
Adaptive parallel
computing with

Kaapi

1Clément Pernet, clement.pernet@imag.fr
2Thierry Gautier, thierry.gautier@inrialpes.fr

1,2MOAIS project, INRIA Grenoble Rhône-Alpes

2Visiting Position at ArTeCS Group, Complutense, Madrid, Spain

Urbana / dec 2009

•Leader

• Jean-Louis Roch

•10 Members

• Vincent Danjean, Pierre-François Dutot, Thierry Gautier,
Guillaume Huard, Grégory Mounié, Clément Pernet,
Bruno Raffin, Denis Trystram, Frédéric Wagner

•About 20 PhD students

Moais Project
http://moais.imag.fr

http://moais.imag.fr/

Urbana / dec 2009 3

•To mutually adapt application and
scheduling

• Extension to target GPU & MPSoC

Kaapi Positioning

Grid
Cluster

Multicore
GPU

MPSoC

KAAPI

Urbana / dec 2009 4

Goal

• Write once, run anywhere... with guaranteed
performance

• Problem: heterogeneity
- variations of the environment (#cores, speed, failure...)
- irregular computation

Urbana / dec 2009 5

Outline

• Athapascan / Kaapi
- Abstract representation & Task model

• Scheduling
- Graph Partitioning & Work stealing

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions

Urbana / dec 2009 6

KAAPI Overview

ApplicationApplication

KAAPI middlewareKAAPI middleware

parallel architectureparallel architecture

Model: abstract Model: abstract
representationrepresentation

Algorithms: Algorithms: scheduling, fault scheduling, fault
tolerance protocol, ...tolerance protocol, ...

“causal connexions”

P
e
rfo

rm
a
n

ce

Adaptati
on

layer

Urbana / dec 2009 7

API: Athapascan

• Global address space
- Creation of objects with ‘shared’ keyword

• Task = function call
- Creation with ‘Fork’ keyword ~ Cilk spawn

- Tasks only communicate through shared objects

- Task declares access mode (read, write, concurrent write,
exclusive) to shared objects

Urbana / dec 2009 8

Properties

• Dynamic macro data flow graph
- Dependencies between tasks are known

• Automatic scheduling
- Work stealing or graph partitioning

• ‘Sequential’ semantics
- À la Cilk/TBB but with data flow dependencies

• C++ library, not a language
extension

- C language extension + compiler was prototyped

Urbana / dec 2009 9

C++ Elision
 struct Fibonacci {
 void operator()(int n, a1::Shared_w<int> result)
 {
 if (n < 2) result.write(n);
 else {
 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);
 }
 }
 };

 struct Sum {
 void operator()(a1::Shared_w<int> result,
 a1::Shared_r<int> sr1,
 a1::Shared_r<int> sr2)
 { result.write(sr1.read() + sr2.read()); }
 }

Urbana / dec 2009 10

C++ Elision
 struct Fibonacci {
 void operator()(int n, a1::Shared_w<int& result)
 {
 if (n < 2) result =rite(n);
 else {
 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);
 }
 }
 };

 struct Sum {
 void operator()(a1::Shared_w<int& result,
 a1::Shared_r<int> sr1,
 a1::Shared_r<int> sr2)
 { result =rite(sr1.read() + sr2.read()); }
 }

Urbana / dec 2009 11

Stack management

• Stack based allocation
- Tasks and accesses to shared data are pushed in a stack

- close to the management of the C function call stack

- O(1) allocation time
- O(#parameters) initialization time

Stack growth

 a1::Shared<int> subresult1;
 a1::Shared<int> subresult2;
 a1::Fork<Fibonacci>()(n-1, subresult1);
 a1::Fork<Fibonacci>()(n-2, subresult2);
 a1::Fork<Sum>()(result, subresult1, subresult2);

Shared<int> sr1

Fibonacci, sr2

Sum, r, sr1, sr2

Fibonacci, sr1

Shared<int> sr1

• Cost
- About 10 times an empty function call
- [Cilk++ : about 25 times a function call]

- Further optimization: compilation / binary
rewriting

Urbana / dec 2009 12

Outline

Athapascan / Kaapi
 Abstract representation & Task model

• Scheduling
- Graph Partitioning & Work stealing

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions

Urbana / dec 2009

Two level scheduling

13

At execution time : Data Flow Graph /
Adaptive Task

Partitioning

Work stealing

Optional

Urbana / dec 2009

Graph partitioning
• Input: data flow graph

• Output: k partitions of the tasks
- 1 partition = data flow graph
- Communication = couple of tasks

