
Adaptive decoding for dense and sparse
evaluation/interpolation codes

Clément PERNET

INRIA/LIG-MOAIS, Grenoble Université
joint work with

M. Comer, E. Kaltofen, J-L. Roch, T. Roche

Séminaire Calcul formel et Codes, IRMAR, Rennes
23 Novembre, 2012

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

High Performance Algebraic Computations (HPAC)
Domain of Computation

I Z,Q ⇒variable size
I Zp,GF(pk) ⇒specific arithmetic
I K[X] for K = Zp,

Application domains:
Computational number theory:

I computing tables of elliptic curves, modular forms,
I testing conjectures

Crypto: Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)

Graph theory: testing conjectures (graph isomorphism,...)
Representation theory

...

High Performance Algebraic Computations (HPAC)
Domain of Computation

I Z,Q ⇒variable size
I Zp,GF(pk) ⇒specific arithmetic
I K[X] for K = Zp,

Application domains:
Computational number theory:

I computing tables of elliptic curves, modular forms,
I testing conjectures

Crypto: Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)

Graph theory: testing conjectures (graph isomorphism,...)
Representation theory

...

HPAC: rules of thumb
Deal with size of arithmetic
Evaluation/interpolation schemes:

over Z: Chinese Remainder Algorithm:
Z→ Z/mZ→ Z/m1Z× · · · × Z/mkZ

over K[X]: Evaluation/interpolation: K[X]→ K

I Embarassingly parallel

Lifting schemes Z→ Z/pkZ→ Z/pZ
I Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

I Matrix product over Zp,K
I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration

HPAC: rules of thumb
Deal with size of arithmetic
Evaluation/interpolation schemes:

over Z: Chinese Remainder Algorithm:
Z→ Z/mZ→ Z/m1Z× · · · × Z/mkZ

over K[X]: Evaluation/interpolation: K[X]→ K

I Embarassingly parallel

Lifting schemes Z→ Z/pkZ→ Z/pZ
I Best sequential complexities

Deal with complexity/efficiency: reduce to Linear algebra

I Matrix product over Zp,K
I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration

Chinese remainder algorithm
If m1, . . . ,mk pariwise relatively prime:

Z/(m1 . . .mk)Z ≡ Z/m1Z× · · · × Z/mkZ

Computation of y = f (x) for f ∈ Z[X], x ∈ Zm

begin
Compute an upper bound β on |f (x)|;
Pick m1, . . .mk, pairwise prime, s.t. m1 . . .mk > β;
for i = 1 . . . k do

Compute yi = f (x mod mi) mod mi

; /* Evaluation */

Compute y = CRT(y1, . . . , yk)

; /* Interpolation */

CRT : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

Π =

∏k
i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

Chinese remainder algorithm
If m1, . . . ,mk pariwise relatively prime:

Z/(m1 . . .mk)Z ≡ Z/m1Z× · · · × Z/mkZ

Computation of y = f (x) for f ∈ Z[X], x ∈ Zm

begin
Compute an upper bound β on |f (x)|;
Pick m1, . . .mk, pairwise prime, s.t. m1 . . .mk > β;
for i = 1 . . . k do

Compute yi = f (x mod mi) mod mi ; /* Evaluation */

Compute y = CRT(y1, . . . , yk); /* Interpolation */

CRT : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

Π =

∏k
i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate” N in m

Interpolation:

P =
∑k

i=1 yi

∏
j 6=i(X−aj)∏
j6=i(ai−aj)

N =
∑k

i=1 yi
∏

j6=i mj(
∏

j 6=i mj)
−1[mi]

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate” N in m

Interpolation:

P =
∑k

i=1 yi

∏
j 6=i(X−aj)∏
j6=i(ai−aj)

N =
∑k

i=1 yi
∏

j6=i mj(
∏

j 6=i mj)
−1[mi]

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
P mod X − a N mod m

Evaluate P in a “Evaluate” N in m

Interpolation:

P =
∑k

i=1 yi

∏
j 6=i(X−aj)∏
j6=i(ai−aj)

N =
∑k

i=1 yi
∏

j6=i mj(
∏

j 6=i mj)
−1[mi]

