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Why ?

Huge range of applications in numerical computations
All PDE based computations: Wheather forecasts,
mechanical designs, computational chemistry, ...
ODE, Control, ...

boil down to linear algebra efficiency.

But
many algorithms
many architectures

⇒design for long term optimizations and portability ?
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BLAS : Basic Linear Algebra Subroutines

1979 [Lawson & Al.], first set of Fortran subroutines
1988 [Dongarra & Al], level 2 (MatVect)
1990 [Dongara & Al], level 3 (MatMul)

Provide:
an standard interface (Fortran77 or C)
a reference, portable implementation

Optimized implementations :
machine specific by computer vendors (Intel, SGI, IBM, ...)
architecture independent: ATLAS, GOTO.
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Features

4 data types : float (s), double (d), complex (c), double cpx (z)
3 levels : level 1 Vector ops (rotation, dot-prod, add,

scal axpy,...)
level 2 Matrix-Vector ops (MatVect prod,

triangular system solve, tensor
product,...)

level 3 Matrix-Matrix ops (MatMul, multi
triangular system solve,...)
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Optimizing data locality

Memory considerations:
CPU-Memory communication: bandwidth
gap
⇒Hierarchy of several cache memory

levels

Row major representation of matrices
a RAM memory access can fetch a bunch
of contiguous elements

CPU

L1

RAM

L2

L3
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AnnAn1

A21 A22
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Optimizing data locality

Comparing

for i=1 to n do
for j=1 to n do

for k=1 to n do
Ci,j ← Ci,j + Ai,kBk ,j

end for
end for

end for

VS

for i=1 to n do
for k=1 to n do

for j=1 to n do
Ci,j ← Ci,j +Ai,kBk ,j

end for
end for

end for
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Further memory optimizations

Larger dimensions: cache
blocking.
⇒split matrices into blocks,

s.t. their product can be
computed within the cache.
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Reuse of the data
if Work� Data : memory fetch is amortized
⇒reach the peak performance of the CPU

Matrix multiplication: n3 � n2

⇒well suited for block design
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Arithmetic optimizations

fma (fused multiply and accumulate) z ← z + x ∗ y
pipeline
SSE
...

Tends to give advantage to floating point arithmetic up to now.
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Overview

word sized finite fields : elements can be represented on
16, 23, 32, 53 or 64 bits
Delayed modular reductions : avoid unnecessary field
arithmetic by computing over Z as much as possible.
Cache tuning
Fast sub-cubic algorithm
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Delayed reductions

Existence of 2 ring homomorphisms :
Φ : GF (q)→ Z
Ψ : Z→ GF (q)

s.t.

GF (q)
Φ−−−−→ Zy+GF (q),×GF (q)

y+Z,×Z

GF (q)
Ψ←−−−− Z

commutes

Zp : Φ = Id ,Ψ : x → x mod p
GF (pk ) : Φ : P(X )→ P(γ) with γ > nk(p − 1). (γ-adic

reconstruction).
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Delayed reductions

⇒compute over Z with word size elements (int, long, float
double)
⇒perform the necessary back conversion (Ψ) only when

necessary.
Conditions of validity :

Zp : n(p − 1) < 2m

GF (pk ) : q(2k − 1) < 2m and γ > nk(p − 1).
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Cache tuning

Could mimic the numerical BLAS.
⇒huge amount of work

Instead :

Reuse the existing technology: compute with floating points
and use BLAS.

Pros:

floating point arithmetic is
better optimized
long term efficiency: rely
on the numerical
community

Cons:

exponent is useless
integer arithmetic may
become as efficient
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Strassen-Winograd algorithm

»
C11 C12
C21 C22

–
=

»
A11 A12
A21 A22

– »
B11 B12
B21 B22

–
,

8 additions:

S1 ← A21 + A22 T1 ← B12 − B11
S2 ← S1 − A11 T2 ← B22 − T1
S3 ← A11 − A21 T3 ← B22 − B12
S4 ← A12 − S2 T4 ← T2 − B21

7 recursive multiplications:

P1 ← A11 × B11 P5 ← S1 × T1
P2 ← A12 × B21 P6 ← S2 × T2
P3 ← S4 × B22 P7 ← S3 × T3
P4 ← A22 × T4

7 final additions:

U1 ← P1 + P2 U5 ← U4 + P3
U2 ← P1 + P6 U6 ← U3 − P4
U3 ← U2 + P7 U7 ← U3 + P5
U4 ← U2 + P5

The result is the matrix:

C =

»
U1 U5
U6 U7

–

Clément Pernet What can you do exactly, with fast floating point linear algebra



Numerical linear algebra: the BLAS
FFLAS: a BLAS for finite fields

Over the integers
Perspectives

Delayed reductions
Cache tuning
Sub-cubic algorithm
Memory efficiency

Strassen-Winograd algorithm

Used to be considered as not practicable:
threshold too high
numerical stability

Over finite fields : not problem
update the validity condition for delayed reductions from

k(p − 1)2 < 253

to(
1+3l

2

)2 ⌈ k
2l

⌉
(p − 1)2 < 253 for l recursive levels.

Pros:

faster

Cons:

more reductions if q or n is big
temporary memory allocations
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Memory requirements of Winograd’s algorithm

A11 A12A21 A22B11B12 B21B22

S1

S2

S3

S4

T1

T2

T3

T4

P1 P2

P3 P4

P5

P6

P7 U1

U2

U3 U4

U5 U6U7

C ← A× B + C ⇒from 3 to 2 temp. (3 pre-adds)
C ← A× B + C ⇒from 3 to 2 temp. (2 pre-adds,
overwriting inputs)
C ← A× B fully in-place (overwriting inputs)

Question:

Is there an in-place O
(
n2.807) algorithm with constant inputs?

⇒yes 7.2n2.807 instead of 6n2.807
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The Chinese remainder theorem

Theorem (Chinese remainder)

Homeomorphism between Zp1 × · · · × Zpk and Zp1×···×pk

Z 6 4 6× 4 =

24

Z5 1 4 4
Z7 6 4 3

24 = 4 · 5 · 5−1[7] + 3 · 7 · 7−1[5]

Valid, if 5× 7 ≥ 24

MatMul :
∏

i pi ≥ n(p − 1)2

⇒log2m n + 2 ≤ 3 primes
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MatMul :
∏

i pi ≥ n(p − 1)2

⇒log2m n + 2 ≤ 3 primes
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Perspectives
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Dedicated exact BLAS

Exact computations:
new SSE standard will include integer pipeline
⇒get rid of floating point arithmetic

specialized BLAS over GF(2)
compact storage
method of 4 russians
...

Top layer for integer BLAS (using CRT, lifting, and
multiprecision GMP/MPIR)
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Numerical linear algebra: the BLAS
FFLAS: a BLAS for finite fields

Over the integers
Perspectives

Dedicated BLAS
High precision approximate computations

High precision approximate computations

multiprecision floating point: no fixed sized arithmetic
no efficient cache tuning possible

multiprecision integers/rational: finite fields arithmetic available
through CRT and lifting

cache tuning possible
but higher complexity

⇒hybrid approaches (bounded height good
rational approximations) .
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