Sparse Polynomial Interpolation and Berlekamp/Massey algorithms that correct Outlier Errors in Input Values

Clément Pernet ${ }^{\dagger}$
joint work with Matthew T. Comer* and Erich L. Kaltofen*
†: LIG/INRIA-MOAIS, Grenoble Université, France
*: North Carolina State University, USA

ISSAC'12, Grenoble, France, July 23rd, 2012

Outline

Berlekamp/Massey algorithm with errors Bounds on the decoding capacity Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding

Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes \Rightarrow number of evaluation points made adaptive on error impact and degree [Khonji \& AI.'10]

Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes \Rightarrow number of evaluation points made adaptive on error impact and degree [Khonji \& Al.'10]
Sparse case: Present work

- based on Ben-Or \& Tiwari's interpolation algorithm
- itself based on Berlekamp/Massey algorithm
\Rightarrow develop Berlekamp/Massey Algorithm with errors

Preliminaries

Linear recurring sequences

Sequence $\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots\right)$ such that

$$
\forall j \geq 0 a_{j+t}=\sum_{i=0}^{t-1} \lambda_{i} a_{i+j}
$$

generating polynomial: $\Lambda(z)=z^{t}-\sum_{i=0}^{t-1} \lambda_{i} z^{i}$ minimal generating polynomial: $\Lambda(z)$ of minimal degree linear complexity of $\left(a_{i}\right)_{i}$: the minimal degree of Λ

Hamming weight: weight $(x)=\#\left\{i \mid x_{i} \neq 0\right\}$
Hamming distance: $d_{H}(x, y)=$ weight $(x-y)$

Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)$ a sequence of field elements.
Result: $\Lambda(z)=\sum_{i=0}^{L_{n}} \lambda_{i} z^{i}$ a monic polynomial of minimal degree

$$
L_{n} \leq n \text { such that } \sum_{i=0}^{L_{n}} \lambda_{i} a_{i+j}=0 \text { for } j=0, \ldots, n-L_{n}-1 .
$$

- Guarantee : BMA finds Λ of degree t from $\leq 2 t$ entries.

Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding

Problem Statement

Berlkamp/Massey with errors

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$
2. How many entries required for

- a unique solution
- a list of solutions including $\left(a_{0}, a_{1}, \ldots\right)$

Problem Statement

Berlkamp/Massey with errors

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$
2. How many entries required for

- a unique solution
- a list of solutions including $\left(a_{0}, a_{1}, \ldots\right)$

Coding Theory formulation

Let \mathcal{C} be the set of all sequences of linear complexity t.

1. How to decode \mathcal{C} ?
2. What are the best correction capacity ?

- for unique decoding
- list decoding

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\left.\begin{array}{lllllllll}
& \left(a_{i}\right) \\
(0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0,
\end{array} 1, \quad 0\right) \left\lvert\, \begin{aligned}
& \Lambda(z) \\
& 2-2 z^{2}+z^{4}+z^{6}
\end{aligned}\right.
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\left.\right) \left\lvert\, \begin{aligned}
& 2-2 z^{2}+z^{4}+z^{6} \\
& -1+z^{2}
\end{aligned}\right.
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\begin{array}{lllllllllll|l}
& (0, & \left(a_{i}\right) \\
0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & 2-2 z^{2}+z^{4}+z^{6} \\
(0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0) & -1+z^{2} \\
(0, & 1, & 0, & -1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & 1+z^{2}
\end{array}
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

Where is the error?
A unique solution is not guaranteed with $t=2, E=1$ and $n=11$

$$
\text { Is } n \geq 2 t(2 E+1) \text { a necessary condition? }
$$

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) \text {. Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
(\overbrace{s, s, \ldots, s}^{E \text { times }}, \overline{0}, 1, \overline{0})
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) . \text { Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
(\overbrace{s, s, \ldots, s}^{E \text { times }}, \overline{0}, 1, \overline{0})
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Theorem

Necessary condition for unique decoding:

$$
n \geq 2 t(2 E+1)
$$

The Majority Rule Berlekamp/Massey algorithm

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$.
1 begin
2 Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
3 Perform majority vote to find $\Lambda(z)$;

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$.
1 begin
2 Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
Perform majority vote to find $\Lambda(z)$;
Use a clean segment to clean-up the sequence ; return $\Lambda(z)$ and ($\left.a_{0}, a_{1}, \ldots\right)$;