Early termination
Classic Chinese remaindering Deterministic

I bound β on the result
I Choice of the mi: such that m1 . . .mk > β

Early termination Probabilistic Monte Carlo

I For each new modulo mi:
I reconstruct yi = f (x) mod m1 × · · · × mi
I If yi == yi−1 ⇒terminated

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available

Early termination
Classic Chinese remaindering Deterministic

I bound β on the result
I Choice of the mi: such that m1 . . .mk > β

Early termination Probabilistic Monte Carlo

I For each new modulo mi:
I reconstruct yi = f (x) mod m1 × · · · × mi
I If yi == yi−1 ⇒terminated

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available

Motivation

ABFT: Algorithm Based Fault Tolerance

HPC: clusters, grid, P2P, cloud computing

I Parallelization based on Evaluation/Interpolation scheme

Need to tolerate:
I soft errors (cosmic rays,...)
I malicious corruption

Signal processing

I Sparse polynomial interpolation

Distinction between noise and outliers
I Symbolic-numeric methods

Dense/Sparse interpolation with errors

Problem 1: Dense interpolation with errors over Z

Given (yi,mi) for i = 1 . . . n,
Find Y ∈ Z such that Y = yi mod mi except on ≤ e values.

Problem 2: Sparse interpolation with errors over K[X]

Given (yi, xi) for i = 1 . . . n,
Find a t-sparse poly. f such that f (xi) = yi except on ≤ e values.

State of the art

Dense interpolation
Interpolation Interpolation with errors

over K[X] Lagrange Generalized Reed-Solomon codes
over Z CRT CRT codes

Sparse Interpolation
Interpolation Interpolation with errors

over K[X] Ben-Or & Tiwari ?
over Z ? ?

State of the art

Dense interpolation
Interpolation Interpolation with errors

over K[X] Lagrange Generalized Reed-Solomon codes
over Z CRT CRT codes

Sparse Interpolation
Interpolation Interpolation with errors

over K[X] Ben-Or & Tiwari ?
over Z ? ?

Contribution

Sparse interpolation code over K[X]

I lower bound on the necessary number of evaluations
I optimal unique decoding algorihtm
I list decoding variant

Dense interpolation code over Z

I finer bounds on the correction capacity
I adaptive decoding using the best effective redundancy

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

Preliminaries

Linear recurring sequences

Sequence (a0, a1, . . . , an, . . .) such that

∀j ≥ 0 aj+t =

t−1∑
i=0

λiai+j

generating polynomial: Λ(z) = zt −
∑t−1

i=0 λizi

minimal generating polynomial: Λ(z) of minimal degree
linear complexity of (ai)i: the minimal degree of Λ

Hamming weight: weight(x) = #{i|xi 6= 0}
Hamming distance: dH(x, y) = weight(x− y)

Berlekamp/Massey algorithm

Input: (a0, . . . , an−1) a sequence of field elements.
Output: Λ(z) =

∑Ln
i=0 λizi a monic polynomial of minimal degree

Ln ≤ n such that
∑Ln

i=0 λiai+j = 0 for
j = 0, . . . , n− Ln − 1.

I Guarantee : BMA finds Λ of degree t from ≤ 2t entries.

Problem Statement

Berlkamp/Massey with errors

Suppose (a0, a1, . . .) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . .) = (a0, a1, . . .) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . .) ?
2. How many entries required for

I a unique solution ?
I a list of solutionse including (a0, a1, . . .) ?

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacities ?

I for unique decoding
I list decoding

Problem Statement

Berlkamp/Massey with errors

Suppose (a0, a1, . . .) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . .) = (a0, a1, . . .) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . .) ?
2. How many entries required for

I a unique solution ?
I a list of solutionse including (a0, a1, . . .) ?

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacities ?