- One to broadcast the data / in the partition where data is produced

- One(s) to receive the data / in the partition(s) where data is consumed

• Algorithms
- Based on METIS/Scotch graph partitioner
- DSC / ETF: oriented graph
- Recursive Geometric Partitioner (required spatial attributes

on data)
- Local rescheduling to improve overlapping

14

Workshop INRIA-Illinois, 2009/06/9-12 MOAIS project

Iterative Application
•Scheduling by graph partitioning

• Metis / Scotch

Partitioning

Workshop INRIA-Illinois, 2009/06/9-12 MOAIS project

Domain
decomposition

cache

core

Memory

cache

core

dual processor
dual core

corecore

NUMA
Non Uniform
Memory Access

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Memory

cache

core

core

Network

cache

core

Memory

cache

core

dual processor
dual core

corecore

Graph
partitioner
- scotch
- metis
- hierarchical :

ANR DISCOGRID

Workshop INRIA-Illinois, 2009/06/9-12 MOAIS project

Experiments
•Finite Difference Kernel

- Regular Grid / Constant size sub domain D per processor

- Kaapi / C++ code versus Fortran MPI code

- Cluster : N processors on a cluster / Grid : N/4 processors per cluster, 4 clusters

➜ Automatic overlapping latency by computation

D=256^
3

processors Cluster (s) Grid (s) TCluster/
TGrid

KAAPI 1 0.49 0.49 -

64 0.55 0.84 0,53

128 0.65 0.91 0,4

MPI 1 0.44 0.44 -

64 0.66 2.02 2,06

128 0.68 1.57 1,31

Urbana / dec 2009

Graph Partitioning

• Initial data / work distribution
- Important to avoid bottleneck and performance

• Cost to compute partitions
- Cost of the basic partitioning algorithm

- It depends on the scheduling algorithm, e.g. ETF is costly

- O(#tasks) to convert graph, compute a local scheduling, …

- This cost is only paid for the first iteration of iterative
application

18

Urbana / dec 2009 19

Work stealing

• Idle processors try to steal work from
selected victim

- Well suited for recursive divide & conquer approach
- Also used with parallel STL primitives

Urbana / dec 2009 20

Theoretical bound

• Using work stealing scheduler with random selection
of victim, the expected time on P processors is:

Tp = O(Tseq / P + T∞)

- [Galilée, Doreille, Cavalheiro, Roch, PACT 98],[Gautier, Roch, Wagner, ICCS2007]

- Similar bounds with an other context: [Blumofe, Leiseron, Focs 94, PPoPP 95],
[Arora, Blumofe, Plaxton, SPAA 98], ...

• The expected number Xp of steal requests per thread is:

Xp = O(T∞)

Urbana / dec 2009

Work first principle

• Due to [Cilk Team]
- “Minimize scheduling overhead borne by work at the

expense of increasing the critical path.”

• Application to compute of data flow
constraints

- During steal request: find the first task ready and steal it
- Here we compute data flow dependencies !

- Standard execution: processor execute tasks following a
(valid) order
- Stolen task stop execution if it could introduce future dependencies

- The processor becomes idle and steal work

21

Urbana / dec 2009 22

Outline

Athapascan / Kaapi a software stack
 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
- Controls of the overheads

• Fault tolerance
– CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions

Urbana / dec 2009 23

How to reduce T1/Tseq?
• Why ? WORK overhead reduce efficiency

- extra instructions from the sequential program
- especially for short computation

• Three principal technics
1.adapt the grain size: stop parallelism after a threshold

- but: may increase dramatically T∞, reduce the average parallelism and
increase the number of steal requests

- difficulty to adjust it automatically

2.reduce the cost to create task
- ...ideally do not create task !

