

On finding multiplicities of characteristic polynomial factors of black-box matrices

J-G. DUMAS, C. PERNET and B. D. SAUNDERS

Grenoble Univ. France University of Delaware, USA.

ISSAC 2009, Seoul, July 31

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Graph isomorphism

Problem

 $Graph-isomorphism \in P$?

Graph isomorphism

Problem

 $Graph-isomorphism \in P$?

[Audenaert,& al. 2007] : the spectrum of a symmetric power of the graph determines its isomorphism class ???

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

Graph isomorphism

Problem

 $Graph-isomorphism \in P$?

[Audenaert,& al. 2007] : the spectrum of a symmetric power of the graph determines its isomorphism class ??? Experiments: symmetric powers of families of strongly regular

Experiments: symmetric powers of families of strongly regular graphs

Graph isomorphism

Problem

Graph-isomorphism ∈ **P**?

[Audenaert,& al. 2007] : the spectrum of a symmetric power of the graph determines its isomorphism class ???

Experiments: symmetric powers of families of strongly regular graphs

- *k* = 2 : wrong ([Godsil, Royle & al. 2006])
- *k* = 3 : true up to 29 edges (70 cases, *n* = 3654)
- k = 3: true up to 36 edges (36 510 cases, n = 7140)

Graph isomorphism

Problem

 $Graph-isomorphism \in P$?

[Audenaert,& al. 2007] : the spectrum of a symmetric power of the graph determines its isomorphism class ???

Experiments: symmetric powers of families of strongly regular graphs

- *k* = 2 : wrong ([Godsil, Royle & al. 2006])
- *k* = 3 : true up to 29 edges (70 cases, *n* = 3654)
- k = 3: true up to 36 edges (36 510 cases, n = 7140)

Compute characteristic polynomials over Z

Computing the characteristic polynomial

Overview on the main approaches:

Traces of powers: Leverrier 1881, Faddeev 59, ...

$$\mathcal{O}\left(n^{4}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \Rightarrow Dense, over a ring, best in parallel

Determinant expansion: Samuelson 42, Berkowitz 84 $O(n^4)$

 \Rightarrow Dense, over a ring

Computing the characteristic polynomial

Overview on the main approaches:

Traces of powers: Leverrier 1881, Faddeev 59, ... $\mathcal{O}(n^4)$

 \Rightarrow Dense, over a ring, best in parallel

Determinant expansion: Samuelson 42, Berkowitz 84 $O(n^4)$

 \Rightarrow Dense, over a ring

Elimination based: Danilevskii 37, Hessenberg 41, ... $\mathcal{O}(n^3)$

 \Rightarrow Dense, over a field

(日) (日) (日) (日) (日) (日) (日)

Computing the characteristic polynomial

Overview on the main approaches:

(日) (日) (日) (日) (日) (日) (日)

Computing the characteristic polynomial

Overview on the main approaches:

Experiments

Perspectives

Black Box linear algebra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Matrices viewed as linear operators
- algorithms based on matrix vector apply only \Rightarrow cost E(n)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Matrices viewed as linear operators
- algorithms based on matrix vector apply only \Rightarrow cost E(n)

Structured matrices: Fast apply (e.g. $E(n) = O(n \log n)$) Sparse matrices: Fast apply and no fill-in

- Matrices viewed as linear operators
- algorithms based on matrix vector apply only \Rightarrow cost E(n)

Structured matrices: Fast apply (e.g. $E(n) = O(n \log n)$) Sparse matrices: Fast apply and no fill-in

 \Rightarrow

- Iterative methods
- No access to coefficients, trace, no elimination
- Matrix multiplication ⇒ Black-box composition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Black box linear algebra

Minimal polynomial: [Wiedemann 86]

⇒adapts numerical iterative Krylov/Lanczos methods ⇒ $O(dE(n) + n^2)$ operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02] ⇒reduced to minimal polynomial and preconditioners

