Adaptive decoding for dense and sparse evaluation/interpolation codes

Clément Pernet
INRIA/LIG-MOAIS, Grenoble Université
joint work with
M. Comer, E. Kaltofen, J-L. Roch, T. Roche

Séminaire Calcul formel et Codes, IRMAR, Rennes
23 Novembre, 2012

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation
Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding
Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
 Berlekamp/Massey algorithm with errors
 Sparse Polynomial Interpolation with errors
 Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

High Performance Algebraic Computations (HPAC)

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_{p}, \mathrm{GF}\left(p^{k}\right) \Rightarrow$ specific arithmetic
- $K[X]$ for $K=\mathbb{Z}_{p}, \ldots$.

High Performance Algebraic Computations (HPAC)

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_{p}, \operatorname{GF}\left(p^{k}\right) \Rightarrow$ specific arithmetic
- $K[X]$ for $K=\mathbb{Z}_{p}, \ldots$.

Application domains:
Computational number theory:

- computing tables of elliptic curves, modular forms,
- testing conjectures

Crypto: Algebraic attacks (Quadratic sieves, Groebner bases, index calculus,...)
Graph theory: testing conjectures (graph isomorphism,...)
Representation theory

HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:
over \mathbb{Z} : Chinese Remainder Algorithm:

$$
\mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

over $K[X]$: Evaluation/interpolation: $K[X] \rightarrow K$

- Embarassingly parallel

Lifting schemes $\mathbb{Z} \rightarrow \mathbb{Z} / p^{k} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$

- Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

- Matrix product over \mathbb{Z}_{p}, K
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration

HPAC: rules of thumb

Deal with size of arithmetic

Evaluation/interpolation schemes:
over \mathbb{Z} : Chinese Remainder Algorithm:

$$
\mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

over $K[X]$: Evaluation/interpolation: $K[X] \rightarrow K$

- Embarassingly parallel

Lifting schemes $\mathbb{Z} \rightarrow \mathbb{Z} / p^{k} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$

- Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

- Matrix product over \mathbb{Z}_{p}, K
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration

Chinese remainder algorithm

If m_{1}, \ldots, m_{k} pariwise relatively prime:

$$
\mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^{m}$

begin

Compute an upper bound β on $|f(x)|$;
Pick $m_{1}, \ldots m_{k}$, pairwise prime, s.t. $m_{1} \ldots m_{k}>\beta$;
for $i=1 \ldots k$ do
Compute $y_{i}=f\left(x \bmod m_{i}\right) \bmod m_{i}$
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$
CRT: $\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{aligned} \Pi & =\prod_{i=1}^{k} m_{i} \\ \Pi_{i} & =\Pi_{/} m_{i} \\ Y_{i} & =\Pi_{i}^{-1} \bmod m_{i}\end{aligned}\right.$

Chinese remainder algorithm

If m_{1}, \ldots, m_{k} pariwise relatively prime:

$$
\mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ for $f \in \mathbb{Z}[X], x \in \mathbb{Z}^{m}$

begin

Compute an upper bound β on $|f(x)|$;
Pick $m_{1}, \ldots m_{k}$, pairwise prime, s.t. $m_{1} \ldots m_{k}>\beta$;
for $i=1 \ldots k$ do
Compute $y_{i}=f\left(x \bmod m_{i}\right) \bmod m_{i} ; \quad / *$ Evaluation */
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$; /* Interpolation */
CRT: $\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(m_{1} \ldots m_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} m_{i} \\ \Pi_{i}=\Pi_{i} m_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod m_{i}\end{array}\right.$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow

Reduce P modulo $X-a$

Chinese remaindering and evaluation/interpolation

Evaluate P in a
\leftrightarrow
Reduce P modulo $X-a$

Polynomials

Evaluation:

$P \bmod X-a$
Evaluate P in a
Interpolation:
$P=\sum_{i=1}^{k} y_{i} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}$

Chinese remaindering and evaluation/interpolation

Evaluate P in a
\leftrightarrow Reduce P modulo $X-a$

Polynomials	Integers
Evaluation:	$N \bmod m$
$P \bmod X-a$	"Evaluate" N in m
Evaluate P in a	
Interpolation:	
$P=\sum_{i=1}^{k} y_{i} \prod_{j \neq i}\left(X-a_{j}\right)$	$N=\sum_{j \neq i}^{k} y_{i} y_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}$

