Adaptive decoding for evaluation/interpolation codes

Clément PERNET joint work with M. Khonji, J-L. Roch, T. Roche et T. Stalinski INRIA-MOAIS, LIG, Grenoble Université

Claude Shannon Institute, University College Dublin Thursday June 3, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Plan

Introduction High performance exact computations Security of distributed computations

- Fault tolerance
- Exact linear algebra
- Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

High performance exact computations

Domain of Computation

- ▶ $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- ▶ \mathbb{Z}_{ρ} , GF(ρ^{k}) \Rightarrow specific arithmetic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

•
$$K[X]$$
 for $K = \mathbb{Z}, \mathbb{Z}_p, \dots$

High performance exact computations

Domain of Computation

- ▶ $\mathbb{Z}, \mathbb{Q} \Rightarrow$ variable size
- ▶ \mathbb{Z}_{ρ} , GF(ρ^{k}) \Rightarrow specific arithmetic
- K[X] for $K = \mathbb{Z}, \mathbb{Z}_p, \dots$

Application domains:

Computational number theory:

- computing tables of elliptic curves, modular forms,
- testing conjectures

Crypto:

 Algebraic attacks (Quadratic sieves, Groebner bases, index calculus,...)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Recherches de grands nombres premiers

Graph theory: testing conjectures (isomorphism,...)

Plan

Introduction

High performance exact computations Security of distributed computations

Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Parallel computation

Trend towards massive parallelism

Personal computers ⇒multi/many cores

- End of the CPU frequency race
- Multi-core: 2, 4, 6, ...
- Many-cores: near future, already in GPUs

(ロ) (同) (三) (三) (三) (三) (○) (○)

multi-GPU

Parallel computation

Trend towards massive parallelism

Personal computers ⇒multi/many cores

- End of the CPU frequency race
- Multi-core: 2, 4, 6, ...
- Many-cores: near future, already in GPUs
- multi-GPU

HPC \Rightarrow Distributed computation, global computing

- servers
- clusters, grids
- volunteer computing, P2P
- ambiant, cloud computing

Security of computations

Peer to peer

 Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Petaflops (670 000 PS3s) in 2007

Security of computations

Peer to peer

- Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC
- Petaflops (670 000 PS3s) in 2007
- What level of confidence?
 - machine badly configured, overclocking
 - malicious program
 - large scale corruption possible (client patched and redistributed)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Security of computations

Peer to peer

- Popular projects: Mersenne Prime search, SETI@Home, Folding@Home, BOINC
- Petaflops (670 000 PS3s) in 2007
- What level of confidence?
 - machine badly configured, overclocking
 - malicious program
 - large scale corruption possible (client patched and redistributed)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ambiant distributed computation

- Connection / Disconnection of resources
- Corruption (forged tasks)

Plan

Introduction

High performance exact computations Security of distributed computations

Fault tolerance

Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Fault tolerance

Several kinds of faults

Fail stop (crash, disconnection...)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Network congestion
- Malicious attacks

Fault tolerance

Several kinds of faults

- Fail stop (crash, disconnection...)
- Network congestion
- Malicious attacks
- ⇒Byzantine fault model (not always wrong)
 - ► Most of the time correct ⇒blacklisting is not an option

(ロ) (同) (三) (三) (三) (三) (○) (○)

Fault tolerance

Several kinds of faults

- Fail stop (crash, disconnection...)
- Network congestion
- Malicious attacks
- ⇒Byzantine fault model (not always wrong)
- Most of the time correct \Rightarrow blacklisting is not an option

Several approaches:

- Replication: vote, spot-checking, blacklisting, partial execution on safe resources
- Verification using post-conditions on the output
- ABFT: Algorithm-based fault tolerance

Idea: incorporate redundancy in the algorithm ⇒use properties specific to the problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Idea: incorporate redundancy in the algorithm ⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Idea: incorporate redundancy in the algorithm ⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Idea: incorporate redundancy in the algorithm ⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