Black box linear algebra

Minimal polynomial: [Wiedemann 86]

⇒adapts numerical iterative Krylov/Lanczos methods ⇒ $O(dE(n) + n^2)$ operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02] \Rightarrow reduced to minimal polynomial and preconditioners $\Rightarrow \mathcal{O}^{\sim}(nE(n))$ operations

Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3] CharPoly in $\mathcal{O}(nE(n)) + \mathcal{O}^{\sim}(n^2)$ operations and $\mathcal{O}(n)$ memory

Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3]

CharPoly in $\mathcal{O}(nE(n)) + \mathcal{O}(n^2)$ operations and $\mathcal{O}(n)$ memory

State of the art:

Eberly 2000 : adaptive in the number Φ of invariant factors $\mathcal{O}^{\sim}(nE(n) + \Phi n^2)$

Villard 2000 : adaptive in the number Ψ of distinct invariant factors $\mathcal{O}^{\sim}(n^{1.5}E(n))$

Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3]

CharPoly in $\mathcal{O}(nE(n)) + \mathcal{O}(n^2)$ operations and $\mathcal{O}(n)$ memory

State of the art:

Eberly 2000 : adaptive in the number Φ of invariant factors $\mathcal{O}^{\sim}(nE(n) + \Phi n^2)$

Villard 2000 : adaptive in the number Ψ of distinct invariant factors $\mathcal{O}^{\sim}(n^{1.5}E(n))$

Present Contribution:

- algorithms and heuristics efficient in practice
- improving the best complexity by a log n factor, under a conjectured property

Intr	ndi	ICTI	nn
	out	JOIN	

Outline

Outline

2 Hybrid algorithms

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Towards a fast heuristic:

MinPoly|Charpoly

 \Rightarrow only differ in the multiplicities of irreducible factors.

$$\begin{aligned} \text{MinPoly} &= \prod_{i} P_{i}^{e_{i}} \\ \text{CharPoly} &= \prod_{i} P_{i}^{m_{i}} \text{ with } m_{i} \geq e_{i}, d_{i} = \deg P_{i} \end{aligned}$$

Towards a fast heuristic:

MinPoly|Charpoly

 \Rightarrow only differ in the multiplicities of irreducible factors.

$$\begin{array}{lcl} \textit{MinPoly} & = & \prod_i P_i^{e_i} \\ \textit{CharPoly} & = & \prod_i P_i^{m_i} \text{ with } m_i \geq e_i, d_i = \deg P_i \end{array}$$

- compute MinPoly
- Factor it
- Determine the multiplicities *m_i*

Experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Perspectives

The method of the nullities

Definition

Experiments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Perspectives

The method of the nullities

Definition

Property

$$P(C_P)=0$$

Experiments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Perspectives

The method of the nullities

Definition

Property $P(C_{P}) = 0$ $P_{1}\left(\begin{bmatrix} C_{P_{0}} \\ C_{P_{1}} \end{bmatrix}\right) = \left(\begin{bmatrix} * \\ 0 \end{bmatrix}\right)$ $\Rightarrow nullity = deg(P_{1})$

Experiments

Perspectives

The method of the nullities

Definition

Companion matrix of $P = X^{n} - a_{n-1}X^{n-1} - \dots - a_{0}$: $C_{P} = \begin{bmatrix} 0 & a_{0} \\ 1 & a_{1} \\ & \ddots & \vdots \\ & 1 & a_{n-1} \end{bmatrix}$

Property

$$P(C_P)=0$$

$$P_1\left(\begin{bmatrix} C_{P_0} \\ C_{P_1} \end{bmatrix}\right) = \left(\begin{bmatrix} * \\ 0 \end{bmatrix}\right)$$
$$\Rightarrow nullity = deg(P_1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Experiments

