(Sparse) Interpolation with Outliers

Clément PERNET ${ }^{\dagger}$
joint work with Matthew T. Comer* and Erich L. Kaltofen*
†: LIG/INRIA-MOAIS, Grenoble Université, France
*: North Carolina State University, USA

SIAM Applied Algebraic Geometry 2013, Fort Collins, CO, USA

Aug 3rd, 2013

Motivation : model fitting

Problem
Recover an unknown function f, given as a black-box, from its evaluations.

Motivation : model fitting

Additional knowledge on the shape f

Dense Polynomial: degree bound

Motivation : model fitting

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Motivation : model fitting

$$
\begin{gathered}
x \in F \\
g=\frac{g}{h} ? \quad f(x) \\
g=\sum_{i=0}^{d_{G}} g_{i} x^{i}, \quad h=\sum_{i=0}^{d_{H}} h_{i} x^{i}
\end{gathered}
$$

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

Motivation : model fitting

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

- approximations: numerical noise
- true errors

Motivation : model fitting

Additional knowledge on the shape f

Dense Polynomial: degree bound
Sparse polynomial:

- support: location of non zero terms
- sparsity: number of non zero terms

Dense Rational function: degree bounds

Trust in the evaluations

- approximations: numerical noise
- true errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense polynomial recovery

$$
\begin{gathered}
\xrightarrow[x \in F]{ } \quad f ? \quad f(x) \\
f=\sum_{i=0}^{k} c_{i} x^{i}
\end{gathered}
$$

without error: polynomial interpolation (Lagrange, Newton, etc).

$$
f(X)=\sum_{i=0}^{k} y_{i} \frac{L_{i}(X)}{L_{i}\left(x_{i}\right)}, \text { with } L_{i}=\prod_{j \neq i}\left(X-x_{j}\right)
$$

Dense polynomial recovery

$$
\begin{gathered}
\underset{x \in F}{ }=f ? \quad f(x) \\
f=\sum_{i=0}^{k} c_{i} x^{i}
\end{gathered}
$$

without error: polynomial interpolation (Lagrange, Newton, etc).

$$
f(X)=\sum_{i=0}^{k} y_{i} \frac{L_{i}(X)}{L_{i}\left(x_{i}\right)}, \text { with } L_{i}=\prod_{j \neq i}\left(X-x_{j}\right)
$$

with errors: Reed-Solomon decoding

- $y_{i}=f\left(x_{i}\right)+e_{i}$ where the vector \mathbf{e} is t-sparse.
- $\operatorname{Interp}(\mathbf{y})=f+\operatorname{Interp}(\mathbf{e})$
- [Blahut, 1984]: Interp(e) has linear cpxty t
- Berlekamp-Massey: error locator from the linear generating relation

Reed-Solomon codes as Evaluation codes

$$
\mathcal{C}=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \mid \operatorname{deg} f<k\right\}
$$

Reed-Solomon codes as Evaluation codes

$$
\mathcal{C}=\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \mid \operatorname{deg} f<k\right\}
$$

Parameter oblivious decoding

Improving the correction capacity:

- With a fixed number n of evaluations, the correction capacity depends on the degree of f :

$$
\text { can correct up to } E \leq \frac{n-\operatorname{deg} f-1}{2}
$$

\Rightarrow bounds on $\operatorname{deg} f$: often pessimistic

Parameter oblivious decoding

Improving the correction capacity:

- With a fixed number n of evaluations, the correction capacity depends on the degree of f :
can correct up to $E \leq \frac{n-\operatorname{deg} f-1}{2}$
\Rightarrow bounds on $\operatorname{deg} f$: often pessimistic
\Rightarrow how to take advantage of all the available redundancy?
Effective redundancy available

Upper bound on deg f redundancy used with RS codes

Parameter oblivious decoding

Improving the correction capacity:

- With a fixed number n of evaluations, the correction capacity depends on the degree of f :
can correct up to $E \leq \frac{n-\operatorname{deg} f-1}{2}$
\Rightarrow bounds on $\operatorname{deg} f$: often pessimistic
\Rightarrow how to take advantage of all the available redundancy?
Effective redundancy available

Upper bound on deg f redundancy used

- Achieved with Ext. Euclidean Alg. with various termination criteria [Khonji, Pernet, Roch, Roche and Stalinski, 2010]:
- divisibility check
- quotient likely to be large upon decoding iteration

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Sparse Polynomial Interpolation

$$
\begin{gathered}
\xrightarrow[x \in F]{ } \\
f=\sum_{i=1}^{t} c_{i} x^{e_{i}}
\end{gathered}
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

Sparse Polynomial Interpolation

$$
\begin{gathered}
\xrightarrow[x \in F]{ } \quad f ? \quad f(x) \\
f=\sum_{i=1}^{t} c_{i} x^{e_{i}}
\end{gathered}
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

[Ben-Or and Tiwari, 1988$]$

- Let $a_{i}=f\left(p^{i}\right)$ for p an element, and $\Lambda(z)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(z)$ is the minimal generator of the seq. $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only $2 t$ entries needed to find $\Lambda(\lambda)$
(Berlekamp-Massey)

Sparse Polynomial Interpolation with errors

$$
\xrightarrow{x \in F} \quad f ? \quad f(x)+e
$$

Problem

Recover a t-sparse polynomial f given a black-box computing evaluations of it.

