Sparse Polynomial Interpolation and
Berlekamp/Massey algorithms that correct
Ouitlier Errors in Input Values

Clément PERNET!
joint work with Matthew T. COMER* and Erich L. KALTOFEN*

T: LIG/INRIA-MOAIS, Grenoble Université, France
*: North Carolina State University, USA

ISSAC’12, Grenoble, France,
July 23rd, 2012

Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Sparse Polynomial Interpolation with errors

Relations to Reed-Solomon decoding

Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes
=-number of evaluation points made adaptive on
error impact and degree [Khonji & Al’10]

Introduction

Polynomial interpolation with errors

Dense case: Reed-Solomon codes / CRT codes
=-number of evaluation points made adaptive on
error impact and degree [Khonji & Al’10]

Sparse case: Present work

» based on Ben-Or & Tiwari’s interpolation algorithm

» itself based on Berlekamp/Massey algorithm
=-develop Berlekamp/Massey Algorithm with errors

Preliminaries

Linear recurring sequences

Sequence (ag, ay, ..., ay,,...) such that

J >0 ajrt = Z A iditj

generating polynomial: A(z) =z — Y/ AiZ'
minimal generating polynomial: A(z) of minimal degree
linear complexity of (a;);: the minimal degree of A

Hamming weight: weight(x) = #{i|x; # 0}
Hamming distance: dg(x,y) = weight(x — y)

Berlekamp/Massey algorithm

Input: (ao,...,a,—1) a sequence of field elements.
Result: A(z) = 3%, \iz' a monic polynomial of minimal degree
L, < nsuchthat "% Naiyj=0forj=0,...,n—L,— 1.

» Guarantee : BMA finds A of degree ¢ from < 27 entries.

Outline

Berlekamp/Massey algorithm with errors
Bounds on the decoding capacity
Decoding algorithms

Problem Statement
Berlkamp/Massey with errors

Suppose (ag,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + &, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions including (ag, ay, .. .)

Problem Statement
Berlkamp/Massey with errors

Suppose (ag,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + &, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions including (ag, ay, .. .)

Coding Theory formulation

Let C be the set of all sequences of linear complexity r.

1. How to decode C ?
2. What are the best correction capacity ?

» for unique decoding
» list decoding

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

- ~—

—_ e

A(z)
222+ 47
—1+47

1+22

How many entries to guarantee uniqueness?

Case E=1,r=2

Where is the error?

A(z)
222+ 47
-1+ 7

1+22

A unique solution is not guaranteed witht =2, F =1andn =11

Is n > 2¢(2E + 1) a necessary condition?

Generalizationto any E > 1
t—1 times

— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Generalizationto any E > 1

t—1 times
— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Theorem
Necessary condition for unique decoding:

n>2(2E+ 1)

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)
/_JR
I N N |

A A A A As

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

/_JR

I N N | |
A A A A As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
3 Perform majority vote to find A(z);

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

/_JR

I N N | |
A A A A As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
Perform majority vote to find A(z);
Use a clean segment to clean-up the sequence ;
return A(z) and (ap, ai, .. .);

a & W

Algorithm SequenceCleanUp

Input: A(z) = 7/ + 3'—, A\’ where A(0) # 0

Input: (ao,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make

Input: k, such that (ax, ak12—1) is clean

Output: (b,...,b,—1) generated by A at distance < E to
((,l()7 N ,an,l)

Algorithm SequenceCleanUp

"

Input: A(z) = 7/ + 3'—, A\’ where A(0) # 0

Input: (ao,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: k, such that (ax, ak12—1) is clean

Output: (b,...,b,—1) generated by A at distance < E to

((,l()7 e 7Cln,])
begin
(boy- - bu—1) < (ag,-..,an—1); €,j < 0;
i+ k—+2t;

whilei<n—-1ande < E do
if A does not satisfy (b;—41,...,b;) then
| Fix b; using A(z) as a LFSR; e e+ 1;

return (by,...,b,—1),e

Algorithm sequenceCleanUp

10

"

Input: A(z) = 7/ + 3'—, A\’ where A(0) # 0

Input: (ao,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: k, such that (ax, ak12—1) is clean

Output: (b,...,b,—1) generated by A at distance < E to

((,l()7 e 7Cln,l)
begin
(boy- - bu—1) < (ag,-..,an—1); €,j < 0;
i+ k—+2t;

whilei<n—-1ande < E do
if A does not satisfy (b;—41,...,b;) then
| Fix b; using A(z) as a LFSR; e e+ 1;

i+ k—1;
whilei > 0ande < E do
if A does not satisfy (b;,...,bi1,—1) then
| Fix b using z/A(1/z) as a LFSR; e e + 1;

return (by,...,b,—1),e

Algorithm sequenceCleanUp

o g &~ W N =

© ~N

10

"