I for unique decoding
I list decoding

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?
A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)

Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).

begin
Run BMA on 2E + 1 segments of 2t entries and record Λi(z)
on each segment;
Perform majority vote to find Λ(z);

Use a clean segment to clean-up the sequence ;
return Λ(z) and (a0, a1, . . .);

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
begin

Run BMA on 2E + 1 segments of 2t entries and record Λi(z)
on each segment;
Perform majority vote to find Λ(z);

Use a clean segment to clean-up the sequence ;
return Λ(z) and (a0, a1, . . .);

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
begin

Run BMA on 2E + 1 segments of 2t entries and record Λi(z)
on each segment;
Perform majority vote to find Λ(z);
Use a clean segment to clean-up the sequence ;
return Λ(z) and (a0, a1, . . .);

Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)

begin
(b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
i← k + 2t;
while i ≤ n− 1 and e ≤ E do

if Λ does not satisfy (bi−t+1, . . . , bi) then
Fix bi using Λ(z) as a LFSR; e← e + 1;

i← k − 1;
while i ≥ 0 and e ≤ E do

if Λ does not satisfy (bi, . . . , bi+t−1) then
Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

return (b0, . . . , bn−1), e

Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
begin

(b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
i← k + 2t;
while i ≤ n− 1 and e ≤ E do

if Λ does not satisfy (bi−t+1, . . . , bi) then
Fix bi using Λ(z) as a LFSR; e← e + 1;

i← k − 1;
while i ≥ 0 and e ≤ E do

if Λ does not satisfy (bi, . . . , bi+t−1) then
Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

return (b0, . . . , bn−1), e

Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
begin

(b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
i← k + 2t;
while i ≤ n− 1 and e ≤ E do

if Λ does not satisfy (bi−t+1, . . . , bi) then
Fix bi using Λ(z) as a LFSR; e← e + 1;

i← k − 1;
while i ≥ 0 and e ≤ E do

if Λ does not satisfy (bi, . . . , bi+t−1) then
Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

return (b0, . . . , bn−1), e

Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
begin

(b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
i← k + 2t;
while i ≤ n− 1 and e ≤ E do

if Λ does not satisfy (bi−t+1, . . . , bi) then
Fix bi using Λ(z) as a LFSR; e← e + 1;

i← k − 1;
while i ≥ 0 and e ≤ E do

if Λ does not satisfy (bi, . . . , bi+t−1) then
Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

return (b0, . . . , bn−1), e

Finding a clean segment: case E = 1

⇒only one error

(a0, . . . , ak−2, bk−1 6= ak−1, ak, ak+1, a2t−1)

will be identified by the majority vote (2-to-1 majority).

Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . .) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . .)

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.

Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . .) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, . . .)

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . .)

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.

Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . .) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . .)

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . .)

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.

Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . .) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . .)

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . .)

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.

Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . .) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . .)

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . .)

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.

Success of the sequence clean-up

Theorem
If n ≥ t(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e ≤ E in algorithm
SequenceCleanUp.

Corollary

n ≥ 2t(2E + 1) is a necessary and sufficient condition for unique
decoding of Λ and the corresponding sequence.

Remark
Also works with an upper bound t ≤ T on deg Λ.

Success of the sequence clean-up

Theorem
If n ≥ t(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e ≤ E in algorithm
SequenceCleanUp.

Corollary

n ≥ 2t(2E + 1) is a necessary and sufficient condition for unique
decoding of Λ and the corresponding sequence.

Remark
Also works with an upper bound t ≤ T on deg Λ.

List decoding for n ≥ 2t(E + 1)

2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)
0 , . . . , a

(i)
n−1))i a list of ≤ E candidates

begin
Run BMA on E + 1 segments of 2t entries and record Λi(z)
on each segment;

foreach Λi(z) do
Use a clean segment to clean-up the sequence;
Withdraw Λi if no clean segment can be found.

return the list (Λi(z), (a(i)
0 , . . . , a

(i)
n−1))i;

List decoding for n ≥ 2t(E + 1)

2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)
0 , . . . , a

(i)
n−1))i a list of ≤ E candidates

begin
Run BMA on E + 1 segments of 2t entries and record Λi(z)
on each segment;

foreach Λi(z) do
Use a clean segment to clean-up the sequence;
Withdraw Λi if no clean segment can be found.

return the list (Λi(z), (a(i)
0 , . . . , a

(i)
n−1))i;

List decoding for n ≥ 2t(E + 1)

2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)
0 , . . . , a

(i)
n−1))i a list of ≤ E candidates

begin
Run BMA on E + 1 segments of 2t entries and record Λi(z)
on each segment;
foreach Λi(z) do

Use a clean segment to clean-up the sequence;
Withdraw Λi if no clean segment can be found.

return the list (Λi(z), (a(i)
0 , . . . , a

(i)
n−1))i;

Properties

I The list contains the right solution (Λ, (a0, . . . , an−1))

I n ≥ 2t(E + 1) is the tightest bound to ensure to enable
syndrome decoding (BMA on a clean sequence of length
2t).