Early termination

Classic Chinese remaindering

Deterministic

- bound β on the result
- Choice of the m_{i} : such that $m_{1} \ldots m_{k}>\beta$

Early termination

Classic Chinese remaindering

Deterministic

- bound β on the result
- Choice of the m_{i} : such that $m_{1} \ldots m_{k}>\beta$

Early termination

Probabilistic Monte Carlo

- For each new modulo m_{i} :
- reconstruct $y_{i}=f(x) \bmod m_{1} \times \cdots \times m_{i}$
- If $y_{i}==y_{i-1} \quad \Rightarrow$ terminated

Advantage:

- Adaptive number of moduli depending on the output value
- Interesting when
- pessimistic bound: sparse/structured matrices, ...
- no bound available

Motivation

ABFT: Algorithm Based Fault Tolerance

HPC: clusters, grid, P2P, cloud computing

- Parallelization based on Evaluation/Interpolation scheme

Need to tolerate:

- soft errors (cosmic rays,...)
- malicious corruption

Signal processing

- Sparse polynomial interpolation

Distinction between noise and outliers

- Symbolic-numeric methods

Dense/Sparse interpolation with errors

Problem 1: Dense interpolation with errors over \mathbb{Z}
Given $\left(y_{i}, m_{i}\right)$ for $i=1 \ldots n$,
Find $Y \in \mathbb{Z}$ such that $Y=y_{i} \bmod m_{i}$ except on $\leq e$ values.
Problem 2: Sparse interpolation with errors over $K[X]$
Given $\left(y_{i}, x_{i}\right)$ for $i=1 \ldots n$, Find a t-sparse poly. f such that $f\left(x_{i}\right)=y_{i}$ except on $\leq e$ values.

State of the art

\section*{Dense interpolation
 | | Interpolation | Interpolation with errors |
| :--- | :---: | :---: |
| over $K[X]$ | Lagrange | Generalized Reed-Solomon codes |
| over \mathbb{Z} | CRT | CRT codes |}

Sparse Interpolation

	Interpolation	Interpolation with errors
over $K[X]$	Ben-Or \& Tiwari	$?$
over \mathbb{Z}	$?$	$?$

State of the art

\section*{Dense interpolation
 | | Interpolation | Interpolation with errors |
| :--- | :---: | :---: |
| over $K[X]$ | Lagrange | Generalized Reed-Solomon codes |
| over \mathbb{Z} | CRT | CRT codes |}

Sparse Interpolation

	Interpolation	Interpolation with errors
over $K[X]$	Ben-Or \& Tiwari	$?$
over \mathbb{Z}	$?$	$?$

Contribution

Sparse interpolation code over $K[X]$

- lower bound on the necessary number of evaluations
- optimal unique decoding algorihtm
- list decoding variant

Dense interpolation code over \mathbb{Z}

- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy

Outline

Introduction

High performance exact computations
Chinese remaindering
Motivation
Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors Sparse Polynomial Interpolation with errors Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

Preliminaries

Linear recurring sequences

Sequence $\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots\right)$ such that

$$
\forall j \geq 0 a_{j+t}=\sum_{i=0}^{t-1} \lambda_{i} a_{i+j}
$$

generating polynomial: $\Lambda(z)=z^{t}-\sum_{i=0}^{t-1} \lambda_{i} z^{i}$ minimal generating polynomial: $\Lambda(z)$ of minimal degree linear complexity of $\left(a_{i}\right)_{i}$: the minimal degree of Λ

Hamming weight: weight $(x)=\#\left\{i \mid x_{i} \neq 0\right\}$
Hamming distance: $d_{H}(x, y)=$ weight $(x-y)$

Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)$ a sequence of field elements.
Output: $\Lambda(z)=\sum_{i=0}^{L_{n}} \lambda_{i} z^{i}$ a monic polynomial of minimal degree

$$
\begin{aligned}
& L_{n} \leq n \text { such that } \sum_{i=0}^{L_{n}} \lambda_{i} a_{i+j}=0 \text { for } \\
& j=0, \ldots, n-L_{n}-1
\end{aligned}
$$

- Guarantee : BMA finds Λ of degree t from $\leq 2 t$ entries.

