Adaptive decoding for evaluation/interpolation codes

Clément Pernet

joint work with
M. Khonji, J-L. Roch, T. Roche et T. Stalinski

INRIA-MOAIS, LIG, Grenoble Université

Claude Shannon Institute, University College Dublin
Thursday June 3, 2010

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
 Over Z: Mandelbaum algorithm
 Over K[X]: Reed Solomon point of view
 Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

High performance exact computations

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_{p}, \mathrm{GF}\left(p^{k}\right) \Rightarrow$ specific arithmetic
- $K[X]$ for $K=\mathbb{Z}, \mathbb{Z}_{p}, \ldots$

High performance exact computations

Domain of Computation

- $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- $\mathbb{Z}_{p}, \mathrm{GF}\left(p^{k}\right) \Rightarrow$ specific arithmetic
- $K[X]$ for $K=\mathbb{Z}, \mathbb{Z}_{p}, \ldots$.

Application domains:
Computational number theory:

- computing tables of elliptic curves, modular forms,
- testing conjectures

Crypto:

- Algebraic attacks (Quadratic sieves, Groebner bases, index calculus,...)
- Recherches de grands nombres premiers

Graph theory: testing conjectures (isomorphism,...)

Plan

```
Introduction
    High performance exact computations
    Security of distributed computations
    Fault tolerance
    Exact linear algebra
    Chinese remaindering
Redundant residues codes
    Over Z: Mandelbaum algorithm
    Over K[X]: Reed Solomon point of view
    Generalization
Adaptive approach
    A first approach
    Detecting a gap
    Experiments
    Terminaison anticipée
```


Parallel computation

Trend towards massive parallelism
Personal computers \Rightarrow multi/many cores

- End of the CPU frequency race
- Multi-core: 2, 4, 6, ...
- Many-cores: near future, already in GPUs
- multi-GPU

Parallel computation

Trend towards massive parallelism
Personal computers \Rightarrow multi/many cores

- End of the CPU frequency race
- Multi-core: 2, 4, 6, ...
- Many-cores: near future, already in GPUs
- multi-GPU

HPC \Rightarrow Distributed computation, global computing

- servers
- clusters, grids
- volunteer computing, P2P
- ambiant, cloud computing

Security of computations

Peer to peer

- Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC
- Petaflops (670 000 PS3s) in 2007

Security of computations

Peer to peer

- Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC
- Petaflops (670 000 PS3s) in 2007
- What level of confidence?
- machine badly configured, overclocking
- malicious program
- large scale corruption possible (client patched and redistributed)

Security of computations

Peer to peer

- Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC
- Petaflops (670 000 PS3s) in 2007
- What level of confidence?
- machine badly configured, overclocking
- malicious program
- large scale corruption possible (client patched and redistributed)

Ambiant distributed computation

- Connection / Disconnection of resources
- Corruption (forged tasks)

Plan

IntroductionHigh performance exact computationsSecurity of distributed computations
Fault tolerance
Exact linear algebraChinese remaindering
Redundant residues codesOver Z: Mandelbaum algorithmOver K[X]: Reed Solomon point of view
Generalization
Adaptive approachA first approach
Detecting a gap
ExperimentsTerminaison anticipée

Fault tolerance

Several kinds of faults

- Fail stop (crash, disconnection...)
- Network congestion
- Malicious attacks

Fault tolerance

Several kinds of faults

- Fail stop (crash, disconnection...)
- Network congestion
- Malicious attacks
\Rightarrow Byzantine fault model (not always wrong)
- Most of the time correct \Rightarrow blacklisting is not an option

Fault tolerance

Several kinds of faults

- Fail stop (crash, disconnection...)
- Network congestion
- Malicious attacks
\Rightarrow Byzantine fault model (not always wrong)
- Most of the time correct \Rightarrow blacklisting is not an option

Several approaches:

- Replication: vote, spot-checking, blacklisting, partial execution on safe resources
- Verification using post-conditions on the output
- ABFT: Algorithm-based fault tolerance

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
\Rightarrow use properties specific to the problem

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
\Rightarrow use properties specific to the problem
Example: Matrix-vector product [Dongarra \& Al. 2006]

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
\Rightarrow use properties specific to the problem
Example: Matrix-vector product [Dongarra \& AI. 2006]

ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
\Rightarrow use properties specific to the problem
Example: Matrix-vector product [Dongarra \& AI. 2006]

u
uA

- pre-compute the product $B=A \times\left[\begin{array}{ll}I & R\end{array}\right]$
- compute $x=u B$ in parallel
- decode/correct x

