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•To mutually adapt application and 
scheduling

• Extension to target GPU & MPSoC

Kaapi Positioning

Grid
Cluster

Multicore
GPU

MPSoC

KAAPI
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Goal

• Write once, run anywhere... with guaranteed 
performance

• Problem: heterogeneity
- variations of the environment (#cores, speed, failure...)
- irregular computation 
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Outline

• Athapascan / Kaapi
- Abstract representation & Task model

• Scheduling
- Graph Partitioning & Work stealing

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions
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KAAPI Overview

ApplicationApplication

KAAPI middlewareKAAPI middleware

parallel architectureparallel architecture

Model: abstract Model: abstract 
representationrepresentation

Algorithms: Algorithms: scheduling, fault scheduling, fault 
tolerance protocol, ...tolerance protocol, ...
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API: Athapascan

• Global address space
- Creation of objects with ‘shared’ keyword

• Task = function call
- Creation with ‘Fork’ keyword  ~ Cilk spawn 

- Tasks only communicate through shared objects

- Task declares access mode (read, write, concurrent write, 
exclusive) to shared objects
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Properties

• Dynamic macro data flow graph
- Dependencies between tasks are known

• Automatic scheduling
- Work stealing or graph partitioning

• ‘Sequential’ semantics
- À la Cilk/TBB but with data flow dependencies

• C++ library, not a language 
extension

- C language extension + compiler was prototyped
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C++ Elision
 struct Fibonacci {
   void operator()( int n, a1::Shared_w<int> result )
 {
 if (n < 2) result.write( n );
 else {
 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);
 }
 }
 };

 struct Sum {
   void operator()( a1::Shared_w<int> result, 
       a1::Shared_r<int> sr1, 
       a1::Shared_r<int> sr2 )
 { result.write( sr1.read() + sr2.read() ); }
 }
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C++ Elision
 struct Fibonacci {
   void operator()( int n, a1::Shared_w<int& result )
 {
 if (n < 2) result =rite( n );
 else {
 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);
 }
 }
 };

 struct Sum {
   void operator()( a1::Shared_w<int& result, 
    a1::Shared_r<int> sr1, 
    a1::Shared_r<int> sr2 )
 { result =rite( sr1.read() + sr2.read() ); }
 }
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Stack management

• Stack based allocation
- Tasks and accesses to shared data are pushed in a stack

-  close to the management of the C function call stack

- O(1) allocation time
- O(#parameters) initialization time

Stack growth

 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);

Shared<int> sr1

Fibonacci, sr2

Sum, r, sr1, sr2

Fibonacci, sr1

Shared<int> sr1

• Cost
- About 10 times an empty function call
- [Cilk++ : about 25 times a function call]

- Further optimization: compilation / binary 
rewriting
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Outline

Athapascan / Kaapi 
 Abstract representation & Task model

• Scheduling
- Graph Partitioning & Work stealing

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions
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Two level scheduling

13

At execution time : Data Flow Graph / 
Adaptive Task

Partitioning

Work stealing

Optional
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Graph partitioning
• Input: data flow graph

• Output: k partitions of the tasks 
- 1 partition = data flow graph
- Communication = couple of tasks

- One to broadcast the data / in the partition where data is produced

- One(s) to receive the data / in the partition(s) where data is consumed

• Algorithms
- Based on METIS/Scotch graph partitioner
- DSC / ETF: oriented graph
- Recursive Geometric Partitioner (required spatial attributes 

on data)
- Local rescheduling to improve overlapping

14
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Iterative Application
•Scheduling by graph partitioning

• Metis / Scotch

Partitioning
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Experiments 
•Finite Difference Kernel

- Regular Grid / Constant size sub domain D per processor

- Kaapi / C++ code versus Fortran MPI code

- Cluster : N processors on a cluster    /      Grid : N/4 processors per cluster, 4 clusters

➜  Automatic overlapping latency by computation

D=256^
3

# processors Cluster (s) Grid (s) TCluster/
TGrid

KAAPI 1 0.49 0.49 -

64 0.55 0.84 0,53

128 0.65 0.91 0,4

MPI 1 0.44 0.44 -

64 0.66 2.02 2,06

128 0.68 1.57 1,31
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Graph Partitioning

• Initial data / work distribution
- Important to avoid bottleneck and performance

• Cost to compute partitions
- Cost of the basic partitioning algorithm

- It depends on the scheduling algorithm, e.g. ETF is costly

- O(#tasks) to convert graph, compute a local scheduling, …

- This cost is only paid for the first iteration of iterative 
application

18
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Work stealing

• Idle processors try to steal work from 
selected victim

- Well suited for recursive divide & conquer approach
- Also used with parallel STL primitives



Urbana / dec 2009 20

Theoretical bound

• Using work stealing scheduler with random selection 
of victim, the expected time on P processors is:

Tp = O(Tseq / P + T∞) 

- [Galilée, Doreille, Cavalheiro, Roch, PACT 98],[Gautier, Roch, Wagner, ICCS2007]

- Similar bounds with an other context: [Blumofe, Leiseron, Focs 94, PPoPP 95], 
[Arora, Blumofe, Plaxton, SPAA 98], ...

