◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Calcul efficace de la forme normale de Hermite de matrices entières

Clément PERNET LIG, Grenoble Université travail conjoint avec William Stein (U. of Washington)

> Séminaire du projet ALGORITHMS, 11 janvier 2010

Introduction : formes normales matricielles

Etant donné une transformation B = f(A),

- Identifier les invariants
- Représentant unique de la classe d'équivalence
- Faciliter les calculs (forme structurée)

Différentes types:

Similitude dans un corps: $B = U^{-1}AU$ • forme normal de Frobenius (ou forme normale rationnelle): $F = \begin{bmatrix} C_{P_0} & & \\ & C_{P_1} & \\ & & \ddots & \\ & & C_{P_k} \end{bmatrix}$, avec $p_{i+1}|p_i$ et $P_0 = \text{MinPoly}(A)$. • Méthode de Krylov ou élimination ZigZag

Introduction : formes normales matricielles

Etant donné une transformation B = f(A),

- Identifier les invariants
- Représentant unique de la classe d'équivalence
- Faciliter les calculs (forme structurée)

Différentes types:

Equivalence dans un corps: B = UA, où U est inversible

• Forme échelonnée réduite:

• Elimination de Gauss-Jordan

 $E = \begin{vmatrix} 1 & * & 0 & * & 0 & * \\ & 1 & * & 0 & * \\ & & 1 & * \end{vmatrix}$

Introduction : formes normales matricielles

Etant donné une transformation B = f(A),

- Identifier les invariants
- Représentant unique de la classe d'équivalence
- Faciliter les calculs (forme structurée)

Différentes types:

Equivalence dans un anneau: B = UA, où det $(U) = \pm 1$) • Forme normale de Hermite: $H = \begin{bmatrix} p_1 * x_{1,2} * * x_{1,3} * \\ p_2 * * x_{2,3} * \\ p_3 * \end{bmatrix}$, avec $0 \le x_{*,j} < p_j$

Motivation

Théorie des Nombres:

- Forme échelonnée réduite dans *K*
- $\bullet\,$ Forme normale de Hermite dans $\mathbb Z$

 $\Rightarrow K\text{-espaces-vect.}$ $\Rightarrow \mathbb{Z}\text{-modules}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

Théorie des Nombres:

- Forme échelonnée réduite dans $K \Rightarrow K$ -espaces-vect.
- Forme normale de Hermite dans $\ensuremath{\mathbb{Z}}$

⇒ℤ-modules

(日) (日) (日) (日) (日) (日) (日)

Calcul de la saturation d'un sous-module

- *M* un sous-module de \mathbb{Z}^n . Saturation: $\mathbb{Z}^n \cap (\mathbb{Q}M)$.
- Utilisé pour le calcul avec les formes modulaires.

Lien:

- A, une base de M, H la forme de Hermite A^{T} .
- $(H^{-1}A)^T$ est une base de la saturation de M

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction: Modèles de complexité

Calcul dans \mathbb{Z} : complexité binaire $f(n, \log ||A||_{\infty})$

- Multiplication d'entiers: $M(k) = O(n \log n \log^* n) = O^{\sim}(n)$
- Multiplication de matrices: 𝒪 (n^ω M(log ||A||)) = 𝒪[∞] (n^ω log ||A||)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction: Modèles de complexité

Calcul dans \mathbb{Z} : complexité binaire $f(n, \log ||A||_{\infty})$

- Multiplication d'entiers: $M(k) = O(n \log n \log^* n) = O^{\sim}(n)$
- Multiplication de matrices: 𝒪 (𝑘𝑘𝔄(log ||𝑋||)) = 𝒪^𝕶 (𝑘 log ||𝑋||)

Similitude dans un corps: Forme Normale de Frobenius

• [Storjohann00]: $\mathcal{O}^{\sim}(n^{\omega})$ • [P. & Storjohann07]: Las Vegas sans U $\mathcal{O}(n^{\omega})$

Introduction: Modèles de complexité

Calcul dans \mathbb{Z} : complexité binaire $f(n, \log ||A||_{\infty})$

- Multiplication d'entiers: $M(k) = O(n \log n \log^* n) = O^{\sim}(n)$
- Multiplication de matrices: 𝒪 (n^ω M(log ||A||)) = 𝒪^w (n^ω log ||A||)