- pre-compute the product $B = A \times \begin{bmatrix} I & R \end{bmatrix}$
- compute x = uB in parallel
- decode/correct x

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance

Exact linear algebra

Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \Rightarrow One of the building blocks to be optimized in numerous applications

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 \Rightarrow One of the building blocks to be optimized in numerous applications

Optimizing exact linear algebra:

- Matrix product over Z_p
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration
- Chinese remaindering algorithm

Exact linear algebra

Mathematics is the art of reducing any problem to linear algebra

W. Stein

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 \Rightarrow One of the building blocks to be optimized in numerous applications

Optimizing exact linear algebra:

- Matrix product over Z_p
- Eliminations: Gauss, Gram-Schmidt (LLL), ...
- Krylov iteration
- Chinese remaindering algorithm

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Chinese remainder algorithm

$$\mathbb{Z}/(n_1 \dots n_k)\mathbb{Z} \equiv \mathbb{Z}/n_1\mathbb{Z} \times \dots \times \mathbb{Z}/n_k\mathbb{Z}$$

Computation of y = f(x) over \mathbb{Z}

begin Compute a bound β on max(|f|); Pick $n_1, \dots n_k$, pairwise prime, s.t. $n_1 \dots n_k > \beta$; for $i = 1 \dots k$ do Compute $y_i = f(x \mod n_i) \mod n_i$ Compute $y = \text{CRT}(y_1, \dots, y_k)$ end

$$CRT: \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \to \mathbb{Z}/(n_1 \dots n_k)\mathbb{Z}$$
$$(x_1, \dots, x_k) \mapsto \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi$$
where
$$\begin{cases} \Pi = \prod_{i=1}^k n_i \\ \Pi_i = \Pi/n_i \\ Y_i = \Pi_i^{-1} \mod n_i \end{cases}$$

Chinese remainder algorithm

$$\mathbb{Z}/(n_1 \dots n_k)\mathbb{Z} \equiv \mathbb{Z}/n_1\mathbb{Z} \times \dots \times \mathbb{Z}/n_k\mathbb{Z}$$

Computation of y = f(x) over \mathbb{Z}

$$CRT: \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \to \mathbb{Z}/(n_1 \dots n_k)\mathbb{Z}$$

$$(x_1, \dots, x_k) \mapsto \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi$$
where
$$\begin{cases} \Pi = \prod_{i=1}^k n_i \\ \Pi_i = \Pi/n_i \\ Y_i = \Pi_i^{-1} \mod n_i \end{cases}$$

Evaluate *P* in *a* \leftrightarrow Reduce *P* modulo *X* – *a*

Evaluate <i>P</i> in <i>a</i>	\leftrightarrow	Reduce <i>P</i> modulo <i>X</i> – <i>a</i>
Polynomials		
Evaluation: $P \mod X - a$ Evaluate $P \ln a$		
Interpolation: $P = \sum_{i=1}^{k} rac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Evaluate P in a		$\leftrightarrow \qquad \qquad \text{Reduce } P \text{ modulo } X - 1$	а
•	Polynomials	Integers	
-	Evaluation: $P \mod X - a$ Evaluate $P \ln a$	<i>N</i> mod <i>m</i> "Evaluate' <i>N</i> in <i>m</i>	
-	Interpolation: $P = \sum_{i=1}^{k} \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$	$N = \sum_{i=1}^{k} a_i \prod_{j \neq i} m_j (\prod_{j \neq i} m_j)^{-1[m_i]}$	

(ロ)、

Evaluate P in a		\leftrightarrow	Reduce P modulo $X - a$
Poly	nomials	Integers	
Eval	uation:		
Р	mod <i>X</i> – <i>a</i>		N mod m
E٧	valuate <i>P</i> in <i>a</i>		'Evaluate' <i>N</i> in <i>m</i>
Inter	polation:		
<i>P</i> =	$\sum_{i=1}^{k} \frac{\prod_{j\neq i} (X-a_j)}{\prod_{j\neq i} (a_i-a_j)}$	$N = \sum_{i=1}^{k}$	$_{1} a_{i} \prod_{j \neq i} m_{j} (\prod_{j \neq i} m_{j})^{-1[m_{i}]}$