Example

n = 2t(E + 1)− 1 and ε = (0, . . . , 0︸ ︷︷ ︸
2t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

, 1 . . . , 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

).

Then (a0, . . . , an−1) + ε has no length 2t clean segment.

Properties

I The list contains the right solution (Λ, (a0, . . . , an−1))

I n ≥ 2t(E + 1) is the tightest bound to ensure to enable
syndrome decoding (BMA on a clean sequence of length
2t).

Example

n = 2t(E + 1)− 1 and ε = (0, . . . , 0︸ ︷︷ ︸
2t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

, 1 . . . , 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

).

Then (a0, . . . , an−1) + ε has no length 2t clean segment.

Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a primitive element,
I and let Λ(z) =

∏t
i=1(z− pei).

I Then Λ(z) is the minimal generator of (a0, a1, . . .).

⇒only need 2t entries to find Λ(z) (using BMA)
⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.

Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a primitive element,
I and let Λ(z) =

∏t
i=1(z− pei).

I Then Λ(z) is the minimal generator of (a0, a1, . . .).

⇒only need 2t entries to find Λ(z) (using BMA)

⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.

Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)+ε

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a primitive element,
I and let Λ(z) =

∏t
i=1(z− pei).

I Then Λ(z) is the minimal generator of (a0, a1, . . .).

⇒only need 2t entries to find Λ(z) (using BMA)
⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.

Ben-Or & Tiwari’s Algorithm

Input: (a0, . . . , a2t−1) where ai = f (pi)
Input: t, the numvber of (non-zero) terms of f (x) =

∑t
j=1 cjxej

Output: f (x)
begin

Run BMA on (a0, . . . , a2t−1) to find Λ(z)
Find roots of Λ(z) (polynomial factorization)
Recover ej by repeated division (by p)
Recover cj by solving the transposed Vandermonde system

(p0)e1 (p0)e2 . . . (p0)et

(p1)e1 (p1)e2 . . . (p1)et

...
...

...
(pt)e1 (pt)e2 . . . (pt)et

c1
c2
...
ct

 =

a0
a1
...

at−1

Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFTω(v) = Vandemonde(ω0, ω1, ω2, . . .)v = Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary
I Reed-Solomon codes: evaluation of a sparse error
⇒BMA

Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFTω(v) = Vandemonde(ω0, ω1, ω2, . . .)v = Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary

I Reed-Solomon codes: evaluation of a sparse error
⇒BMA

Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

DFTω(v) = Vandemonde(ω0, ω1, ω2, . . .)v = Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary
I Reed-Solomon codes: evaluation of a sparse error
⇒BMA

Reed-Solomon codes as Evaluation codes

C = {(f (ω1), . . . , f (ωn))| deg f < k}

m=f(x), deg f < k

f

error

y = c + ε

ε

g

0

Interpolation

Evaluation

g = f + Interp ()ε

ic = Eval(f), c = f(w)
i

g

Reed-Solomon codes as Evaluation codes

C = {(f (ω1), . . . , f (ωn))| deg f < k}

������
������
������
������
������

������
������
������
������
������

m=f(x), deg f < k

f

error

y = c + ε

ε

g

0

Interpolation

Evaluation

i
c = Eval(f), c = f(w)i

g = f + Interp ()ε

BMA

f

Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp ()

ε

f

Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

������
������
������
������
������

������
������
������
������
������

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp ()

ε

f

BMA

Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf + Vω−1ε

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness

Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf︸︷︷︸
weight t error

+ Vω−1ε︸ ︷︷ ︸
RS code word

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness

Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf︸︷︷︸
weight t error

+ Vω−1ε︸ ︷︷ ︸
RS code word

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness

Numeric Sparse Interpolation

I numerical evaluations (with noise) of a sparse polynomial
I and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

