
Adaptive decoding for evaluation/interpolation
codes

Clément PERNET
joint work with

M. Khonji, J-L. Roch, T. Roche et T. Stalinski
INRIA-MOAIS, LIG, Grenoble Université

Claude Shannon Institute, University College Dublin
Thursday June 3, 2010

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

High performance exact computations
Domain of Computation

I Z,Q ⇒variable size
I Zp,GF(pk) ⇒specific arithmetic
I K [X] for K = Z,Zp,

Application domains:
Computational number theory:

I computing tables of elliptic curves, modular
forms,

I testing conjectures

Crypto:

I Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)

I Recherches de grands nombres premiers

Graph theory: testing conjectures (isomorphism,...)

High performance exact computations
Domain of Computation

I Z,Q ⇒variable size
I Zp,GF(pk) ⇒specific arithmetic
I K [X] for K = Z,Zp,

Application domains:
Computational number theory:

I computing tables of elliptic curves, modular
forms,

I testing conjectures

Crypto:

I Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)

I Recherches de grands nombres premiers

Graph theory: testing conjectures (isomorphism,...)

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Parallel computation

Trend towards massive parallelism

Personal computers ⇒multi/many cores

I End of the CPU frequency race
I Multi-core: 2, 4, 6, ...
I Many-cores: near future, already in GPUs
I multi-GPU

HPC ⇒Distributed computation, global computing

I servers
I clusters, grids
I volunteer computing, P2P
I ambiant, cloud computing

INTERNET

user

Parallel computation

Trend towards massive parallelism

Personal computers ⇒multi/many cores

I End of the CPU frequency race
I Multi-core: 2, 4, 6, ...
I Many-cores: near future, already in GPUs
I multi-GPU

HPC ⇒Distributed computation, global computing

I servers
I clusters, grids
I volunteer computing, P2P
I ambiant, cloud computing

INTERNET

user

Security of computations

Peer to peer
I Popular projects: Mersenne Prime search, SETI@Home,

Folding@Home, BOINC
I Petaflops (670 000 PS3s) in 2007

I What level of confidence?
I machine badly configured, overclocking
I malicious program
I large scale corruption possible (client patched and

redistributed)

Ambiant distributed computation
I Connection / Disconnection of resources
I Corruption (forged tasks)

Security of computations

Peer to peer
I Popular projects: Mersenne Prime search, SETI@Home,

Folding@Home, BOINC
I Petaflops (670 000 PS3s) in 2007
I What level of confidence?

I machine badly configured, overclocking
I malicious program
I large scale corruption possible (client patched and

redistributed)

Ambiant distributed computation
I Connection / Disconnection of resources
I Corruption (forged tasks)

Security of computations

Peer to peer
I Popular projects: Mersenne Prime search, SETI@Home,

Folding@Home, BOINC
I Petaflops (670 000 PS3s) in 2007
I What level of confidence?

I machine badly configured, overclocking
I malicious program
I large scale corruption possible (client patched and

redistributed)

Ambiant distributed computation
I Connection / Disconnection of resources
I Corruption (forged tasks)

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Fault tolerance

Several kinds of faults

I Fail stop (crash, disconnection...)
I Network congestion
I Malicious attacks

⇒Byzantine fault model (not always wrong)

I Most of the time correct ⇒blacklisting is not an option

Several approaches:

I Replication: vote, spot-checking, blacklisting, partial
execution on safe resources

I Verification using post-conditions on the output
I ABFT: Algorithm-based fault tolerance

Fault tolerance

Several kinds of faults

I Fail stop (crash, disconnection...)
I Network congestion
I Malicious attacks

⇒Byzantine fault model (not always wrong)

I Most of the time correct ⇒blacklisting is not an option

Several approaches:

I Replication: vote, spot-checking, blacklisting, partial
execution on safe resources

I Verification using post-conditions on the output
I ABFT: Algorithm-based fault tolerance