[Ben-Or and Tiwari, 1988]

- Let $a_{i}=f\left(p^{i}\right)$ for p an element, and $\Lambda(z)=\prod_{i=1}^{t}\left(z-p^{e_{i}}\right)$.
- Then $\Lambda(z)$ is the minimal generator of the seq. $\left(a_{0}, a_{1}, \ldots\right)$.
\Rightarrow only $2 t$ entries needed to find $\Lambda(\lambda) \quad$ (Berlekamp-Massey)
[Comer, Kaltofen and Pernet, 2012]
\Rightarrow only $2 t(2 E+1)$ entries needed with $e \leq E$ errors. using a fault-tolerant Berlekamp-Massey algorithm

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$
2. How many entries required for

- a unique solution
- a list of solutions containing $\left(a_{0}, a_{1}, \ldots\right)$

Fault tolerant Berlekam/Massey algorithm

Problem statement

Suppose $\left(a_{0}, a_{1}, \ldots\right)$ is linearly generated by $\Lambda(z)$ of degree t where $\Lambda(0) \neq 0$.
Given $\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}, a_{1}, \ldots\right)+\varepsilon$, where weight $(\varepsilon) \leq E$:

1. How to recover $\Lambda(z)$ and $\left(a_{0}, a_{1}, \ldots\right)$
2. How many entries required for

- a unique solution
- a list of solutions containing $\left(a_{0}, a_{1}, \ldots\right)$

Coding Theory formulation

Let \mathcal{C} be the set of all sequences of linear complexity t.

1. How to decode \mathcal{C} ?
2. What are the best correction capacity ?

- for unique decoding
- list decoding

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\left.\begin{array}{lllllllll}
& \left(a_{i}\right) \\
(0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0,
\end{array} 1, \quad 0\right) \left\lvert\, \begin{aligned}
& \Lambda(z) \\
& 2-2 z^{2}+z^{4}+z^{6}
\end{aligned}\right.
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\left.\right) \left\lvert\, \begin{aligned}
& 2-2 z^{2}+z^{4}+z^{6} \\
& -1+z^{2}
\end{aligned}\right.
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

$$
\begin{array}{lllllllllll|l}
& (0, & \left(a_{i}\right) \\
0, & 1, & 0, & 1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & 2-2 z^{2}+z^{4}+z^{6} \\
(0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0, & 1, & 0) & -1+z^{2} \\
(0, & 1, & 0, & -1, & 0, & 1, & 0, & -1, & 0, & 1, & 0) & 1+z^{2}
\end{array}
$$

Where is the error?

How many entries to guarantee uniqueness?

Case $E=1, t=2$

Where is the error?
A unique solution is not guaranteed with $t=2, E=1$ and $n=11$

$$
\text { Is } n \geq 2 t(2 E+1) \text { a necessary condition? }
$$

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) \text {. Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
(\overbrace{s, s, \ldots, s}^{E \text { times }}, \overline{0}, 1, \overline{0})
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Generalization to any $E \geq 1$

$$
\begin{aligned}
& \text { Let } \overline{0}=(\overbrace{0, \ldots, 0}^{t-1 \text { times }}) . \text { Then } \\
& \qquad s=(\overline{0}, 1, \overline{0}, 1, \overline{0}, 1, \overline{0},-1)
\end{aligned}
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to $E=1$ error.
Then

$$
(\overbrace{s, s, \ldots, s}^{E \text { times }}, \overline{0}, 1, \overline{0})
$$

is generated by $z^{t}-1$ or $z^{t}+1$ up to E errors.
\Rightarrow ambiguity with $n=2 t(2 E+1)-1$ values.