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over K[X]

- size of coefficients
- $\blacktriangleright \mathcal{O}\left(\log \|\text{result}\| \times T_{\text{algebr.}}\right)$

degree of polynomials

•
$$\mathcal{O}\left(\operatorname{\mathsf{deg}}(\operatorname{\mathsf{result}}) \times \mathcal{T}_{\operatorname{\mathsf{algebr.}}}\right)$$

Evaluate P in a		$\leftrightarrow \qquad \qquad \text{Reduce } P \text{ modulo } X - X$	а
-	Polynomials	Integers	
-	Evaluation:		
	<i>P</i> mod <i>X</i> − <i>a</i>	N mod m	
	Evaluate P in a	"Evaluate' <i>N</i> in <i>m</i>	
-	Interpolation:		
	$P = \sum_{i=1}^{k} rac{\prod_{j eq i} (X-a_j)}{\prod_{j eq i} (a_i - a_j)}$	$N = \sum_{i=1}^{k} a_i \prod_{j \neq i} m_j (\prod_{j \neq i} m_j)^{-1[m_i]}$	

Analogy: complexities over $\mathbb{Z} \leftrightarrow$ over K[X]

- size of coefficients
- $\blacktriangleright \mathcal{O}\left(\log \|\text{result}\| \times T_{\text{algebr.}}\right)$
- $\det(n, ||A||) = \mathcal{O}(n \log |A|| \times n^{\omega})$

- degree of polynomials
- $\blacktriangleright \mathcal{O}\left(\mathsf{deg}(\mathsf{result}) \times \mathcal{T}_{\mathsf{algebr.}}\right)$
- $det(n, d) = \mathcal{O}(nd \times n^{\omega})$

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_i : such that $n_1 \dots n_k > \beta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \Rightarrow deterministic algorithm

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_i : such that $n_1 \dots n_k > \beta$

⇒deterministic algorithm

Early termination

- For each new modulo n_i:
 - reconstruct $y_i = f(x) \mod n_1 \times \cdots \times n_i$

・ロト・日本・日本・日本・日本

• If $y_i = y_{i-1} \Rightarrow$ terminated

⇒probabilistic Monte Carlo

Early termination

Classic Chinese remaindering

- bound β on the result
- Choice of the n_i : such that $n_1 \dots n_k > \beta$

⇒deterministic algorithm

Early termination

- For each new modulo n_i:
 - reconstruct $y_i = f(x) \mod n_1 \times \cdots \times n_i$
 - If $y_i = y_{i-1} \Rightarrow$ terminated

⇒probabilistic Monte Carlo

Advantage:

- Adaptive number of moduli depending on the output value
- Interesting when
 - pessimistic bound: sparse/structured matrices, ...
 - no bound available

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Redundant residues codes

Principle:

- Chinese remaindering based parallelization
- Byzantines faults affecting some modular computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fault tolerant reconstruction
 Algorithm Based Fault Tolerance (ABFT)

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm

Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Mandelbaum algorithm over \mathbb{Z}

Mandelbaum algorithm over \mathbb{Z}

Mandelbaum algorithm over \mathbb{Z}

Definition

$$(n,k)\text{-code: } C = \\ \left\{ (x_1,\ldots,x_n) \in \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_n} \text{ s.t. } \exists x, \left\{ \begin{array}{ll} x & < p_1 \ldots p_k \\ x_i & = x \mod p_i \forall i \end{array} \right\} \right. \end{cases}$$

Property

$X \in C$ iff $X < \prod_k$.

