(Sparse) Interpolation with Outliers

Clément PERNET[†] joint work with Matthew T. COMER* and Erich L. KALTOFEN*

[†]: LIG/INRIA-MOAIS, Grenoble Université, France *: North Carolina State University, USA

SIAM Applied Algebraic Geometry 2013, Fort Collins, CO, USA Aug 3rd, 2013

Problem

Recover an unknown function f, given as a black-box, from its evaluations.

Additional knowledge on the shape f

Dense Polynomial: degree bound

Additional knowledge on the shape f

Dense Polynomial: degree bound Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

$$x \in F$$

$$f = \frac{g}{h}?$$

$$f(x)$$

$$g = \sum_{i=0}^{d_G} g_i x^i, \quad h = \sum_{i=0}^{d_H} h_i x^i$$

Additional knowledge on the shape f

Dense Polynomial: degree bound Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

$$x \in F \qquad f ? \qquad f(x) + e$$

Additional knowledge on the shape f

Dense Polynomial: degree bound

Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

- approximations: numerical noise
- true errors

$$x \in F \qquad f ? \qquad f(x) + e$$

Additional knowledge on the shape f

Dense Polynomial: degree bound

Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

- approximations: numerical noise
- true errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense polynomial recovery

without error: polynomial interpolation (Lagrange, Newton, etc).

$$f(X) = \sum_{i=0}^{k} y_i \frac{L_i(X)}{L_i(x_i)}$$
, with $L_i = \prod_{j \neq i} (X - x_j)$

Dense polynomial recovery

without error: polynomial interpolation (Lagrange, Newton, etc).

$$f(X) = \sum_{i=0}^{k} y_i \frac{L_i(X)}{L_i(x_i)}, \text{ with } L_i = \prod_{j \neq i} (X - x_j)$$

with errors: Reed-Solomon decoding

- ▶ $y_i = f(x_i) + e_i$ where the vector **e** is *t*-sparse.
- $Interp(\mathbf{y}) = f + Interp(\mathbf{e})$
- [Blahut, 1984]: Interp(e) has linear cpxty t
- Berlekamp-Massey: error locator from the linear generating relation

Reed-Solomon codes as Evaluation codes

$$\mathcal{C} = \{(f(x_1), \dots, f(x_n)) | \deg f < k\}$$

Reed-Solomon codes as Evaluation codes

$$\mathcal{C} = \{(f(x_1), \dots, f(x_n)) | \deg f < k\}$$

Parameter oblivious decoding

Improving the correction capacity:

With a fixed number n of evaluations, the correction capacity depends on the degree of f:

can correct up to $E \leq \frac{n - \deg f - 1}{2}$

 \Rightarrow bounds on degf: often pessimistic

Parameter oblivious decoding

Improving the correction capacity:

With a fixed number n of evaluations, the correction capacity depends on the degree of f:

can correct up to $E \leq \frac{n - \deg f - 1}{2}$

 \Rightarrow bounds on deg*f*: often pessimistic

⇒how to take advantage of all the available redundancy?

Effective redundancy available

Parameter oblivious decoding

Improving the correction capacity:

With a fixed number n of evaluations, the correction capacity depends on the degree of f:

can correct up to $E \leq \frac{n - \deg f - 1}{2}$

 \Rightarrow bounds on deg*f*: often pessimistic

⇒how to take advantage of all the available redundancy?

Effective redundancy available

Upper bound on deg f redundancy used with RS codes

- Achieved with Ext. Euclidean Alg. with various termination criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:
 - divisibility check
 - quotient likely to be large upon decoding iteration

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Sparse Polynomial Interpolation

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

Sparse Polynomial Interpolation

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

[Ben-Or and Tiwari, 1988]

- Let $a_i = f(p^i)$ for p an element, and $\Lambda(z) = \prod_{i=1}^{t} (z p^{e_i})$.
- Then $\Lambda(z)$ is the minimal generator of the seq. (a_0, a_1, \dots) .