• The expected number Xp of steal requests per thread is:

Xp = O(T∞)
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Work first principle

• Due to [Cilk Team]
- “Minimize scheduling overhead borne by work at the 

expense of increasing the critical path.”

• Application to compute of data flow 
constraints

- During steal request: find the first task ready and steal it
- Here we compute data flow dependencies !

- Standard execution: processor execute tasks following a 
(valid) order
- Stolen task stop execution if  it could introduce future dependencies

- The processor becomes idle and steal work

21
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Outline

Athapascan / Kaapi a software stack
 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
- Controls of the overheads

• Fault tolerance
– CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions
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How to reduce T1/Tseq?
• Why ? WORK overhead reduce efficiency

- extra instructions from the sequential program
- especially for short computation 

• Three principal technics
1.adapt the grain size: stop parallelism after a threshold

- but: may increase dramatically T∞, reduce the average parallelism and 
increase the number of steal requests

- difficulty to adjust it automatically

2.reduce the cost to create task
- ...ideally do not create task !

3.optimize the cost of workqueue operations to push/pop 
tasks
- difficulty due to concurrent operations
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Cost of task
• Cost = Creation + Extra arithmetic work 

- Example: prefix computation

- Fish’s lower bound: any parallel algorithm with critical path 

log2 n requires at least 4n operations

• Adaptive Algorithm
- [Roch, Traoré 07], [Roch, Traoré, Gautier 08]

- Principle: create tasks when processors are idle !
- Task should provide a way to extract / merge work

- Adaptive Task in the API 
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Workqueue  optimization
• 3 operations

- push / pop    +   steal 

• Main algorithms
- Cilk: T.H.E. protocol

- serialization of thieves to a same victim

- thief/victim atomic read/write + lock in rare case

- ABP [SPAA00]:
- lock free (Compare&Swap), but prone to overflow

- Chase & Lev [SPAA05]: extend ABP
- without limitation (other than hardware)  

❡ C O S T L Y ‘cas’ operation [PPoPP09]
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Cooperative work-stealing

• [X. Besseron, C. Laferrière]

• Keep same semantics as usual
- a task is extracted exactly once

• avoid concurrency between victim & 
thieves

- the victim interrupts its work to process steal requests

• Drawback
- the victim should poll requests / thieves are waiting

• Advantage: initial load distribution
- several steal requests may be processed together
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Experiments on multicore

• STL algorithms
- adaptive algorithms: PhD of [D. Traoré]

- with cooperative work stealing: [Xavier Besseron, 
C. Laferrière]

• Comparison with Cilk++ / TBB

• Methodology
- average over 300 runs
- do not take into account the first measure

• 16 cores, 8 sockets multicore machine 
(opteron, 2.2Ghz).
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T1/Tseq on std::transform
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Tstl / T8  std::transform

29
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• ~ 100M elements, 1s sequential time
Speedup /  Sort
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Tstl / T8    std::merge
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Outline
Athapascan / Kaapi a software stack

 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
 Controls of the overheads

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Application in computer algebra

• Conclusions
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Fault Tolerance

•State of application = state of the data flow 
graph

•Two specialized protocols

• TIC: Theft Induced Checkpointing

• Periodic checkpoint + forced checkpoint on steal 

• CCK:  Coordinated Checkpoint
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Coordinated Checkpoint
• PhD [Xavier Besseron]

- Checkpoint as a special case of dynamic reconfiguration of parallel 
application

• Classical protocol restart 
- Global restart: 

- Failed processes replaced by new ones

- All processes restart from their last checkpoint 

- Restart time is, in worst case, the checkpoint period 

• CCK protocol restart 
- Partial restart: 

- Detect lost communications for the failed processes 

- Find the set of  strictly required computations  to make the global state 
coherent 

- Schedule statically this task set 
34
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After a failure

35
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Tasks to reexecute

36
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Restart Std / CCK

37
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Outline

Athapascan / Kaapi a software stack
 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
 Controls of the overheads

Fault tolerance
 CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions
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Application in computer 
algebra

• Formula manipulation : symbolic comp.