Similitude dans un corps: Forme Normale de Frobenius

Storjohann00]:	$\mathcal{O}(n^{\omega})$
[P. & Storjohann07]: Las Vegas sans U	$\mathcal{O}\left(\textit{n}^{\omega} ight)$
Equivalence dans un corps: Forme échelonnée réduite	
• Gauss-Jordan:	$\mathcal{O}\left(n^{\omega} ight)$
Equivalence dans \mathbb{Z} : Forme Normale de Hermite	
[Kannan & Bachem 79]:	$\in P$
[Chou & Collins 82]:	$\mathcal{O}^{\sim}\left(n^{6}\log\ A\ ight)$
[Domich & Al. 87], [Illiopoulos 89]:	$\mathcal{O}^{\sim}\left(n^{4}\log\ A\ \right)$
• [Micciancio & Warinschi01]: $\mathcal{O}^{\sim}(n^5 \log A ^2), \mathcal{O}^{\sim}(n^5 \log A ^2)$	$\tilde{a}\left(n^{3}\log\left\ A\right\ \right)$ heur.
[Storjohann & Labahn 96]:	\mathcal{O} ~ $\left(n^{\omega+1} \log \ \boldsymbol{A} \ ight)$
	(周) くう くう とうしょう

200

2 Micciancio Warinschi revisité

Quelques ingrédients pour le calcul exact

De la complexité... Briques de base Dense, dans \mathbb{Z}_p : Produit de matrice Boite noire, dans \mathbb{Z}_p : Polynôme minimal Dense, dans \mathbb{Z}, \mathbb{Q} : système linéaire

 $\mathcal{O}(n^{\omega})$ $\mathcal{O}(ndE(n))$ $\mathcal{O}^{\sim}(n^{\omega}\log \|A\|)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quelques ingrédients pour le calcul exact

Quelques ingrédients pour le calcul exact

De la complexité					
Briques de base					
Dense, dans \mathbb{Z}_p : Produit de matrice	$\mathcal{O}\left(\textit{n}^{\omega} ight)$				
Boite noire, dans \mathbb{Z}_p : Polynôme minimal	$\mathcal{O}(ndE(n))$				
Dense, dans \mathbb{Z}, \mathbb{Q} : système linéaire	$\mathcal{O}(n^{\omega} \log \ A\)$				
Réductions: exemple Det					
Dense, dans \mathbb{Z}_p : [Bunch & Hopcroft 74]	$\mathcal{O}\left(\textit{n}^{\omega} ight)$				
 Det ⇒LU récursif par bloc ⇒MM 					
Boîte noire, dans \mathbb{Z}_{p} : [Chen & Al. 01]	$\mathcal{O}\left(n^2 E(n)\right)$				
 Det ⇒Charpoly ⇒Minpoly + Précond. 					
Dense, dans \mathbb{Z}, \mathbb{Q} : [Abbott & Al. 99]	$\mathcal{O}^{\sim}(n^{\omega}\log\ A\)$				
 Det ⇒Dernier facteur in 	variant ⇒LinSys				
à la mise en pratique	(口)(四)(三)(三)				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Le produit de matrices dans \mathbb{Z}_p

Principe:

- Réductions modulaires différées ⇒plongement dans Z
- Arithmétique flottante (fma, SSE2, ...)

Le produit de matrices dans \mathbb{Z}_p

Principe:

- Réductions modulaires différées ⇒plongement dans Z
- Arithmétique flottante (fma, SSE2, ...)
- Optimisation de cache

Le produit de matrices dans \mathbb{Z}_p

Principe:

- Réductions modulaires différées ⇒plongement dans Z
- Arithmétique flottante (fma, SSE2, ...)
- Optimisation de cache

⇒repose sur les BLAS existants

Le produit de matrices dans \mathbb{Z}_p

Principe:

- Réductions modulaires différées ⇒plongement dans Z
- Arithmétique flottante (fma, SSE2, ...)
- Optimisation de cache
 - ⇒repose sur les BLAS existants
- Algorithme sous-cubique (Strassen-Winograd)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Autres routines d'algèbre linéaire dense

- Réduction au produit de matrice
- Bornes pour la réduction modulaire différée

・ コット (雪) (小田) (コット 日)

Autres routines d'algèbre linéaire dense

- Réduction au produit de matrice
- Bornes pour la réduction modulaire différée
- \Rightarrow Algorithmes par blocs en cascade

