
(Sparse) Interpolation with Outliers

Clément PERNET†

joint work with Matthew T. COMER∗ and Erich L. KALTOFEN∗

†: LIG/INRIA-MOAIS, Grenoble Université, France
∗: North Carolina State University, USA

SIAM Applied Algebraic Geometry 2013,
Fort Collins, CO, USA

Aug 3rd, 2013

Motivation : model fitting

x ∈ F f (x)f ?

Problem
Recover an unknown function f , given as a black-box, from its
evaluations.

Motivation : model fitting

x ∈ F f (x)

f =
∑k

i=0 cixi

f ?

Additional knowledge on the shape f

Dense Polynomial: degree bound

Sparse polynomial:
I support: location of non zero terms
I sparsity: number of non zero terms

Dense Rational function: degree bounds

Motivation : model fitting

x ∈ F f (x)

f =
∑t

i=1 cixei

f ?

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

I support: location of non zero terms
I sparsity: number of non zero terms

Dense Rational function: degree bounds

Motivation : model fitting

x ∈ F f (x)

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f = g
h ?

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

I support: location of non zero terms
I sparsity: number of non zero terms

Dense Rational function: degree bounds

Motivation : model fitting

x ∈ F f (x)+ef ?

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

I support: location of non zero terms
I sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

I approximations: numerical noise
I true errors

Motivation : model fitting

x ∈ F f (x)+ef ?

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

I support: location of non zero terms
I sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

I approximations: numerical noise
I true errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense polynomial recovery

x ∈ F f (x)

f =
∑k

i=0 cixi

f ?

without error: polynomial interpolation (Lagrange, Newton, etc).

f (X) =

k∑
i=0

yi
Li(X)

Li(xi)
, with Li =

∏
j 6=i

(X − xj)

with errors: Reed-Solomon decoding
I yi = f (xi) + ei where the vector e is t-sparse.
I Interp(y) = f + Interp(e)
I [Blahut, 1984]: Interp(e) has linear cpxty t
I Berlekamp-Massey: error locator from the

linear generating relation

Dense polynomial recovery

x ∈ F f (x)

f =
∑k

i=0 cixi

f ?

without error: polynomial interpolation (Lagrange, Newton, etc).

f (X) =

k∑
i=0

yi
Li(X)

Li(xi)
, with Li =

∏
j 6=i

(X − xj)

with errors: Reed-Solomon decoding
I yi = f (xi) + ei where the vector e is t-sparse.
I Interp(y) = f + Interp(e)
I [Blahut, 1984]: Interp(e) has linear cpxty t
I Berlekamp-Massey: error locator from the

linear generating relation

Reed-Solomon codes as Evaluation codes

C = {(f (x1), . . . , f (xn))| deg f < k}

f

error

g

0

=

0

+

f

Evaluation

Interpolation

m = f (x), deg f < k ey = Eval(f), yi = f (xi)

z = y + e

Interp(e)

Reed-Solomon codes as Evaluation codes

C = {(f (x1), . . . , f (xn))| deg f < k}

�������������
�������������
�������������

�������������
�������������
�������������

f

error

g

0

=

0

+

f

Evaluation

Interpolation

f

Berlekamp Massey algorithm

m = f (x), deg f < k ey = Eval(f), yi = f (xi)

z = y + e

Interp(e)

Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic

⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration

Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic
⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration

Parameter oblivious decoding
Improving the correction capacity:

I With a fixed number n of evaluations, the correction
capacity depends on the degree of f :

can correct up to E ≤ n−deg f−1
2

⇒bounds on deg f : often pessimistic
⇒how to take advantage of all the available redundancy?

f

Effective redundancy available

Upper bound on deg f redundancy used
with RS codes

I Achieved with Ext. Euclidean Alg. with various termination
criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:

I divisibility check
I quotient likely to be large upon decoding iteration

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Sparse Polynomial Interpolation

with errors

x ∈ F f (x)

f =
∑t

i=1 cixei

f ?

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

[Ben-Or and Tiwari, 1988]

I Let ai = f (pi) for p an element, and Λ(z) =
∏t

i=1(z− pei).
I Then Λ(z) is the minimal generator of the seq. (a0, a1, . . .).

⇒only 2t entries needed to find Λ(λ) (Berlekamp-Massey)

[Comer, Kaltofen and Pernet, 2012]
⇒only 2t(2E + 1) entries needed with e ≤ E errors.

using a fault-tolerant Berlekamp-Massey algorithm

Sparse Polynomial Interpolation

with errors

x ∈ F f (x)

f =
∑t

i=1 cixei

f ?

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

[Ben-Or and Tiwari, 1988]

I Let ai = f (pi) for p an element, and Λ(z) =
∏t

i=1(z− pei).
I Then Λ(z) is the minimal generator of the seq. (a0, a1, . . .).