Perspectives

The method of the nullities

Theorem

$$nullity\left(P_{i}^{e_{i}}(A)\right)=m_{i}d_{i}$$

$$\Rightarrow m_i = \left(\frac{n - rank(P_i^{e_i}(A))}{d_i}\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Experiments

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Perspectives

The method of the nullities

Theorem

nullity $(P_i^{e_i}(A)) = m_i d_i$

$$\Rightarrow m_i = \left(rac{n - rank(P_i^{e_i}(A))}{d_i}
ight)$$

Experiments

Perspectives

The method of the nullities

Theorem

$nullity\left(P_{i}^{e_{i}}(A)\right)=m_{i}d_{i}$

$$\Rightarrow m_i = \left(\frac{n - rank(P_i^{e_i}(A))}{d_i}\right)$$

Characteristics of the method

Cost : $\mathcal{O}(e_i d_i E(n))$

- only for small factors, with small multiplicity e_i
- still possible to get partial information applying powers k < e_i of P_i to A.

The combinatorial search method

Total degree equation:

$$\sum_{i} d_{i}m_{i} = n$$

- Integer programming problem
- Branch & Bound strategy
 - incrementally increase the multiplicity of each factor
 - list every admissible candidate
- Several candidates are possible ⇒discriminate them one evaluation at a random value: CharPolyλ₀ = det(λ₀*I* − *A*)

The combinatorial search method

Total degree equation:

$$\sum_{i} d_{i}m_{i} = n$$

- Integer programming problem
- Branch & Bound strategy
 - incrementally increase the multiplicity of each factor
 - list every admissible candidate
- Several candidates are possible ⇒discriminate them one evaluation at a random value: CharPolyλ₀ = det(λ₀*I* − *A*)

Characteristics of the method

- Mostly efficient with factors of large degree d_i
- exponential complexity

⇒Experimentally: limited to the 5 largest factors

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The index calculus method

$$\prod_{j=1}^{k} P_{j}(\lambda)^{m_{j}} = \det(\lambda I - A) \mod p$$

The index calculus method

$$\prod_{j=1}^{k} P_{j}(\lambda)^{m_{j}} = \det(\lambda I - A) \mod p$$

$$\sum_{j=1}^{k} \log_{g}(P_{j}(\lambda))m_{j} = \log_{g}(\det(\lambda I - A)) \mod (p-1)$$

Taking *t* λ_i 's at random: $\Rightarrow t \times k$ linear system in the m_i

$$\begin{bmatrix} \log_g P_1(\lambda_1) & \dots & \log_g P_k(\lambda_1) \\ \vdots & & \vdots \\ \log_g P_1(\lambda_l) & \dots & \log_g P_k(\lambda_l) \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix} = \begin{bmatrix} \log_g \det(\lambda_1 I - A)) \\ \vdots \\ \log_g \det(\lambda_l I - A)) \end{bmatrix}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

The index calculus method

$$\prod_{j=1}^{k} P_j(\lambda)^{m_j} = \det(\lambda I - A) \mod p$$

$$\sum_{j=1}^{k} \log_{g}(P_{j}(\lambda))m_{j} = \log_{g}(\det(\lambda I - A)) \mod (p-1)$$

Taking $t \lambda_i$'s at random: $\Rightarrow t \times k$ linear system in the m_i

$$\begin{bmatrix} \log_g P_1(\lambda_1) & \dots & \log_g P_k(\lambda_1) \\ \vdots & & \vdots \\ \log_g P_1(\lambda_t) & \dots & \log_g P_k(\lambda_t) \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix} = \begin{bmatrix} \log_g \det(\lambda_1 I - A)) \\ \vdots \\ \log_g \det(\lambda_1 I - A)) \end{bmatrix}$$

- If non singular: the unique solution gives the *m_i*.
- Conjecture: the system is *likely* to be be non singular

・ロト・西ト・ヨト・ヨー ひゃぐ

Outline

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Hybrid algorithms

Combination according to the predilection domain:

d_ie_i small : nullities *d_i* large : combinatorial search remaining cases : index calculus

