Adaptive parallel computing with Kaapi

¹Clément Pernet, <u>clement.pernet@imag.fr</u> ²Thierry Gautier, <u>thierry.gautier@inrialpes.fr</u>

^{1,2}MOAIS project, INRIA Grenoble Rhône-Alpes

²Visiting Position at ArTeCS Group, Complutense, Madrid, Spain

Moais Project http://moais.imag.fr

- Leader
 - Jean-Louis Roch
- 10 Members
 - Vincent Danjean, Pierre-François Dutot, Thierry Gautier, Guillaume Huard, Grégory Mounié, Clément Pernet, Bruno Raffin, Denis Trystram, Frédéric Wagner
- About 20 PhD students

Kaapi Positioning

- To mutually adapt application and scheduling
- Extension to target GPU & MPSoC

Goal

• Write once, run anywhere... with guaranteed performance

- Problem: heterogeneity
 - variations of the environment (#cores, speed, failure...)
 - irregular computation

Outline

- Athapascan / Kaapi
 - Abstract representation & Task model
- Scheduling
 - Graph Partitioning & Work stealing
- Fault tolerance
 - CCK: Coordinated Checkpointing / Graph partitioning
- Applications in computer algebra
- Conclusions

KAAPI Overview

Derificate

API: Athapascan

- Global address space
 - Creation of objects with 'shared' keyword
- Task = function call
 - Creation with 'Fork' keyword ~ Cilk spawn
 - Tasks only communicate through shared objects
 - Task declares access mode (read, write, concurrent write, exclusive) to shared objects

Properties

- Dynamic macro data flow graph
 - Dependencies between tasks are known
- Automatic scheduling
 - Work stealing or graph partitioning
- 'Sequential' semantics
 - À la Cilk/TBB but with data flow dependencies
- C++ library, not a language extension
 - C language extension + compiler was prototyped

C++ Elision

```
struct Fibonacci {
 void operator()( int n, al::Shared w<int> result )
    if (n < 2) result.write( n );
    else {
       a1::Shared<int> subresult1;
       a1::Shared<int> subresult2;
       a1::Fork<Fibonacci>() (n-1, subresult1);
       al::Fork<Fibonacci>() (n-2, subresult2);
       a1::Fork < Sum > () (result, subresult1, subresult2);
struct Sum {
 void operator()( a1::Shared w<int> result,
               a1::Shared r<int> sr1,
               a1::Shared r<int> sr2 )
  { result.write( sr1.read() + sr2.read() ); }
```

C++ Elision

```
struct Fibonacci {
 void operator()( int n,
                                      int& result )
    if (n < 2) result = n;
    else {
                 int subresult1;
                 int subresult2;
               Fibonacci () (n-1, subresult1);
               Fibonacci () (n-2, subresult2);
               Sum () (result, subresult1, subresult2);
struct Sum {
 void operator()(
                             int& result,
                        int sr1,
                        int sr2)
  { result = sr1
                        + sr2
```

Stack management

Stack based allocation

- Tasks and accesses to shared data are pushed in a stack
 - close to the management of the C function call stack
- O(1) allocation time
- O(#parameters) initialization time

```
al::Shared<int> subresult1;
al::Shared<int> subresult2;
al::Fork<Fibonacci>() (n-1, subresult1);
al::Fork<Fibonacci>() (n-2, subresult2);
al::Fork<Sum>() (result, subresult1, subresult2);
```

Cost

- About 10 times an empty function call
- [Cilk++: about 25 times a function call]
- Further optimization: compilation / binary rewriting

 Urbana / dec 2009

Shared<int> sr1
Shared<int> sr1
Fibonacci, sr1
Fibonacci, sr2
Sum, r, sr1, sr2

Stack growth

Outline

- Athapascan / Kaapi
 - ✓ Abstract representation & Task model
- Scheduling
 - Graph Partitioning & Work stealing
- Fault tolerance
 - CCK: Coordinated Checkpointing / Graph partitioning
- Applications in computer algebra
- Conclusions

Two level scheduling

At execution time: Data Flow Graph /

Work stealing

Graph partitioning

- Input: data flow graph
- Output: k partitions of the tasks
 - 1 partition = data flow graph
 - Communication = couple of tasks
 - One to broadcast the data / in the partition where data is produced
 - One(s) to receive the data / in the partition(s) where data is consumed

Algorithms

- Based on METIS/Scotch graph partitioner
- DSC / ETF: oriented graph
- Recursive Geometric Partitioner (required spatial attributes on data)
- Local rescheduling to improve overlapping

Iterative Application

- Scheduling by graph partitioning
 - Metis / Scotch

Domain

decomposition

Graph partitioner

- scotch
- metis
- hierarchical:

 ANR DISCOGRID

Experiments

Finite Difference Kernel

- Regular Grid / Constant size sub domain D per processor
- Kaapi / C++ code versus Fortran MPI code
- Cluster: N processors on a cluster / Grid: N/4 processors per cluster, 4 clusters

