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Motivation : model fitting

xeF f(x)

Recover an unknown function f, given as a black-box, from its
evaluations.
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Dense polynomial recovery

xeF

f(x)

f= Zfzo cix'

without error: polynomial interpolation (Lagrange, Newton, etc).

k

f(X) = Zy,-Zgj;, with L; = [ [(x - x))

1

i=0 i
with errors: Reed-Solomon decoding

» v; = f(x;) + e¢; where the vector e is r-sparse.

» Interp(y) = f + Interp(e)

» [Blahut, 1984]: Interp(e) has linear cpxty ¢

» Berlekamp-Massey: error locator from the
linear generating relation



Reed-Solomon codes as Evaluation codes

C= {(f(xl)a s 7f(xn))’ degf < k}
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Reed-Solomon codes as Evaluation codes

C= {(f(xl)a s 7f(xn))’ degf < k}
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Parameter oblivious decoding

Improving the correction capacity:

» With a fixed number n of evaluations, the correction
capacity depends on the degree of f:

can correctupto E < %

=bounds on degf: often pessimistic
=-how to take advantage of all the available redundancy?
Effective redundancy available

—

S

Upper bound on deg f redundancy used
with RS codes

» Achieved with Ext. Euclidean Alg. with various termination
criteria [Khoniji, Pernet, Roch, Roche and Stalinski, 2010]:
» divisibility check
» quotient likely to be large upon decoding iteration
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Sparse Polynomial Interpolation
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Recover a t-sparse polynomial f given a black-box computing
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Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or and Tiwari, 1988

» Leta; = f(p') for p an element, and A(z) = []_,(z — p%).
» Then A(z) is the minimal generator of the seq. (ao, ai,...).
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Sparse Polynomial Interpolation with errors

x€eF f(x)+e

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or and Tiwari, 1988

> Leta; = f(p') for p an element, and A(z) = [[._,(z — p%).
» Then A(z) is the minimal generator of the seq. (ao, ai, . .. ).

=-only 27 entries needed to find A(\) (Berlekamp-Massey)

Comer, Kaltofen and Pernet, 2012

=only 2¢(2E + 1) entries needed with e < E errors.
using a fault-tolerant Berlekamp-Massey algorithm



Fault tolerant Berlekam/Massey algorithm
Problem statement

Suppose (ap,ay, ... ) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + ¢, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions containing (ag, a1, .. .)



Fault tolerant Berlekam/Massey algorithm
Problem statement

Suppose (ap,ay, ... ) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + ¢, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions containing (ag, a1, .. .)

Coding Theory formulation

Let C be the set of all sequences of linear complexity r.

1. How to decode C ?
2. What are the best correction capacity ?

» for unique decoding
» list decoding
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How many entries to guarantee uniqueness?

Case E=1,r=2

Where is the error?

A(z)
222+ 47
-1+ 7

1+22

A unique solution is not guaranteed witht =2, F =1andn =11

Is n > 2¢(2E + 1) a necessary condition?



Generalizationto any E > 1
t—1 times

— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.



Generalizationto any E > 1

t—1 times
— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Theorem
Necessary condition for unique decoding:

n>2(2E+ 1)
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Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
3 Perform majority vote to find A(z);



The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

/_JR

I N N | |
A A A A As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
Perform majority vote to find A(z);
Use a clean segment to clean-up the sequence ;
return A(z) and (ap, ai, .. .);

a & W
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List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e B N
Al A2 A3

Input: (ao,...,a,—1) + ¢, where n = 2t(E + 1), weight(¢) < E,
and (ao, . .. ,a,—1) minimally generated by A of degree ¢,
where A(0) # 0.
Output: (A;(z),s; = (@), ...,a",)); alist of < E candidates
begin
2 Run BMA on E + 1 segments of 27 entries and record A;(z)
on each segment;
foreach A;(z) do
Use a clean segment to clean-up the sequence;
L Withdraw A; if no clean segment can be found.

-

6 | returnthe list (A;(2), (a),....a" )

¥ 'n—1



Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
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Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [ o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial
Y
H BHEN BN
y=c+f

g=Eval(f) + ¢
Evaluation
BMA
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Dense rational function interpolation
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Recover g, h € K[X],with deg g < dg,degh < dy. given
evaluations of f = §.
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Dense rational function interpolation with errors

HM
= Zldio gixia h = Zflfo hixi

Recover g, h € K[X],with deg g < dg,degh < dy. given
evaluations of f = §.

Cauchy interpolation

=-only dr + dg + 1 entries needed

Kaltofen and Pernet, 2013

=only dr + ds + 2E + 1 evaluations needed with E errors.
=-smoothly supports evaluations at poles and erroneous poles

xeF




Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given A, B € K[X] with deg B < degA = n, recover g,h € K[X],
withdegg < dg,degh < n—ds — 1 and

g =hB mod A.

Theorem

Let (fo =A,fi = B,...,f;) be the sequence of remainders in the

Ext. Euclidean alg. applied on (A, B) and u;,v; the multipliers

s.t. fi = wifo + vifi. Then at iteration j s.t. degf; < dg < degfi_1,
1. (fj,v;) is a solution to the RFR problem.

2. it is minimal: any other solution (g, h) is of the form g = qf;,
h = qv;.



Instantiations

Dense polynomial interpolation with errors

» Erroneous interpolant: P = Interp((yi, xi))

X—x,‘)

> Error locator polynomial:A = ][, is erroneous (

Find f with degf < dr s.t. f and H agree on at leastn — ¢
evaluations x;.

Af = A P mod H(X—x,-)
) g =1

and (Af,A) is minimal.
=-computed by Ext. Euclidean Algorithm

f =18



Instantiations

Cauchy interpolation

» Polynomial interpolant: P = Interp((y;, xi))

Find g, h with deg g < dg degh <n—dg —1st. § =
mod [[L,(X —x;).

g = hP modH — X;)
f g] i=1

and (g, ) is minimal.
=-computed by Ext. Euclidean Algorithm

_f

8
h g



Instantiations

Cauchy interpolation at poles (with multiplicity 1)

v

value at a pole — oc.

Pole locator: Poo = [[;j),—oo (X — xi)

h = hP

Polynomial interpolant: P = Interp((y;, x;)fory; # oo)

v

v

v

= h P d — X
g mo H X;)
fi gj
and (g, h) is minimal.
=-computed by Ext. Euclidean Algorithm



Instantiations

Cauchy interpolation at poles with errors

» value at a pole — .
» Pole locator: P =[]

X — xi) = Goo Aoo
~— ~—
true poles erroneous poles

i|yi:oo(

» h=hPs
» Polynomial interpolant: P = Interp((yiPso(xi),xi)fory; # oo)

> Error locator polynomial:A = [T, .is erroneous(X — *i) = AAoo

gAP,, = hA PP, mod H(X —x;)
£ g i=1
and (gAP.., hAA) is minimal.
=-computed by Ext. Euclidean Algorithm
g8__h
h gP%,




Thank you
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