
Sparse Polynomial Interpolation and
Berlekamp/Massey algorithms that correct

Outlier Errors in Input Values

Clément PERNET†

joint work with Matthew T. COMER∗ and Erich L. KALTOFEN∗

†: LIG/INRIA-MOAIS, Grenoble Université, France
∗: North Carolina State University, USA

ISSAC’12, Grenoble, France,
July 23rd, 2012



Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding



Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes
⇒number of evaluation points made adaptive on

error impact and degree [Khonji & Al.’10]

Sparse case: Present work

I based on Ben-Or & Tiwari’s interpolation algorithm
I itself based on Berlekamp/Massey algorithm
⇒develop Berlekamp/Massey Algorithm with errors



Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes
⇒number of evaluation points made adaptive on

error impact and degree [Khonji & Al.’10]
Sparse case: Present work

I based on Ben-Or & Tiwari’s interpolation algorithm
I itself based on Berlekamp/Massey algorithm
⇒develop Berlekamp/Massey Algorithm with errors



Preliminaries

Linear recurring sequences

Sequence (a0, a1, . . . , an, . . . ) such that

∀j ≥ 0 aj+t =

t−1∑
i=0

λiai+j

generating polynomial: Λ(z) = zt −
∑t−1

i=0 λizi

minimal generating polynomial: Λ(z) of minimal degree
linear complexity of (ai)i: the minimal degree of Λ

Hamming weight: weight(x) = #{i|xi 6= 0}
Hamming distance: dH(x, y) = weight(x− y)



Berlekamp/Massey algorithm

Input: (a0, . . . , an−1) a sequence of field elements.
Result: Λ(z) =

∑Ln
i=0 λizi a monic polynomial of minimal degree

Ln ≤ n such that
∑Ln

i=0 λiai+j = 0 for j = 0, . . . , n−Ln−1.

I Guarantee : BMA finds Λ of degree t from ≤ 2t entries.



Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding



Problem Statement

Berlkamp/Massey with errors

Suppose (a0, a1, . . . ) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . . ) = (a0, a1, . . . ) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . . )

2. How many entries required for
I a unique solution
I a list of solutions including (a0, a1, . . . )

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacity ?

I for unique decoding
I list decoding



Problem Statement

Berlkamp/Massey with errors

Suppose (a0, a1, . . . ) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . . ) = (a0, a1, . . . ) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . . )

2. How many entries required for
I a unique solution
I a list of solutions including (a0, a1, . . . )

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacity ?

I for unique decoding
I list decoding



How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?



How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?



How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?



How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?
A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?



Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)



Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)



The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).

1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);

4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . . );



The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);

4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . . );



The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);
4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . . );



Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)

1 begin
2 (b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
3 i← k + 2t;
4 while i ≤ n− 1 and e ≤ E do
5 if Λ does not satisfy (bi−t+1, . . . , bi) then
6 Fix bi using Λ(z) as a LFSR; e← e + 1;

7 i← k − 1;
8 while i ≥ 0 and e ≤ E do
9 if Λ does not satisfy (bi, . . . , bi+t−1) then

10 Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

11 return (b0, . . . , bn−1), e



Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
1 begin
2 (b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
3 i← k + 2t;
4 while i ≤ n− 1 and e ≤ E do
5 if Λ does not satisfy (bi−t+1, . . . , bi) then
6 Fix bi using Λ(z) as a LFSR; e← e + 1;

7 i← k − 1;
8 while i ≥ 0 and e ≤ E do
9 if Λ does not satisfy (bi, . . . , bi+t−1) then

10 Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

11 return (b0, . . . , bn−1), e



Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
1 begin
2 (b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
3 i← k + 2t;
4 while i ≤ n− 1 and e ≤ E do
5 if Λ does not satisfy (bi−t+1, . . . , bi) then
6 Fix bi using Λ(z) as a LFSR; e← e + 1;

7 i← k − 1;
8 while i ≥ 0 and e ≤ E do
9 if Λ does not satisfy (bi, . . . , bi+t−1) then

10 Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

11 return (b0, . . . , bn−1), e



Algorithm SequenceCleanUp

Input: Λ(z) = zt +
∑t−1

i=0 λixi where Λ(0) 6= 0
Input: (a0, . . . , an−1), where n ≥ t + 1
Input: E, the maximum number of corrections to make
Input: k, such that (ak, ak+2t−1) is clean
Output: (b0, . . . , bn−1) generated by Λ at distance ≤ E to

(a0, . . . , an−1)
1 begin
2 (b0, . . . , bn−1)← (a0, . . . , an−1); e, j← 0;
3 i← k + 2t;
4 while i ≤ n− 1 and e ≤ E do
5 if Λ does not satisfy (bi−t+1, . . . , bi) then
6 Fix bi using Λ(z) as a LFSR; e← e + 1;

7 i← k − 1;
8 while i ≥ 0 and e ≤ E do
9 if Λ does not satisfy (bi, . . . , bi+t−1) then

10 Fix bi using ztΛ(1/z) as a LFSR; e← e + 1;

11 return (b0, . . . , bn−1), e



Finding a clean segment: case E = 1

⇒only one error

(a0, . . . , ak−2, bk−1 6= ak−1, ak, ak+1, a2t−1)

will be identified by the majority vote (2-to-1 majority).



Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . . ) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . . )

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.



Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . . ) ⇒Λ(z) = z2 − 2

(1, 1, 2, 2, 4, 4, 0, 8, 0, 16, 0, 32, . . . )

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . . )

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.



Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . . ) ⇒Λ(z) = z2 − 2

( 1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . . )

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . . )

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.



Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . . ) ⇒Λ(z) = z2 − 2

( 1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . . )

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . . )

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.



Finding a clean segment: case E ≥ 2

Multiple errors on one segment can still be generated by Λ(z)
⇒deceptive segments: not good for SequenceCleanUp

Example

E = 3: (0, 1, 0, 2, 0, 4, 0, 8, . . . ) ⇒Λ(z) = z2 − 2

( 1, 1, 2, 2︸ ︷︷ ︸
z2−2

, 4, 4, 0, 8︸ ︷︷ ︸
z2+2z−2

, 0, 16, 0, 32︸ ︷︷ ︸
z2−2

, . . . )

(1, 1, 2, 2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, . . . )

E > 3 ? contradiction. Try (0, 16, 0, 32) as a clean segment
instead.



Success of the sequence clean-up

Theorem
If n ≥ t(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e ≤ E in algorithm
SequenceCleanUp.

Corollary

n ≥ 2t(2E + 1) is a necessary and sufficient condition for unique
decoding of Λ and the corresponding sequence.

Remark
Also works with an upper bound t ≤ T on deg Λ.



Success of the sequence clean-up

Theorem
If n ≥ t(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e ≤ E in algorithm
SequenceCleanUp.

Corollary

n ≥ 2t(2E + 1) is a necessary and sufficient condition for unique
decoding of Λ and the corresponding sequence.

Remark
Also works with an upper bound t ≤ T on deg Λ.



List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;

3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;



List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;

3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;



List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;



Properties

I The list contains the right solution (Λ, (a0, . . . , an−1))

I n ≥ 2t(E + 1) is the tightest bound to enable syndrome
decoding (BMA on a clean sequence of length 2t).

Example

n = 2t(E + 1)− 1 and ε = (0, . . . , 0︸ ︷︷ ︸
2t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

, 1 . . . , 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

).

Then (a0, . . . , an−1) + ε has no length 2t clean segment.



Properties

I The list contains the right solution (Λ, (a0, . . . , an−1))

I n ≥ 2t(E + 1) is the tightest bound to enable syndrome
decoding (BMA on a clean sequence of length 2t).

Example

n = 2t(E + 1)− 1 and ε = (0, . . . , 0︸ ︷︷ ︸
2t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

, 1 . . . , 1, 0, . . . , 0︸ ︷︷ ︸
2t−1

).

Then (a0, . . . , an−1) + ε has no length 2t clean segment.



Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding



Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a field element,
I and let Λ(λ) =

∏t
i=1(z− pei).

I Then Λ(λ) is the minimal generator of (a0, a1, . . . ).

⇒only need 2t entries to find Λ(λ) (using BMA)
⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.



Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a field element,
I and let Λ(λ) =

∏t
i=1(z− pei).

I Then Λ(λ) is the minimal generator of (a0, a1, . . . ).

⇒only need 2t entries to find Λ(λ) (using BMA)

⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.



Sparse Polynomial Interpolation

x ∈ F

f =
∑t

i=1 cixei

f (x)+ε

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

I Let ai = f (pi) for p a field element,
I and let Λ(λ) =

∏t
i=1(z− pei).

I Then Λ(λ) is the minimal generator of (a0, a1, . . . ).

⇒only need 2t entries to find Λ(λ) (using BMA)
⇒only need 2T(2E + 1) with e ≤ E errors and t ≤ T.



Ben-Or & Tiwari’s Algorithm

Input: (a0, . . . , a2t−1) where ai = f (pi)
Input: t, the numvber of (non-zero) terms of f (x) =

∑t
j=1 cjxej

Output: f (x)
1 begin
2 Run BMA on (a0, . . . , a2t−1) to find Λ(z)
3 Find roots of Λ(z) (polynomial factorization)
4 Recover ej by repeated division (by p)
5 Recover cj by solving the transposed Vandermonde system

(p0)e1 (p0)e2 . . . (p0)et

(p1)e1 (p1)e2 . . . (p1)et

...
...