 \Rightarrow only 2t entries needed to find $\Lambda(\lambda)$ (Berlekamp-Massey)

Sparse Polynomial Interpolation with errors

$$x \in F \qquad f? \qquad f(x) + e$$

Problem

Recover a *t*-sparse polynomial *f* given a black-box computing evaluations of it.

[Ben-Or and Tiwari, 1988]

- Let $a_i = f(p^i)$ for p an element, and $\Lambda(z) = \prod_{i=1}^{t} (z p^{e_i})$.
- Then $\Lambda(z)$ is the minimal generator of the seq. (a_0, a_1, \dots) .

 \Rightarrow only 2*t* entries needed to find $\Lambda(\lambda)$ (Berlekamp-Massey)

[Comer, Kaltofen and Pernet, 2012]

 \Rightarrow only 2t(2E + 1) entries needed with $e \le E$ errors. using a fault-tolerant Berlekamp-Massey algorithm

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose $(a_0, a_1, ...)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.

Given $(b_0, b_1, \dots) = (a_0, a_1, \dots) + \varepsilon$, where weight $(\varepsilon) \leq E$:

- 1. How to recover $\Lambda(z)$ and (a_0, a_1, \dots)
- 2. How many entries required for
 - a unique solution
 - ▶ a list of solutions containing (*a*₀, *a*₁, . . .)

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose $(a_0, a_1, ...)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.

Given $(b_0, b_1, \dots) = (a_0, a_1, \dots) + \varepsilon$, where weight $(\varepsilon) \leq E$:

- 1. How to recover $\Lambda(z)$ and (a_0, a_1, \dots)
- 2. How many entries required for
 - a unique solution
 - a list of solutions containing $(a_0, a_1, ...)$

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.

- 1. How to decode C ?
- 2. What are the best correction capacity ?
 - for unique decoding
 - list decoding

Case
$$E = 1, t = 2$$

(0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0) $\begin{vmatrix} \Lambda(z) \\ 2 - 2z^2 + z^4 + z^6 \end{vmatrix}$

Where is the error?

O - - - **F**

1 . 0

Where is the error?

 $C_{000} E = 1 + 2$

Case
$$E = 1, t = 2$$

Where is the error?

Case
$$E = 1, t = 2$$

Where is the error? A unique solution is not guaranteed with t = 2, E = 1 and n = 11

Is $n \ge 2t(2E + 1)$ a necessary condition?

Generalization to any $E \ge 1$

Let $\overline{0} = (\underbrace{0, \dots, 0}^{t-1 \text{ times}})$. Then $s = (\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0}, -1)$

is generated by $z^t - 1$ or $z^t + 1$ up to E = 1 error. Then

$$\underbrace{(\overline{s,s,\ldots,s},\overline{0},1,\overline{0})}^{E \text{ times}}$$

is generated by $z^t - 1$ or $z^t + 1$ up to *E* errors. \Rightarrow ambiguity with n = 2t(2E + 1) - 1 values.

Generalization to any $E \ge 1$

Let $\overline{0} = (\underbrace{0, \dots, 0}^{t-1 \text{ times}})$. Then $s = (\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0}, -1)$

is generated by $z^t - 1$ or $z^t + 1$ up to E = 1 error. Then

$$(\underbrace{\overline{s,s,\ldots,s}}_{E \text{ times}},\overline{0},1,\overline{0})$$

is generated by $z^t - 1$ or $z^t + 1$ up to *E* errors. \Rightarrow ambiguity with n = 2t(2E + 1) - 1 values.

Theorem

Necessary condition for unique decoding:

 $n \ge 2t(2E+1)$

The Majority Rule Berlekamp/Massey algorithm

The Majority Rule Berlekamp/Massey algorithm

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(2E + 1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output:
$$\Lambda(z)$$
 and (a_0, \ldots, a_{n-1}) .

1 begin

- 2 Run BMA on 2E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;
- **3** Perform majority vote to find $\Lambda(z)$;

The Majority Rule Berlekamp/Massey algorithm

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(2E + 1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output:
$$\Lambda(z)$$
 and (a_0, \ldots, a_{n-1}) .