Redundancy : r = n - k

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Transmission Channel \equiv Computation

Noisy Transmission Channel = Unsecured Computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties of the code

Error model:

- ► Error: *E* = *X*′ − *X*
- ▶ Error support: $I = \{i \in 1 ... n, E \neq 0 \mod p_i\}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Impact of the error: $\Pi_F = \prod_{i \in I} p_i$

Properties of the code

Error model:

- ► Error: *E* = *X*′ − *X*
- ▶ Error support: $I = \{i \in 1 ... n, E \neq 0 \mod p_i\}$
- Impact of the error: $\Pi_F = \prod_{i \in I} p_i$

Detects up to *r* errors:

```
If X' = X + E with X \in C, \#I \leq r,
```

 $X' > \Pi_k$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Redundancy r = n k, distance: r + 1
- ► ⇒can correct up to $\lfloor \frac{r}{2} \rfloor$ errors in theory
- More complicated in practice...

Correction

$$\blacktriangleright \forall i \notin I : E \mod p_i = 0$$

- *E* is a multiple of Π_V : $E = Z \Pi_V = Z \prod_{i \notin I}$
- $gcd(E,\Pi) = \Pi_V$

Mandelbaum 78: rational reconstruction

$$X = X' - E = X' - Z\Pi_{v}$$
$$\frac{X}{\Pi} = \frac{X'}{\Pi} - \frac{Z}{\Pi_{F}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\Rightarrow |\frac{X'}{\Pi} - \frac{Z}{\Pi_F}| \le \frac{1}{2\Pi_F^2} \Rightarrow \frac{Z}{\Pi_F} = \frac{E}{\Pi} \text{ is a convergent of } \frac{X'}{\Pi} \Rightarrow \text{rational reconstruction of } X' \mod \Pi$$

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- ▶ Polynomial algorithm if $e \le (n-k) \frac{\log p_{\min} \log 2}{\log p_{\max} + \log p_{\min}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent Guruswami Sahai Sudan 00 invariably polynomial time

Correction capacity

Mandelbaum 78:

- 1 symbol = 1 residue
- ▶ Polynomial algorithm if $e \le (n-k) \frac{\log p_{\min} \log 2}{\log p_{\max} + \log p_{\min}}$
- worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:

- Errors have variable weights depending on their impact $\Pi_F = \prod_{i \in I} p_i$
- Example: $X = 20, p_1 = 2, p_2 = 3, p_3 = 101$
 - 1 error on X mod 2, or X mod 3, can be corrected
 - but not on X mod 101

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chinese Remaindering over K[X]

$$\triangleright$$
 $p_i = X - a_i$

- Encoding = evaluation in a_i
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu

Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean Alg:

(日) (日) (日) (日) (日) (日) (日)

Chinese Remaindering over K[X]

$$\triangleright p_i = X - a_i$$

- Encoding = evaluation in a_i
- Decoding = interpolation
- Correction = Extended Euclidean algorithm étendu
- \Rightarrow Generalization for p_i of degrees > 1
- \Rightarrow Variable impact, depending on the degree of p_i
- ⇒Necessary unification [Sudan 01,...]

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Generalized point of view: amplitude code

- Over a Euclidean ring A with a Euclidean function ν
- Distance

$$\begin{array}{rcccc} \Delta : & \mathcal{A} \times \mathcal{A} & \to & \mathbb{R}_+ \\ & (x,y) & \mapsto & \sum_{i \mid x \neq y[P_i]} \log_2 \nu\left(P_i\right) \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

(n,k) amplitude code $C = \{x \in \mathcal{A} : \nu(x) < \kappa\},\ n = \log_2 \Pi, k = \log_2 \kappa.$

Generalized point of view: amplitude code

- Over a Euclidean ring A with a Euclidean function ν
- Distance

$$\begin{array}{rcccc} \Delta : & \mathcal{A} \times \mathcal{A} & \to & \mathbb{R}_+ \\ & (x,y) & \mapsto & \sum_{i \mid x \neq y [P_i]} \log_2 \nu \left(P_i \right) \end{array}$$

Definition

(*n*,*k*) amplitude code $C = \{x \in A : \nu(x) < \kappa\}$, $n = \log_2 \Pi, k = \log_2 \kappa$.

