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Graph isomorphism

Problem
Graph-isomorphism ∈ P ?

[Audenaert,& al. 2007] : the spectrum of a symmetric power of
the graph determines its isomorphism class ???

Experiments: symmetric powers of families of strongly regular
graphs

k = 2 : wrong ([Godsil, Royle & al. 2006])
k = 3 : true up to 29 edges (70 cases, n = 3654)

k = 3 : true up to 36 edges (36 510 cases, n = 7140)

Compute characteristic polynomials over Z
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Computing the characteristic polynomial

Overview on the main approaches:

Traces of powers: Leverrier 1881, Faddeev 59, ... O
(
n4)

⇒ Dense, over a ring, best in parallel

Determinant expansion: Samuelson 42, Berkowitz 84 O
(
n4)

⇒ Dense, over a ring

Elimination based: Danilevskii 37, Hessenberg 41, ... O
(
n3)

⇒ Dense, over a field
Explicit Krylov: Keller-Gehrig 85, Giesbrecht 93, ... O (nω log n)

⇒ Dense Black-box, over a field
Implicit Krylov: P. & Storjohann 07, ... O (nω)

⇒ Dense over a field
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Black Box linear algebra

Matrices viewed as linear operators
algorithms based on matrix vector apply only ⇒cost E(n)

Structured matrices: Fast apply (e.g. E(n) = O (n log n))
Sparse matrices: Fast apply and no fill-in

⇒
Iterative methods
No access to coefficients, trace, no elimination
Matrix multiplication⇒ Black-box composition
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Black box linear algebra

Minimal polynomial: [Wiedemann 86]
⇒adapts numerical iterative Krylov/Lanczos methods
⇒O

(
dE(n) + n2) operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02]
⇒reduced to minimal polynomial and preconditioners

⇒O˜(nE(n)) operations
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Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3]

CharPoly in O (nE(n)) +O˜
(
n2) operations and O (n) memory

State of the art:
Eberly 2000 : adaptive in the number Φ of invariant factors

O˜
(
nE(n) + Φn2)

Villard 2000 : adaptive in the number Ψ of distinct invariant
factors O˜

(
n1.5E(n)

)
Present Contribution:

algorithms and heuristics efficient in practice
improving the best complexity by a log n factor, under a
conjectured property
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Towards a fast heuristic:

MinPoly|Charpoly

⇒only differ in the multiplicities of irreducible factors.

MinPoly =
∏

i

Pei
i

CharPoly =
∏

i

Pmi
i with mi ≥ ei ,di = deg Pi

compute MinPoly
Factor it
Determine the multiplicities mi



Introduction Computing multiplicities Hybrid algorithms Experiments Perspectives

Towards a fast heuristic:

MinPoly|Charpoly

⇒only differ in the multiplicities of irreducible factors.

MinPoly =
∏

i

Pei
i

CharPoly =
∏

i

Pmi
i with mi ≥ ei ,di = deg Pi

compute MinPoly
Factor it
Determine the multiplicities mi



Introduction Computing multiplicities Hybrid algorithms Experiments Perspectives

The method of the nullities

Definition
Companion matrix of
P = X n − an−1X n−1 − · · · − a0:

CP =


0 a0
1 a1

. . .
...

1 an−1



Property

P(CP) = 0

P1

([
CP0

CP1

])
=

([
∗

0

])
⇒nullity = deg(P1)
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Property

P(CP) = 0

P1

([
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=
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∗
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⇒nullity = deg(P1)

Property

P(CPk ) ≡ P


CP 1

. . . 1
CP




=

0 1
. . . 1

0


⇒

nullity (P(CPk )) = n−(k−1)deg(P)
nullity (Pk (CPk )) = n



Introduction Computing multiplicities Hybrid algorithms Experiments Perspectives

The method of the nullities

Theorem

nullity (Pei
i (A)) = midi

⇒ mi =

(
n − rank(Pei

i (A))

di

)