Hybrid algorithms

Combination according to the predilection domain:

 $d_i e_i$ small : nullities

di large : combinatorial search

remaining cases : index calculus

Improvement

Multiple candidates treated as multiple RHS for the index calculus system

Villard 2000: MinPoly(A + UV), s.t. rank(UV) = k \Rightarrow *k*-th invariant factor \Rightarrow partial information on the multiplicities

Further improvements

Villard 2000: MinPoly(A + UV), s.t. rank(UV) = k \Rightarrow k-th invariant factor \Rightarrow partial information on the multiplicities

Combined with index calculus:

- compute the largest invariant factors by decreasing order
- until only \sqrt{n} unknown multiplicities remain
- solve a $\sqrt{n} \times \sqrt{n}$ index calculus system

Further improvements

Villard 2000: MinPoly(A + UV), s.t. rank(UV) = k \Rightarrow k-th invariant factor \Rightarrow partial information on the multiplicities

Combined with index calculus:

- compute the largest invariant factors by decreasing order
- until only \sqrt{n} unknown multiplicities remain
- solve a $\sqrt{n} \times \sqrt{n}$ index calculus system
- \Rightarrow at most \sqrt{n} invariant factors computed
- $\Rightarrow \mathcal{O}(n^{1.5}E(n))$, (saving a log factor)

But non singularity is only conjectured

Computing Charpoly over $\ensuremath{\mathbb{Z}}$

- compute P_M = MinPoly over \mathbb{Z}
- decompose it into irreducible factors P_i
- pick a prime *p* at random
- compute P_C = CharPoly mod p
- compute the multiplicities of the $P_i \mod p$ in P_C .

Outline

2 Hybrid algorithms

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Experiments

Matrix	EX1	EX2	EX3	EX4	EX5
<i>n</i> : dimension <i>d</i> : deg (P_{min}) ω : sparsity	560 54 15.6	560 103 15.6	2600 1036 27.6	2600 1552 27.6	6545 2874 45.2
$\mathbb{Z} extsf{-Minpoly}$	0.11s	0.26s	117s	260s	5002s
$\mathbb{Z}[X]$ factorize	0.02s	0.07s	9.4	18.15	74.09s
Nullity/comb. Total	3.37s 3.51s	5.33s 5.66s	33.2s 159.4s	30.15s 308.1s	289s 5366s
Index calc. Total	3.46s 3.59s	4.31s 4.64s	64.0s 190.4s	57.0s 336.4s	647s 5641s
Pentium4 (x86 3.2 GHz; 1 Gb)					

Experiments

Matrix	n	ω	dense	null-comb	index
Α	300	1.9	0.32s	0.08s	0.07s
AA^{T}	300	2.95	0.81s	0.12s	0.12s
В	600	4	4.4s	1.52s	1.97s
BB^{T}	600	13	2.15s	3.96	7.48s
TF12	552	7.6	6.8s	5.53s	5.75s
mk9b3	1260	3	31.25s	10.51s	177s
Tref500	500	16.9	65.14s	25.14s	25.17s
		/			

Athlon (1.8 GHz; 2 Gb)

dense:
null-comb:
index:

BB \mathbb{Z} -Minpoly + 1 dense charpoly mod pBB \mathbb{Z} -Minpoly + nullities & Comb. search BB \mathbb{Z} -Minpoly + index calculus

- Conjectured behaviour of the index calculus
- Can these computations provide a certificate for the MinPoly (Wiedemann algorithm is only Monte-Carlo) ?
- Block-Wiedemann techniques for computing the k-th invariant factor

- Conjectured behaviour of the index calculus
- Can these computations provide a certificate for the MinPoly (Wiedemann algorithm is only Monte-Carlo) ?
- Block-Wiedemann techniques for computing the k-th invariant factor

Thank you

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@