(Sparse) Interpolation with Outliers

Clément PERNET!
joint work with Matthew T. COMER™* and Erich L. KALTOFEN*

T: LIG/INRIA-MOAIS, Grenoble Université, France
*: North Carolina State University, USA

SIAM Applied Algebraic Geometry 2013,
Fort Collins, CO, USA
Aug 3rd, 2013

Motivation : model fitting

xeF f(x)

Recover an unknown function f, given as a black-box, from its
evaluations.

Motivation : model fitting

xX€EF fx)

f= Zfzo cix'

Additional knowledge on the shape f

Dense Polynomial: degree bound

Motivation : model fitting

xe€F fx)

t .
f — zl:l Cl.xet

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

» support: location of non zero terms
» sparsity: number of non zero terms

Motivation : model fitting

xeF

f(x)

g =Yg, h=3{"hx'

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

» support: location of non zero terms
» sparsity: number of non zero terms

Dense Rational function: degree bounds

Motivation : model fitting

x€eF f(x)+e

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

» support: location of non zero terms
» sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

» approximations: numerical noise
» true errors

Motivation : model fitting

x€eF f(x)+e

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

» support: location of non zero terms
» sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

» approximations: numerical noise
» true errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Outline

Dense polynomial interpolation with errors

Dense polynomial recovery

xX€EF fx)

k .
f= Z,-:o cix'
without error: polynomial interpolation (Lagrange, Newton, etc).

k

f(X) = Zy,-Zgj;, with L; = [[(x - x))

i=0 ! i

Dense polynomial recovery

xeF

f(x)

f= Zfzo cix'

without error: polynomial interpolation (Lagrange, Newton, etc).

k

f(X) = Zy,-Zgj;, with L; = [[(x - x))

1

i=0 i
with errors: Reed-Solomon decoding

» v; = f(x;) + e¢; where the vector e is r-sparse.

» Interp(y) = f + Interp(e)

» [Blahut, 1984]: Interp(e) has linear cpxty ¢

» Berlekamp-Massey: error locator from the
linear generating relation

Reed-Solomon codes as Evaluation codes

C= {(f(xl)a s 7f(xn))’ degf < k}

Evaluation
/\
L« [o]} LLT]
m = f(x),degf < k y = Eval(f)}yi = f(x:)
Y
| g g EEE BN
=T~ | z=y+e
‘ f ‘ 0 ‘ Interpolation
—+

Reed-Solomon codes as Evaluation codes

C= {(f(xl)a s 7f(xn))’ degf < k}

kvaluation

/\
[T o J | [TTTTTTII] (T T T
m = f(x),degf < k y = Eval(f)|yi :f(x,»)/,—*’" error e

A\
|

H _NEN BN

Y~ | z=y+e

0 ‘ Interpolation

Lt]
+
Interp(e)

Berlekamp Massey algorithm

Parameter oblivious decoding

Improving the correction capacity:

» With a fixed number n of evaluations, the correction
capacity depends on the degree of f:

can correctupto E < %
=-bounds on degf: often pessimistic

Parameter oblivious decoding

Improving the correction capacity:

» With a fixed number n of evaluations, the correction
capacity depends on the degree of f:
can correct up to E < "~%&/=1
=bounds on degf: often pessimistic

=-how to take advantage of all the available redundancy?
Effective redundancy available

—

S

Upper bound on deg f redundancy used
with RS codes

Parameter oblivious decoding

Improving the correction capacity:

» With a fixed number n of evaluations, the correction
capacity depends on the degree of f:

can correctupto E < %

=bounds on degf: often pessimistic
=-how to take advantage of all the available redundancy?
Effective redundancy available

—

S

Upper bound on deg f redundancy used
with RS codes

» Achieved with Ext. Euclidean Alg. with various termination
criteria [Khoniji, Pernet, Roch, Roche and Stalinski, 2010]:
» divisibility check
» quotient likely to be large upon decoding iteration

Outline

Sparse polynomial interpolation with errors
de Proni/Ben-Or/Tiwari interpolation
Fault tolerant Berlekamp/Massey algorithm
Relations to Reed-Solomon decoding

Sparse Polynomial Interpolation

xE€F fx)

t ,
f e ZlZI Cl.xet

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Sparse Polynomial Interpolation

xeF fx)

f= 2 e

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or and Tiwari, 1988

» Leta; = f(p') for p an element, and A(z) = []_,(z — p%).
» Then A(z) is the minimal generator of the seq. (ao, ai,...).