I Interpolation/correction using Berlekamp-Massey
I Termination (zero-discrepancy) is ill-conditioned

I But the conditioning is the termination criteria
I Better: track two perturbed executions
⇒divergence = termination

Numeric Sparse Interpolation

I numerical evaluations (with noise) of a sparse polynomial
I and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

I Interpolation/correction using Berlekamp-Massey
I Termination (zero-discrepancy) is ill-conditioned
I But the conditioning is the termination criteria

I Better: track two perturbed executions
⇒divergence = termination

Numeric Sparse Interpolation

I numerical evaluations (with noise) of a sparse polynomial
I and outliers

Symbolic numeric approach [Giesbrecht, Labahn
&Lee’06] [Kaltofen, Lee, Yang’11]:

I Interpolation/correction using Berlekamp-Massey
I Termination (zero-discrepancy) is ill-conditioned
I But the conditioning is the termination criteria
I Better: track two perturbed executions
⇒divergence = termination

Outline

Introduction
High performance exact computations
Chinese remaindering
Motivation

Sparse Interpolation with errors
Berlekamp/Massey algorithm with errors
Sparse Polynomial Interpolation with errors
Relations to Reed-Solomon decoding

Dense interpolation with errors
Decoding CRT codes: Mandelbaum algorithm
Amplitude codes
Adaptive decoding
Experiments

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z

where m1 × · · · × mk > x and xi = x mod mi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zm1 × · · · × Zmn s.t. ∃x,
{

x < m1 . . .mk
xi = x mod mi ∀i

}

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z xk+1 xn. . .

where m1 × · · · × mn > x and xi = x mod mi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zm1 × · · · × Zmn s.t. ∃x,
{

x < m1 . . .mk
xi = x mod mi ∀i

}

CRT codes : Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z xk+1 xn. . .

where m1 × · · · × mn > x and xi = x mod mi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zm1 × · · · × Zmn s.t. ∃x,
{

x < m1 . . .mk
xi = x mod mi ∀i

}

Principle

Property

X ∈ C iff X < Πk.

p1 p2 . . . pk pk+1 pn. . .

Πk = p1 × · · · × pk

Πn = p1 × · · · × pn

Redundancy : r = n− k

ABFT with Chinese remainder algorithm

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . . An)

x′ < Πn

x < Πk

A

Properties of the code

Error model:
I Error: E = X′ − X
I Error support: I = {i ∈ 1 . . . n,E 6= 0 mod mi}
I Impact of the error: ΠF =

∏
i∈I mi

Detects up to r errors:

If X′ = X + E with X ∈ C,#I ≤ r,

then X′ > Πk.

I Redundancy r = n− k, distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...

Properties of the code

Error model:
I Error: E = X′ − X
I Error support: I = {i ∈ 1 . . . n,E 6= 0 mod mi}
I Impact of the error: ΠF =

∏
i∈I mi

Detects up to r errors:

If X′ = X + E with X ∈ C,#I ≤ r,

then X′ > Πk.

I Redundancy r = n− k, distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...

Correction

I ∀i /∈ I : E mod mi = 0
I E is a multiple of ΠV : E = ZΠV = Z

∏
i/∈I mi

I gcd(E,Π) = ΠV

Property

The Extended Euclidean Algorithm, applied to (Π,E) and to
(X′ = X + E,Π), performs the same first iterations until ri < ΠV .

=

+X

X′
Π

E

u0Π + v0E = Π u0Π + v0X′ = X′
...