Property (Quasi MDS)

d > n - k in general, and $d \ge n - k + 1$ over K[X].

⇒correction rate = maximal amplitude of an error that can be corrected

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- No need to sort moduli
- Finer correction capacities

Advantages

- Generalization over any Euclidean ring
- Natural representation of the amount of information
- No need to sort moduli
- Finer correction capacities
- Adaptive decoding: taking advantage of all the available redundancy
- Early termination: with no a priori knowledge of a bound on the result

Interpretation of Mandelbaum's algorithm

Remark

Rational reconstruction \Rightarrow Partial Extended Euclidean Algorithm

Property

The Extended Euclidean Algorithm, applied to (E, Π) and to $(X' = X + E, \Pi)$, performs the same first iterations until $r_i < \Pi_V$.

$$u_{i-1}E + v_{i-1}\Pi = \Pi_{v} | u_{i-1}X' + v_{i-1}\Pi = r_{i-1}$$
$$u_{i}E + v_{i}\Pi = 0 | u_{i}X' + v_{i}\Pi = r_{i}$$
$$\Rightarrow u_{i}X = r_{i}$$

Amplitude decoding, with static correction capacity Amplitude based decoder over *R*

Donnée: Π, X' **Donnée**: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude **Résultat**: $X \in R$: corrected message s.t. $\nu(X)4\tau^2 \leq \nu(\Pi)$ begin $\alpha_0 = 1, \beta_0 = 0, r_0 = \Pi;$ $\alpha_1 = 0, \beta_1 = 1, r_1 = X'$ i = 1: while $(\nu(r_i) > \nu(\Pi)/2\tau)$ do Let $r_{i-1} = q_i r_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i ; $\alpha_{i+1} = \alpha_{i-1} - \mathbf{q}_i \alpha_i;$ $\beta_{i+1} = \beta_{i-1} - q_i \beta_i;$ i = i + 1: return $X = -\frac{r_i}{\beta_i}$ end

reaches the quasi-maximal correction capacity

Amplitude decoding, with static correction capacity Amplitude based decoder over *R*

Donnée: Π, X' **Donnée**: $\tau \in \mathbb{R}_+ \mid \tau < \frac{\nu(\Pi)}{2}$: bound on the maximal error amplitude **Résultat**: $X \in R$: corrected message s.t. $\nu(X)4\tau^2 \leq \nu(\Pi)$ begin $\alpha_0 = 1, \beta_0 = 0, r_0 = \Pi;$ $\alpha_1 = 0, \beta_1 = 1, r_1 = X'$ i = 1: while $(\nu(r_i) > \nu(\Pi)/2\tau)$ do Let $r_{i-1} = q_i r_i + r_{i+1}$ be the Euclidean division of r_{i-1} by r_i ; $\alpha_{i+1} = \alpha_{i-1} - \mathbf{q}_i \alpha_i;$ $\beta_{i+1} = \beta_{i-1} - q_i \beta_i;$ i = i + 1: return $X = -\frac{r_i}{\beta_i}$ end

- reaches the quasi-maximal correction capacity
- requires a *a priori* knowledge of τ

 \Rightarrow How to make the correction capacity adaptive?

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

Adaptive approach

A first approach Detecting a gap Experiments Terminaison anticipée

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
 - ⇒pessimistic estimate
 - ⇒how to take advantage of all the available redundancy?

Adaptive approach

Multiple goals:

- With a fixed n, the correction capacity depends on a bound on X
 - ⇒pessimistic estimate
 - ⇒how to take advantage of all the available redundancy?