Plan

IntroductionHigh performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

\Rightarrow One of the building blocks to be optimized in numerous applications

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

\Rightarrow One of the building blocks to be optimized in numerous applications

Optimizing exact linear algebra:

- Matrix product over \mathbb{Z}_{p}
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration
- Chinese remaindering algorithm

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

\Rightarrow One of the building blocks to be optimized in numerous applications

Optimizing exact linear algebra:

- Matrix product over \mathbb{Z}_{p}
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration
- Chinese remaindering algorithm

Plan

```
Introduction
    High performance exact computations
    Security of distributed computations
    Fault tolerance
    Exact linear algebra
    Chinese remaindering
Redundant residues codes
    Over Z: Mandelbaum algorithm
    Over K[X]: Reed Solomon point of view
    Generalization
Adaptive approach
    A first approach
    Detecting a gap
    Experiments
    Terminaison anticipée
```


Chinese remainder algorithm

$$
\mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ over \mathbb{Z}

begin

Compute a bound β on $\max (|f|)$;
Pick $n_{1}, \ldots n_{k}$, pairwise prime, s.t. $n_{1} \ldots n_{k}>\beta$; for $i=1 \ldots k$ do

Compute $y_{i}=f\left(x \bmod n_{i}\right) \bmod n_{i}$
Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$
end
CRT: $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} n_{i} \\ \Pi_{i}=\Pi / n_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod n_{i}\end{array}\right.$

Chinese remainder algorithm

$$
\mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z} \equiv \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}
$$

Computation of $y=f(x)$ over \mathbb{Z}

begin

Compute a bound β on $\max (|f|)$;
Pick $n_{1}, \ldots n_{k}$, pairwise prime, s.t. $n_{1} \ldots n_{k}>\beta$; for $i=1 \ldots k$ do

Compute $y_{i}=f\left(x \bmod n_{i}\right) \bmod n_{i} ; \quad / *$ Evaluation */ Compute $y=\operatorname{CRT}\left(y_{1}, \ldots, y_{k}\right)$; /* Interpolation */ end

CRT: $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \rightarrow \mathbb{Z} /\left(n_{1} \ldots n_{k}\right) \mathbb{Z}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto \sum_{i=1}^{k} x_{i} \Pi_{i} Y_{i} \bmod \Pi
$$

where $\left\{\begin{array}{l}\Pi=\prod_{i=1}^{k} n_{i} \\ \Pi_{i}=\Pi_{i} n_{i} \\ Y_{i}=\Pi_{i}^{-1} \bmod n_{i}\end{array}\right.$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow

Reduce P modulo $X-a$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials

Evaluation:
$P \bmod X-a$
Evaluate P in a
Interpolation:
$P=\sum_{i=1}^{k} \prod_{j \neq i}\left(x-a_{j}\right)$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials Integers

Evaluation:
 $P \bmod X-a$
 Evaluate P in a
 $N \bmod m$
 "Evaluate' N in m

Interpolation:
$\left.P=\sum_{i=1}^{k} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)}\right) \quad N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{j}\right]}$

Chinese remaindering and evaluation/interpolation

Evaluate P in a

Polynomials

Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a

Reduce P modulo $X-a$
$N \bmod m$
"Evaluate' N in m

Interpolation:

$\left.P=\sum_{i=1}^{k} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq f}\left(a_{i}-a_{j}\right)}\right) \quad N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}$
Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

- size of coefficients
- degree of polynomials
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- $\mathcal{O}($ deg (result $\left.) \times T_{\text {algebr. }}\right)$

Chinese remaindering and evaluation/interpolation

Evaluate P in a \leftrightarrow Reduce P modulo $X-a$

Polynomials \mid Integers

Evaluation:

$P \bmod X-a$
Evaluate P in a

Interpolation:

$\left.P=\sum_{i=1}^{k} \frac{\prod_{j \neq i}\left(X-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} \right\rvert\, N=\sum_{i=1}^{k} a_{i} \prod_{j \neq i} m_{j}\left(\prod_{j \neq i} m_{j}\right)^{-1\left[m_{i}\right]}$

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over $K[X]$

- size of coefficients
- degree of polynomials
- $\mathcal{O}\left(\log \|\right.$ result $\left.\| \times T_{\text {algebr. }}\right)$
- $\mathcal{O}($ deg (result $\left.) \times T_{\text {algebr. }}\right)$
$-\operatorname{det}(n,\|A\|)=\mathcal{O}^{\sim}\left(n \log \mid A \| \times n^{\omega}\right)$
- $\operatorname{det}(n, d)=\mathcal{O}^{\sim}\left(n d \times n^{\omega}\right)$