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$
1 begin

2
while $i \leq n-1$ and $e \leq E$ do
if Λ does not satisfy $\left(b_{i-t+1}, \ldots, b_{i}\right)$ then
Fix b_{i} using $\Lambda(z)$ as a LFSR; $e \leftarrow e+1$;
return $\left(b_{0}, \ldots, b_{n-1}\right), e$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$
1 begin

2

$$
\begin{aligned}
& \left(b_{0}, \ldots, b_{n-1}\right) \leftarrow\left(a_{0}, \ldots, a_{n-1}\right) ; e, j \leftarrow 0 ; \\
& i \leftarrow k+2 t ; \\
& \text { while } i \leq n-1 \text { and } e \leq E \text { do } \\
& \quad \text { if } \Lambda \text { does not satisfy }\left(b_{i-t+1}, \ldots, b_{i}\right) \text { then } \\
& \quad \text { Fix } b_{i} \text { using } \Lambda(z) \text { as a LFSR; } e \leftarrow e+1 \text {; } \\
& i \leftarrow k-1 \text {; } \\
& \text { while } i \geq 0 \text { and } e \leq E \text { do } \\
& \quad \text { if } \Lambda \text { does not satisfy }\left(b_{i}, \ldots, b_{i+t-1}\right) \text { then } \\
& \quad \quad \text { Fix } b_{i} \text { using } z^{t} \Lambda(1 / z) \text { as a LFSR; } e \leftarrow e+1 \text {; } \\
& \text { return }\left(b_{0}, \ldots, b_{n-1}\right), e
\end{aligned}
$$

Algorithm SequenceCleanUp

Input: $\Lambda(z)=z^{t}+\sum_{i=0}^{t-1} \lambda_{i} x^{i}$ where $\Lambda(0) \neq 0$
Input: $\left(a_{0}, \ldots, a_{n-1}\right)$, where $n \geq t+1$
Input: E, the maximum number of corrections to make
Input: k, such that $\left(a_{k}, a_{k+2 t-1}\right)$ is clean
Output: $\left(b_{0}, \ldots, b_{n-1}\right)$ generated by Λ at distance $\leq E$ to $\left(a_{0}, \ldots, a_{n-1}\right)$
1 begin

2

$$
\begin{aligned}
& \left(b_{0}, \ldots, b_{n-1}\right) \leftarrow\left(a_{0}, \ldots, a_{n-1}\right) ; e, j \leftarrow 0 ; \\
& i \leftarrow k+2 t ; \\
& \text { while } i \leq n-1 \text { and } e \leq E \text { do } \\
& \quad \text { if } \Lambda \text { does not satisfy }\left(b_{i-t+1}, \ldots, b_{i}\right) \text { then } \\
& \quad \text { Fix } b_{i} \text { using } \Lambda(z) \text { as a LFSR; } e \leftarrow e+1 ; \\
& i \leftarrow k-1 ; \\
& \text { while } i \geq 0 \text { and } e \leq E \text { do } \\
& \quad \text { if } \Lambda \text { does not satisfy }\left(b_{i}, \ldots, b_{i+t-1}\right) \text { then } \\
& \quad \text { Fix } b_{i} \text { using } z^{t} \Lambda(1 / z) \text { as a LFSR; } e \leftarrow e+1 ; \\
& \text { return }\left(b_{0}, \ldots, b_{n-1}\right), e
\end{aligned}
$$

Finding a clean segment: case $E=1$

\Rightarrow only one error

$$
\left(a_{0}, \ldots, a_{k-2}, b_{k-1} \neq a_{k-1}, a_{k}, a_{k+1}, a_{2 t-1}\right)
$$

will be identified by the majority vote (2-to-1 majority).

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$ \Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4,0,8,0,16,0,32, \ldots)
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
\Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$$
E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2
$$

$$
(\underbrace{\mathbf{1}, 1, \mathbf{2}, 2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
\Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2$

$$
(\underbrace{\mathbf{1}, 1,2,2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

$(1,1,2,2)$ is deceptive. Applying SequenceCleanUp with this clean segment produces
$(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4,8,8,16,16,32,32,64, \ldots)$

Finding a clean segment: case $E \geq 2$

Multiple errors on one segment can still be generated by $\Lambda(z)$
\Rightarrow deceptive segments: not good for SequenceCleanUp

Example

$E=3:(0,1,0,2,0,4,0,8, \ldots) \Rightarrow \Lambda(z)=z^{2}-2$

$$
(\underbrace{\mathbf{1}, 1, \mathbf{2}, 2}_{z^{2}-2}, \underbrace{\mathbf{4}, 4,0,8}_{z^{2}+2 z-2}, \underbrace{0,16,0,32}_{z^{2}-2}, \ldots)
$$

$(1,1,2,2)$ is deceptive. Applying SequenceCleanUp with this clean segment produces

$$
(\mathbf{1}, 1, \mathbf{2}, 2, \mathbf{4}, 4,8,8,16,16,32,32,64, \ldots)
$$

$E>3$? contradiction. Try $(0,16,0,32)$ as a clean segment instead.