1 begin

- 2 Run BMA on 2E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;
- **3** Perform majority vote to find $\Lambda(z)$;
- 4 Use a *clean* segment to *clean-up* the sequence ; 5 **return** $\Lambda(z)$ and $(a_0, a_1, ...)$;

List decoding for $n \ge 2t(E+1)$

List decoding for $n \ge 2t(E+1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(E+1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \dots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates **1 begin**

2 Run BMA on E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;

List decoding for $n \ge 2t(E+1)$

Input: $(a_0, \ldots, a_{n-1}) + \varepsilon$, where n = 2t(E + 1), $weight(\varepsilon) \le E$, and (a_0, \ldots, a_{n-1}) minimally generated by Λ of degree t, where $\Lambda(0) \ne 0$.

Output: $(\Lambda_i(z), s_i = (a_0^{(i)}, \dots, a_{n-1}^{(i)}))_i$ a list of $\leq E$ candidates begin

2 Run BMA on E + 1 segments of 2t entries and record $\Lambda_i(z)$ on each segment;

foreach
$$\Lambda_i(z)$$
 do

1

3

4

5

6

Use a *clean* segment to *clean-up* the sequence; Withdraw Λ_i if no clean segment can be found.

return the list $(\Lambda_i(z), (a_0^{(i)}, \ldots, a_{n-1}^{(i)}))_i$;

Sparse interpolation with errors

Find f from
$$(f(w^1), \ldots, f(w^n)) + \varepsilon$$

Sparse interpolation with errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense rational function interpolation

$$x \in F \qquad f = \frac{g}{h}? \qquad f(x) \qquad f(x)$$

$$g = \sum_{i=0}^{d_G} g_i x^i, \ h = \sum_{i=0}^{d_H} h_i x^i$$

Problem

Recover $g, h \in K[X]$, with deg $g \leq d_G$, deg $h \leq d_H$. given evaluations of $f = \frac{g}{h}$.

Dense rational function interpolation

$$x \in F \qquad f = \frac{g}{h} ? \qquad f(x) \qquad f(x)$$

$$g = \sum_{i=0}^{d_G} g_i x^i, \ h = \sum_{i=0}^{d_H} h_i x^i$$

Problem

Recover $g, h \in K[X]$, with deg $g \leq d_G$, deg $h \leq d_H$. given evaluations of $f = \frac{g}{h}$.

Cauchy interpolation

 \Rightarrow only $d_F + d_G + 1$ entries needed

Dense rational function interpolation with errors

$$x \in F \qquad f = \frac{g}{h} ? \qquad f(x) + e$$

$$g = \sum_{i=0}^{d_G} g_i x^i, \ h = \sum_{i=0}^{d_H} h_i x^i$$

Problem

Recover $g, h \in K[X]$, with deg $g \leq d_G$, deg $h \leq d_H$. given evaluations of $f = \frac{g}{h}$.

Cauchy interpolation

 \Rightarrow only $d_F + d_G + 1$ entries needed

[Kaltofen and Pernet, 2013]

 \Rightarrow only $d_F + d_G + 2E + 1$ evaluations needed with *E* errors. \Rightarrow smoothly supports evaluations at poles and erroneous poles

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given $A, B \in K[X]$ with deg B < deg A = n, recover $g, h \in K[X]$, with deg $g \le d_G$, deg $h \le n - d_G - 1$ and

$$g = hB \mod A$$
.

Theorem

Let $(f_0 = A, f_1 = B, ..., f_\ell)$ be the sequence of remainders in the Ext. Euclidean alg. applied on (A, B) and u_i, v_i the multipliers s.t. $f_i = u_i f_0 + v_i f_1$. Then at iteration j s.t. $\deg f_j \le d_G < \deg f_{j-1}$,

- 1. (f_j, v_j) is a solution to the RFR problem.
- 2. it is minimal: any other solution (g, h) is of the form $g = qf_j$, $h = qv_j$.