=-only 27 entries needed to find A()) (Berlekamp-Massey)

Sparse Polynomial Interpolation with errors

x€eF f(x)+e

Problem

Recover a t-sparse polynomial f given a black-box computing
evaluations of it.

Ben-Or and Tiwari, 1988

> Leta; = f(p') for p an element, and A(z) = [[._,(z — p%).
» Then A(z) is the minimal generator of the seq. (ao, ai, . ..).

=-only 27 entries needed to find A(\) (Berlekamp-Massey)

Comer, Kaltofen and Pernet, 2012

=only 2¢(2E + 1) entries needed with e < E errors.
using a fault-tolerant Berlekamp-Massey algorithm

Fault tolerant Berlekam/Massey algorithm
Problem statement

Suppose (ap,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + ¢, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions containing (ag, a1, .. .)

Fault tolerant Berlekam/Massey algorithm
Problem statement

Suppose (ap,ay, ...) is linearly generated by A(z) of degree ¢
where A(0) # 0.
Given (bg,by,...) = (ao,ai,...) + ¢, where weight(¢) < E:

1. How to recover A(z) and (ag,ay,...)

2. How many entries required for

» a unique solution
» a list of solutions containing (ag, a1, .. .)

Coding Theory formulation

Let C be the set of all sequences of linear complexity r.

1. How to decode C ?
2. What are the best correction capacity ?

» for unique decoding
» list decoding

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

How many entries to guarantee uniqueness?

CaseE=1,t=2

Where is the error?

- ~—

—_ e

A(z)
222+ 47
—1+47

1+22

How many entries to guarantee uniqueness?

Case E=1,r=2

Where is the error?

A(z)
222+ 47
-1+ 7

1+22

A unique solution is not guaranteed witht =2, F =1andn =11

Is n > 2¢(2E + 1) a necessary condition?

Generalizationto any E > 1
t—1 times

— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Generalizationto any E > 1

t—1 times
— —
Let0 = (0,...,0). Then

s =(0,1,0,1,0,1,0,—1)

is generated by 7/ — 1 orz/ + 1 upto E = 1 error.
Then

E times

(5,s,...,5,0,1,0)

is generated by / — 1 or 7/ + 1 up to E errors.
=-ambiguity with n = 2¢(2E + 1) — 1 values.

Theorem
Necessary condition for unique decoding:

n>2(2E+ 1)

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)
/_JR
I N N |

A A A A As

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

/_JR

I N N | |
A A A A As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
3 Perform majority vote to find A(z);

The Majority Rule Berlekamp/Massey algorithm

2t E=2 n=2t(2E+1)

/_JR

I N N | |
A A A A As

Input: (ag,...,a,—1) + ¢, where n = 2t(2E + 1), weight(¢) < E,
and (ao, - .., a,—1) minimally generated by A of degree 1,
where A(0) # 0.
Output: A(z) and (ag, . .., a,1).
1 begin
2 Run BMA on 2E + 1 segments of 27 entries and record A;(z)
on each segment;
Perform majority vote to find A(z);
Use a clean segment to clean-up the sequence ;
return A(z) and (ap, ai, .. .);

a & W

List decoding for n > 2t(E + 1)

2t E=2 n=2t(E+1)
f_y%
e B N

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e B N
Al A2 A3

Input: (ao,...,a,—1) + ¢, where n = 2t(E + 1), weight(¢) < E,
and (ao, . .. ,a,—1) minimally generated by A of degree ¢,
where A(0) # 0.
Output: (A;(z),s; = (@), ...,a",)); alist of < E candidates
1 begin
2 Run BMA on E + 1 segments of 27 entries and record A;(z)
on each segment;

List decoding for n > 2¢(E + 1)

2t E=2 n=2t(E+1)
e B N
Al A2 A3

Input: (ao,...,a,—1) + ¢, where n = 2t(E + 1), weight(¢) < E,
and (ao, . .. ,a,—1) minimally generated by A of degree ¢,
where A(0) # 0.
Output: (A;(z),s; = (@), ...,a",)); alist of < E candidates
begin
2 Run BMA on E + 1 segments of 27 entries and record A;(z)
on each segment;
foreach A;(z) do
Use a clean segment to clean-up the sequence;
L Withdraw A; if no clean segment can be found.