→ Automatic overlapping latency by computation

D=256^	# processors	Cluster (s)	Grid (s)	TCluster/ TGrid
KAAPI	1	0.49	0.49	-
	64	0.55	0.84	0,53
	128	0.65	0.91	0,4
MPI	1	0.44	0.44	-
	64	0.66	2.02	2,06
	128	0.68	1.57	1,31

Graph Partitioning

- Initial data / work distribution
 - Important to avoid bottleneck and performance

- Cost to compute partitions
 - Cost of the basic partitioning algorithm
 - It depends on the scheduling algorithm, e.g. ETF is costly
 - O(#tasks) to convert graph, compute a local scheduling, ...
 - This cost is only paid for the first iteration of iterative application

Work stealing

 Idle processors try to steal work from selected victim

- Well suited for recursive divide & conquer approach
- Also used with parallel STL primitives

Theoretical bound

• Using work stealing scheduler with random selection of victim, the expected time on P processors is:

$$T_p = O(T_{seq} / P + T_{\infty})$$

- [Galilée, Doreille, Cavalheiro, Roch, PACT 98],[Gautier, Roch, Wagner, ICCS2007]
- Similar bounds with an other context: [Blumofe, Leiseron, Focs 94, PPoPP 95], [Arora, Blumofe, Plaxton, SPAA 98], ...
- The expected number X_p of steal requests per thread is:

$$X_p = O(T_\infty)$$

Work first principle

• Due to [Cilk Team]

- "Minimize scheduling overhead borne by work at the expense of increasing the critical path."
- Application to compute of data flow constraints
 - During steal request: find the first task ready and steal it
 - Here we compute data flow dependencies!
 - Standard execution: processor execute tasks following a (valid) order
 - Stolen task stop execution if it could introduce future dependencies
 - The processor becomes idle and steal work

Outline

- ✓ Athapascan / Kaapi a software stack
 - ✓ Abstract representation & Task model
- ✓ Scheduling
 - ✓ Graph Partitioning & Work stealing
 - Controls of the overheads
- Fault tolerance
 - CCK: Coordinated Checkpointing / Graph partitioning
- Applications in computer algebra
- Conclusions

How to reduce T₁/T_{seq}?

- Why? WORK overhead reduce efficiency
 - extra instructions from the sequential program
 - especially for short computation

Three principal technics

- 1.adapt the grain size: stop parallelism after a threshold
 - but: may increase dramatically T_∞, reduce the average parallelism and increase the number of steal requests
 - difficulty to adjust it automatically
- 2.reduce the cost to create task
 - ...ideally do not create task!
- 3.optimize the cost of workqueue operations to push/pop tasks
 - difficulty due to concurrent operations
 Urbana / dec 2009

Cost of task

- Cost = Creation + <u>Extra arithmetic work</u>
 - Example: prefix computation
 - Fish's lower bound: any parallel algorithm with critical path log₂n requires at least 4n operations
- Adaptive Algorithm
 - [Roch, Traoré 07], [Roch, Traoré, Gautier 08]
 - Principle: create tasks when processors are idle!
 - Task should provide a way to extract / merge work
 - Adaptive Task in the API

Workqueue optimization

- 3 operations
 - push / pop + steal
- Main algorithms
 - Cilk: T.H.E. protocol
 - serialization of thieves to a same victim
 - thief/victim atomic read/write + lock in rare case
 - ABP [SPAA00]:
 - lock free (Compare&Swap), but prone to overflow
 - Chase & Lev [SPAA05]: extend ABP
 - without limitation (other than hardware)

COSTLY 'cas' operation [PPoPP09]

Cooperative work-stealing

- [X. Besseron, C. Laferrière]
- Keep same semantics as usual
 - a task is extracted exactly once
- avoid concurrency between victim & thieves
 - the victim interrupts its work to process steal requests
- Drawback
 - the victim should poll requests / thieves are waiting
- Advantage: initial load distribution
 - several steal requests may be processed together

Experiments on multicore

- STL algorithms
 - adaptive algorithms: PhD of [D. Traoré]
 - with cooperative work stealing: [Xavier Besseron,
 C. Laferrière]
- Comparison with Cilk++ / TBB
- Methodology
 - average over 300 runs
 - do not take into account the first measure
- 16 cores, 8 sockets multicore machine (opteron, 2.2Ghz).