3.optimize the cost of workqueue operations to push/pop
tasks
- difficulty due to concurrent operations

Urbana / dec 2009 24

Cost of task
• Cost = Creation + Extra arithmetic work

- Example: prefix computation

- Fish’s lower bound: any parallel algorithm with critical path

log2 n requires at least 4n operations

• Adaptive Algorithm
- [Roch, Traoré 07], [Roch, Traoré, Gautier 08]

- Principle: create tasks when processors are idle !
- Task should provide a way to extract / merge work

- Adaptive Task in the API

Urbana / dec 2009 25

Workqueue optimization
• 3 operations

- push / pop + steal

• Main algorithms
- Cilk: T.H.E. protocol

- serialization of thieves to a same victim

- thief/victim atomic read/write + lock in rare case

- ABP [SPAA00]:
- lock free (Compare&Swap), but prone to overflow

- Chase & Lev [SPAA05]: extend ABP
- without limitation (other than hardware)

❡ C O S T L Y ‘cas’ operation [PPoPP09]

Urbana / dec 2009 26

Cooperative work-stealing

• [X. Besseron, C. Laferrière]

• Keep same semantics as usual
- a task is extracted exactly once

• avoid concurrency between victim &
thieves

- the victim interrupts its work to process steal requests

• Drawback
- the victim should poll requests / thieves are waiting

• Advantage: initial load distribution
- several steal requests may be processed together

Urbana / dec 2009 27

Experiments on multicore

• STL algorithms
- adaptive algorithms: PhD of [D. Traoré]

- with cooperative work stealing: [Xavier Besseron,
C. Laferrière]

• Comparison with Cilk++ / TBB

• Methodology
- average over 300 runs
- do not take into account the first measure

• 16 cores, 8 sockets multicore machine
(opteron, 2.2Ghz).

Urbana / dec 2009 28

T1/Tseq on std::transform

Urbana / dec 2009

Tstl / T8 std::transform

29

Urbana / dec 2009 30

• ~ 100M elements, 1s sequential time
Speedup / Sort

Urbana / dec 2009 31

Tstl / T8 std::merge

Urbana / dec 2009 32

Outline
Athapascan / Kaapi a software stack

 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
 Controls of the overheads

• Fault tolerance
- CCK: Coordinated Checkpointing / Graph partitioning

• Application in computer algebra

• Conclusions

Urbana / dec 2009

Fault Tolerance

•State of application = state of the data flow
graph

•Two specialized protocols

• TIC: Theft Induced Checkpointing

• Periodic checkpoint + forced checkpoint on steal

• CCK: Coordinated Checkpoint

Urbana / dec 2009

Coordinated Checkpoint
• PhD [Xavier Besseron]

- Checkpoint as a special case of dynamic reconfiguration of parallel
application

• Classical protocol restart
- Global restart:

- Failed processes replaced by new ones

- All processes restart from their last checkpoint

- Restart time is, in worst case, the checkpoint period

• CCK protocol restart
- Partial restart:

- Detect lost communications for the failed processes

- Find the set of strictly required computations to make the global state
coherent

- Schedule statically this task set
34

Urbana / dec 2009

After a failure

35

Urbana / dec 2009

Tasks to reexecute

36

Urbana / dec 2009

Restart Std / CCK

37

Urbana / dec 2009 38

Outline

Athapascan / Kaapi a software stack
 Abstract representation & Task model

Scheduling
 Graph Partitioning & Work stealing
 Controls of the overheads

Fault tolerance
 CCK: Coordinated Checkpointing / Graph partitioning

• Applications in computer algebra

• Conclusions

Urbana / dec 2009

Application in computer
algebra

• Formula manipulation : symbolic comp.

• Experimental maths: conjecture testing
- Number theory,Graph theory

• Certified numerical computations

• Computational biology:
 - DNA sequencing, molecular conformation

• Cryptanalysis
- Factorization, Discrete log, Groebner basis

Boil down to exact linear algebra over Z, Q, and GF(q)

39

Urbana / dec 2009 40

LinBox:exact linear algebra

• Dense, sparse, blackbox
matrices

• Over Z, Q, GF(q)
• Genericity:

- Wrt. Domain, algorithm,
matrix implementation, ...

- PnP modules (field
implementations, optional
libraries,...)