Autres routines d'algèbre linéaire dense

- Réduction au produit de matrice
- Bornes pour la réduction modulaire différée

 \Rightarrow Algorithmes par blocs en cascade

	n	1000	2000	3000	5000	10000
TRSM	<u>ftrsm</u> dtrsm	1,66	1,33	1,24	1,12	1,01
LQUP	lqup dgetrf	2,00	1,56	1,43	1,18	1,07
INVERSE	inverse dgetrf+dgetri	1.62	1.32	1.15	0.86	0.76

	n	500	5000	15000
ique:	LinBox	0.91s	4m44s	2h20m
	magma-2.13	1.27s	15m32s	7h28m
		4		E N A E N

Polynôme caractéristique:

596

Système linéaire dans \mathbb{Z}

Restes Chinois: $\mathcal{O}(n^{\omega+1}(\log n + \log ||A||))$ Remontée *p*-adique: $\mathcal{O}(n^3 \log ||A||)$ Remontée de haut rang: $\mathcal{O}(n^\omega \log ||A||)$

(ロ) (同) (三) (三) (三) (○) (○)

Système linéaire dans \mathbb{Z}

Restes Chinois: $\mathcal{O}\left(n^{\omega+1}(\log n + \log ||A||)\right)$ Remontée *p*-adique: $\mathcal{O}\left(n^3 \log ||A||\right)$ Remontée de haut rang: $\mathcal{O}\left(n^{\omega} \log ||A||\right)$

Repose sur

- LU dans \mathbb{Z}_p
- arithmétique entière rapide: Karatsuba, Toom-Cook, FFT (GMP)
- compromis dimension/iterations: remontée multi-adique

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Contexte

Complexité:

- pire cas: $\mathcal{O}(n^5 \log ||A||)$
- heuristiquement: $\mathcal{O}(n^3 \log ||A||)$

espace: *O* (*n*² log ||*A*||)

⇒Bon comportement avec les matrices aléatoires (dist. uniforme), fréquentes en théorie des nombre

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Contexte

Complexité:

- pire cas: $\mathcal{O}(n^5 \log ||A||)$
- heuristiquement: $\mathcal{O}(n^3 \log ||A||)$

espace: *O* (*n*² log ||*A*||)

 ⇒Bon comportement avec les matrices aléatoires (dist. uniforme), fréquentes en théorie des nombre Mise en oeuvre:

- Reduction au briques de base optimisées
- amélioration des constantes

Micciancio Warinschi revisité

Expérimentations

(ロ)、(型)、(E)、(E)、 E) のQの

Algorithme naïf

begin
foreach *i* do

$$\begin{pmatrix} (g, t_i, \dots, t_n) = \operatorname{xgcd}(A_{i,i}, A_{i+1,i}, \dots, A_{n,i}); \\ L_i \leftarrow \sum_{j=i+1}^n t_j L_j; \\ \text{for } j = i + 1 \dots n \text{ do} \\ \\ L_j \leftarrow L_j - \frac{A_{j,i}}{g} L_i; \\ \text{for } j = 1 \dots i - 1 \text{ do} \\ \\ \\ L_j \leftarrow L_j - \lfloor \frac{A_{j,i}}{g} \rfloor L_i; \\ /* \text{ réduit } */ \\ \text{ord} \\ \end{pmatrix}$$

end

$$\begin{bmatrix} p_1 & * & X_{1,2} & * & * & X_{1,3} & * \\ & p_2 & * & * & X_{2,3} & * \\ & & & & p_3 & * \end{bmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Calcul modulo le déterminant [Domich & Al. 87]

Propriété

Pour A inversible: $\max_i \sum_j H_{ij} \leq \det H$

Expérimentations

Calcul modulo le déterminant [Domich & Al. 87]

Propriété

Pour A inversible: $\max_i \sum_j H_{ij} \leq \det H$

Exemple $A = \begin{bmatrix} -5 & 8 & -3 & -9 & 5 & 5 \\ -2 & 8 & -2 & -2 & 8 & 5 \\ 7 & -5 & -8 & 4 & 3 & -4 \\ 1 & -1 & 6 & 0 & 8 & -3 \end{bmatrix}, H = \begin{bmatrix} 1 & 0 & 3 & 237 & -299 & 90 \\ 0 & 1 & 1 & 103 & -130 & 40 \\ 0 & 0 & 4 & 352 & -450 & 135 \\ 0 & 0 & 0 & 486 & -627 & 188 \end{bmatrix}$ $\det A = 1944$