⇒only 2t entries needed to find Λ(λ) (Berlekamp-Massey)

[Comer, Kaltofen and Pernet, 2012]
⇒only 2t(2E + 1) entries needed with e ≤ E errors.

using a fault-tolerant Berlekamp-Massey algorithm

Sparse Polynomial Interpolation with errors

x ∈ F f (x)+ef ?

Problem
Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

[Ben-Or and Tiwari, 1988]

I Let ai = f (pi) for p an element, and Λ(z) =
∏t

i=1(z− pei).
I Then Λ(z) is the minimal generator of the seq. (a0, a1, . . .).

⇒only 2t entries needed to find Λ(λ) (Berlekamp-Massey)

[Comer, Kaltofen and Pernet, 2012]
⇒only 2t(2E + 1) entries needed with e ≤ E errors.

using a fault-tolerant Berlekamp-Massey algorithm

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose (a0, a1, . . .) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . .) = (a0, a1, . . .) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . .)

2. How many entries required for
I a unique solution
I a list of solutions containing (a0, a1, . . .)

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacity ?

I for unique decoding
I list decoding

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose (a0, a1, . . .) is linearly generated by Λ(z) of degree t
where Λ(0) 6= 0.
Given (b0, b1, . . .) = (a0, a1, . . .) + ε, where weight(ε) ≤ E:

1. How to recover Λ(z) and (a0, a1, . . .)

2. How many entries required for
I a unique solution
I a list of solutions containing (a0, a1, . . .)

Coding Theory formulation

Let C be the set of all sequences of linear complexity t.
1. How to decode C ?
2. What are the best correction capacity ?

I for unique decoding
I list decoding

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?

A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?

How many entries to guarantee uniqueness?

Case E = 1, t = 2

(ai) Λ(z)
(0, 1, 0, 1, 0, 1, 0, −1, 0, 1, 0) 2− 2z2 + z4 + z6

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) −1 + z2

(0, 1, 0, −1, 0, 1, 0, −1, 0, 1, 0) 1 + z2

Where is the error?
A unique solution is not guaranteed with t = 2,E = 1 and n = 11

Is n ≥ 2t(2E + 1) a necessary condition?

Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)

Generalization to any E ≥ 1

Let 0 = (

t−1 times︷ ︸︸ ︷
0, . . . , 0). Then

s = (0, 1, 0, 1, 0, 1, 0,−1)

is generated by zt − 1 or zt + 1 up to E = 1 error.
Then

(

E times︷ ︸︸ ︷
s, s, . . . , s, 0, 1, 0)

is generated by zt − 1 or zt + 1 up to E errors.
⇒ambiguity with n = 2t(2E + 1)− 1 values.

Theorem
Necessary condition for unique decoding:

n ≥ 2t(2E + 1)

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).

1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);

4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . .);

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);

4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . .);

The Majority Rule Berlekamp/Massey algorithm

2t

Λ Λ Λ Λ Λ
1 2 3 4 5

E=2 n=2t(2E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(2E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: Λ(z) and (a0, . . . , an−1).
1 begin
2 Run BMA on 2E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 Perform majority vote to find Λ(z);
4 Use a clean segment to clean-up the sequence ;
5 return Λ(z) and (a0, a1, . . .);

List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;

3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;

List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;

3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;

List decoding for n ≥ 2t(E + 1)
2t

Λ Λ Λ
1 2 3

E=2 n=2t(E+1)

Input: (a0, . . . , an−1) + ε, where n = 2t(E + 1), weight(ε) ≤ E,
and (a0, . . . , an−1) minimally generated by Λ of degree t,
where Λ(0) 6= 0.

Output: (Λi(z), si = (a(i)0 , . . . , a
(i)
n−1))i a list of ≤ E candidates

1 begin
2 Run BMA on E + 1 segments of 2t entries and record Λi(z)

on each segment;
3 foreach Λi(z) do
4 Use a clean segment to clean-up the sequence;
5 Withdraw Λi if no clean segment can be found.

6 return the list (Λi(z), (a(i)0 , . . . , a
(i)
n−1))i;

Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp ()

ε

f

Sparse interpolation with errors

Find f from (f (w1), . . . , f (wn)) + ε

������
������
������
������
������

������
������
������
������
������

error

g

0

g = Eval (f) + ε

sparse polynomial f

Interpolation

Evaluation

y = c + f

ε εc = Interp ()

ε

f

BMA

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense rational function interpolation

x ∈ F f (x)

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f = g
h ?

Problem
Recover g, h ∈ K[X],with deg g ≤ dG, deg h ≤ dH. given
evaluations of f = g

h .

Cauchy interpolation

⇒only dF + dG + 1 entries needed

[Kaltofen and Pernet, 2013]
⇒only dF + dG + 2E + 1 evaluations needed with E errors.
⇒smoothly supports evaluations at poles and erroneous poles

Dense rational function interpolation

x ∈ F f (x)

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f = g
h ?