Input: A(z) = 7/ + 3'—, A\’ where A(0) # 0

Input: (ao,...,a,—1), wheren >t +1

Input: E, the maximum number of corrections to make
Input: %, such that (ay, ax42—1) is clean

Output: (b,...,b,—1) generated by A at distance < E to

((,l()7 e 7Cln,l)
begin
(boy- - bu—1) < (ag,-..,an—1); €,j < 0;
i+ k—+2t;

whilei<n—-1ande < E do
if A does not satisfy (b;—41,...,b;) then
| Fix b; using A(z) as a LFSR; e e+ 1;

i+ k—1;
whilei > 0ande < E do
if A does not satisfy (b;,...,bi1,—1) then
| Fix b using z/A(1/z) as a LFSR; e e + 1;

return (by,...,b,—1),e

Finding a clean segment: case E = 1

=-only one error

(ag, ..., ax—2,br—1 # ax—1, ag, ag+1,a2—1)

will be identified by the majority vote (2-to-1 majority).

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2*-2

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2>-2

(1,1,2,2,4,4,0,8,0,16,0,32,...)

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2*-2

(1, 1,2,2,4,4,0,8,0,16,0,32,.)
—_——— —— ———
22 224272 222

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2*-2

(1,1,2,2,4,4,0,8,0,16,0,32,...)
—— —— ——

22-2 224272 22-2
(1,1,2,2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1,1,2,2,4,4,8,8,16,16,32,32,64,...)

Finding a clean segment: case E > 2

Multiple errors on one segment can still be generated by A(z)
=-deceptive segments: not good for SequenceCleanUp

Example
E=3:(0,1,0,2,0,4,0,8,...) =A(z)=2*-2

(1, 1,2,2,4,4,0,8,0,16,0,32,.)
—_——— —— ———
22 224272 222

(1,1,2,2) is deceptive. Applying SequenceCleanUp with this
clean segment produces

(1,1,2,2,4,4,8,8,16,16,32,32,64,...)

E > 3 ? contradiction. Try (0, 16,0, 32) as a clean segment
instead.

Success of the sequence clean-up

Theorem

Ifn > 1(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e < E in algorithm
SequenceCleanUp.

Success of the sequence clean-up

Theorem

Ifn > 1(2E + 1), then a deceptive segment will necessarily be
exposed by a failure of the condition e < E in algorithm
SequenceCleanUp.

Corollary

n > 2t(2E + 1) is a necessary and sufficient condition for unique
decoding of A and the corresponding sequence.

Remark
Also works with an upper boundt < T on deg A.

List decoding for n > 2t(E + 1)

2t E=2 n=2t(E+1)
f_y%
e B N

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e B N
Al A2 A3

Input: (ao,...,a,—1) + ¢, where n = 2t(E + 1), weight(¢) < E,
and (ao, . .. ,a,—1) minimally generated by A of degree ¢,
where A(0) # 0.
Output: (A;(z),s; = (@), ...,a",)); alist of < E candidates
1 begin
2 Run BMA on E + 1 segments of 27 entries and record A;(z)
on each segment;

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e B N
Al A2 A3

Input: (ao,...,a,—1) + ¢, where n = 2t(E + 1), weight(¢) < E,
and (ao, . .. ,a,—1) minimally generated by A of degree ¢,
where A(0) # 0.
Output: (A;(z),s; = (@), ...,a",)); alist of < E candidates
begin
2 Run BMA on E + 1 segments of 27 entries and record A;(z)
on each segment;
foreach A;(z) do
Use a clean segment to clean-up the sequence;
L Withdraw A; if no clean segment can be found.

-

6 | returnthe list (A;(2), (a),....a")

¥ 'n—1

Properties

» The list contains the right solution (A, (ao, . ..,a,—1))

Properties

» The list contains the right solution (A, (ag, . ..,a,-1))

» n > 2t(E + 1) is the tightest bound to enable syndrome
decoding (BMA on a clean sequence of length 2r).

n=2E+1)—lande=(0,...,0,1,0,...,0,1...,1,0,...,0).
— — \71_/
2—1 2—1 A

Then (ao, ...,a,—1) + € has no length 2z clean segment.

Outline

Sparse Polynomial Interpolation with errors

Sparse Polynomial Interpolation

xE€F f(x)

t ,
f prmn Zl:] Cl.xet

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Sparse Polynomial Interpolation

xeF f(x)

t .
f = zl:] Cl.xet

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

» Leta; = f(p') for p a field element,

» and let A(\) = []'_,(z — p%).

» Then A()) is the minimal generator of (ag,ay, .. .).
=-only need 2 entries to find A()) (using BMA)

Sparse Polynomial Interpolation

x€eF f(x)+e

t .
f = zl:] Cl.xet

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or/Tiwari 1988:

» Leta; = f(p') for p a field element,
» and let A(\) = []'_,(z — p%).
» Then A()) is the minimal generator of (ag, ay, . ..).