Fault tolerance

Several kinds of faults

I Fail stop (crash, disconnection...)
I Network congestion
I Malicious attacks

⇒Byzantine fault model (not always wrong)

I Most of the time correct ⇒blacklisting is not an option

Several approaches:

I Replication: vote, spot-checking, blacklisting, partial
execution on safe resources

I Verification using post-conditions on the output
I ABFT: Algorithm-based fault tolerance

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

u uA

A

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

u uA

A

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

u uA

A Id R

x

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

u uA

A Id R

x

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Exact linear algebra

Mathematics is the art of reducing any problem to
linear algebra

W. Stein

⇒One of the building blocks to be optimized in numerous
applications

Optimizing exact linear algebra:

I Matrix product over Zp

I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration
I Chinese remaindering algorithm

Exact linear algebra

Mathematics is the art of reducing any problem to
linear algebra

W. Stein

⇒One of the building blocks to be optimized in numerous
applications

Optimizing exact linear algebra:

I Matrix product over Zp

I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration
I Chinese remaindering algorithm

Exact linear algebra

Mathematics is the art of reducing any problem to
linear algebra

W. Stein

⇒One of the building blocks to be optimized in numerous
applications

Optimizing exact linear algebra:

I Matrix product over Zp

I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration
I Chinese remaindering algorithm

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Chinese remainder algorithm

Z/(n1 . . . nk)Z ≡ Z/n1Z× · · · × Z/nkZ

Computation of y = f (x) over Z

begin
Compute a bound β on max(|f |);
Pick n1, . . .nk , pairwise prime, s.t. n1 . . . nk > β;
for i = 1 . . . k do

Compute yi = f (x mod ni) mod ni

; /* Evaluation */

Compute y = CRT(y1, . . . , yk)

; /* Interpolation */

end

CRT : Z/n1Z× · · · × Z/nkZ → Z/(n1 . . . nk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

Π =

∏k
i=1 ni

Πi = Π/ni
Yi = Π−1

i mod ni

Chinese remainder algorithm

Z/(n1 . . . nk)Z ≡ Z/n1Z× · · · × Z/nkZ

Computation of y = f (x) over Z

begin
Compute a bound β on max(|f |);
Pick n1, . . .nk , pairwise prime, s.t. n1 . . . nk > β;
for i = 1 . . . k do

Compute yi = f (x mod ni) mod ni ; /* Evaluation */

Compute y = CRT(y1, . . . , yk); /* Interpolation */
end

CRT : Z/n1Z× · · · × Z/nkZ → Z/(n1 . . . nk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where

Π =

∏k
i=1 ni

Πi = Π/ni
Yi = Π−1

i mod ni

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj)Q
j 6=i (ai−aj)

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi]

Analogy: complexities over Z↔ over K [X]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n,d) = O˜(nd × nω)

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj)Q
j 6=i (ai−aj)

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi]

Analogy: complexities over Z↔ over K [X]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n,d) = O˜(nd × nω)

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
P mod X − a N mod m
Evaluate P in a “Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj)Q
j 6=i (ai−aj)

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi]

Analogy: complexities over Z↔ over K [X]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n,d) = O˜(nd × nω)

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
P mod X − a N mod m
Evaluate P in a “Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj)Q
j 6=i (ai−aj)

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi]

Analogy: complexities over Z↔ over K [X]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n,d) = O˜(nd × nω)

Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
P mod X − a N mod m
Evaluate P in a “Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj)Q
j 6=i (ai−aj)

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi]

Analogy: complexities over Z↔ over K [X]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)
I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)
I det(n,d) = O˜(nd × nω)

Early termination
Classic Chinese remaindering

I bound β on the result
I Choice of the ni : such that n1 . . . nk > β

⇒deterministic algorithm

Early termination
I For each new modulo ni :