Problem Statement

Berlkamp/Massey with errors

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$?
2. How many entries required for

- a unique solution?
- a list of solutionse including $\left(a_{0}, a_{1}, \ldots\right)$?

Problem Statement

Berlkamp/Massey with errors

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$?
2. How many entries required for

- a unique solution?
- a list of solutionse including $\left(a_{0}, a_{1}, \ldots\right)$?

Coding Theory formulation

Let \mathcal{C} be the set of all sequences of linear complexity t.

1. How to decode \mathcal{C} ?
2. What are the best correction capacities ?

- for unique decoding
- list decoding

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\left.\begin{array}{lllllllll}
& \left(a_{i}\right) \\
0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0,
\end{array} 1, \quad 0\right) \left\lvert\, \begin{aligned}
& \Lambda(z) \\
& 2-2 z^{2}+z^{4}+z^{6}
\end{aligned}\right.
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

\[

\]

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

\[

\]

Where is the error?
A unique solution is not guaranteed with $t=2, E=1$ and $n=11$

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) \text {. Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
\left(\tilde{s}, s, \ldots, s_{E \text { times }}^{s}, \overline{0}, 1, \overline{0}\right)
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) \text {. Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
\left({ }_{(s, s, \ldots, s}^{E \text { times }}, \overline{0}, 1, \overline{0}\right)
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Theorem

Necessary condition for unique decoding:

$$
n \geq 2 t(2 E+1)
$$

The Majority Rule Berlekamp/Massey algorithm

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$. begin

Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
Perform majority vote to find $\Lambda(z)$;

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$. begin

Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
Perform majority vote to find $\Lambda(z)$;
Use a clean segment to clean-up the sequence ;
return $\Lambda(z)$ and (a_{0}, a_{1}, \ldots);

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$
begin
$\left(b_{0}, \ldots, b_{n-1}\right) \leftarrow\left(a_{0}, \ldots, a_{n-1}\right) ; e, j \leftarrow 0 ;$
$i \leftarrow k+2 t ;$
while $i \leq n-1$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i-t+1}, \ldots, b_{i}\right)$ then
$\left\lfloor\right.$ Fix b_{i} using $\Lambda(z)$ as a LFSR; $e \leftarrow e+1$;
return $\left(b_{0}, \ldots, b_{n-1}\right), e$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$

begin

$\left(b_{0}, \ldots, b_{n-1}\right) \leftarrow\left(a_{0}, \ldots, a_{n-1}\right) ; e, j \leftarrow 0 ;$
$i \leftarrow k+2 t ;$
while $i \leq n-1$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i-t+1}, \ldots, b_{i}\right)$ then
$\left\lfloor\right.$ Fix b_{i} using $\Lambda(z)$ as a LFSR; $e \leftarrow e+1$;
$i \leftarrow k-1 ;$
while $i \geq 0$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i}, \ldots, b_{i+t-1}\right)$ then
Fix b_{i} using $z^{t} \Lambda(1 / z)$ as a LFSR; $e \leftarrow e+1$;
return $\left(b_{0}, \ldots, b_{n-1}\right), e$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$

begin

$\left(b_{0}, \ldots, b_{n-1}\right) \leftarrow\left(a_{0}, \ldots, a_{n-1}\right) ; e, j \leftarrow 0 ;$
$i \leftarrow k+2 t ;$
while $i \leq n-1$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i-t+1}, \ldots, b_{i}\right)$ then
$\left\lfloor\right.$ Fix b_{i} using $\Lambda(z)$ as a LFSR; $e \leftarrow e+1$;
$i \leftarrow k-1 ;$
while $i \geq 0$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i}, \ldots, b_{i+t-1}\right)$ then
Fix b_{i} using $z^{t} \Lambda(1 / z)$ as a LFSR; $e \leftarrow e+1$;
return $\left(b_{0}, \ldots, b_{n-1}\right), e$

Finding a clean segment: case $E=1$

\Rightarrow only one error

$$
\left(a_{0}, \ldots, a_{k-2}, b_{k-1} \neq a_{k-1}, a_{k}, a_{k+1}, a_{2 t-1}\right)
$$

will be identified by the majority vote (2-to-1 majority).