Theorem

Necessary condition for unique decoding:

$$
n \geq 2 t(2 E+1)
$$

The Majority Rule Berlekamp/Massey algorithm

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$.
1 begin
2 Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
3 Perform majority vote to find $\Lambda(z)$;

The Majority Rule Berlekamp/Massey algorithm

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(2 E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\Lambda(z)$ and $\left(a_{0}, \ldots, a_{n-1}\right)$.
1 begin
2 Run BMA on $2 E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;
Perform majority vote to find $\Lambda(z)$;
Use a clean segment to clean-up the sequence ; return $\Lambda(z)$ and ($\left.a_{0}, a_{1}, \ldots\right)$;

List decoding for $n \geq 2 t(E+1)$

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates
1 begin
2 Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;

List decoding for $n \geq 2 t(E+1)$

Input: $\left(a_{0}, \ldots, a_{n-1}\right)+\varepsilon$, where $n=2 t(E+1)$, weight $(\varepsilon) \leq E$, and $\left(a_{0}, \ldots, a_{n-1}\right)$ minimally generated by Λ of degree t, where $\Lambda(0) \neq 0$.
Output: $\left(\Lambda_{i}(z), s_{i}=\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$ a list of $\leq E$ candidates
1 begin
2 Run BMA on $E+1$ segments of $2 t$ entries and record $\Lambda_{i}(z)$ on each segment;

Use a clean segment to clean-up the sequence; Withdraw Λ_{i} if no clean segment can be found.
return the list $\left(\Lambda_{i}(z),\left(a_{0}^{(i)}, \ldots, a_{n-1}^{(i)}\right)\right)_{i}$;

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Sparse interpolation with errors

Find f from $\left(f\left(w^{1}\right), \ldots, f\left(w^{n}\right)\right)+\varepsilon$

Outline

Dense polynomial interpolation with errors

Sparse polynomial interpolation with errors de Proni/Ben-Or/Tiwari interpolation Fault tolerant Berlekamp/Massey algorithm Relations to Reed-Solomon decoding

Dense rational function interpolation with errors

Dense rational function interpolation

$$
\begin{aligned}
& \xrightarrow{x \in F} f=\frac{g}{h} ? \quad f(x) \\
& g=\sum_{i=0}^{d_{G}} g_{i} x^{i}, h=\sum_{i=0}^{d_{H}} h_{i} x^{i}
\end{aligned}
$$

Problem

Recover $g, h \in K[X]$, with $\operatorname{deg} g \leq d_{G}$, $\operatorname{deg} h \leq d_{H}$. given evaluations of $f=\frac{g}{h}$.

Dense rational function interpolation

$$
\begin{aligned}
& x \in F \\
& x=\frac{g}{h} ? \quad f(x) \\
& g=\sum_{i=0}^{d_{G}} g_{i} x^{i}, \quad h=\sum_{i=0}^{d_{H}} h_{i} x^{i}
\end{aligned}
$$

Problem

Recover $g, h \in K[X]$, with $\operatorname{deg} g \leq d_{G}$, $\operatorname{deg} h \leq d_{H}$. given evaluations of $f=\frac{g}{h}$.

Cauchy interpolation
\Rightarrow only $d_{F}+d_{G}+1$ entries needed

Dense rational function interpolation with errors

$$
\begin{aligned}
& \xrightarrow{x \in F} f=\frac{g}{h} ? f(x)+e \\
& g=\sum_{i=0}^{d_{G}} g_{i} x^{i}, h=\sum_{i=0}^{d_{H}} h_{i} x^{i}
\end{aligned}
$$

Problem

Recover $g, h \in K[X]$, with $\operatorname{deg} g \leq d_{G}, \operatorname{deg} h \leq d_{H}$. given evaluations of $f=\frac{g}{h}$.

Cauchy interpolation
\Rightarrow only $d_{F}+d_{G}+1$ entries needed
[Kaltofen and Pernet, 2013$]$
\Rightarrow only $d_{F}+d_{G}+2 E+1$ evaluations needed with E errors.
\Rightarrow smoothly supports evaluations at poles and erroneous poles

Rational function reconstruction

Problem (RFR: Rational Function Reconstruction)

Given $A, B \in K[X]$ with $\operatorname{deg} B<\operatorname{deg} A=n$, recover $g, h \in K[X]$, with $\operatorname{deg} g \leq d_{G}, \operatorname{deg} h \leq n-d_{G}-1$ and

$$
g=h B \quad \bmod A .
$$

Theorem

Let $\left(f_{0}=A, f_{1}=B, \ldots, f_{\ell}\right)$ be the sequence of remainders in the Ext. Euclidean alg. applied on (A, B) and u_{i}, v_{i} the multipliers s.t. $f_{i}=u_{i} f_{0}+v_{i} f_{1}$. Then at iteration j s.t. $\operatorname{deg} f_{j} \leq d_{G}<\operatorname{deg} f_{j-1}$,

1. $\left(f_{j}, v_{j}\right)$ is a solution to the RFR problem.
2. it is minimal: any other solution (g, h) is of the form $g=q f_{j}$, $h=q v_{j}$.

