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Graph isomorphism

Problem
Graph-isomorphismé& P ? J

[Audenaert,& al. 2007] : the spectrum of a symmetric power of
the graph determines its isomorphism class ?7??

Experiments: symmetric powers of families of strongly regular
graphs

@ k =2 : wrong ([Godsil, Royle & al. 2006])
@ k = 3 : true up to 29 edges (70 cases, n = 3654)

o k- 3t Up 1036 edges (35510 cases, n = 7140)

Compute characteristic polynomials over Z
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Computing the characteristic polynomial

Overview on the main approaches:

Traces of powers: Leverrier 1881, Faddeev 59, ... @) (n4)
—|Dense, over a ring, best in parallel |

Determinant expansion: Samuelson 42, Berkowitz 84 O (n*)
:>’ Dense, over a ring
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Black Box linear algebra

@ Matrices viewed as linear operators
@ algorithms based on matrix vector apply only =-cost E(n)
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Sparse matrices: Fast apply and no fill-in
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Black Box linear algebra

@ Matrices viewed as linear operators
@ algorithms based on matrix vector apply only =-cost E(n)

Ac Knxm

VEKm -AV—EW
B

Structured matrices: Fast apply (e.g. E(n) = O (nlog n))
Sparse matrices: Fast apply and no fill-in

=

@ lterative methods

@ No access to coefficients, trace, no elimination

@ Matrix multiplication = Black-box composition
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Black box linear algebra

Minimal polynomial: [Wiedemann 86]
=-adapts numerical iterative Krylov/Lanczos methods
=0 (dE(n) + n?) operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02]
=-reduced to minimal polynomial and preconditioners
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Minimal polynomial: [Wiedemann 86]
=-adapts numerical iterative Krylov/Lanczos methods
=0 (dE(n) + n?) operations

Rank, Det, Solve: [Kaltofen & Saunders 90, Chen& Al. 02]
=-reduced to minimal polynomial and preconditioners
=" (nE(n)) operations
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Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3]
CharPoly in O (nE(n))+ O™ (n?) operations and O (n) memory
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Villard 2000 : adaptive in the number V¥ of distinct invariant
factors O~ (n'°E(n))
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Black-box characteristic polynomial

Open Problem [Kaltofen 98 Pb. 3]

CharPoly in O (nE(n))+ O™ (n?) operations and O (n) memory

State of the art:

Eberly 2000 : adaptive in the number ¢ of invariant factors
O” (nE(n) + ®n?)

Villard 2000 : adaptive in the number V¥ of distinct invariant
factors O~ (n'°E(n))

Present Contribution:

@ algorithms and heuristics efficient in practice

@ improving the best complexity by a log n factor, under a
conjectured property
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Towards a fast heuristic:

MinPoly|Charpoly

=-only differ in the multiplicities of irreducible factors.

MinPoly = T]P;
i

CharPoly = H P with m; > e;, d; = deg P;
i
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Towards a fast heuristic:

MinPoly|Charpoly

=-only differ in the multiplicities of irreducible factors.

MinPoly = T]P;
i
CharPoly = ][ P/ with m; > e;, d; = deg P;
i
@ compute MinPoly

@ Factor it
@ Determine the multiplicities m;
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The method of the nullities

Definition
Companion matrix of
P=X"—ap X" " —...—ay:
0 ap
1 a
Cp= :
1 an—1q
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Definition
Companion matrix of
P=X"—ap X" " —...—ay:
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1 a
Cp = :
1 an._‘]
Property
P(Cp)=0
Cp, aE
A5 al) = (1 )
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The method of the nullities

Definition
Companion matrix of
P=X"—a, X" 1 —...—ay: Property
0 ap
C 1 ay CP 1
A : P(Cw) = P o
1 an—1 Cp
0 1
Property = A
P(Cp) =0 .
=S
C N nullity (P(Cp«)) = n—(k—1)deg(P)
Py (| = nullity (PX(Cpt)) = n
Cp, 0
= nullity = deg(Pr)
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Theorem
nullity (P (A)) = mid;

o= (n — ranl;EPf’(A)))
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The method of the nullities
Theorem
nullity (P (A)) = m;d
n — rank(P{(A
e < (PP ))>
a
C(X+1 )3 0
C(X+2)5 (X+1)° C(X+2)5
C(x+1)2 -
Cx+2 CX+2
CX+1 O
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The method of the nullities

Theorem
nullity (P (A)) = m;d
n — rank(P7(A
- - (A rEE D)
1
Cixy1y3 c 0 c
(X+2)5 X113 (X+2)5
C(X+1)2 u) 0
Cx+2 CX+2
CX+1 0

Characteristics of the method
Cost: O (eid;E(n))
@ only for small factors, with small multiplicity e;

@ still possible to get partial information applying powers
k < e;j of P; to A.
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The combinatorial search method

Total degree equation:

> dimj=n
i

@ Integer programming problem
@ Branch & Bound strategy
e incrementally increase the multiplicity of each factor
e list every admissible candidate
@ Several candidates are possible =-discriminate them one
evaluation at a random value: CharPoly\g = det(\o/ — A)
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The combinatorial search method

Total degree equation:

> dimj=n
i

@ Integer programming problem
@ Branch & Bound strategy

e incrementally increase the multiplicity of each factor
o list every admissible candidate

@ Several candidates are possible =-discriminate them one
evaluation at a random value: CharPoly\y = det(\g/ — A)
Characteristics of the method
@ Mostly efficient with factors of large degree d;

@ exponential complexity
=Experimentally: limited to the 5 largest factors
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The index calculus method

[T P()™ = det(\ — A) mod p
j=1

k
> " logg(Pi(A))m; = log,(det(A — A)) mod (p— 1)
j=1

Taking t A\j's at random: =t x k linear system in the m;

logy P1(A1) .. |ogng(A1)] r] log, det(A1/ — A))

logg Pr(Ae) .. logg Pe(n) | L ngdet(}\,lA))]

Perspectives
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The index calculus method

P;i(A\)™ = det(A\/ — A) mod p

k
=1

I

K
> " logg(Pi(A))m; = log,(det(A — A)) mod (p— 1)
=

Taking t A\j's at random: =t x k linear system in the m;

logy P1(A1) .. Iogng()w)] r] log, det(A1/ — A))

logg Pr(Ae) .. logg Pe(n) | L ngdet(}\,/A))]

@ If non singular: the unique solution gives the m;.

Perspectives
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Hybrid algorithms

Combination according to the predilection domain:
die; small : nullities

d; large : combinatorial search
remaining cases : index calculus

Perspectives
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Hybrid algorithms

Combination according to the predilection domain:
die; small : nullities
d; large : combinatorial search
remaining cases : index calculus
Improvement

Multiple candidates treated as multiple RHS for the index calcu-
lus system
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Further improvements

Villard 2000: MinPoly(A+ UV), s.t. rank(UV) = k
= k-th invariant factor
= partial information on the multiplicities
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Combined with index calculus:
@ compute the largest invariant factors by decreasing order
@ until only v/n unknown multiplicities remain
@ solve a /n x v/nindex calculus system
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Further improvements

Villard 2000: MinPoly(A+ UV), s.t. rank(UV) = k
= k-th invariant factor
= partial information on the multiplicities

Combined with index calculus:
@ compute the largest invariant factors by decreasing order
@ until only v/n unknown multiplicities remain
@ solve a /n x v/nindex calculus system
=at most v/n invariant factors computed
= 10 (n'°E(n))|, (saving a log factor)
But non singularity is only conjectured
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Computing Charpoly over Z
@ compute Py = MinPoly over Z
@ decompose it into irreducible factors P;
@ pick a prime p at random
@ compute P = CharPoly mod p
@ compute the multiplicities of the P; mod p in Pg.
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Hybrid algorithms

Experiments

Matrix EX1 EX2 EX3 EX4 EX5
n: dimension 560 560 2600 2600 6545
d: deg (Pmin) 54 103 1036 1552 2874
w: sparsity 156 156 27.6 27.6 452
Z-Minpoly 0.11s 0.26s 117s 260s  5002s
Z|X] factorize  0.02s 0.07s 9.4 18.15 74.09s
Nullity/comb.  3.37s 5.33s 33.2s 30.15s  289s
Total 3.51s 5.66s 159.4s 308.1s 5366s
Index calc. 3.46s 4.31s 64.0s 57.0s 647s
Total 3.59s 4.64s 190.4s 336.4s 5641s

Pentium4 (x86 3.2 GHz; 1 Gb)

Perspectives
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Experiments

Matrix n w dense null-comb index
A 300 1.9 0.32s 0.08s 0.07s
AAT 300 295 0.81s 0.12s 0.12s
B 600 4 4.4s 1.52s 1.97s
BBT 600 13 2.15s 3.96 7.48s
TF12 552 7.6 6.8s 5.53s 5.75s
mk9b3 1260 3 31.25s 10.51s 177s

Tref500 500 16.9 65.14s 25.14s 25.17s
Athlon (1.8 GHz; 2 Gb)

dense: BB Z-Minpoly + 1 dense charpoly mod p
null-comb: BB Z-Minpoly + nullities & Comb. search
index: BB Z-Minpoly + index calculus
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Perspectives

@ Conjectured behaviour of the index calculus

@ Can these computations provide a certificate for the
MinPoly (Wiedemann algorithm is only Monte-Carlo) ?

@ Block-Wiedemann techniques for computing the k-th
invariant factor
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Perspectives

@ Conjectured behaviour of the index calculus

@ Can these computations provide a certificate for the
MinPoly (Wiedemann algorithm is only Monte-Carlo) ?

@ Block-Wiedemann techniques for computing the k-th
invariant factor

Thank you