I reconstruct yi = f (x) mod n1 × · · · × ni
I If yi = yi−1 ⇒terminated

⇒probabilistic Monte Carlo

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available

Early termination
Classic Chinese remaindering

I bound β on the result
I Choice of the ni : such that n1 . . . nk > β

⇒deterministic algorithm

Early termination
I For each new modulo ni :

I reconstruct yi = f (x) mod n1 × · · · × ni
I If yi = yi−1 ⇒terminated

⇒probabilistic Monte Carlo

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available

Early termination
Classic Chinese remaindering

I bound β on the result
I Choice of the ni : such that n1 . . . nk > β

⇒deterministic algorithm

Early termination
I For each new modulo ni :

I reconstruct yi = f (x) mod n1 × · · · × ni
I If yi = yi−1 ⇒terminated

⇒probabilistic Monte Carlo

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Redundant residues codes

Principle:
I Chinese remaindering based parallelization
I Byzantines faults affecting some modular computations
I Fault tolerant reconstruction
⇒Algorithm Based Fault Tolerance (ABFT)

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z

where p1 × · · · × pk > x and xi = x mod pi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zp1 × · · · × Zpn s.t. ∃x ,
{

x < p1 . . . pk
xi = x mod pi ∀i

}

Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z xk+1 xn. . .

where p1 × · · · × pn > x and xi = x mod pi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zp1 × · · · × Zpn s.t. ∃x ,
{

x < p1 . . . pk
xi = x mod pi ∀i

}

Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z xk+1 xn. . .

where p1 × · · · × pn > x and xi = x mod pi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zp1 × · · · × Zpn s.t. ∃x ,
{

x < p1 . . . pk
xi = x mod pi ∀i

}

Principle

Property

X ∈ C iff X < Πk .

p1 p2 . . . pk pk+1 pn. . .

Πk = p1 × · · · × pk

Πn = p1 × · · · × pn

Redundancy : r = n − k

Principle

Noisy

Transmission Channel ≡

Unsecured

Computation

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . .An)

x′ < Mn

x < Mk

A

Principle

Noisy Transmission Channel ≡ Unsecured Computation

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . .An)

x′ < Mn

x < Mk

A

Principle

Noisy Transmission Channel ≡ Unsecured Computation

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . .An)

x′ < Mn

x < Mk

A

Properties of the code

Error model:
I Error: E = X ′ − X
I Error support: I = {i ∈ 1 . . . n,E 6= 0 mod pi}
I Impact of the error: ΠF =

∏
i∈I pi

Detects up to r errors:

If X ′ = X + E with X ∈ C,#I ≤ r ,

X ′ > Πk .

I Redundancy r = n − k , distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...

Properties of the code

Error model:
I Error: E = X ′ − X
I Error support: I = {i ∈ 1 . . . n,E 6= 0 mod pi}
I Impact of the error: ΠF =

∏
i∈I pi

Detects up to r errors:

If X ′ = X + E with X ∈ C,#I ≤ r ,

X ′ > Πk .

I Redundancy r = n − k , distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...

Correction

I ∀i /∈ I : E mod pi = 0
I E is a multiple of ΠV : E = Z ΠV = Z

∏
i /∈I

I gcd(E ,Π) = ΠV

Mandelbaum 78: rational reconstruction

X = X ′ − E = X ′ − Z Πv

X
Π

=
X ′

Π
− Z

ΠF

⇒|X ′Π −
Z

ΠF
| ≤ 1

2Π2
F

⇒ Z
ΠF

= E
Π is a convergent of X ′

Π

⇒rational reconstruction of X ′ mod Π

Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial algorithm if e ≤ (n − k) log pmin−log 2

log pmax+log pmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:
I Errors have variable weights depending on their impact

ΠF =
∏

i∈I pi
I Example: X = 20,p1 = 2,p2 = 3,p3 = 101

I 1 error on X mod 2, or X mod 3, can be corrected
I but not on X mod 101

Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial algorithm if e ≤ (n − k) log pmin−log 2

log pmax+log pmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:
I Errors have variable weights depending on their impact

ΠF =
∏

i∈I pi
I Example: X = 20,p1 = 2,p2 = 3,p3 = 101

I 1 error on X mod 2, or X mod 3, can be corrected
I but not on X mod 101

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean
Alg:

I Chinese Remaindering over K [X]

I pi = X − ai

I Encoding = evaluation in ai

I Decoding = interpolation
I Correction = Extended Euclidean algorithm étendu

⇒Generalization for pi of degrees > 1
⇒Variable impact, depending on the degree of pi
⇒Necessary unification [Sudan 01,...]