Instantiations

Dense polynomial interpolation with errors

- Erroneous interpolant: $P=\operatorname{Interp}\left(\left(y_{i}, x_{i}\right)\right)$
- Error locator polynomial: $\Lambda=\prod_{i \mid y_{i} \text { is erroneous }}\left(X-x_{i}\right)$

Find f with $\operatorname{deg} f \leq d_{F}$ s.t. f and H agree on at least $n-t$ evaluations x_{i}.

$$
\underbrace{\Lambda f}_{f_{j}}=\underbrace{\Lambda}_{g_{j}} P \bmod \prod_{i=1}^{n}\left(X-x_{i}\right)
$$

and $(\Lambda f, \Lambda)$ is minimal.
\Rightarrow computed by Ext. Euclidean Algorithm

$$
f=f_{j} / g_{j}
$$

Instantiations

Cauchy interpolation

- Polynomial interpolant: $P=\operatorname{Interp}\left(\left(y_{i}, x_{i}\right)\right)$

Find g, h with $\operatorname{deg} g \leq d_{G} \operatorname{deg} h \leq n-d_{G}-1$ s.t. $\frac{g}{h}=P$ $\bmod \prod_{i=1}^{n}\left(X-x_{i}\right)$.

$$
\underbrace{g}_{f_{j}}=\underbrace{h}_{g_{j}} P \bmod \prod_{i=1}^{n}\left(X-x_{i}\right)
$$

and (g, h) is minimal.
\Rightarrow computed by Ext. Euclidean Algorithm

$$
\frac{g}{h}=\frac{f_{j}}{g_{j}} .
$$

Instantiations

Cauchy interpolation at poles (with multiplicity 1)

- value at a pole $\rightarrow \infty$.
- Pole locator: $P_{\infty}=\prod_{i \mid y_{i}=\infty}\left(X-x_{i}\right)$
- $h=\bar{h} P_{\infty}$
- Polynomial interpolant: $P=\operatorname{Interp}\left(\left(y_{i}, x_{i}\right)\right.$ for $\left.y_{i} \neq \infty\right)$

$$
\underbrace{g}_{f_{j}}=\underbrace{\bar{h}}_{g_{j}} P \quad \bmod \prod_{i=1}^{n}\left(X-x_{i}\right) / P_{\infty}
$$

and (g, \bar{h}) is minimal.
\Rightarrow computed by Ext. Euclidean Algorithm

$$
\frac{g}{h}=\frac{f_{j}}{g_{j} P_{\infty}}
$$

Instantiations

Cauchy interpolation at poles with errors

- value at a pole $\rightarrow \infty$.
- Pole locator: $P_{\infty}=\prod_{i \mid y_{i}=\infty}\left(X-x_{i}\right)=\underbrace{G_{\infty}}_{\text {true poles erroneous poles }} \underbrace{\Lambda_{\infty}}$
- $h=\bar{h} P_{\infty}$
- Polynomial interpolant: $P=\operatorname{Interp}\left(\left(y_{i} P_{\infty}\left(x_{i}\right), x_{i}\right)\right.$ for $\left.y_{i} \neq \infty\right)$
- Error locator polynomial: $\Lambda=\prod_{i \mid y_{i} \text { is erroneous }}\left(X-x_{i}\right)=\bar{\Lambda} \Lambda_{\infty}$

$$
\underbrace{g \Lambda P_{\infty}}_{f_{j}}=\underbrace{\overline{h \Lambda}}_{g_{j}} P P_{\infty} \quad \bmod \prod_{i=1}^{n}\left(X-x_{i}\right)
$$

and $\left(g \Lambda P_{\infty}, \overline{h \Lambda}\right)$ is minimal.
\Rightarrow computed by Ext. Euclidean Algorithm

$$
\frac{g}{h}=\frac{f_{j}}{g_{j} P_{\infty}^{2}}
$$

Thank you

References

固
Ben－Or，M．and Tiwari，P．（1988）．
A deterministic algorithm for sparse multivariate polynomial interpolation．
In STOC＇88，pages 301－309．
周
Blahut，R．E．（1984）．
A universal Reed－Solomon decoder．
IBM J．Res．Develop．，18（2）：943－959．
㐭 Comer，M．T．，Kaltofen，E．L．，and Pernet，C．（2012）．
Sparse polynomial interpolation and Berlekamp／Massey algorithms that correct outlier errors in input values．
In ISSAC＇12，pages 138－145．
Kaltofen，E．and Pernet，C．（2013）．
Cauchy interpolation with errors in the values．
Manuscript in preparation．
Reit Khonji，M．，Pernet，C．，Roch，J．－L．，Roche，T．，and Stalinsky，T．（2010）．
Output－sensitive decoding for redundant residue systems．
In ISSAC＇10，pages 265－272．