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

- For each new modulo n_{i} :
- reconstruct $y_{i}=f(x) \bmod n_{1} \times \cdots \times n_{i}$
- If $y_{i}=y_{i-1} \quad \Rightarrow$ terminated
\Rightarrow probabilistic Monte Carlo

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_{i} : such that $n_{1} \ldots n_{k}>\beta$
\Rightarrow deterministic algorithm

Early termination

- For each new modulo n_{i} :
- reconstruct $y_{i}=f(x) \bmod n_{1} \times \cdots \times n_{i}$
- If $y_{i}=y_{i-1} \Rightarrow$ terminated
\Rightarrow probabilistic Monte Carlo
Advantage:
- Adaptive number of moduli depending on the output value
- Interesting when
- pessimistic bound: sparse/structured matrices, ...
- no bound available

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering
Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Redundant residues codes

Principle:

- Chinese remaindering based parallelization
- Byzantines faults affecting some modular computations
- Fault tolerant reconstruction
\Rightarrow Algorithm Based Fault Tolerance (ABFT)

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering
Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
\begin{array}{ll|l|l|l|}
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l}
x_{1} & x_{2} & \ldots \\
\hline
\end{array} \mathrm{l} \\
\hline
\end{array}
$$

where $p_{1} \times \cdots \times p_{k}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots & x_{n} \\
\hline
\end{array}
$$

where $p_{1} \times \cdots \times p_{n}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Mandelbaum algorithm over \mathbb{Z}

Chinese Remainder Theorem

$$
x \in \mathbb{Z} \longleftrightarrow \begin{array}{|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & \ldots & x_{k} & x_{k+1} & \ldots \\
\hline
\end{array}
$$

where $p_{1} \times \cdots \times p_{n}>x$ and $x_{i}=x \bmod p_{i} \forall i$

Definition

(n, k)-code: $C=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{n}}\right.$ s.t. $\exists x,\left\{\begin{aligned} x & <p_{1} \ldots p_{k} \\ x_{i} & =x \bmod p_{i} \forall i\end{aligned}\right\}$

Principle

Property

$$
X \in C \text { iff } X<\Pi_{k} .
$$

Redundancy : $r=n-k$

Principle

Transmission Channel
 \equiv

Computation

Principle

Noisy Transmission Channel \equiv Unsecured Computation

Principle

Noisy Transmission Channel \equiv Unsecured Computation

Encoding

Input $\quad A$	
	$<M_{n}$

Solution $x<M_{k}$

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod p_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} p_{i}$

Properties of the code

Error model:

- Error: $E=X^{\prime}-X$
- Error support: $I=\left\{i \in 1 \ldots n, E \neq 0 \bmod p_{i}\right\}$
- Impact of the error: $\Pi_{F}=\prod_{i \in I} p_{i}$

Detects up to r errors:
If $X^{\prime}=X+E$ with $X \in C, \# I \leq r$,

$$
X^{\prime}>\Pi_{k}
$$

- Redundancy $r=n-k$, distance: $r+1$
- \Rightarrow can correct up to $\left\lfloor\frac{r}{2}\right\rfloor$ errors in theory
- More complicated in practice...

Correction

- $\forall i \notin I: E \bmod p_{i}=0$
- E is a multiple of $\Pi_{V}: E=Z \Pi_{V}=Z \prod_{i \notin I}$
$-\operatorname{gcd}(E, \Pi)=\Pi_{V}$
Mandelbaum 78: rational reconstruction

$$
\begin{aligned}
& \qquad \begin{aligned}
X=X^{\prime}-E & =X^{\prime}-Z \Pi_{v} \\
\frac{X}{\Pi} & =\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}
\end{aligned} \\
& \Rightarrow\left|\frac{X^{\prime}}{\Pi}-\frac{Z}{\Pi_{F}}\right| \leq \frac{1}{2 \Pi_{F}^{2}} \\
& \Rightarrow \frac{Z}{\Pi_{F}}=\frac{E}{\Pi} \text { is a convergent of } \frac{X^{\prime}}{\Pi} \\
& \Rightarrow \text { rational reconstruction of } X^{\prime} \bmod \Pi
\end{aligned}
$$

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial algorithm if $e \leq(n-k) \frac{\log p_{\min }-\log 2}{\log p_{\max }+\log p_{\text {min }}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- Polynomial algorithm if $e \leq(n-k) \frac{\log p_{\min }-\log 2}{\log p_{\text {max }}+\log p_{\text {min }}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues \Rightarrow equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