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4,0,8,0,16,0,32, \ldots)
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
\Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\underbrace{\mathbf{1}, 1, \mathbf{2}, 2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\underbrace{\mathbf{1}, 1,2,2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

$(1,1,2,2)$ is deceptive. Applying SequenceCleanUp with this clean segment produces
$(\mathbf{1}, 1, \mathbf{2}, 2,4,4,8,8,16,16,32,32,64, \ldots)$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\underbrace{\mathbf{1}, 1, \mathbf{2}, 2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

$(1,1,2,2)$ is deceptive. Applying SequenceCleanUp with this clean segment produces

$$
(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4,8,8,16,16,32,32,64, \ldots)
$$

$E>3$? contradiction. Try $(0,16,0,32)$ as a clean segment instead.

Success of the sequence clean-up

Theorem

If $n \geq t(2 E+1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \leq E$ in algorithm SequenceCleanUp.

Success of the sequence clean-up

Theorem

If $n \geq t(2 E+1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \leq E$ in algorithm SequenceCleanUp.

Corollary

$n \geq 2 t(2 E+1)$ is a necessary and sufficient condition for unique decoding of Λ and the corresponding sequence.

Remark

Also works with an upper bound $t \leq T$ on $\operatorname{deg} \Lambda$.

List decoding for $n \geq 2 t(E+1)$

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates begin

Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates begin

Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
foreach $\Lambda_{i}(z)$ do
Use a clean segment to clean-up the sequence; Withdraw Λ_{i} if no clean segment can be found.
return the list $\left(\Lambda_{i}(z),\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$;

Properties

- The list contains the right solution $\left(\Lambda,\left(a_{0}, \ldots, a_{n-1}\right)\right)$

Properties

- The list contains the right solution $\left(\Lambda,\left(a_{0}, \ldots, a_{n-1}\right)\right)$
- $n \geq 2 t(E+1)$ is the tightest bound to ensure to enable syndrome decoding (BMA on a clean sequence of length $2 t$).

Example

$$
n=2 t(E+1)-1 \text { and } \varepsilon=(\underbrace{0, \ldots, 0}_{2 t-1}, 1, \underbrace{0, \ldots, 0}_{2 t-1}, 1 \ldots, 1, \underbrace{0, \ldots, 0}_{2 t-1}) \text {. }
$$

Then $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$ has no length $2 t$ clean segment.

Sparse Polynomial Interpolation

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Sparse Polynomial Interpolation

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_{i}=f\left(p^{i}\right)$ for p a primitive element,
- and let $\Lambda(z)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(z)$ is the minimal generator of $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only need $2 t$ entries to find $\Lambda(z)$ (using BMA)

Sparse Polynomial Interpolation

$$
\begin{aligned}
\xrightarrow{x \in F} & \\
& f=\sum_{i=1}^{t} c_{i} x^{e_{i}}
\end{aligned}
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_{i}=f\left(p^{i}\right)$ for p a primitive element,
- and let $\Lambda(z)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(z)$ is the minimal generator of $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only need $2 t$ entries to find $\Lambda(z)$ (using BMA)
\Rightarrow only need $2 T(2 E+1)$ with $e \leq E$ errors and $t \leq T$.

Ben-Or \& Tiwari's Algorithm

Input: $\left(a_{0}, \ldots, a_{2 t-1}\right)$ where $a_{i}=f\left(p^{i}\right)$
Input: t, the numvber of (non-zero) terms of $f(x)=\sum_{j=1}^{t} c_{j} x^{e_{j}}$
Output: $f(x)$

begin

Run BMA on $\left(a_{0}, \ldots, a_{2 t-1}\right)$ to find $\Lambda(z)$
Find roots of $\Lambda(z)$ (polynomial factorization)
Recover e_{j} by repeated division (by p)
Recover c_{j} by solving the transposed Vandermonde system

$$
\left[\begin{array}{cccc}
\left(p^{0}\right)^{e_{1}} & \left(p^{0}\right)^{e_{2}} & \ldots & \left(p^{0}\right)^{e_{t}} \\
\left(p^{1}\right)^{e_{1}} & \left(p^{1}\right)^{e_{2}} & \ldots & \left(p^{1}\right)^{e_{t}} \\
\vdots & \vdots & & \vdots \\
\left(p^{t}\right)^{e_{1}} & \left(p^{t}\right)^{e_{2}} & \ldots & \left(p^{t}\right)^{e_{t}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{t}
\end{array}\right]=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{t-1}
\end{array}\right]
$$

