 0 E=0

=vX =r;

uoll + VOX/ =X

w4+ vi 1 X' = riy

ull +viX' =r;

Correction capacity

Mandelbaum 78:

» 1 symbol = 1 residue
log muyin—log 2
log Mmax+10g Mmin

» worst case: exponential (random perturbation)

» Polynomial time algorithm if e < (n — k)

Goldreich Ron Sudan 99 weighted residues =-equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

» 1 symbol = 1 residue

» Polynomial time algorithm if ¢ < (n — k)%

» worst case: exponential (random perturbation)
Goldreich Ron Sudan 99 weighted residues =-equivalent

Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact | [;, m;
Example: m; = 3,mp; = 5, m3 = 3001

» Mandelbaum: only corrects 1 error provided X < 3

» Adaptive: also corrects

» 1 error mod 3 if X < 333
» 1 errormod5if X < 120
» 2 errors mod 2 and 3 if X < 13

Generalized point of view: amplitude code

Over a Euclidean ring A with a Euclidean function v,
multiplicative and sub-additive, ie such that

N
—~
Q
I.
S
~
IN
=
S
~
+
N
—~
S
~

eg.

» over Z: v(x) = |x|

» over K[X]: v(P) = 29¢9(P)
Definition

Error impact between x and y: TIr = Hi‘x;ﬁy[mi] m;
Error amplitude: v(Ilr)

Amplitude codes

Distance
A AXA — R+

(xy) =Y logyv(m)
i|x£y[mi]

Ax,y) = log, v(IlF)

Definition ((n, k)-amplitude code)
Given {m;}i< pairwise rel. prime, and x € R, The set
C={xeA:v(x) <k},

n = log, [[;«,,mi,k = log, . is a (n, k)-amplitude code.

Definition ((n, k)-amplitude code)

Given {m;}i< pairwise rel. prime, and x € R, The set
C={xeA:v(x) <k},

n = log, [[;«,,mi,k = log, . is a (n, k)-amplitude code.

Property (Quasi MDS)

Y(x,y) € C

Alx,y) >n—k—1

=-correction capacity = maximal amplitude of an error that can
be corrected

Definition ((n, k)-amplitude code)
Given {m;}i< pairwise rel. prime, and x € R, The set
C={xeA:v(x) <k},

n = log, [[;«,,mi,k = log, . is a (n, k)-amplitude code.

Property (Quasi MDS)
Y(x,y) € C, A= K[X]

Alx,y) >n—k+1
~ Singleton bound

=-correction capacity = maximal amplitude of an error that can
be corrected

Advantages

v

Generalization over any Euclidean ring

Natural representation of the amount of information
No need to sort moduli

Finer correction capacities

v

v

v

Advantages

» Generalization over any Euclidean ring

» Natural representation of the amount of information
» No need to sort moduli

» Finer correction capacities

» Adaptive decoding: taking advantage of all the available
redundancy

» Early termination: with no a priori knowledge of a bound
on the result

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Input: II, X’

Input: 7 e R, |7 < @: bound on the maximal error amplitude
Output: X € R: corrected message s.t. v(X)472 < v/(II)

begin

uy = I,V() :O,FQ =1I;

uy = O,Vl = 1,1"1 :X/,

i=1;

while (v(r;) > v(II)/27) do
Let r,_y = ¢;r; + riyx1 be the Euclidean division of r,_; by r;;
Uip] = Ui—1 — qillj;
Vitl = Vi—1 — qiVi;

i=i+1;
returnX:%

» reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Input: II, X’

Input: 7e R, |7 < @: bound on the maximal error amplitude
Output: X € R: corrected message s.t. v(X)472 < v/(II)

begin

uy = I,V() :O,FQ =1I;

uy = O,Vl = 1,1"1 :X/,

i=1;

while (v(r;) > v(11)/27) do

Let r,_y = ¢;r; + riyx1 be the Euclidean division of r,_; by r;;
Uip] = Ui—1 — qillj;

Vigl = Vi—1 — qiVi,

i=i+1;

return X = 3

» reaches the quasi-maximal correction capacity

» requires an a priori knowledge of 7
=-How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

» With a fixed n, the correction capacity depends on a bound
on v(X)
=-pessimistic estimate
=-how to take advantage of all the available redundancy?