- Errors have variable weights depending on their impact $\Pi_{F}=\prod_{i \in I} p_{i}$
- Example: $X=20, p_{1}=2, p_{2}=3, p_{3}=101$
- 1 error on $X \bmod 2$, or $X \bmod 3$, can be corrected
- but not on $X \bmod 101$

Plan

```
Introduction
    High performance exact computations
    Security of distributed computations
    Fault tolerance
    Exact linear algebra
Chinese remaindering
```

Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

- Chinese Remaindering over $K[X]$
- $p_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

- Chinese Remaindering over $K[X]$
- $p_{i}=X-a_{i}$
- Encoding = evaluation in a_{i}
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu
\Rightarrow Generalization for p_{i} of degrees >1
\Rightarrow Variable impact, depending on the degree of p_{i}
\Rightarrow Necessary unification [Sudan 01,...]

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering
Redundant residues codes
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Generalized point of view: amplitude code

- Over a Euclidean ring \mathcal{A} with a Euclidean function ν
- Distance

$$
\begin{aligned}
\Delta: \mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[P_{i}\right]} \log _{2} \nu\left(P_{i}\right)
\end{aligned}
$$

Definition

(n, k) amplitude code $C=\{x \in \mathcal{A}: \nu(x)<\kappa\}$,
$n=\log _{2} \Pi, k=\log _{2} \kappa$.

Generalized point of view: amplitude code

- Over a Euclidean ring \mathcal{A} with a Euclidean function ν
- Distance

$$
\begin{aligned}
\Delta: \mathcal{A} \times \mathcal{A} & \rightarrow \mathbb{R}_{+} \\
(x, y) & \mapsto \sum_{i \mid x \neq y\left[P_{i}\right]} \log _{2} \nu\left(P_{i}\right)
\end{aligned}
$$

Definition

(n, k) amplitude code $C=\{x \in \mathcal{A}: \nu(x)<\kappa\}$, $n=\log _{2} \Pi, k=\log _{2} \kappa$.

Property (Quasi MDS)

$d>n-k$ in general, and $d \geq n-k+1$ over $K[X]$.
\Rightarrow correction rate $=$ maximal amplitude of an error that can be corrected

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Interpretation of Mandelbaum's algorithm

Remark

Rational reconstruction \Rightarrow Partial Extended Euclidean Algorithm

Property

The Extended Euclidean Algorithm, applied to (E, Π) and to $\left(X^{\prime}=X+E, \Pi\right)$, performs the same first iterations until $r_{i}<\Pi_{V}$.

$$
\begin{gathered}
u_{i-1} E+v_{i-1} \Pi=\Pi_{v} \\
u_{i} E+v_{i} \Pi=0
\end{gathered} \begin{gathered}
u_{i-1} X^{\prime}+v_{i-1} \Pi=r_{i-1} \\
\quad u_{i} X^{\prime}+v_{i} \Pi=r_{i} \\
\Rightarrow u_{i} X=r_{i}
\end{gathered}
$$

Amplitude decoding, with static correction capacity Amplitude based decoder over R

Donnée: Π, X^{\prime}
Donnée: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude Résultat: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

```
    \(\alpha_{0}=1, \beta_{0}=0, r_{0}=\Pi ;\)
    \(\alpha_{1}=0, \beta_{1}=1, r_{1}=X^{\prime} ;\)
    \(i=1\);
    while \(\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right)\) do
        Let \(r_{i-1}=q_{i} r_{i}+r_{i+1}\) be the Euclidean division of \(r_{i-1}\) by \(r_{i}\);
        \(\alpha_{i+1}=\alpha_{i-1}-q_{i} \alpha_{i}\);
        \(\beta_{i+1}=\beta_{i-1}-q_{i} \beta_{i} ;\)
        \(i=i+1\);
    return \(X=-\frac{r_{i}}{\beta_{i}}\)
```

end

- reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity Amplitude based decoder over R