=-only need 2 entries to find A()) (using BMA)
=only need 27(2E + 1) withe < Eerrorsand r < T.

Ben-Or & Tiwari’s Algorithm

Input: (ay,...,ay_1) Where a; = f(p')

Input: 7, the numvber of (non-zero) terms of f(x) = Z]t':l Ccjx%
Output: f(x)

begin

Run BMA on (ao, . .. ,a—1) to find A(z)

Find roots of A(z) (polynomial factorization)

Recover ¢; by repeated division (by p)

Recover ¢; by solving the transposed Vandermonde system

Outline

Relations to Reed-Solomon decoding

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight ¢t has linear complexity at most ¢

» DFT,(v) & Vandemonde(u’, w!,w?,... v &
Evalw07w17w27__(V)

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight ¢t has linear complexity at most ¢

» DFT,(v) & Vandemonde(u’, w!,w?,... v &
Evalw07w17w27__(V)

» Univariate Ben-Or & Tiwari as a corollary

Blahut’'s theorem

Theorem (Blahut)

The D.F.T of a vector of weight ¢t has linear complexity at most ¢

» DFT,(v) & Vandemonde(u’, w!,w?,... v &
Evalwo,wl,wz,...(v)
» Univariate Ben-Or & Tiwari as a corollary

» Reed-Solomon codes: evaluation of a sparse error
=BMA

Reed-Solomon codes as Evaluation codes

C={(f(wh).....f(w")|degf < k}

Evaluation
/\
[« T o JJLITT]TTT]I MM ITIT]
m=f(x), deg f <k ¢ =Eval(f), ¢,=f(w') error €
Y
| g EnE EEE ER
y=c+¢€

g =1+ Interp (&)
Interpolation

Reed-Solomon codes as Evaluation codes

C={(f(w"),....f(W")|degf < k}

Evaluation

/_\
L« T o J | CLITTITTI M ITINT]
m=f(x), deg f <k c =Eval(f), ¢,=f(wi) error €
Y
H EEE BN
y=c+ €

g=1f+Interp (€)
Interpolation

BMA

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial
Y
e T[T
g=Eval(f)+N/y=c+f

Evaluation

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial
Y
H BHEN BN
y=c+f

g=Eval(f) + ¢
Evaluation
BMA

Same problems?

Interchanging Evaluation and Interpolation

Let V,, = Vandermonde(w, w?, ...,w"). Then (V,)~! =1v __,

Given g, find f, t-sparse and an error ¢ such that

g = Vuf+e
Vo118 = nf+V,-i€

Same problems?

Interchanging Evaluation and Interpolation

Let V,, = Vandermonde(w, w?, ...,w"). Then (V,,)~! = 1v, .,

Given g, find f, t-sparse and an error ¢ such that

g = Vuf+e
V18 = nf + V,-ie
~~ S—~—

weight terror RS code word

Reed-Solomon decoding: unique solution provided ¢ has 2t
consecutive trailing 0’s
< clean segment of length 27
Sn>2(E+1)

Same problems?

Interchanging Evaluation and Interpolation

Let V,, = Vandermonde(w, w?, ...,w"). Then (V,,)~! = 1v, .,

Given g, find f, t-sparse and an error ¢ such that

g = Vuf+e
V18 = nf + V,-ie

weight terror RS code word

Reed-Solomon decoding: unique solution provided ¢ has 2t
consecutive trailing 0’s
< clean segment of length 27
Sn>2(E+1)

BUT: location of the syndrome, is a priori unknown
=-No uniqueness

Applications and Perspectives

Sparse interpolation with and

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity «» illconditionnedness
Now combined with outliers

Applications and Perspectives

Sparse interpolation with and

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity «» illconditionnedness
Now combined with outliers

Perspectives:

» surprising impact of noise on the sparsity: does not
degenerate to dense

Applications and Perspectives

Sparse interpolation with and

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity «» illconditionnedness
Now combined with outliers

Perspectives:
» surprising impact of noise on the sparsity: does not
degenerate to dense
» Sparse rational function reconstruction with errors:

dense case: Berlekamp/Welsh decoding and Padé
approximant fit well together.
sparse case ?

Applications and Perspectives

Sparse interpolation with and

[Giesbrecht, Labahn &Lee’06] [Kaltofen, Lee, Yang’11]:
Termination criteria for BMA:

Exact singularity «» illconditionnedness
Now combined with outliers

Perspectives:
» surprising impact of noise on the sparsity: does not
degenerate to dense
» Sparse rational function reconstruction with errors:

dense case: Berlekamp/Welsh decoding and Padé
approximant fit well together.
sparse case ?

» application to k-error linear complexity (symmetric crypto)

> ...

	Berlekamp/Massey algorithm with errors
	Bounds on the decoding capacity
	Decoding algorithms

	Sparse Polynomial Interpolation with errors
	Relations to Reed-Solomon decoding

