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Motivation : model fitting

x ∈ F f (x)f ?

Problem
Recover an unknown function f , given as a black-box, from its
evaluations.
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Dense polynomial recovery

x ∈ F f (x)

f =
∑k

i=0 cixi

f ?

without error: polynomial interpolation (Lagrange, Newton, etc).

f (X) =

k∑
i=0

yi
Li(X)

Li(xi)
, with Li =

∏
j 6=i

(X − xj)

with errors: Reed-Solomon decoding
I yi = f (xi) + ei where the vector e is t-sparse.
I Interp(y) = f + Interp(e)
I [Blahut, 1984]: Interp(e) has linear cpxty t
I Berlekamp-Massey: error locator from the

linear generating relation
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Reed-Solomon codes as Evaluation codes

C = {(f (x1), . . . , f (xn))| deg f < k}
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m = f (x), deg f < k ey = Eval(f ), yi = f (xi)

z = y + e

Interp(e)
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Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic

⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration



Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic
⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration



Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic
⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration



Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors



Sparse Polynomial Interpolation

with errors

x ∈ F f (x)

f =
∑t

i=1 cixei

f ?

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

[Ben-Or and Tiwari, 1988]

I Let ai = f (pi) for p an element, and Λ(z) =
∏t

i=1(z− pei).
I Then Λ(z) is the minimal generator of the seq. (a0, a1, . . . ).

⇒only 2t entries needed to find Λ(λ) (Berlekamp-Massey)

[Comer, Kaltofen and Pernet, 2012]
⇒only 2t(2E + 1) entries needed with e ≤ E errors.

using a fault-tolerant Berlekamp-Massey algorithm
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Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose (a0, a1, . . . ) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . . ) = (a0, a1, . . . ) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . . )

2. How many entries required for
I a unique solution
I a list of solutions containing (a0, a1, . . . )

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacity ?

I for unique decoding
I list decoding
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How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?
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Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)
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The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).

1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);

4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . . );
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List decoding for n ≥ 2t(E + 1)
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Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

error
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0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp (   )

ε
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Dense rational function interpolation

x ∈ F f (x)

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f = g
h ?

Problem
Recover g, h ∈ K[X],with deg g ≤ dG, deg h ≤ dH. given
evaluations of f = g

h .

Cauchy interpolation

⇒only dF + dG + 1 entries needed

[Kaltofen and Pernet, 2013]
⇒only dF + dG + 2E + 1 evaluations needed with E errors.
⇒smoothly supports evaluations at poles and erroneous poles
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Dense rational function interpolation with errors

x ∈ F

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f (x)+ef = g
h ?

Problem
Recover g, h ∈ K[X],with deg g ≤ dG, deg h ≤ dH. given
evaluations of f = g

h .

Cauchy interpolation

⇒only dF + dG + 1 entries needed
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Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given A,B ∈ K[X] with deg B < deg A = n, recover g, h ∈ K[X],
with deg g ≤ dG, deg h ≤ n− dG − 1 and

g = hB mod A.

Theorem
Let (f0 = A, f1 = B, . . . , f`) be the sequence of remainders in the
Ext. Euclidean alg. applied on (A,B) and ui, vi the multipliers
s.t. fi = uif0 + vif1. Then at iteration j s.t. deg fj ≤ dG < deg fj−1,

1. (fj, vj) is a solution to the RFR problem.
2. it is minimal: any other solution (g, h) is of the form g = qfj,

h = qvj.



Instantiations

Dense polynomial interpolation with errors

I Erroneous interpolant: P = Interp((yi, xi))

I Error locator polynomial:Λ =
∏

i|yiis erroneous(X − xi)

Find f with deg f ≤ dF s.t. f and H agree on at least n− t
evaluations xi.

Λf︸︷︷︸
fj

= Λ︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)

and (Λf ,Λ) is minimal.
⇒computed by Ext. Euclidean Algorithm

f = fj/gj.



Instantiations

Cauchy interpolation

I Polynomial interpolant: P = Interp((yi, xi))

Find g, h with deg g ≤ dG deg h ≤ n− dG − 1 s.t. g
h = P

mod
∏n

i=1(X − xi).

g︸︷︷︸
fj

= h︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)

and (g, h) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj
gj
.



Instantiations

Cauchy interpolation at poles (with multiplicity 1)

I value at a pole→∞.
I Pole locator: P∞ =

∏
i|yi=∞(X − xi)

I h = hP∞
I Polynomial interpolant: P = Interp((yi, xi)foryi 6=∞)

g︸︷︷︸
fj

= h︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)/P∞

and (g, h) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj

gjP∞
.



Instantiations
Cauchy interpolation at poles with errors

I value at a pole→∞.
I Pole locator: P∞ =

∏
i|yi=∞(X − xi) = G∞︸︷︷︸

true poles

Λ∞︸︷︷︸
erroneous poles

I h = hP∞
I Polynomial interpolant: P = Interp((yiP∞(xi), xi)foryi 6=∞)

I Error locator polynomial:Λ =
∏

i|yiis erroneous(X − xi) = ΛΛ∞

gΛP∞︸ ︷︷ ︸
fj

= hΛ︸︷︷︸
gj

PP∞ mod
n∏

i=1

(X − xi)

and (gΛP∞, hΛ) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj

gjP2
∞
.



Thank you
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