• Experimental maths: conjecture testing
- Number theory,Graph theory

• Certified numerical computations

• Computational biology: 
  -  DNA sequencing, molecular conformation

• Cryptanalysis
- Factorization, Discrete log, Groebner basis ....

Boil down to exact linear algebra over Z, Q, and GF(q)

39
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LinBox:exact linear algebra

• Dense, sparse, blackbox 
matrices

• Over Z, Q, GF(q)
• Genericity:

- Wrt. Domain, algorithm, 
matrix implementation, ... 

- PnP modules (field 
implementations, optional 
libraries,...)
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Specificities

• Variable size arithmetic
- Need for a dynamic work load scheduler

• But easy parallelism: Multimodular approach
- Allow fault tolerance on bysantine failures

• The cost of genericity: isolate building blocks
- Krylov iteration factory (Wiedemman, Lanczos, …)
- Multimodular factory (early term. Fault tolerance,...)
- Sparse multifrontal solver
- Dense linalg subroutines over GF(q) (cf PBLAS)

41
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Kaapi & LinBox
• Data rather than Task parallelism 

• STL semantics (par_for) + workstealing

• Adaptive algorithms: eg TRSM

42

Solve UX=B
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Conclusions

• Athapascan/Kaapi
- A high level model to abstract architecture
- Performance mostly depends on the “adaptation layer”

- Work stealing is scalable on large number of processors (~ 4000 cores on both the 
G5K National Academic Grid + Japanese Intrigger Grid)

- Effective parallelization of fine computation with cooperative work stealing

- More experiments should be done
- Scheduling / execution on cluster or grid: Comparison with Charm++ ?

- Fault tolerance: fault free execution, time to restart… Charm++ ?

- http://kaapi.gforge.inria.fr/

http://kaapi.gforge.inria.fr/
http://kaapi.gforge.inria.fr/
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Perspectives

• Blue Gene port [2010]
- Communication layer: switch to DCMF or CkDirect [Charm++]?

• Mixing CPUs & GPUs
- preliminary work
- deeper integration of the GPU as a processing resource

- Wait the next Fermi GPU + driver ?

• Taking into account hierarchical architecture
- ongoing work at MOAIS on hierarchical work stealing [Jean-Noël 

Quintin, PhD]



45
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Other applications
• Parallel Computer Algebra

- Linbox: http://www.linalg.org

• Combinatorial Opt. [PRiSM (Paris), B. Lecun]
- QAP / Q3AP problems

• Academic applications 
- [III, IV, V Grid@Work contest]

- NQueens

- Option Pricing application based on Monte Carlo Simulation

- Numerical kernel for CEM, CFD Grid application
- Finite difference / Finite element

- Reaction / diffusion with Chemical species
- Finite difference 

• SOFA (http://www-sofa-framework.org), See B. Raffin talk

http://www-sofa-framework.org/
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NQueens [2006,2007]

• Grid5000 (French academic national grid)

- 2006: N=23 in 74min on 1422 cores
- 2007: N=23 in 35mn 7s on 3654 cores

• Taktuk: fast deployment tool
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Monte Carlo / Option Pricing

• 3609 cores: ~2700 Grid5000 ~900 Intrigger

• SSH connection between Japan-France

Grid5000: France

Intrigger: Japan
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Physics Simulation

•SOFA: real-time physics engine

•Strongly supported INRIA initiative

•Open Source:

• http://www.sofa-framework.org

•Target application: 

•Surgery simulation

http://framework.sofa.org/
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Communication

•Active message like communication 
protocol

•Multi-network (TCP, Myrinet, ssh 
tunnel with TakTuk)

•High capacity to overlap 
communication by computations

•Original message aggregation 
protocol



51
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Online construction
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KAAPI Scheduler 

2 Level Scheduling
K-Thread

CPU

OS scheduler

CPUOS CPU

OS scheduler

K-Processor

process

other process

Active Message 
over TCP/IP, 

Myrinet 
and SSH

CPU CPU

Idle K-
Processor

process
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Relaxed semantics

• “Idempotent work stealing” [PPoPP09]
- Maged M. Michael, Martin T. Vechev, 

- Vijay A. Saraswat (work also on X10 language)

- avoid CAS in pop operation

❡ More Performance

• Drawback
- a task is returned (and executed) at least once
- ... instead of exactly once

http://portal.acm.org/author_page.cfm?id=81332515587&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506
http://portal.acm.org/author_page.cfm?id=81100269652&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506
http://portal.acm.org/author_page.cfm?id=81100152268&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506
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