De plus, tous les calculs peuvent être faits modulo $d = \det A$:

$$U' \begin{bmatrix} A \\ dI_n & I_n \end{bmatrix} = \begin{bmatrix} H \\ & I_n \end{bmatrix}$$
$$\Rightarrow \mathcal{O}(n^3) \times M(n(\log n + \log ||A||)) = \mathcal{O}(n^4 \log ||A||)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Calcul modulo le déterminant

- Estimation pessimiste sur l'arithmétique
- *d* grand mais la plupart des coefficients de *H* sont petits
- En moyenne : seules les dernières colonnes sont grandes
- \Rightarrow Calculer H' proche de H mais de petit déterminant

Calcul modulo le déterminant

- Estimation pessimiste sur l'arithmétique
- *d* grand mais la plupart des coefficients de *H* sont petits
- En moyenne : seules les dernières colonnes sont grandes
- \Rightarrow Calculer H' proche de H mais de petit déterminant

[Micciancio & Warinschi 01]

$$A = \begin{bmatrix} B & b \\ c^{T} & a_{n-1,n} \\ d^{T} & a_{n,n} \end{bmatrix}$$
$$d_{1} = \det\left(\begin{bmatrix} B \\ c^{T} \end{bmatrix}\right), d_{2} = \det\left(\begin{bmatrix} B \\ d^{T} \end{bmatrix}\right)$$
$$g = \operatorname{pgcd}(d_{1}, d_{2}) = sd_{1} + td_{2} \text{ Alors}$$
$$\det\left(\begin{bmatrix} B \\ sc^{T} + td^{T} \end{bmatrix}\right) = g$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Algorithme de Micciancio & Warinschi

begin

en

Compute
$$d_1 = \det \left(\begin{bmatrix} B \\ c^T \end{bmatrix} \right), d_2 = \det \left(\begin{bmatrix} B \\ d^T \end{bmatrix} \right);$$
 /* Double Det */
(g, s, t) = xgcd(d_1, d_2);
Compute H_1 the HNF of $\begin{bmatrix} B \\ sc^T + td^T \end{bmatrix}$ mod g ; /* Modular HNF */
Recover H_2 the HNF of $\begin{bmatrix} B & b \\ sc^T + td^T & sa_{n-1,n} + ta_{n,n} \end{bmatrix};$ /* AddCol */
Recover H_3 the HNF of $\begin{bmatrix} B & b \\ c^T & a_{n-1,n} \\ d^T & a_{n,n} \end{bmatrix};$ /* AddRow */

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Algorithme de Micciancio & Warinschi

begin

en

Compute
$$d_1 = \det \left(\begin{bmatrix} B \\ c^T \end{bmatrix} \right), d_2 = \det \left(\begin{bmatrix} B \\ d^T \end{bmatrix} \right);$$
 /* Double Det */
(g, s, t) = xgcd(d_1, d_2);
Compute H_1 the HNF of $\begin{bmatrix} B \\ sc^T + td^T \end{bmatrix}$ mod g ; /* Modular HNF */
Recover H_2 the HNF of $\begin{bmatrix} B & b \\ sc^T + td^T & sa_{n-1,n} + ta_{n,n} \end{bmatrix};$ /* AddCol */
Recover H_3 the HNF of $\begin{bmatrix} B & b \\ c^T & a_{n-1,n} \\ d^T & a_{n,n} \end{bmatrix};$ /* AddRow */

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Double Déterminant

Première approche: LU mod p_1, \ldots, p_k + TRC

- Une seule élimination pour les *n* 2 premières lignes
- 2 mises à jour pour les dernières ligne (remontée triang.)
- k grand tel que $\prod_{i=1}^{k} p_i > n^n \log \|A\|^{n/2}$

(日) (日) (日) (日) (日) (日) (日)

Double Déterminant

Première approche: LU mod p_1, \ldots, p_k + TRC

- Une seule élimination pour les n 2 premières lignes
- 2 mises à jour pour les dernières ligne (remontée triang.)
- k grand tel que $\prod_{i=1}^{k} p_i > n^n \log \|A\|^{n/2}$

Deuxième approche: [Abbott Bronstein Mulders 99]

- Résoudre Ax = b.
- $\delta = \operatorname{ppcm}(q_1, \ldots, q_n)$ tq $x_i = p_i/q_i$

Alors δ est un *grand* diviseur de $D = \det A$.