T₁/T_{seq} on std::transform

T_{stl} / T₈ std::transform

Speedup / Sort

• ~ 100M elements, 1s sequential time

sort - medium size (~1s) - speedup

T_{stl}/T₈ std::merge

Outline

- ✓ Athapascan / Kaapi a software stack
 - ✓ Abstract representation & Task model
- ✓ Scheduling
 - ✓ Graph Partitioning & Work stealing
 - ✓ Controls of the overheads
- Fault tolerance
 - CCK: Coordinated Checkpointing / Graph partitioning
- Application in computer algebra
- Conclusions

Fault Tolerance

- State of application = state of the data flow graph
- Two specialized protocols
 - TIC: Theft Induced Checkpointing
 - Periodic checkpoint + forced checkpoint on steal
 - CCK: Coordinated Checkpoint

Coordinated Checkpoint

PhD [Xavier Besseron]

Checkpoint as a special case of dynamic reconfiguration of parallel application

Classical protocol restart

- Global restart:
 - Failed processes replaced by new ones
 - All processes restart from their last checkpoint
 - Restart time is, in worst case, the checkpoint period

CCK protocol restart

- Partial restart:
 - Detect lost communications for the failed processes
 - Find the set of strictly required computations to make the global state coherent
 - Schedule statically this task set Urbana / dec 2009

After a failure

Tasks to reexecute

Restart Std / CCK

Outline

- ✓ Athapascan / Kaapi a software stack
 - ✓ Abstract representation & Task model
- ✓ Scheduling
 - ✓ Graph Partitioning & Work stealing
 - ✓ Controls of the overheads
- ✓ Fault tolerance
 - ✓ CCK: Coordinated Checkpointing / Graph partitioning
- Applications in computer algebra
- Conclusions

Application in computer algebra

- Formula manipulation: symbolic comp.
- Experimental maths: conjecture testing
 - Number theory, Graph theory
- Certified numerical computations
- Computational biology:
 - DNA sequencing, molecular conformation
- Cryptanalysis
 - Factorization, Discrete log, Groebner basis

Boil down to exact linear algebra over Z, Q, and GF(q)

LinBox:exact linear algebra

- Dense, sparse, blackbox matrices
- Over Z, Q, GF(q)
- Genericity:
 - Wrt. Domain, algorithm, matrix implementation, ...
 - PnP modules (field implementations, optional libraries,...)

Specificities

- Variable size arithmetic
 - Need for a dynamic work load scheduler
- But easy parallelism: Multimodular approach
- Allow fault tolerance on bysantine failures
- The cost of genericity: isolate building blocks
 - Krylov iteration factory (Wiedemman, Lanczos, ...)
 - Multimodular factory (early term. Fault tolerance,...)
 - Sparse multifrontal solver
 - Dense linalg subroutines over GF(q) (cf PBLAS)

Kaapi & LinBox

- Data rather than Task parallelism
- STL semantics (par_for) + workstealing
- Adaptive algorithms: eg TRSM

Solve UX=B

Conclusions

Athapascan/Kaapi

- A high level model to abstract architecture
- Performance mostly depends on the "adaptation layer"
 - Work stealing is scalable on large number of processors (∼ 4000 cores on both the G5K National Academic Grid + Japanese Intrigger Grid)
 - Effective parallelization of fine computation with cooperative work stealing
- More experiments should be done
 - Scheduling / execution on cluster or grid: Comparison with Charm++?
 - Fault tolerance: fault free execution, time to restart... Charm++?
- http://kaapi.gforge.inria.fr/

Perspectives

- Blue Gene port [2010]
 - Communication layer: switch to DCMF or CkDirect [Charm++]?
- Mixing CPUs & GPUs
 - preliminary work
 - deeper integration of the GPU as a processing resource
 - Wait the next Fermi GPU + driver?
- Taking into account hierarchical architecture
 - ongoing work at MOAIS on hierarchical work stealing [Jean-Noël Quintin, PhD]

Other applications

- Parallel Computer Algebra
 - Linbox: http://www.linalg.org
- Combinatorial Opt. [PRiSM (Paris), B. Lecun]
 - QAP / Q3AP problems
- Academic applications
 - [III, IV, V Grid@Work contest]
 - NQueens
 - Option Pricing application based on Monte Carlo Simulation
 - Numerical kernel for CEM, CFD Grid application
 - Finite difference / Finite element
 - Reaction / diffusion with Chemical species
 - Finite difference
- SOFA (http://www-sofa-framework.org), See B. Raffin talk

NQueens [2006,2007]

- Grid5000 (French academic national grid)
 - 2006: N=23 in 74min on 1422 cores
 - 2007: N=23 in 35mn 7s on 3654 cores
- Taktuk: fast deployment tool

Monte Carlo / Option Pricing

Intrigger: Japan

- 3609 cores: ~2700 Grid5000 ~900 Intrigger
- SSH connection between Japan-France

Physics Simulation

- SOFA: real-time physics engine
- Strongly supported INRIA initiative
- Open Source:
- http://www.sofa-framework.org
- Target application:

Surgery simulation

Interactive Physical Simulation

on Multicore Architectures

Communication

- Active message like communication protocol
- Multi-network (TCP, Myrinet, ssh tunnel with TakTuk)
- High capacity to overlap communication by computations
- Original message aggregation protocol

Online construction

2 Level Scheduling

Relaxed semantics

- "Idempotent work stealing" [PPoPP09]
 - Maged M. Michael, Martin T. Vechev,
 - Vijay A. Saraswat (work also on X10 language)
 - avoid CAS in pop operation

Drawback

- a task is returned (and executed) at least once
- ... instead of exactly once