Dense polynomial interpolation with errors

- Erroneous interpolant: $P = \text{Interp}((y_i, x_i))$
- Error locator polynomial: $\Lambda = \prod_{i|y_i| \text{ is erroneous}} (X x_i)$

Find *f* with deg $f \le d_F$ s.t. *f* and *H* agree on at least n - t evaluations x_i .

$$\underbrace{\Lambda f}_{f_j} = \underbrace{\Lambda}_{g_j} P \mod \prod_{i=1}^n (X - x_i)$$

and $(\Lambda f, \Lambda)$ is minimal. ⇒computed by Ext. Euclidean Algorithm

$$f=f_j/g_j.$$

Cauchy interpolation

• Polynomial interpolant: $P = \text{Interp}((y_i, x_i))$

Find g, h with deg $g \le d_G \deg h \le n - d_G - 1$ s.t. $\frac{g}{h} = P \mod \prod_{i=1}^{n} (X - x_i)$.

$$\underbrace{g}_{f_j} = \underbrace{h}_{g_j} P \mod \prod_{i=1}^n (X - x_i)$$

and (g, h) is minimal. ⇒computed by Ext. Euclidean Algorithm

$$\frac{g}{h} = \frac{f_j}{g_j}$$

Cauchy interpolation at poles (with multiplicity 1)

- value at a pole $\rightarrow \infty$.
- Pole locator: $P_{\infty} = \prod_{i|y_i=\infty} (X x_i)$
- $\blacktriangleright h = \overline{h}P_{\infty}$
- ▶ Polynomial interpolant: $P = \text{Interp}((y_i, x_i) \text{for} y_i \neq \infty)$

$$\underbrace{g}_{f_j} = \underbrace{\overline{h}}_{g_j} P \mod \prod_{i=1}^n (X - x_i) / P_{\infty}$$

and (g, \overline{h}) is minimal.

⇒computed by Ext. Euclidean Algorithm

$$\frac{g}{h} = \frac{f_j}{g_j P_\infty}$$

Cauchy interpolation at poles with errors

- value at a pole $\rightarrow \infty$.
- ► Pole locator: $P_{\infty} = \prod_{i|y_i=\infty} (X x_i) = \underbrace{G_{\infty}}_{}$

true poles erroneous poles

- $\blacktriangleright h = \overline{h}P_{\infty}$
- ▶ Polynomial interpolant: $P = \text{Interp}((y_i P_{\infty}(x_i), x_i) \text{for} y_i \neq \infty)$
- Error locator polynomial: $\Lambda = \prod_{i|y_i \text{is erroneous}} (X x_i) = \overline{\Lambda} \Lambda_{\infty}$

$$\underbrace{g\Lambda P_{\infty}}_{f_j} = \underbrace{\overline{h\Lambda}}_{g_j} PP_{\infty} \mod \prod_{i=1}^n (X - x_i)$$

and $(g\Lambda P_{\infty}, \overline{h\Lambda})$ is minimal. ⇒computed by Ext. Euclidean Algorithm

$$\frac{g}{h} = \frac{f_j}{g_j P_\infty^2}.$$

Thank you

References

Ben-Or, M. and Tiwari, P. (1988).

A deterministic algorithm for sparse multivariate polynomial interpolation.

In STOC'88, pages 301-309.

Blahut, R. E. (1984).

A universal Reed-Solomon decoder.

IBM J. Res. Develop., 18(2):943-959.

Comer, M. T., Kaltofen, E. L., and Pernet, C. (2012).

Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values.

In ISSAC '12, pages 138-145.

Kaltofen, E. and Pernet, C. (2013).

Cauchy interpolation with errors in the values.

Manuscript in preparation.

Khonji, M., Pernet, C., Roch, J.-L., Roche, T., and Stalinsky, T. (2010). Output-sensitive decoding for redundant residue systems. In *ISSAC'10*, pages 265–272.