Urbana / dec 2009

Specificities

• Variable size arithmetic
- Need for a dynamic work load scheduler

• But easy parallelism: Multimodular approach
- Allow fault tolerance on bysantine failures

• The cost of genericity: isolate building blocks
- Krylov iteration factory (Wiedemman, Lanczos, …)
- Multimodular factory (early term. Fault tolerance,...)
- Sparse multifrontal solver
- Dense linalg subroutines over GF(q) (cf PBLAS)

41

Urbana / dec 2009

Kaapi & LinBox
• Data rather than Task parallelism

• STL semantics (par_for) + workstealing

• Adaptive algorithms: eg TRSM

42

Solve UX=B

Urbana / dec 2009 43

Conclusions

• Athapascan/Kaapi
- A high level model to abstract architecture
- Performance mostly depends on the “adaptation layer”

- Work stealing is scalable on large number of processors (~ 4000 cores on both the
G5K National Academic Grid + Japanese Intrigger Grid)

- Effective parallelization of fine computation with cooperative work stealing

- More experiments should be done
- Scheduling / execution on cluster or grid: Comparison with Charm++ ?

- Fault tolerance: fault free execution, time to restart… Charm++ ?

- http://kaapi.gforge.inria.fr/

http://kaapi.gforge.inria.fr/
http://kaapi.gforge.inria.fr/

Urbana / dec 2009 44

Perspectives

• Blue Gene port [2010]
- Communication layer: switch to DCMF or CkDirect [Charm++]?

• Mixing CPUs & GPUs
- preliminary work
- deeper integration of the GPU as a processing resource

- Wait the next Fermi GPU + driver ?

• Taking into account hierarchical architecture
- ongoing work at MOAIS on hierarchical work stealing [Jean-Noël

Quintin, PhD]

45

Urbana / dec 2009 46

Other applications
• Parallel Computer Algebra

- Linbox: http://www.linalg.org

• Combinatorial Opt. [PRiSM (Paris), B. Lecun]
- QAP / Q3AP problems

• Academic applications
- [III, IV, V Grid@Work contest]

- NQueens

- Option Pricing application based on Monte Carlo Simulation

- Numerical kernel for CEM, CFD Grid application
- Finite difference / Finite element

- Reaction / diffusion with Chemical species
- Finite difference

• SOFA (http://www-sofa-framework.org), See B. Raffin talk

http://www-sofa-framework.org/

Urbana / dec 2009 47

NQueens [2006,2007]

• Grid5000 (French academic national grid)

- 2006: N=23 in 74min on 1422 cores
- 2007: N=23 in 35mn 7s on 3654 cores

• Taktuk: fast deployment tool

Urbana / dec 2009 48

Monte Carlo / Option Pricing

• 3609 cores: ~2700 Grid5000 ~900 Intrigger

• SSH connection between Japan-France

Grid5000: France

Intrigger: Japan

Workshop INRIA-Illinois, 2009/06/9-12 MOAIS project

Physics Simulation

•SOFA: real-time physics engine

•Strongly supported INRIA initiative

•Open Source:

• http://www.sofa-framework.org

•Target application:

•Surgery simulation

http://framework.sofa.org/

Workshop INRIA-Illinois, 2009/06/9-12 MOAIS project

Communication

•Active message like communication
protocol

•Multi-network (TCP, Myrinet, ssh
tunnel with TakTuk)

•High capacity to overlap
communication by computations

•Original message aggregation
protocol

51

Urbana / dec 2009 52

Online construction

result

FibonacFibonac
cici

Time

result

SumSum

FibonacFibonac
cici

subres2

FibonacFibonac
cici

subres1

result

SumSum

FibonacFibonac
cici

subres2

SumSum

subres1

FibonacFibonac
cici

subres1.1

FibonacFibonac
cici

subres1.2

Urbana / dec 2009 53

KAAPI Scheduler

2 Level Scheduling
K-Thread

CPU

OS scheduler

CPUOS CPU

OS scheduler

K-Processor

process

other process

Active Message
over TCP/IP,

Myrinet
and SSH

CPU CPU

Idle K-
Processor

process

Urbana / dec 2009 54

Relaxed semantics

• “Idempotent work stealing” [PPoPP09]
- Maged M. Michael, Martin T. Vechev,

- Vijay A. Saraswat (work also on X10 language)

- avoid CAS in pop operation

❡ More Performance

• Drawback
- a task is returned (and executed) at least once
- ... instead of exactly once

http://portal.acm.org/author_page.cfm?id=81332515587&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506
http://portal.acm.org/author_page.cfm?id=81100269652&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506
http://portal.acm.org/author_page.cfm?id=81100152268&coll=GUIDE&dl=GUIDE&trk=0&CFID=42794313&CFTOKEN=94459506

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54