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t
$\operatorname{DFT}_{\omega}(v)=\operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v=E v a l_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots}(v)$

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t
$\operatorname{DFT}_{\omega}(v)=\operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v=E v a l_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots} .(v)$

- Univariate Ben-Or \& Tiwari as a corollary

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t
$\operatorname{DFT}_{\omega}(v)=\operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v=E v a l_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots} .(v)$

- Univariate Ben-Or \& Tiwari as a corollary
- Reed-Solomon codes: evaluation of a sparse error \Rightarrow BMA

Reed-Solomon codes as Evaluation codes

$$
\mathcal{C}=\left\{\left(f\left(\omega^{1}\right), \ldots, f\left(\omega^{n}\right)\right) \mid \operatorname{deg} f<k\right\}
$$

Reed-Solomon codes as Evaluation codes

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Same problems?

Interchanging Evaluation and Interpolation
Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t-sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =n f+V_{\omega^{-1}} \epsilon
\end{aligned}
$$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t-sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =\underbrace{n f}_{\text {weight terror }}+\underbrace{V_{\omega^{-1 \epsilon}}}_{\text {RS code word }}
\end{aligned}
$$

Reed-Solomon decoding: unique solution provided ε has $2 t$ consecutive trailing 0's
\Leftrightarrow clean segment of length $2 t$
$\Leftrightarrow n \geq 2 t(E+1)$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t-sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =\underbrace{n f}_{\text {weightt error }}+\underbrace{V_{\omega^{-1} \epsilon}}_{\text {RS code word }}
\end{aligned}
$$

Reed-Solomon decoding: unique solution provided ε has $2 t$ consecutive trailing 0's
\Leftrightarrow clean segment of length $2 t$
$\Leftrightarrow n \geq 2 t(E+1)$
BUT: location of the syndrome, is a priori unknown
\Rightarrow no uniqueness

Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and outliers

Symbolic numeric approach [Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned

Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and outliers

Symbolic numeric approach [Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria

Numeric Sparse Interpolation

- numerical evaluations (with noise) of a sparse polynomial
- and outliers

Symbolic numeric approach [Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]:

- Interpolation/correction using Berlekamp-Massey
- Termination (zero-discrepancy) is ill-conditioned
- But the conditioning is the termination criteria
- Better: track two perturbed executions
\Rightarrow divergence $=$ termination

Outline

Introduction

High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding
Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

CRT codes : Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

where $m_{1} \times \cdots \times m_{k}>x$ and $x_{i}=x \bmod m_{i} \forall i$

CRT codes : Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots & x_{n} \\
\hline
\end{array}
$$

where $m_{1} \times \cdots \times m_{n}>x$ and $x_{i}=x \bmod m_{i} \forall i$

CRT codes : Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

where $m_{1} \times \cdots \times m_{n}>x$ and $x_{i}=x \bmod m_{i} \forall i$

Definition

$$
\begin{aligned}
& (n, k) \text {-code: } C= \\
& \left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}} \text { s.t. } \exists x,\left\{\begin{array}{ll}
x & <m_{1} \ldots m_{k} \\
x_{i} & =x \bmod m_{i} \forall i
\end{array}\right\}\right.
\end{aligned}
$$

Principle

Property

$$
X \in C \text { iff } X<\Pi_{k}
$$

Redundancy : $r=n-k$

ABFT with Chinese remainder algorithm

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod m_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} m_{i}$

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod m_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} m_{i}$

Detects up to r errors:
If $X^{\prime}=X+E$ with $X \in C, \# I \leq r$,

$$
\text { then } X^{\prime}>\Pi_{k} \text {. }
$$

- Redundancy $r=n-k$, distance: $r+1$
- $\quad \Rightarrow$ can correct up to $\left\lfloor\frac{r}{2}\right\rfloor$ errors in theory
- More complicated in practice...

Correction

- $\forall i \notin I: E \bmod m_{i}=0$
- E is a multiple of $\Pi_{V}: E=Z \Pi_{V}=Z \prod_{i \notin I} m_{i}$
- $\operatorname{gcd}(E, \Pi)=\Pi_{V}$

Property

The Extended Euclidean Algorithm, applied to ($\Pi, E)$ and to ($X^{\prime}=X+E, \Pi$), performs the same first iterations until $r_{i}<\Pi_{V}$.