-

6 | returnthe list (A;(2), (a),....a")

¥ 'n—1

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial
Y
e T[T
g=Eval(f)+N/y=c+f

Evaluation

Sparse interpolation with errors

Find f from (f(w!),....f(w")) + ¢

Interpolation
/\
e [o J LTI TTT]I (T T]
error € ¢ = Interp (€|) sparse polynomial
Y
H BHEN BN
y=c+f

g=Eval(f) + ¢
Evaluation
BMA

Outline

Dense rational function interpolation with errors

Dense rational function interpolation

xeF f(x)

8 = Zldio gixia h = Zi’o hixi

Recover g, h € K[X],with deg g < dg,degh < dy. given
evaluations of f = §.

Dense rational function interpolation

xeF f(x)

8 = Zldio gixia h = Zi’o hixi

Recover g, h € K[X],with deg g < dg,degh < dy. given
evaluations of f = §.

Cauchy interpolation

=-only dr + dg + 1 entries needed

Dense rational function interpolation with errors

HM
= Zldio gixia h = Zflfo hixi

Recover g, h € K[X],with deg g < dg,degh < dy. given
evaluations of f = §.

Cauchy interpolation

=-only dr + dg + 1 entries needed

Kaltofen and Pernet, 2013

=only dr + ds + 2E + 1 evaluations needed with E errors.
=-smoothly supports evaluations at poles and erroneous poles

xeF

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given A, B € K[X] with deg B < degA = n, recover g,h € K[X],
withdegg < dg,degh < n—ds — 1 and

g =hB mod A.

Theorem

Let (fo =A,fi = B,...,f;) be the sequence of remainders in the

Ext. Euclidean alg. applied on (A, B) and u;,v; the multipliers

s.t. fi = wifo + vifi. Then at iteration j s.t. degf; < dg < degfi_1,
1. (fj,v;) is a solution to the RFR problem.

2. it is minimal: any other solution (g, h) is of the form g = qf;,
h = qv;.

Instantiations

Dense polynomial interpolation with errors

» Erroneous interpolant: P = Interp((yi, xi))

X—x,‘)

> Error locator polynomial:A =][, is erroneous (

Find f with degf < dr s.t. f and H agree on at leastn — ¢
evaluations x;.

Af = A P mod H(X—x,-)
) g =1

and (Af,A) is minimal.
=-computed by Ext. Euclidean Algorithm

f =18

Instantiations

Cauchy interpolation

» Polynomial interpolant: P = Interp((y;, xi))

Find g, h with deg g < dg degh <n—dg —1st. § =
mod [[L,(X —x;).

g = hP modH — X;)
f g] i=1

and (g,) is minimal.
=-computed by Ext. Euclidean Algorithm

_f

8
h g

Instantiations

Cauchy interpolation at poles (with multiplicity 1)

v

value at a pole — oc.

Pole locator: Poo = [[;j),—oo (X — xi)

h = hP

Polynomial interpolant: P = Interp((y;, x;)fory; # oo)

v

v

v

= h P d — X
g mo H X;)
fi gj
and (g, h) is minimal.
=-computed by Ext. Euclidean Algorithm

Instantiations

Cauchy interpolation at poles with errors

» value at a pole — .
» Pole locator: P =[]

X — xi) = Goo Aoo
~— ~—
true poles erroneous poles

i|yi:oo(

» h=hPs
» Polynomial interpolant: P = Interp((yiPso(xi),xi)fory; # oo)

> Error locator polynomial:A = [T, .is erroneous(X — *i) = AAoo

gAP,, = hA PP, mod H(X —x;)
£ g i=1
and (gAP.., hAA) is minimal.
=-computed by Ext. Euclidean Algorithm
g8__h
h gP%,

Thank you

References

B

Ben-Or, M. and Tiwari, P. (1988).

A deterministic algorithm for sparse multivariate polynomial
interpolation.

In STOC'88, pages 301-309.

Blahut, R. E. (1984).
A universal Reed-Solomon decoder.
IBM J. Res. Develop., 18(2):943—-959.

Comer, M. T., Kaltofen, E. L., and Pernet, C. (2012).

Sparse polynomial interpolation and Berlekamp/Massey algorithms that
correct outlier errors in input values.

In ISSAC ’12, pages 138-145.

Kaltofen, E. and Pernet, C. (2013).
Cauchy interpolation with errors in the values.
Manuscript in preparation.

Khoniji, M., Pernet, C., Roch, J.-L., Roche, T., and Stalinsky, T. (2010).
Output-sensitive decoding for redundant residue systems.
In ISSAC’10, pages 265-272.

	Dense polynomial interpolation with errors
	Sparse polynomial interpolation with errors
	de Proni/Ben-Or/Tiwari interpolation
	Fault tolerant Berlekamp/Massey algorithm
	Relations to Reed-Solomon decoding

	Dense rational function interpolation with errors