- Calculer D/δ par LU mod $p1, \ldots, p_k$ + TRC
- k petit, tel que $\prod_{i=1}^{k} p_i > n^n \log ||A||^{n/2} / \delta$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Double Déterminant : amélioré

Propriété

So
$$x = [x_1, ..., x_n]$$
 la solution de $[A | c] x = d$. Alors $y = [-\frac{x_1}{x_n}, ..., -\frac{x_{n-1}}{x_n}, \frac{1}{x_n}]$ est la solution de $[A | d] x = c$.

- 1 résolution de système
- 1 seule LU par *p*_i
- \Rightarrow Calcul de d_1, d_2 pour le coût de 1 déterminant

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

AddCol

Problème

Trouver un vecteur e tq

$$\left[\begin{array}{c}H_{1} \mid e\end{array}\right] = U \begin{bmatrix}B & b\\ sc^{T} + td^{T} & sa_{n-1,n} + ta_{n,n}\end{bmatrix}$$

$$e = U \begin{bmatrix} b \\ sa_{n-1,n} + ta_{n,n} \end{bmatrix}$$
$$= H_1 \begin{bmatrix} B \\ sc^T + td^T \end{bmatrix}^{-1} \begin{bmatrix} b \\ sa_{n-1,n} + ta_{n,n} \end{bmatrix}$$

⇒Résoudre un système.

- *n* 1 premières lignes *petites*
- dernière ligne grande

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

AddCol

Idée:

Remplacer la dernière ligne par une ligne aléatoire petite w^{T} .

$$\begin{bmatrix} B \\ w^T \end{bmatrix} y = \begin{bmatrix} b \\ a_{n-1,n-1} \end{bmatrix}$$

Soit k une base du noyau de B.Alors

$$x = y + \alpha k.$$

où

$$\alpha = \frac{a_{n-1,n-1} - (sc^T + td^T) \cdot y}{(sc^T + td^T) \cdot k}$$

⇒limite l'arithmétique chère à des produits scalaires

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

AddRow

Problème

Calculer la forme de Hermite H' de
$$\begin{bmatrix} B\\ a^T \end{bmatrix}$$
 connaissant H, celle de B.

- Réduit a^T par rapport aux pivots de H
- Met à jour *H* si besoin (xgcd)
- Si *b* reste non nulle, l'insérer à la ligne appropriée (forme échelonnée)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cas général, non inversible

- Calcul du profil de rang par ligne (par PLUQ mod p aléatoire)
- Extraire la sous-matrice $r \times r$ inversible
- Calculer sa forme de Hermite
- Ajouter les colonnes restantes: AddCol, avec un bloc colonne
- Ajouter les colonnes restantes: AddRow, voire LLL

2 Micciancio Warinschi revisité

Benchmarketing

- Implantation dans Sage
- IML, LinBox, GMP
- Xeon-2.66Ghz, Linux

n	ntl (8)	ntl (32)	pari (8)	pari (32)	gap (8)	gap (32)	sage (32)
50	0.09	0.31	0.09	0.26	0.12	0.19	0.24
250	74.58	494.46	163.69	776.91	36.08	165.49	7.3
500	1975	12199	2925	15263	712	3982	47

Matrices $n \times n$, coefficients dans $[-2^b, 2^b]$. où b = 8, 32.

Benchmarketing

Sage							
n	8 bits	32 bits	128 bits	256 bits	512 bits		
50	0.1	0.2	0.7	2.8	12.45		
250	4.7	6.8	34.8	105.4	470.22		
500	25.7	41.1	183.9	550.7	2169.41		
1000	177.0	274.3	1113.4	2976.9	10506		
2000	1500.4	2837.5					
4000	11537.3	17105.9					

Magma

n	8 bits	32 bits	128 bits	256 bits	512 bits
50	0.0	0.1	0.3	0.9	2.73
250	1.0	13.0	68.1	223.4	764.6
500	7.7	203.5	990.5	2630.9	7100.91
1000	72.8	1795.4	8076.0	21370.2	58339
2000	886.1	14917.8			
4000	6096.5				

Micciancio Warinschi revisité

Expérimentations

Benchmarketing