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean
Alg:

I Chinese Remaindering over K [X]

I pi = X − ai

I Encoding = evaluation in ai

I Decoding = interpolation
I Correction = Extended Euclidean algorithm étendu

⇒Generalization for pi of degrees > 1
⇒Variable impact, depending on the degree of pi
⇒Necessary unification [Sudan 01,...]

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Generalized point of view: amplitude code
I Over a Euclidean ring A with a Euclidean function ν
I Distance

∆ : A×A → R+

(x , y) 7→
∑

i|x 6=y [Pi]

log2 ν (Pi)

Definition
(n,k) amplitude code C = {x ∈ A : ν(x) < κ},
n = log2 Π, k = log2 κ.

Property (Quasi MDS)

d > n − k in general, and d ≥ n − k + 1 over K [X].

⇒correction rate = maximal amplitude of an error that can be
corrected

Generalized point of view: amplitude code
I Over a Euclidean ring A with a Euclidean function ν
I Distance

∆ : A×A → R+

(x , y) 7→
∑

i|x 6=y [Pi]

log2 ν (Pi)

Definition
(n,k) amplitude code C = {x ∈ A : ν(x) < κ},
n = log2 Π, k = log2 κ.

Property (Quasi MDS)

d > n − k in general, and d ≥ n − k + 1 over K [X].

⇒correction rate = maximal amplitude of an error that can be
corrected

Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities

I Adaptive decoding: taking advantage of all the available
redundancy

I Early termination: with no a priori knowledge of a bound
on the result

Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities
I Adaptive decoding: taking advantage of all the available

redundancy
I Early termination: with no a priori knowledge of a bound

on the result

Interpretation of Mandelbaum’s algorithm
Remark
Rational reconstruction ⇒Partial Extended Euclidean
Algorithm

Property

The Extended Euclidean Algorithm, applied to (E ,Π) and to
(X ′ = X + E ,Π), performs the same first iterations until ri < ΠV .

ui−1E + vi−1Π = Πv ui−1X ′ + vi−1Π = ri−1

uiE + viΠ = 0 uiX ′ + viΠ = ri

⇒uiX = ri

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Donnée: Π,X ′

Donnée: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Résultat: X ∈ R: corrected message s.t. ν(X)4τ2 ≤ ν(Π)
begin

α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = X ′;
i = 1;
while (ν(ri) > ν(Π)/2τ) do

Let ri−1 = qi ri + ri+1 be the Euclidean division of ri−1 by ri ;
αi+1 = αi−1 − qiαi ;
βi+1 = βi−1 − qiβi ;
i = i + 1;

return X = − ri
βi

end

I reaches the quasi-maximal correction capacity

I requires a a priori knowledge of τ
⇒How to make the correction capacity adaptive?

Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Donnée: Π,X ′

Donnée: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Résultat: X ∈ R: corrected message s.t. ν(X)4τ2 ≤ ν(Π)
begin

α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = X ′;
i = 1;
while (ν(ri) > ν(Π)/2τ) do

Let ri−1 = qi ri + ri+1 be the Euclidean division of ri−1 by ri ;
αi+1 = αi−1 − qiαi ;
βi+1 = βi−1 − qiβi ;
i = i + 1;

return X = − ri
βi

end

I reaches the quasi-maximal correction capacity
I requires a a priori knowledge of τ
⇒How to make the correction capacity adaptive?