...
ui−1Π + vi−1E = Πv ui−1Π + vi−1X′ = ri−1

uiΠ + viE = 0 uiΠ + viX′ = ri

⇒viX = ri

Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial time algorithm if e ≤ (n− k) log mmin−log 2

log mmax+log mmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact
∏

i∈I mi

Example: m1 = 3,m2 = 5,m3 = 3001
I Mandelbaum: only corrects 1 error provided X < 3
I Adaptive: also corrects

I 1 error mod 3 if X < 333
I 1 error mod 5 if X < 120
I 2 errors mod 2 and 3 if X < 13

Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial time algorithm if e ≤ (n− k) log mmin−log 2

log mmax+log mmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

Errors have variable weights depending on their impact
∏

i∈I mi

Example: m1 = 3,m2 = 5,m3 = 3001
I Mandelbaum: only corrects 1 error provided X < 3
I Adaptive: also corrects

I 1 error mod 3 if X < 333
I 1 error mod 5 if X < 120
I 2 errors mod 2 and 3 if X < 13

Generalized point of view: amplitude code

Over a Euclidean ring A with a Euclidean function ν,
multiplicative and sub-additive, ie such that

ν(ab) = ν(a)ν(b)

ν(a + b) ≤ ν(a) + ν(b)

eg.
I over Z: ν(x) = |x|
I over K[X]: ν(P) = 2deg(P)

Definition

Error impact between x and y: ΠF =
∏

i|x 6=y[mi]
mi

Error amplitude: ν(ΠF)

Amplitude codes

Distance

∆ : A×A → R+

(x, y) 7→
∑

i|x 6=y[mi]

log2 ν (mi)

∆(x, y) = log2 ν(ΠF)

Definition ((n, k)-amplitude code)

Given {mi}i≤m pairwise rel. prime, and κ ∈ R+ The set

C = {x ∈ A : ν(x) < κ},

n = log2
∏

i≤m mi, k = log2 κ. is a (n, k)-amplitude code.

Property (Quasi MDS)

∀(x, y) ∈ C

∆(x, y)n− k1

∼ Singleton bound

⇒correction capacity = maximal amplitude of an error that can
be corrected

Definition ((n, k)-amplitude code)

Given {mi}i≤m pairwise rel. prime, and κ ∈ R+ The set

C = {x ∈ A : ν(x) < κ},

n = log2
∏

i≤m mi, k = log2 κ. is a (n, k)-amplitude code.

Property (Quasi MDS)

∀(x, y) ∈ C

∆(x, y) > n− k − 1

∼ Singleton bound

⇒correction capacity = maximal amplitude of an error that can
be corrected

Definition ((n, k)-amplitude code)

Given {mi}i≤m pairwise rel. prime, and κ ∈ R+ The set

C = {x ∈ A : ν(x) < κ},

n = log2
∏

i≤m mi, k = log2 κ. is a (n, k)-amplitude code.

Property (Quasi MDS)

∀(x, y) ∈ C, A = K[X]

∆(x, y) ≥ n− k + 1

∼ Singleton bound

⇒correction capacity = maximal amplitude of an error that can
be corrected

Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities

I Adaptive decoding: taking advantage of all the available
redundancy

I Early termination: with no a priori knowledge of a bound
on the result

Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities
I Adaptive decoding: taking advantage of all the available

redundancy
I Early termination: with no a priori knowledge of a bound

on the result

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Input: Π,X′

Input: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Output: X ∈ R: corrected message s.t. ν(X)4τ 2 ≤ ν(Π)
begin

u0 = 1, v0 = 0, r0 = Π;
u1 = 0, v1 = 1, r1 = X′;
i = 1;
while (ν(ri) > ν(Π)/2τ) do

Let ri−1 = qiri + ri+1 be the Euclidean division of ri−1 by ri;
ui+1 = ui−1 − qiui;
vi+1 = vi−1 − qivi;
i = i + 1;

return X = ri
vi

I reaches the quasi-maximal correction capacity

I requires an a priori knowledge of τ
⇒How to make the correction capacity adaptive?

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Input: Π,X′

Input: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Output: X ∈ R: corrected message s.t. ν(X)4τ 2 ≤ ν(Π)
begin

u0 = 1, v0 = 0, r0 = Π;
u1 = 0, v1 = 1, r1 = X′;
i = 1;
while (ν(ri) > ν(Π)/2τ) do

Let ri−1 = qiri + ri+1 be the Euclidean division of ri−1 by ri;
ui+1 = ui−1 − qiui;
vi+1 = vi−1 − qivi;
i = i + 1;

return X = ri
vi

I reaches the quasi-maximal correction capacity
I requires an a priori knowledge of τ
⇒How to make the correction capacity adaptive?

