Efficient exact linear algebra over GPU

Michael Abshoff and Clément PERNET

SAGE Days 9, August 15, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Outline

Why we care

GPU's

Experimentations

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Outline

Why we care

GPU's

Experimentations

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Why we care

...

Exact computations:

- Number Theory: modular forms
- Graph Theory: graph isomorphism
- Crypto: NFS, Groebner basis

 $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, GF(p^k)$ GF(2) $GF(2), GF(2^k)$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Why we care

Exact computations:

- Number Theory: modular forms
- Graph Theory: graph isomorphism
- Crypto: NFS, Groebner basis

Boil down to Linear Algebra:

- Number Theory:
- Graph Theory:
- Crypto:

► ...

```
\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, GF(p^k)
GF(2)
GF(2), GF(2^k)
```

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

echelon, charpoly charpoly solve, echelon form

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Why we care

Exact computations:

- Number Theory: modular forms
- Graph Theory: graph isomorphism
- Crypto: NFS, Groebner basis

Boil down to Linear Algebra:

- Number Theory:
- Graph Theory:
- Crypto:

....

► ...

Mathematics is the art of reducing everything to Linear Algebra !

```
\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, GF(p^k)

GF(2)

GF(2), GF(2^k)
```

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

echelon, charpoly charpoly solve, echelon form

Efficient linear algebra

An example: Matrix multiplication	
sage.math : Opteron 2.4Ghz	
naive, triple loop	<i>n</i> = 1000 ⇒23.8s
naive, triple loop, 1 line diff	<i>n</i> = 1000 ⇒4.8s
BLAS	<i>n</i> = 1000 ⇒0.7s

Optimizing the simplest operation in Linear Algebra is not trivial

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Memory considerations:

 CPU-Memory communication: bandwidth gap ⇒Hierarchy of several cache memory levels

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Memory considerations:

CPU-Memory communication:

bandwidth gap

 \Rightarrow Hierarchy of several cache memory levels

Row major representation of matrices

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Memory considerations:

CPU-Memory communication:

bandwidth gap

 \Rightarrow Hierarchy of several cache memory levels

- Row major representation of matrices
- a RAM memory access can fetch a bunch of contiguous elements

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Comparing

for i=1 to n do for j=1 to n do for k=1 to n do $C_{i,j} \leftarrow C_{i,j} + A_{i,k}B_{k,j}$ end for end for end for Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Comparing

for i=1 to n do for j=1 to n do for k=1 to n do $C_{i,j} \leftarrow C_{i,j} + A_{i,k}B_{k,j}$ VS end for end for end for

```
for i=1 to n do
for k=1 to n do
for j=1 to n do
C_{i,j} \leftarrow C_{i,j} + A_{i,k}B_{k,j}
end for
end for
end for
```

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

・ロト・日本・日本・日本・日本・日本

Further memory optimizations

Larger dimensions: cache blocking.

 \Rightarrow split matrices into blocks,

s.t. their product can be computed within the cache.

			UU
			UU
			UU
ĮĮĮ	<u>III</u>		

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Further memory optimizations

Larger dimensions: cache blocking.

 \Rightarrow split matrices into blocks,

s.t. their product can be computed within the cache.

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

Reuse of the data

- If Work ≫ Data : memory fetch is amortized
 ⇒reach the peak performance of the CPU
- ► Matrix multiplication: n³ ≫ n² ⇒well suited for block design

Arithmetic optimizations

► fma (fused multiply and accumulate) z ← z + x * y

- pipeline
- SSE

▶ ...

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Arithmetic optimizations

► fma (fused multiply and accumulate) z ← z + x * y

- pipeline
- SSE
- ► ...

Tends to give advantage to floating point arithmetic up to now.

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Overall approach

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Overall approach

How to get faster ?

 parallel BLAS: ATLAS now scales linearly with the number or cores/CPUs

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Graphical Processing Units: GPU's

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Outline

Why we care

GPU's

Experimentations

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

A history of the GPU technology

- "dumb" framebuffer
- Bitblt: copy interleaved rgb bitmaps quickly
- offloading of 3D computations to the GPU, i.e. z-buffers
- (primitive early) Shaders: small, up to 128 instructions, no branching, etc
- CuDa: C compiler that produces code running on the GPU

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Interesting GPUs

- current NVidia: Tesla C870 GPU. 128 thread processors, 1.5 GB dedicated Memory
- Fall 2008 Nvidia: Tesla C1060. 240 thread processors, 4 GB dedicated memory at 102 GB/sec, 90 GFlops Double Precision, 360 GFlops Single Precision
- current ATI: RV770, 800 SPs, 1GB+ dedicated Memory, 1.2TFLOPS single precision, 150GFlops Double Precision
- Intel: Larrabee A Many-Core x86 Architecture for Visual Computing (Vaporware, 1TFlop Single Precision)

Most of the above will/are conforming to IEEE specs. In comparison: Intel high end Core2 Quad: 100 GFlops Single Precision

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

GPU Alternatives

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Experimentations

FPGAs

- IBM's Cell CPU, especially the second generation
- CPU/GPU combos, i.e. AMD/ATi
- general Heterogeneous cluster hardware

GPU: Programming Tools

- CuDABLAS: Easy to hook into existing (numerical software)
- generic CuDA: Write C code, compile it to GPU code (this is NVidia specific)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

- OpenCL
- Intel's Secret Sauce

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

GPU programming and Sage

- Sage will have CuDABLAS support as an optional package by Sage Days 10 in October in Nancy.
- generic CuDa support will also likely exist for certain well behaved computations like Monte Carlo Simultations.
- CuDa support is not for the faint of heart, i.e. driver issues cause a lot of problems.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Outline

Why we care

GPU's

Experimentations

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Using CUDA BLAS interface to GPU

```
cublasAlloc(n*n,sizeof(*a),(void**)\&devPtrA);
cublasSetMatrix (n,n,sizeof(*a),a,n,devPtrA,n);
```

```
cublasAlloc(n*n,sizeof(*b),(void**)\&devPtrB);
cublasSetMatrix (n,n,sizeof(*b),a,n,devPtrB,n);
```

```
cublasAlloc(n*n,sizeof(*c),(void**)\&devPtrC);
cublasSetMatrix (n,n,sizeof(*c),c,n,devPtrC,n);
```

```
cublasSgemm ('N', 'N', n, n, n, 1.0,
devPtrA, n,
devPtrB, n,
0.0, devPtrC, n);
```

```
cublasGetMatrix (n, n, sizeof(*c), devPtrC, n, c, n);
```

cublasFree(devPtrA); cublasFree(devPtrB); cublasFree(devPtrC); Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

```
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで
```

Efficient exact linear algebra over GPU

Michael Abshoff and Clément Pernet

Why we care

GPU's

Experimentations

Matrix multiplication over \mathbb{Z}_{11} using BLAS sgemm (32 bits floats)

n	1000	1500	2000	2500
naive	8.0s	32.2s	82.1s	167s
naive + 1 line trick	1.9s	6.48s	15.4s	31.8s
GPU: CUDA	.65s	.97s	1.87s	4.28s
CPU: ATLAS (2cores)	.13s	.43s	1.07s	1.86s