Problem
Recover g, h ∈ K[X],with deg g ≤ dG, deg h ≤ dH. given
evaluations of f = g

h .

Cauchy interpolation

⇒only dF + dG + 1 entries needed

[Kaltofen and Pernet, 2013]
⇒only dF + dG + 2E + 1 evaluations needed with E errors.
⇒smoothly supports evaluations at poles and erroneous poles

Dense rational function interpolation with errors

x ∈ F

h =
∑dH

i=0 hixig =
∑dG

i=0 gixi,

f (x)+ef = g
h ?

Problem
Recover g, h ∈ K[X],with deg g ≤ dG, deg h ≤ dH. given
evaluations of f = g

h .

Cauchy interpolation

⇒only dF + dG + 1 entries needed

[Kaltofen and Pernet, 2013]
⇒only dF + dG + 2E + 1 evaluations needed with E errors.
⇒smoothly supports evaluations at poles and erroneous poles

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given A,B ∈ K[X] with deg B < deg A = n, recover g, h ∈ K[X],
with deg g ≤ dG, deg h ≤ n− dG − 1 and

g = hB mod A.

Theorem
Let (f0 = A, f1 = B, . . . , f`) be the sequence of remainders in the
Ext. Euclidean alg. applied on (A,B) and ui, vi the multipliers
s.t. fi = uif0 + vif1. Then at iteration j s.t. deg fj ≤ dG < deg fj−1,

1. (fj, vj) is a solution to the RFR problem.
2. it is minimal: any other solution (g, h) is of the form g = qfj,

h = qvj.

Instantiations

Dense polynomial interpolation with errors

I Erroneous interpolant: P = Interp((yi, xi))

I Error locator polynomial:Λ =
∏

i|yiis erroneous(X − xi)

Find f with deg f ≤ dF s.t. f and H agree on at least n− t
evaluations xi.

Λf︸︷︷︸
fj

= Λ︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)

and (Λf ,Λ) is minimal.
⇒computed by Ext. Euclidean Algorithm

f = fj/gj.

Instantiations

Cauchy interpolation

I Polynomial interpolant: P = Interp((yi, xi))

Find g, h with deg g ≤ dG deg h ≤ n− dG − 1 s.t. g
h = P

mod
∏n

i=1(X − xi).

g︸︷︷︸
fj

= h︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)

and (g, h) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj
gj
.

Instantiations

Cauchy interpolation at poles (with multiplicity 1)

I value at a pole→∞.
I Pole locator: P∞ =

∏
i|yi=∞(X − xi)

I h = hP∞
I Polynomial interpolant: P = Interp((yi, xi)foryi 6=∞)

g︸︷︷︸
fj

= h︸︷︷︸
gj

P mod
n∏

i=1

(X − xi)/P∞

and (g, h) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj

gjP∞
.

Instantiations
Cauchy interpolation at poles with errors

I value at a pole→∞.
I Pole locator: P∞ =

∏
i|yi=∞(X − xi) = G∞︸︷︷︸

true poles

Λ∞︸︷︷︸
erroneous poles

I h = hP∞
I Polynomial interpolant: P = Interp((yiP∞(xi), xi)foryi 6=∞)

I Error locator polynomial:Λ =
∏

i|yiis erroneous(X − xi) = ΛΛ∞

gΛP∞︸ ︷︷ ︸
fj

= hΛ︸︷︷︸
gj

PP∞ mod
n∏

i=1

(X − xi)

and (gΛP∞, hΛ) is minimal.
⇒computed by Ext. Euclidean Algorithm

g
h

=
fj

gjP2
∞
.

Thank you

References
Ben-Or, M. and Tiwari, P. (1988).
A deterministic algorithm for sparse multivariate polynomial
interpolation.
In STOC’88, pages 301–309.

Blahut, R. E. (1984).
A universal Reed-Solomon decoder.
IBM J. Res. Develop., 18(2):943–959.

Comer, M. T., Kaltofen, E. L., and Pernet, C. (2012).
Sparse polynomial interpolation and Berlekamp/Massey algorithms that
correct outlier errors in input values.
In ISSAC ’12, pages 138–145.

Kaltofen, E. and Pernet, C. (2013).
Cauchy interpolation with errors in the values.
Manuscript in preparation.

Khonji, M., Pernet, C., Roch, J.-L., Roche, T., and Stalinsky, T. (2010).
Output-sensitive decoding for redundant residue systems.
In ISSAC’10, pages 265–272.

	Dense polynomial interpolation with errors
	Sparse polynomial interpolation with errors
	de Proni/Ben-Or/Tiwari interpolation
	Fault tolerant Berlekamp/Massey algorithm
	Relations to Reed-Solomon decoding

	Dense rational function interpolation with errors