Adaptive approach

Multiple goals:

I With a fixed n, the correction capacity depends on a bound
on ν(X)
⇒pessimistic estimate
⇒how to take advantage of all the available redundancy?

X

bound on v(X)

redundancy effectively available

redundancy being used

A first adaptive approach: divisibility check
Termination criterion in the Extended Euclidean alg.:

I ui+1Π + vi+1E = 0
⇒E = −ui+1Π/vi+1
⇒test if vj divides Π

I check if X satisfies: ν(X) ≤ ν(Π)
4ν(vj)2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

mi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error

A first adaptive approach: divisibility check
Termination criterion in the Extended Euclidean alg.:

I ui+1Π + vi+1E = 0
⇒E = −ui+1Π/vi+1
⇒test if vj divides Π

I check if X satisfies: ν(X) ≤ ν(Π)
4ν(vj)2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

mi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX 2g

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX 2g

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX 2g

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX 2g

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

uiΠ + vi(X + E) = ri ⇒ uiΠ + viE = ri − viX

ri

viX 2g

X = −ri/vi

I At the final iteration: ν(ri) = ν(viX)
I If necessary, a gap appears between ri−1 and ri.
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Experiments

Size of the error 10 50 100 200 500 1000

g = 2 1/446 1/765 1/1118 2/1183 2/4165 1/7907

g = 3 1/244 1/414 1/576 2/1002 2/2164 1/4117

g = 5 1/53 1/97 1/153 2/262 1/575 1/1106

g = 10 1/1 1/3 1/9 1/14 1/26 1/35

g = 20 1/1 1/1 1/1 1/1 1/1 1/1

Table: Number of remaining candidates after the gap detection: c/d

means d candidates with a gap > 2g, and c of them passed the
divisibility test. n ≈ 6001 (3000 moduli), κ ≈ 201 (100 moduli).

Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

T
im

e
(s

)

Size of the errors

Divisibility
Gap g=2
Gap g=5

Gap g=10
Threshold T=500

Figure: Comparison for n ≈ 26 016 (m = 1300 moduli of 20 bits),
κ ≈ 6001 (300 moduli) and τ ≈ 10007 (about 500 moduli).

Conclusion
Adaptive decoding of CRT codes

I finer bounds on the correction capacity
I adaptive decoding using the best effective redundancy
I efficient termination heuristics

Sparse interpolation code over K[X]

I lower bound on the necessary number of evaluations
I optimal unique decoding algorihtm
I list decoding variant

Perspectives

I Generalization to adaptive list decoding of CRT codes
I Tight bound on the size of the list when n ≥ 2t(E + 1),
I Sparse Cauchy interpolation with errors.

Bonus : Dense rational function interpolation with
errors (Cauchy interpolation)

yi =
f (xi)

g(xi)

Rational function interpolation: Pade approximant

I Find h ∈ K[X] s.t. h(xi) = yi (interpolation)
I Find f , g s.t. hg = f mod

∏
(X − xi) (Pade approx)

Introducing an error of impact ΠF =
∏

i∈I(X − xi):

hgΠF = f ΠF mod
∏

(X − xi)

Property

If n ≥ deg f + deg g + 2e, one can interpolate with at most e errors

Bonus : Dense rational function interpolation with
errors (Cauchy interpolation)

yi =
f (xi)

g(xi)

Rational function interpolation: Pade approximant

I Find h ∈ K[X] s.t. h(xi) = yi (interpolation)
I Find f , g s.t. hg = f mod

∏
(X − xi) (Pade approx)

Introducing an error of impact ΠF =
∏

i∈I(X − xi):

hgΠF = f ΠF mod
∏

(X − xi)

Property

If n ≥ deg f + deg g + 2e, one can interpolate with at most e errors

	Introduction
	High performance exact computations
	Chinese remaindering
	Motivation

	Sparse Interpolation with errors
	Berlekamp/Massey algorithm with errors
	Sparse Polynomial Interpolation with errors
	Relations to Reed-Solomon decoding

	Dense interpolation with errors
	Decoding CRT codes: Mandelbaum algorithm
	Amplitude codes
	Adaptive decoding
	Experiments