266664
C(X+1)3

C(X+2)5

C(X+1)2

CX+2

CX+1

377775 (X+1)3

−−−−→

266664
0

C(X+2)5

0
CX+2

0

377775
Characteristics of the method
Cost : O (eidiE(n))

only for small factors, with small multiplicity ei

still possible to get partial information applying powers
k < ei of Pi to A.
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The combinatorial search method

Total degree equation: ∑
i

dimi = n

Integer programming problem
Branch & Bound strategy

incrementally increase the multiplicity of each factor
list every admissible candidate

Several candidates are possible ⇒discriminate them one
evaluation at a random value: CharPolyλ0 = det(λ0I − A)

Characteristics of the method
Mostly efficient with factors of large degree di

exponential complexity
⇒Experimentally: limited to the 5 largest factors
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The index calculus method

k∏
j=1

Pj(λ)mj = det(λI − A) mod p

k∑
j=1

logg(Pj(λ))mj = logg(det(λI − A)) mod (p − 1)

Taking t λi ’s at random: ⇒t × k linear system in the mj2664
logg P1(λ1) . . . logg Pk (λ1)

...
...

logg P1(λt ) . . . logg Pk (λt )

3775
264m1

...
mk

375 =

2664
logg det(λ1I − A))

...
logg det(λt I − A))

3775

If non singular: the unique solution gives the mi .

Conjecture: the system is likely to be be non singular
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Hybrid algorithms

Combination according to the predilection domain:
diei small : nullities

di large : combinatorial search
remaining cases : index calculus

Improvement
Multiple candidates treated as multiple RHS for the index calcu-
lus system
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Further improvements

Villard 2000: MinPoly(A + UV ), s.t. rank(UV ) = k
⇒ k -th invariant factor
⇒ partial information on the multiplicities

Combined with index calculus:
compute the largest invariant factors by decreasing order
until only

√
n unknown multiplicities remain

solve a
√

n ×
√

n index calculus system

⇒at most
√

n invariant factors computed
⇒ O

(
n1.5E(n)

)
, (saving a log factor)

But non singularity is only conjectured
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Computing Charpoly over Z
compute PM = MinPoly over Z
decompose it into irreducible factors Pi

pick a prime p at random
compute PC = CharPoly mod p
compute the multiplicities of the Pi mod p in PC .
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Experiments

Matrix EX1 EX2 EX3 EX4 EX5

n: dimension 560 560 2600 2600 6545
d : deg (Pmin) 54 103 1036 1552 2874
ω: sparsity 15.6 15.6 27.6 27.6 45.2

Z-Minpoly 0.11s 0.26s 117s 260s 5002s

Z[X ] factorize 0.02s 0.07s 9.4 18.15 74.09s

Nullity/comb. 3.37s 5.33s 33.2s 30.15s 289s
Total 3.51s 5.66s 159.4s 308.1s 5366s

Index calc. 3.46s 4.31s 64.0s 57.0s 647s
Total 3.59s 4.64s 190.4s 336.4s 5641s

Pentium4 (x86 3.2 GHz; 1 Gb)
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Experiments

Matrix n ω dense null-comb index

A 300 1.9 0.32s 0.08s 0.07s
AAT 300 2.95 0.81s 0.12s 0.12s

B 600 4 4.4s 1.52s 1.97s
BBT 600 13 2.15s 3.96 7.48s
TF12 552 7.6 6.8s 5.53s 5.75s
mk9b3 1260 3 31.25s 10.51s 177s

Tref500 500 16.9 65.14s 25.14s 25.17s
Athlon (1.8 GHz; 2 Gb)

dense: BB Z-Minpoly + 1 dense charpoly mod p
null-comb: BB Z-Minpoly + nullities & Comb. search
index: BB Z-Minpoly + index calculus
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Perspectives

Conjectured behaviour of the index calculus
Can these computations provide a certificate for the
MinPoly (Wiedemann algorithm is only Monte-Carlo) ?
Block-Wiedemann techniques for computing the k-th
invariant factor

Thank you
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