Correction capacity

Mandelbaum 78:

- 1 symbol $=1$ residue
- Polynomial time algorithm if $e \leq(n-k) \frac{\log m_{\min }-\log 2}{\log m_{\max }+\log m_{\min }}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial time algorithm if $e \leq(n-k) \frac{\log m_{\min }-\log 2}{\log m_{\max }+\log m_{\text {min }}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact $\prod_{i \in I} m_{i}$ Example: $m_{1}=3, m_{2}=5, m_{3}=3001$

- Mandelbaum: only corrects 1 error provided $X<3$
- Adaptive: also corrects
- 1 error $\bmod 3$ if $X<333$
- 1 error $\bmod 5$ if $X<120$
- 2 errors mod 2 and 3 if $X<13$

Generalized point of view: amplitude code

Over a Euclidean ring \mathcal{A} with a Euclidean function ν, multiplicative and sub-additive, ie such that

$$
\begin{aligned}
\nu(a b) & =\nu(a) \nu(b) \\
\nu(a+b) & \leq \nu(a)+\nu(b)
\end{aligned}
$$

eg.

- over $\mathbb{Z}: \nu(x)=|x|$
- over $K[X]: \nu(P)=2^{\operatorname{deg}(P)}$

Definition

Error impact between x and $y: \Pi_{F}=\prod_{i \mid x \neq y\left[m_{i}\right]} m_{i}$
Error amplitude: $\nu\left(\Pi_{F}\right)$

Amplitude codes

Distance

$$
\begin{aligned}
\Delta: \begin{aligned}
\mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[m_{i}\right]} \log _{2} \nu\left(m_{i}\right)
\end{aligned}, r \text {. }
\end{aligned}
$$

$$
\Delta(x, y)=\log _{2} \nu\left(\Pi_{F}\right)
$$

Definition (($n, k)$-amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
C=\{x \in \mathcal{A}: \nu(x)<\kappa\},
$$

$n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa$. is a (n, k)-amplitude code.

Definition (($n, k)$-amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
\begin{gathered}
C=\{x \in \mathcal{A}: \nu(x)<\kappa\} \\
n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa . \text { is a }(n, k) \text {-amplitude code. }
\end{gathered}
$$

Property (Quasi MDS)

$\forall(x, y) \in C$

$$
\Delta(x, y)>n-k-1
$$

\Rightarrow correction capacity $=$ maximal amplitude of an error that can be corrected

Definition (($n, k)$-amplitude code)

Given $\left\{m_{i}\right\}_{i \leq m}$ pairwise rel. prime, and $\kappa \in \mathbb{R}_{+}$The set

$$
\begin{gathered}
C=\{x \in \mathcal{A}: \nu(x)<\kappa\} \\
n=\log _{2} \prod_{i \leq m} m_{i}, k=\log _{2} \kappa . \text { is a }(n, k) \text {-amplitude code. }
\end{gathered}
$$

Property (Quasi MDS)

$$
\begin{aligned}
& \forall(x, y) \in C, \mathcal{A}=K[X] \\
& \qquad \Delta(x, y) \geq n-k+1
\end{aligned}
$$

\sim Singleton bound
\Rightarrow correction capacity $=$ maximal amplitude of an error that can be corrected

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Amplitude decoding, with static correction capacity Amplitude based decoder over R

Input: Π, X^{\prime}
Input: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude
Output: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

$$
\begin{aligned}
& u_{0}=1, v_{0}=0, r_{0}=\Pi \\
& u_{1}=0, v_{1}=1, r_{1}=X^{\prime} \\
& i=1 \\
& \text { while }\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right) \text { do } \\
& \quad \quad \text { Let } r_{i-1}=q_{i} r_{i}+r_{i+1} \text { be the Euclidean division of } r_{i-1} \text { by } r_{i} \text {; } \\
& \quad \begin{array}{l}
u_{i+1}=u_{i-1}-q_{i} u_{i} \\
v_{i+1}=v_{i-1}-q_{i} v_{i} \\
\quad i=i+1
\end{array} \\
& \text { return } X=\frac{r_{i}}{v_{i}}
\end{aligned}
$$

- reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity

Amplitude based decoder over R

Input: Π, X^{\prime}
Input: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude
Output: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

$$
\begin{aligned}
& u_{0}=1, v_{0}=0, r_{0}=\Pi ; \\
& u_{1}=0, v_{1}=1, r_{1}=X^{\prime} \\
& i=1 ; \\
& \text { while }\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right) \text { do } \\
& \qquad \quad \text { Let } r_{i-1}=q_{i} r_{i}+r_{i+1} \text { be the Euclidean division of } r_{i-1} \text { by } r_{i} ; \\
& \quad \begin{array}{l}
u_{i+1}=u_{i-1}-q_{i} u_{i} ; \\
v_{i+1}=v_{i-1}-q_{i} v_{i} \\
i=i+1 ;
\end{array} \\
& \text { return } X=\frac{r_{i}}{v_{i}}
\end{aligned}
$$

- reaches the quasi-maximal correction capacity
- requires an a priori knowledge of τ
\Rightarrow How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on $\nu(X)$
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redundancy effectively available

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- $u_{i+1} \Pi+v_{i+1} E=0$
$\Rightarrow E=-u_{i+1} \Pi / v_{i+1}$
\Rightarrow test if v_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(v_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

A first adaptive approach: divisibility check

Termination criterion in the Extended Euclidean alg.:

- $u_{i+1} \Pi+v_{i+1} E=0$
$\Rightarrow E=-u_{i+1} \Pi / v_{i+1}$
\Rightarrow test if v_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(v_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

Example

$$
\begin{array}{c|lll}
m_{i} & 3 & 5 & 7 \\
\hline x_{i} & 2 & 3 & 2
\end{array}
$$

- $x=23$ with 0 error
- $x=2$ with 1 error

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$X=-r_{i} / v_{i}$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$X=-r_{i} / v_{i}$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
u_{i} \Pi+v_{i}(X+E)=r_{i} \quad \Rightarrow \quad u_{i} \Pi+v_{i} E=r_{i}-v_{i} X
$$

$$
X=-r_{i} / v_{i}
$$

- At the final iteration: $\nu\left(r_{i}\right)=\nu\left(v_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Experiments

Size of the error	10	50	100	200	500	1000
$g=2$	$1 / 446$	$1 / 765$	$1 / 1118$	$2 / 1183$	$2 / 4165$	$1 / 7907$
$g=3$	$1 / 244$	$1 / 414$	$1 / 576$	$2 / 1002$	$2 / 2164$	$1 / 4117$
$g=5$	$1 / 53$	$1 / 97$	$1 / 153$	$2 / 262$	$1 / 575$	$1 / 1106$
$g=10$	$1 / 1$	$1 / 3$	$1 / 9$	$1 / 14$	$1 / 26$	$1 / 35$
$g=20$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$

Table: Number of remaining candidates after the gap detection: c / d means d candidates with a gap $>2^{g}$, and c of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26016$ ($m=1300$ moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Conclusion

Adaptive decoding of CRT codes

- finer bounds on the correction capacity
- adaptive decoding using the best effective redundancy
- efficient termination heuristics

Sparse interpolation code over $K[X]$

- lower bound on the necessary number of evaluations
- optimal unique decoding algorihtm
- list decoding variant

Perspectives

- Generalization to adaptive list decoding of CRT codes
- Tight bound on the size of the list when $n \geq 2 t(E+1)$,
- Sparse Cauchy interpolation with errors.

Bonus : Dense rational function interpolation with errors (Cauchy interpolation)

$$
y_{i}=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}
$$

Rational function interpolation: Pade approximant

- Find $h \in K[X]$ s.t. $h\left(x_{i}\right)=y_{i}$
- Find f, g s.t. $h g=f \bmod \prod\left(X-x_{i}\right)$
(interpolation)
(Pade approx)

Bonus : Dense rational function interpolation with errors (Cauchy interpolation)

$$
y_{i}=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}
$$

Rational function interpolation: Pade approximant

- Find $h \in K[X]$ s.t. $h\left(x_{i}\right)=y_{i}$
(interpolation)
- Find f, g s.t. $h g=f \bmod \prod\left(X-x_{i}\right)$
(Pade approx)
Introducing an error of impact $\Pi_{F}=\prod_{i \in I}\left(X-x_{i}\right)$:

$$
h g \Pi_{F}=f \Pi_{F} \quad \bmod \prod\left(X-x_{i}\right)
$$

Property

If $n \geq \operatorname{deg} f+\operatorname{deg} g+2 e$, one can interpolate with at most e errors

