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High performance exact computations
Domain of Computation

I Z,Q ⇒variable size
I Zp,GF(pk ) ⇒specific arithmetic
I K [X ] for K = Z,Zp, ....

Application domains:
Computational number theory:

I computing tables of elliptic curves, modular
forms,

I testing conjectures

Crypto:

I Algebraic attacks (Quadratic sieves, Groebner
bases, index calculus,...)

I Recherches de grands nombres premiers

Graph theory: testing conjectures (isomorphism,...)
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Parallel computation

Trend towards massive parallelism

Personal computers ⇒multi/many cores

I End of the CPU frequency race
I Multi-core: 2, 4, 6, ...
I Many-cores: near future, already in GPUs
I multi-GPU

HPC ⇒Distributed computation, global computing

I servers
I clusters, grids
I volunteer computing, P2P
I ambiant, cloud computing

INTERNET

user
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Security of computations

Peer to peer
I Popular projects: Mersenne Prime search, SETI@Home,

Folding@Home, BOINC
I Petaflops (670 000 PS3s) in 2007

I What level of confidence?
I machine badly configured, overclocking
I malicious program
I large scale corruption possible (client patched and

redistributed)

Ambiant distributed computation
I Connection / Disconnection of resources
I Corruption (forged tasks)
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Fault tolerance

Several kinds of faults

I Fail stop (crash, disconnection...)
I Network congestion
I Malicious attacks

⇒Byzantine fault model (not always wrong)

I Most of the time correct ⇒blacklisting is not an option

Several approaches:

I Replication: vote, spot-checking, blacklisting, partial
execution on safe resources

I Verification using post-conditions on the output
I ABFT: Algorithm-based fault tolerance
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ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
⇒use properties specific to the problem

Example: Matrix-vector product [Dongarra & Al. 2006]

u uA

A

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x
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Exact linear algebra

Mathematics is the art of reducing any problem to
linear algebra

W. Stein

⇒One of the building blocks to be optimized in numerous
applications

Optimizing exact linear algebra:

I Matrix product over Zp

I Eliminations: Gauss, Gram-Schmidt (LLL), ...
I Krylov iteration
I Chinese remaindering algorithm
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Chinese remainder algorithm

Z/(n1 . . . nk )Z ≡ Z/n1Z× · · · × Z/nkZ

Computation of y = f (x) over Z

begin
Compute a bound β on max(|f |);
Pick n1, . . .nk , pairwise prime, s.t. n1 . . . nk > β;
for i = 1 . . . k do

Compute yi = f (x mod ni ) mod ni

; /* Evaluation */

Compute y = CRT(y1, . . . , yk )

; /* Interpolation */

end

CRT : Z/n1Z× · · · × Z/nkZ → Z/(n1 . . . nk )Z
(x1, . . . , xk ) 7→

∑k
i=1 xiΠiYi mod Π

where


Π =

∏k
i=1 ni

Πi = Π/ni
Yi = Π−1

i mod ni
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Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj )Q
j 6=i (ai−aj )

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi ]

Analogy: complexities over Z↔ over K [X ]

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) = O˜(n log |A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n,d) = O˜(nd × nω)
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Early termination
Classic Chinese remaindering

I bound β on the result
I Choice of the ni : such that n1 . . . nk > β

⇒deterministic algorithm

Early termination
I For each new modulo ni :

I reconstruct yi = f (x) mod n1 × · · · × ni
I If yi = yi−1 ⇒terminated

⇒probabilistic Monte Carlo

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available
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Redundant residues codes

Principle:
I Chinese remaindering based parallelization
I Byzantines faults affecting some modular computations
I Fault tolerant reconstruction
⇒Algorithm Based Fault Tolerance (ABFT)
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Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z

where p1 × · · · × pk > x and xi = x mod pi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zp1 × · · · × Zpn s.t. ∃x ,
{

x < p1 . . . pk
xi = x mod pi ∀i

}
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Principle

Property

X ∈ C iff X < Πk .

p1 p2 . . . pk pk+1 pn. . .

Πk = p1 × · · · × pk

Πn = p1 × · · · × pn

Redundancy : r = n − k



Principle

Noisy

Transmission Channel ≡

Unsecured

Computation

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . .An)

x′ < Mn

x < Mk

A
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Properties of the code

Error model:
I Error: E = X ′ − X
I Error support: I = {i ∈ 1 . . . n,E 6= 0 mod pi}
I Impact of the error: ΠF =

∏
i∈I pi

Detects up to r errors:

If X ′ = X + E with X ∈ C,#I ≤ r ,

X ′ > Πk .