...
(pt)e1 (pt)e2 . . . (pt)et




c1
c2
...
ct

 =


a0
a1
...

at−1





Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding



Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

I DFTω(v)⇔ Vandemonde(ω0, ω1, ω2, . . . )v⇔
Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary
I Reed-Solomon codes: evaluation of a sparse error
⇒BMA



Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

I DFTω(v)⇔ Vandemonde(ω0, ω1, ω2, . . . )v⇔
Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary

I Reed-Solomon codes: evaluation of a sparse error
⇒BMA



Blahut’s theorem

Theorem (Blahut)

The D.F.T of a vector of weight t has linear complexity at most t

I DFTω(v)⇔ Vandemonde(ω0, ω1, ω2, . . . )v⇔
Evalω0,ω1,ω2,...(v)

I Univariate Ben-Or & Tiwari as a corollary
I Reed-Solomon codes: evaluation of a sparse error
⇒BMA



Reed-Solomon codes as Evaluation codes

C = {(f (ω1), . . . , f (ωn))| deg f < k}

m=f(x), deg f < k

f

error 

y = c + ε

ε

g

0

Interpolation

Evaluation

g = f + Interp (   )ε

ic = Eval(f), c  = f(w  )
i

g



Reed-Solomon codes as Evaluation codes

C = {(f (ω1), . . . , f (ωn))| deg f < k}

������
������
������
������
������

������
������
������
������
������

m=f(x), deg f < k

f

error 

y = c + ε

ε

g

0

Interpolation

Evaluation

i
c = Eval(f), c  = f(w  )i

g = f + Interp (   )ε

BMA

f



Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp (   )

ε

f



Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

������
������
������
������
������

������
������
������
������
������

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp (   )

ε

f

BMA



Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf + Vω−1ε

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness



Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf︸︷︷︸
weight t error

+ Vω−1ε︸ ︷︷ ︸
RS code word

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness



Same problems?

Interchanging Evaluation and Interpolation

Let Vω = Vandermonde(ω, ω2, . . . , ωn). Then (Vω)−1 = 1
n Vω−1

Given g, find f , t-sparse and an error ε such that

g = Vωf + ε

Vω−1g = nf︸︷︷︸
weight t error

+ Vω−1ε︸ ︷︷ ︸
RS code word

Reed-Solomon decoding: unique solution provided ε has 2t
consecutive trailing 0’s
⇔ clean segment of length 2t
⇔ n ≥ 2t(E + 1)

BUT: location of the syndrome, is a priori unknown
⇒no uniqueness



Applications and Perspectives
Sparse interpolation with noise and outliers

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity↔ illconditionnedness
Now combined with outliers

Perspectives:

I surprising impact of noise on the sparsity: does not
degenerate to dense

I Sparse rational function reconstruction with errors:
dense case: Berlekamp/Welsh decoding and Padé

approximant fit well together.
sparse case ?

I application to k-error linear complexity (symmetric crypto)
I ...



Applications and Perspectives
Sparse interpolation with noise and outliers

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity↔ illconditionnedness
Now combined with outliers

Perspectives:
I surprising impact of noise on the sparsity: does not

degenerate to dense

I Sparse rational function reconstruction with errors:
dense case: Berlekamp/Welsh decoding and Padé

approximant fit well together.
sparse case ?

I application to k-error linear complexity (symmetric crypto)
I ...



Applications and Perspectives
Sparse interpolation with noise and outliers

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity↔ illconditionnedness
Now combined with outliers

Perspectives:
I surprising impact of noise on the sparsity: does not

degenerate to dense
I Sparse rational function reconstruction with errors:

dense case: Berlekamp/Welsh decoding and Padé
approximant fit well together.

sparse case ?

I application to k-error linear complexity (symmetric crypto)
I ...



Applications and Perspectives
Sparse interpolation with noise and outliers

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity↔ illconditionnedness
Now combined with outliers

Perspectives:
I surprising impact of noise on the sparsity: does not

degenerate to dense
I Sparse rational function reconstruction with errors:

dense case: Berlekamp/Welsh decoding and Padé
approximant fit well together.

sparse case ?
I application to k-error linear complexity (symmetric crypto)
I ...


	Berlekamp/Massey algorithm with errors
	Bounds on the decoding capacity
	Decoding algorithms

	Sparse Polynomial Interpolation with errors
	Relations to Reed-Solomon decoding