redundancy effectively available
k_&

-~ A

bound on v(X) redundancy being used

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

> uipll+vigE=0
=E = —uip111/vipq
=test if v; divides II

» check if X satisfies: v(X) < 41;((?32

» But several candidates are possible
=-discrimination by a post-condition on the result

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

> uipll+vigE=0
=E = —uip111/vipq
=test if v; divides 11

> check if X satisfies: »(X) < 10,

» But several candidates are possible
=-discrimination by a post-condition on the result

Example

m;

N W
W | L
N

Xi

» x = 23 with O error
» x =2 with 1 error

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

‘ ri ‘

‘ v,'X ‘

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

| |

‘ v,'X ‘ ‘

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

‘ v,'X ‘ ‘

Detecting a gap

wIl+vi(X + E) = r; N wll +viE = r; —viX

‘ ri ‘ ‘

‘ v,'X ‘ ‘

X = —r,'/v,'
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

‘ ri ‘
‘ ViX - ‘

X = —r,'/v,'
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.
» = Introduce a blank 28 in order to detect a gap > 28

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

Sl
- W

X = —r,'/v,'
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.
» = Introduce a blank 28 in order to detect a gap > 28

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

X = —r,'/v,'
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.
» = Introduce a blank 28 in order to detect a gap > 28

Detecting a gap

wll +vi(X +E) = r; N wll + viE = ri —viX

X = —r,'/v,'
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.
» = Introduce a blank 28 in order to detect a gap > 28

Detecting a gap

wIl+vi(X + E) = r; N wll +viE = r; —viX

‘ ri ‘ ‘

X = —r,'/vi
» At the final iteration: v(r;) = v(viX)
» If necessary, a gap appears between r;_; and r;.
» = Introduce a blank 28 in order to detect a gap > 28

Property

» Loss of correction capacity: very small in practice
» Test of the divisibility for the remaining candidates
» Strongly reduces the number of divisibility tests

Experiments

Size oftheerror 10 50 100 200 500 1000
g=2 Yaae 1765 1118 21183 3Fa1e5 1/7907
g=3 V244 Ya14 576 21002 2164 Va117
g=>5 Y53 Y97 V153 2le2 1575 11106
g=10 1 /3 9 14 1/26 1/35
g=20 1 LA 1 L 1 1

Table: Number of remaining candidates after the gap detection: ¢/a
means d candidates with a gap > 2¢, and ¢ of them passed the

divisibility test. n =~ 6001 (3000 moduli), x =~ 201 (100 moduli).

Experiments

Time (s)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Divisibility —+—

Gap g=2 ——

Gap g=5 —*—

Gap g=10 —&—
Threshold T=500

AK
i

50 100 150 200 250
Size of the errors

300

350

400

Figure: Comparison for n ~ 26 016 (m = 1300 moduli of 20 bits),
x &~ 6001 (300 moduli) and 7 ~ 10007 (about 500 moduli).

Conclusion
Adaptive decoding of CRT codes

» finer bounds on the correction capacity
» adaptive decoding using the best effective redundancy
» efficient termination heuristics

Sparse interpolation code over K[X]

» lower bound on the necessary number of evaluations
» optimal unique decoding algorihtm
» list decoding variant

Perspectives

» Generalization to adaptive list decoding of CRT codes
» Tight bound on the size of the list when n > 2¢(E + 1),
» Sparse Cauchy interpolation with errors.

Bonus : Dense rational function interpolation with
errors (Cauchy interpolation)

Rational function interpolation: Pade approximant

» Find h € K[X] s.t. h(x;) = yi (interpolation)
» Findf,gs.t. hg=f mod [[(X —x;) (Pade approx)

Bonus : Dense rational function interpolation with
errors (Cauchy interpolation)

Rational function interpolation: Pade approximant

» Find h € K[X] s.t. h(x;) = yi (interpolation)
» Findf,gs.t. hg=f mod [[(X —x;) (Pade approx)

Introducing an error of impact 11y = [,

ZEI(X - xi):

hgllp = fIIr mod [[(X - x)

Property

Ifn > degf + deg g + 2e, one can interpolate with at most e errors

	Introduction
	High performance exact computations
	Chinese remaindering
	Motivation

	Sparse Interpolation with errors
	Berlekamp/Massey algorithm with errors
	Sparse Polynomial Interpolation with errors
	Relations to Reed-Solomon decoding

	Dense interpolation with errors
	Decoding CRT codes: Mandelbaum algorithm
	Amplitude codes
	Adaptive decoding
	Experiments