I Redundancy r = n − k , distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...
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Correction

I ∀i /∈ I : E mod pi = 0
I E is a multiple of ΠV : E = Z ΠV = Z

∏
i /∈I

I gcd(E ,Π) = ΠV

Mandelbaum 78: rational reconstruction

X = X ′ − E = X ′ − Z Πv

X
Π

=
X ′

Π
− Z

ΠF

⇒|X ′Π −
Z

ΠF
| ≤ 1

2Π2
F

⇒ Z
ΠF

= E
Π is a convergent of X ′

Π

⇒rational reconstruction of X ′ mod Π



Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial algorithm if e ≤ (n − k) log pmin−log 2

log pmax+log pmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:
I Errors have variable weights depending on their impact

ΠF =
∏

i∈I pi
I Example: X = 20,p1 = 2,p2 = 3,p3 = 101

I 1 error on X mod 2, or X mod 3, can be corrected
I but not on X mod 101
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Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean
Alg:

I Chinese Remaindering over K [X ]

I pi = X − ai

I Encoding = evaluation in ai

I Decoding = interpolation
I Correction = Extended Euclidean algorithm étendu

⇒Generalization for pi of degrees > 1
⇒Variable impact, depending on the degree of pi
⇒Necessary unification [Sudan 01,...]
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Generalized point of view: amplitude code
I Over a Euclidean ring A with a Euclidean function ν
I Distance

∆ : A×A → R+

(x , y) 7→
∑

i|x 6=y [Pi ]

log2 ν (Pi)

Definition
(n,k) amplitude code C = {x ∈ A : ν(x) < κ},
n = log2 Π, k = log2 κ.

Property (Quasi MDS)

d > n − k in general, and d ≥ n − k + 1 over K [X ].

⇒correction rate = maximal amplitude of an error that can be
corrected
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Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities

I Adaptive decoding: taking advantage of all the available
redundancy

I Early termination: with no a priori knowledge of a bound
on the result
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Interpretation of Mandelbaum’s algorithm
Remark
Rational reconstruction ⇒Partial Extended Euclidean
Algorithm

Property

The Extended Euclidean Algorithm, applied to (E ,Π) and to
(X ′ = X + E ,Π), performs the same first iterations until ri < ΠV .

ui−1E + vi−1Π = Πv ui−1X ′ + vi−1Π = ri−1

uiE + viΠ = 0 uiX ′ + viΠ = ri

⇒uiX = ri



Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Donnée: Π,X ′

Donnée: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Résultat: X ∈ R: corrected message s.t. ν(X )4τ2 ≤ ν(Π)
begin

α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = X ′;
i = 1;
while (ν(ri ) > ν(Π)/2τ ) do

Let ri−1 = qi ri + ri+1 be the Euclidean division of ri−1 by ri ;
αi+1 = αi−1 − qiαi ;
βi+1 = βi−1 − qiβi ;
i = i + 1;

return X = − ri
βi

end

I reaches the quasi-maximal correction capacity

I requires a a priori knowledge of τ
⇒How to make the correction capacity adaptive?
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Adaptive approach

Multiple goals:

I With a fixed n, the correction capacity depends on a bound
on X
⇒pessimistic estimate
⇒how to take advantage of all the available redundancy?

X

borne sur X

redondance effective utilisable

redondance utilisee

I Allow early termination: variable n and unknown bound
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A first adaptive approach
Termination criterion in the Extended Euclidean alg.:

I αi+1Π− βi+1E = 0
⇒E = αi+1Π/βi+1
⇒test if βj divides Π

I check if X satisfies:ν(X ) ≤ ν(Π)
4ν(βj )2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

pi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error
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Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX )
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests
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Experiments

Size of the error 10 50 100 200 500 1000

g = 2 1/446 1/765 1/1118 2/1183 2/4165 1/7907

g = 3 1/244 1/414 1/576 2/1002 2/2164 1/4117

g = 5 1/53 1/97 1/153 2/262 1/575 1/1106

g = 10 1/1 1/3 1/9 1/14 1/26 1/35

g = 20 1/1 1/1 1/1 1/1 1/1 1/1

Table: Number of remaining candidates after the gap detection: c/d

means d candidates with a gap > 2g , and c of them passed the
divisibility test. n ≈ 6001 (3000 moduli), κ ≈ 201 (100 moduli).
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Figure: Comparison for n ≈ 26 016 (m = 1300 moduli of 20 bits),
κ ≈ 6001 (300 moduli) and τ ≈ 10007 (about 500 moduli).

Gap: Euclidean Algorithm down to the end ⇒overhead
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Gap: Euclidean Algorithm down to the end ⇒overhead
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Early termination

P2P workers
Decoder

Secured workers

Certifier

MasterInput

Fork tasks

Output X

Y

CRT Lifter
residues

Empty or X

List of candidates

Figure: Fault tolerant distributed computation with early termination



Conclusion
New metric for redundant residue codes:

I Unification
I Finer bounds on the correction capacities
I Enable adaptive decoding

Adaptative decoding and early termination

I Several approaches
I Gap method: limited overhead, better performances
I Insertion in a global framework for early termination

Perspective

I Theoretical explanation of the efficiency of the gap method:
average distribution of the quotients qi in the EEA).

I Better correction capacities over Z and K [X ] only.
I Generalization to adaptive list decoding [Sudan,

Guruswami]
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