Donnée: Π, X^{\prime}
Donnée: $\tau \in \mathbb{R}_{+} \left\lvert\, \tau<\frac{\nu(\Pi)}{2}\right.$: bound on the maximal error amplitude Résultat: $X \in R$: corrected message s.t. $\nu(X) 4 \tau^{2} \leq \nu(\Pi)$ begin

```
    \(\alpha_{0}=1, \beta_{0}=0, r_{0}=\Pi ;\)
    \(\alpha_{1}=0, \beta_{1}=1, r_{1}=X^{\prime} ;\)
    \(i=1\);
    while \(\left(\nu\left(r_{i}\right)>\nu(\Pi) / 2 \tau\right)\) do
        Let \(r_{i-1}=q_{i} r_{i}+r_{i+1}\) be the Euclidean division of \(r_{i-1}\) by \(r_{i}\);
        \(\alpha_{i+1}=\alpha_{i-1}-q_{i} \alpha_{i}\);
        \(\beta_{i+1}=\beta_{i-1}-q_{i} \beta_{i} ;\)
        \(i=i+1\);
```

 return \(X=-\frac{r_{i}}{\beta_{i}}\)
 end

- reaches the quasi-maximal correction capacity
- requires a a priori knowledge of τ
\Rightarrow How to make the correction capacity adaptive?

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes
 Over Z: Mandelbaum algorithm
 Over K[X]: Reed Solomon point of view
 Generalization

Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redondance effective utilisable

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
\Rightarrow pessimistic estimate
\Rightarrow how to take advantage of all the available redundancy?
redondance effective utilisable

- Allow early termination: variable n and unknown bound

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algelora
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

- $\alpha_{i+1} \Pi-\beta_{i+1} E=0$
$\Rightarrow E=\alpha_{i+1} \Pi / \beta_{i+1}$
\Rightarrow test if β_{j} divides Π
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(\beta_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

- $\alpha_{i+1} \Pi-\beta_{i+1} E=0$
$\Rightarrow E=\alpha_{i+1} \Pi / \beta_{i+1}$
\Rightarrow test if β_{j} divides \square
- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4 \nu\left(\beta_{j}\right)^{2}}$
- But several candidates are possible
\Rightarrow discrimination by a post-condition on the result

Example

$$
\begin{array}{l|lll}
p_{i} & 3 & 5 & 7 \\
\hline x_{i} & 2 & 3 & 2
\end{array}
$$

- $x=23$ with 0 error
- $x=2$ with 1 error

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algelora
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- $\quad \Rightarrow$ Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Detecting a gap

$$
\alpha_{i} \Pi-\beta_{i}(X+E)=r_{i} \quad \Rightarrow \quad \alpha_{i} \Pi-\beta_{i} E=r_{i}+\beta_{i} X
$$

$\beta_{i} X$ \square
$X=-r_{i} / \beta_{i}$

- At the final iteration: $\nu\left(r_{i}\right) \approx \nu\left(\beta_{i} X\right)$
- If necessary, a gap appears between r_{i-1} and r_{i}.
- \Rightarrow Introduce a blank 2^{g} in order to detect a gap $>2^{g}$

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algelora
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap

Experiments

Terminaison anticipée

Experiments

Size of the error	10	50	100	200	500	1000
$g=2$	$1 / 446$	$1 / 765$	$1 / 1118$	$2 / 1183$	$2 / 4165$	$1 / 7907$
$g=3$	$1 / 244$	$1 / 414$	$1 / 576$	$2 / 1002$	$2 / 2164$	$1 / 4117$
$g=5$	$1 / 53$	$1 / 97$	$1 / 153$	$2 / 262$	$1 / 575$	$1 / 1106$
$g=10$	$1 / 1$	$1 / 3$	$1 / 9$	$1 / 14$	$1 / 26$	$1 / 35$
$g=20$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$	$1 / 1$

Table: Number of remaining candidates after the gap detection: c / d means d candidates with a gap $>2^{g}$, and c of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26016$ ($m=1300$ moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Experiments

Figure: Comparison for $n \approx 200917$ ($m=10000$ moduli of 20 bits), $\kappa \approx 170667$ (8500 moduli) and $\tau \approx 10498$ (500 moduli).

Gap: Euclidean Algorithm down to the end \Rightarrow overhead

Plan

Introduction

High performance exact computations
Security of distributed computations
Fault tolerance
Exact linear algebra
Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization
Adaptive approach
A first approach
Detecting a gap
Experiments
Terminaison anticipée

Early termination

Figure: Fault tolerant distributed computation with early termination

Conclusion

New metric for redundant residue codes:

- Unification
- Finer bounds on the correction capacities
- Enable adaptive decoding

Adaptative decoding and early termination

- Several approaches
- Gap method: limited overhead, better performances
- Insertion in a global framework for early termination

Perspective

- Theoretical explanation of the efficiency of the gap method: average distribution of the quotients q_{i} in the EEA).
- Better correction capacities over \mathbb{Z} and $K[X]$ only.
- Generalization to adaptive list decoding [Sudan, Guruswami]