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Adaptive approach

Multiple goals:

I With a fixed n, the correction capacity depends on a bound
on X
⇒pessimistic estimate
⇒how to take advantage of all the available redundancy?

X

borne sur X

redondance effective utilisable

redondance utilisee

I Allow early termination: variable n and unknown bound

Adaptive approach

Multiple goals:

I With a fixed n, the correction capacity depends on a bound
on X
⇒pessimistic estimate
⇒how to take advantage of all the available redundancy?

X

borne sur X

redondance effective utilisable

redondance utilisee

I Allow early termination: variable n and unknown bound

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

A first adaptive approach
Termination criterion in the Extended Euclidean alg.:

I αi+1Π− βi+1E = 0
⇒E = αi+1Π/βi+1
⇒test if βj divides Π

I check if X satisfies:ν(X) ≤ ν(Π)
4ν(βj)2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

pi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error

A first adaptive approach
Termination criterion in the Extended Euclidean alg.:

I αi+1Π− βi+1E = 0
⇒E = αi+1Π/βi+1
⇒test if βj divides Π

I check if X satisfies:ν(X) ≤ ν(Π)
4ν(βj)2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

pi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X 2g

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X 2g

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X 2g

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X 2g

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X 2g

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX)
I If necessary, a gap appears between ri−1 and ri .
I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Experiments

Size of the error 10 50 100 200 500 1000

g = 2 1/446 1/765 1/1118 2/1183 2/4165 1/7907

g = 3 1/244 1/414 1/576 2/1002 2/2164 1/4117

g = 5 1/53 1/97 1/153 2/262 1/575 1/1106

g = 10 1/1 1/3 1/9 1/14 1/26 1/35

g = 20 1/1 1/1 1/1 1/1 1/1 1/1

Table: Number of remaining candidates after the gap detection: c/d

means d candidates with a gap > 2g , and c of them passed the
divisibility test. n ≈ 6001 (3000 moduli), κ ≈ 201 (100 moduli).

Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

T
im

e
(s

)

Size of the errors

Divisibility
Gap g=2
Gap g=5

Gap g=10
Threshold T=500

Figure: Comparison for n ≈ 26 016 (m = 1300 moduli of 20 bits),
κ ≈ 6001 (300 moduli) and τ ≈ 10007 (about 500 moduli).

Gap: Euclidean Algorithm down to the end ⇒overhead

Experiments

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400

T
im

e
(s

)

Size of the errors

Gap g=5
Gap g=7

Gap g=10
Gap g=20

Threshold T=500

Figure: Comparison for n ≈ 200 917 (m = 10000 moduli of 20 bits),
κ ≈ 17 0667 (8500 moduli) and τ ≈ 10498 (500 moduli).

Gap: Euclidean Algorithm down to the end ⇒overhead

Plan

Introduction
High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Early termination

P2P workers
Decoder

Secured workers

Certifier

MasterInput

Fork tasks

Output X

Y

CRT Lifter
residues

Empty or X

List of candidates

Figure: Fault tolerant distributed computation with early termination

Conclusion
New metric for redundant residue codes:

I Unification
I Finer bounds on the correction capacities
I Enable adaptive decoding

Adaptative decoding and early termination

I Several approaches
I Gap method: limited overhead, better performances
I Insertion in a global framework for early termination

Perspective

I Theoretical explanation of the efficiency of the gap method:
average distribution of the quotients qi in the EEA).

I Better correction capacities over Z and K [X] only.
I Generalization to adaptive list decoding [Sudan,

Guruswami]

	Introduction
	High performance exact computations
	Security of distributed computations
	Fault tolerance
	Exact linear algebra
	Chinese remaindering

	Redundant residues codes
	Over Z: Mandelbaum algorithm
	Over K[X]: Reed Solomon point of view
	Generalization

	Adaptive approach
	A first approach
	Detecting a gap
	Experiments
	Terminaison anticipée