Allow early termination: variable n and unknown bound

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach

Detecting a gap Experiments Terminaison anticipée

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

•
$$\alpha_{i+1}\Pi - \beta_{i+1}E = 0$$

 $\Rightarrow E = \alpha_{i+1}\Pi/\beta_{i+1}$
 \Rightarrow test if β_j divides Π

- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4\nu(\beta_i)^2}$
- But several candidates are possible
 ⇒discrimination by a post-condition on the result

(日) (日) (日) (日) (日) (日) (日)

A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

•
$$\alpha_{i+1}\Pi - \beta_{i+1}E = 0$$

 $\Rightarrow E = \alpha_{i+1}\Pi/\beta_{i+1}$
 \Rightarrow test if β_j divides Π

- check if X satisfies: $\nu(X) \leq \frac{\nu(\Pi)}{4\nu(\beta_i)^2}$
- But several candidates are possible
 ⇒discrimination by a post-condition on the result

Example

- x = 23 with 0 error
- x = 2 with 1 error

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach

Detecting a gap

Experiments Terminaison anticipée

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \implies \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \implies \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \implies \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X \qquad 2^{g}$$

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X \qquad 2^{g}$$

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \qquad \Rightarrow \qquad \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X \qquad 2^{\circ}$$

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \implies \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X \qquad 2^{g}$$

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .
- ▶ ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

$$\alpha_{i}\Pi - \beta_{i}(X + E) = r_{i} \implies \alpha_{i}\Pi - \beta_{i}E = r_{i} + \beta_{i}X$$

$$r_{i}$$

$$\beta_{i}X \qquad 2^{g}$$

 $X = -r_i/\beta_i$

- At the final iteration: $\nu(r_i) \approx \nu(\beta_i X)$
- ▶ If necessary, a gap appears between r_{i-1} and r_i .
- ► ⇒Introduce a *blank* 2^g in order to detect a gap > 2^g

Property

- Loss of correction capacity: very small in practice
- Test of the divisibility for the remaining candidates
- Strongly reduces the number of divisibility tests

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adaptive approach

A first approach Detecting a gap

Experiments

Terminaison anticipée

Experiments

Size of the error	10	50	100	200	500	1000
<i>g</i> = 2	1/446	1/765	1/1118	2⁄1183	2⁄4165	1/7907
g= 3	1/ ₂₄₄	1/414	1/576	2/1002	2⁄2164	1/4117
g = 5	1/53	1/97	1/153	2/262	1/575	¹ /1106
<i>g</i> = 10	1/1	1/3	1/9	1/14	1/26	1/35
<i>g</i> = 20	1/1	1/1	1/1	1/1	1/1	1/1

Table: Number of remaining candidates after the gap detection: c/d means *d* candidates with a gap > 2^{*g*}, and *c* of them passed the divisibility test. $n \approx 6001$ (3000 moduli), $\kappa \approx 201$ (100 moduli).

Experiments

Figure: Comparison for $n \approx 26016$ (m = 1300 moduli of 20 bits), $\kappa \approx 6001$ (300 moduli) and $\tau \approx 10007$ (about 500 moduli).

Experiments

Figure: Comparison for $n \approx 200\,917$ (m = 10000 moduli of 20 bits), $\kappa \approx 17\,0667$ (8500 moduli) and $\tau \approx 10498$ (500 moduli).

Gap: Euclidean Algorithm down to the end ⇒overhead

Plan

Introduction

High performance exact computations Security of distributed computations Fault tolerance Exact linear algebra Chinese remaindering

Redundant residues codes

Over Z: Mandelbaum algorithm Over K[X]: Reed Solomon point of view Generalization

Adaptive approach

A first approach Detecting a gap Experiments

Terminaison anticipée

Early termination

Figure: Fault tolerant distributed computation with early termination

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Conclusion

New metric for redundant residue codes:

- Unification
- Finer bounds on the correction capacities
- Enable adaptive decoding

Adaptative decoding and early termination

- Several approaches
- Gap method: limited overhead, better performances
- Insertion in a global framework for early termination

Perspective

- Theoretical explanation of the efficiency of the gap method: average distribution of the quotients q_i in the EEA).
- Better correction capacities over \mathbb{Z} and K[X] only.
- Generalization to adaptive list decoding [Sudan, Guruswami]