Success of the sequence clean-up

Theorem
If $n \geq t(2 E+1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \leq E$ in algorithm SequenceCleanUp.

Success of the sequence clean-up

Theorem

If $n \geq t(2 E+1)$, then a deceptive segment will necessarily be exposed by a failure of the condition $e \leq E$ in algorithm SequenceCleanUp.

Corollary

$n \geq 2 t(2 E+1)$ is a necessary and sufficient condition for unique decoding of Λ and the corresponding sequence.

Remark

Also works with an upper bound $t \leq T$ on $\operatorname{deg} \Lambda$.

List decoding for $n \geq 2 t(E+1)$

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates
1 begin
2 Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates
1 begin
2 Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;

Use a clean segment to clean-up the sequence; Withdraw Λ_{i} if no clean segment can be found.
return the list $\left(\Lambda_{i}(z),\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$;

Properties

- The list contains the right solution $\left(\Lambda,\left(a_{0}, \ldots, a_{n-1}\right)\right)$

Properties

- The list contains the right solution $\left(\Lambda,\left(a_{0}, \ldots, a_{n-1}\right)\right)$
- $n \geq 2 t(E+1)$ is the tightest bound to enable syndrome decoding (BMA on a clean sequence of length $2 t$).

Example

$$
n=2 t(E+1)-1 \text { and } \varepsilon=(\underbrace{0, \ldots, 0}_{2 t-1}, 1, \underbrace{0, \ldots, 0}_{2 t-1}, 1 \ldots, 1, \underbrace{0, \ldots, 0}_{2 t-1}) .
$$

Then $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$ has no length $2 t$ clean segment.

Outline

Berlekamp/Massey algorithm with errors Bounds on the decoding capacity Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding

Sparse Polynomial Interpolation

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Sparse Polynomial Interpolation

$$
\begin{aligned}
& x \in F \\
& \\
& f=\sum_{i=1}^{t} c_{i} x^{e_{i}}
\end{aligned}
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_{i}=f\left(p^{i}\right)$ for p a field element,
- and let $\Lambda(\lambda)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(\lambda)$ is the minimal generator of $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only need $2 t$ entries to find $\Lambda(\lambda)$ (using BMA)

Sparse Polynomial Interpolation

$$
\begin{gathered}
\xrightarrow{x \in F} \\
\\
f=\sum_{i=1}^{t} c_{i} x^{e_{i}}
\end{gathered}
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Ben-Or/Tiwari 1988:

- Let $a_{i}=f\left(p^{i}\right)$ for p a field element,
- and let $\Lambda(\lambda)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(\lambda)$ is the minimal generator of $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only need $2 t$ entries to find $\Lambda(\lambda)$ (using BMA)
\Rightarrow only need $2 T(2 E+1)$ with $e \leq E$ errors and $t \leq T$.

Ben-Or \& Tiwari's Algorithm

Input: $\left(a_{0}, \ldots, a_{2 t-1}\right)$ where $a_{i}=f\left(p^{i}\right)$
Input: t, the numvber of (non-zero) terms of $f(x)=\sum_{j=1}^{t} c_{j} x^{e_{j}}$
Output: $f(x)$
1 begin
2 Run BMA on $\left(a_{0}, \ldots, a_{2 t-1}\right)$ to find $\Lambda(z)$
Find roots of $\Lambda(z)$ (polynomial factorization)
Recover e_{j} by repeated division (by p)
Recover c_{j} by solving the transposed Vandermonde system

$$
\left[\begin{array}{cccc}
\left(p^{0}\right)^{e_{1}} & \left(p^{0}\right)^{e_{2}} & \ldots & \left(p^{0}\right)^{e_{t}} \\
\left(p^{1}\right)^{e_{1}} & \left(p^{1}\right)^{e_{2}} & \ldots & \left(p^{1}\right)^{e_{t}} \\
\vdots & \vdots & & \vdots \\
\left(p^{t}\right)^{e_{1}} & \left(p^{t}\right)^{e_{2}} & \ldots & \left(p^{t}\right)^{e_{t}}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{t}
\end{array}\right]=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{t-1}
\end{array}\right]
$$

Outline

Berlekamp/Massey algorithm with errors Bounds on the decoding capacity Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

- $\mathrm{DFT}_{\omega}(v) \Leftrightarrow \operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v \Leftrightarrow$ Eval $_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots}(v)$

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

- $\operatorname{DFT}_{\omega}(v) \Leftrightarrow \operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v \Leftrightarrow$ Eval $_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots}(v)$
- Univariate Ben-Or \& Tiwari as a corollary

Blahut's theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

- $\operatorname{DFT}_{\omega}(v) \Leftrightarrow \operatorname{Vandemonde}\left(\omega^{0}, \omega^{1}, \omega^{2}, \ldots\right) v \Leftrightarrow$ Eval $_{\omega^{0}, \omega^{1}, \omega^{2}, \ldots}(v)$
- Univariate Ben-Or \& Tiwari as a corollary
- Reed-Solomon codes: evaluation of a sparse error $\Rightarrow \mathrm{BMA}$

Reed-Solomon codes as Evaluation codes

$$
\mathcal{C}=\left\{\left(f\left(\omega^{1}\right), \ldots, f\left(\omega^{n}\right)\right) \mid \operatorname{deg} f<k\right\}
$$

Reed-Solomon codes as Evaluation codes

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t-sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =n f+V_{\omega^{-1}} \epsilon
\end{aligned}
$$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t-sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =\underbrace{n f}_{\text {weight error }}+\underbrace{V_{\omega^{-1} \epsilon}}_{\text {RS code word }}
\end{aligned}
$$

Reed-Solomon decoding: unique solution provided ε has $2 t$ consecutive trailing 0's
\Leftrightarrow clean segment of length $2 t$
$\Leftrightarrow n \geq 2 t(E+1)$

Same problems?

Interchanging Evaluation and Interpolation

Let $V_{\omega}=\operatorname{Vandermonde}\left(\omega, \omega^{2}, \ldots, \omega^{n}\right)$. Then $\left(V_{\omega}\right)^{-1}=\frac{1}{n} V_{\omega^{-1}}$
Given g, find f, t -sparse and an error ε such that

$$
\begin{aligned}
g & =V_{\omega} f+\varepsilon \\
V_{\omega^{-1}} g & =\underbrace{n f}_{\text {weight terror }}+\underbrace{V_{\omega^{-1}} \epsilon}_{\text {RS code word }}
\end{aligned}
$$

Reed-Solomon decoding: unique solution provided ε has $2 t$ consecutive trailing 0's
\Leftrightarrow clean segment of length $2 t$
$\Leftrightarrow n \geq 2 t(E+1)$
BUT: location of the syndrome, is a priori unknown
\Rightarrow no uniqueness

Applications and Perspectives

Sparse interpolation with noise and outliers
[Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]: Termination criteria for BMA:

Exact singularity \leftrightarrow illconditionnedness
Now combined with outliers

Applications and Perspectives

Sparse interpolation with noise and outliers

[Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]: Termination criteria for BMA:

Exact singularity \leftrightarrow illconditionnedness
Now combined with outliers

Perspectives:

- surprising impact of noise on the sparsity: does not degenerate to dense

Applications and Perspectives

Sparse interpolation with noise and outliers

[Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]:
Termination criteria for BMA:
Exact singularity \leftrightarrow illconditionnedness
Now combined with outliers

Perspectives:

- surprising impact of noise on the sparsity: does not degenerate to dense
- Sparse rational function reconstruction with errors: dense case: Berlekamp/Welsh decoding and Padé approximant fit well together.
sparse case ?

Applications and Perspectives

Sparse interpolation with noise and outliers

[Giesbrecht, Labahn \&Lee'06] [Kaltofen, Lee, Yang'11]:
Termination criteria for BMA:
Exact singularity \leftrightarrow illconditionnedness
Now combined with outliers

Perspectives:

- surprising impact of noise on the sparsity: does not degenerate to dense
- Sparse rational function reconstruction with errors: dense case: Berlekamp/Welsh decoding and Padé approximant fit well together.
sparse case ?
- application to k-error linear complexity (symmetric crypto)
-..

