LinBox founding scope allocation, parallel
building blocks, and separate compilation

Jean-Guillaume Dumas', Thierry Gautier?, Clément Pernet?, and B. David
Saunders®

! Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques,
umr CNRS 5224, bp 53X, F38041 Grenoble, France, Jean-Guillaume.Dumas@imag. fr.
2 Laboratoire LIG, Université de Grenoble et INRIA. umr CNRS, F38330
Montbonnot, France. Clement .Pernet@imag.fr, Thierry.Gautier@inrialpes.fr.
3 University of Delaware, Computer and Information Science Department. Newark /
DE / 19716, USA. saunders@udel.edu.

1 Introduction

As a building block for a wide range of applications, computational exact linear
algebra has to conciliate efficiency and genericity. The goal of the LINBOX project
is to address this problem in the design of an efficient general-purpose C++ open-
source library for exact linear algebra over the integers, the rationals, and finite
fields. Matrices can be either dense, sparse or black box (i.e. viewed as a linear
operator, acting on vectors only). The library proposes a set of high level linear
algebra solutions, such as the rank, the determinant, the solution of a linear
system, the Smith normal form, the echelon form, the characteristic polynomial,
etc. Each of these solutions involves a hybrid combination of several specialized
algorithms depending on the domain, and the type of matrix. Over a finite
field, the building blocks are an efficient implementation of Wiedemann and
block Wiedemann algorithms combined with preconditioners [1] for black box
matrices, a sparse Gaussian elimination for sparse matrices and the BLAS based
dense linear algebra techniques of the FFLAS library [4] for dense matrices. The
solutions over the integers and rationals are lifted from modular computations
by a Chinese remainder algorithm or p-adic lifting. The design is based on high
genericity to allow us to write efficient algorithms independent of the many
representations of domains and matrices. As a middleware, the library relies on
the efficiency of kernel libraries such as GMP*, Givaro*, NTL*, ATLAS* and can be
used by general purpose computer algebra systems such as Sage? or Maple?.
We describe in this paper a selection of ideas and improvements that were
recently introduced into the the design of LINBOX for the forthcoming 2.0 release.

2 The lightweight founding scope allocation model

The main objects that require memory allocation in LINBOX are base field or
ring elements, vectors, matrices, and polynomials. The memory management for

4 gmplib.org,www-1jk.imag.fr/CASYS/LOGICIELS/givaro, www.shoup.net/ntl,
math-atlas.sourceforge.net, sagemath.org,www.maplesoft.com.

2 J-G. Dumas, T. Gautier, C. Pernet, B. D. Saunders

all of these object types follows the same rules, organized to maximize efficiency
in time and space, and consequently requiring some efforts by the programmer.
In particular no external garbage collection mechanism is used.

The input and output types of most functions are usually template types,
and can be either basic types, or complicated objects. Consequently, passing
arguments by value (copy) must be avoided as much as possible. Every argument
is passed as a reference, including the return types. More precisely the return
value of a function is also the first argument, defined as a non const reference.

Matrix& someFunction(Matrix& result, const XXX& args);

This convention was already presented in [2, §2.1] for the design of field and
ring arithmetic. It does require a redefinition of the interface for some stl-like
operators, as discussed in section 3.1. A consequence of the above convention
is that the objects returned by a function, have to be declared and initialized
(in particular, memory allocated, e.g. via constructors) before the function call.
By enforcing this practice, we require that the programmer keep the handle on
the objects that he allocates until all uses of the object and it’s subobjects are
completed. Moreover, he is responsible for object deallocation in the same scope
where it was allocated. This restricts some convenient programming practices,
but provides precise control of memory usage. This is particularly important
when large, memory filling, matrices are in play. It also allows to avoid the costs
of garbage collection or reference counting.

Many LINBOX objects involve a handle containing a reference to the free
store. Note that even though a function does not allocate the handle itself, it
is in certain cases still free to resize and thus reallocate the free store memory
referenced.

Dense Matriz allocations. The objects storing dense matrices require a special
care concerning their allocations. Dense matrices are represented as a one dimen-
sional array storing elements in the row major format: A[i,j] = *(A+i*n+j).
It is important to be able to define a submatrix as a view on such an array,
without allocating the data. For this we propose to distinguish two classes: one
for allocated (via constructors) matrices and the other for sub-matrix views.
The genericity of the template mechanism or inheritance will allow to use these
two types in the same code, without duplication. This allows also for an auto-
matic decision about deallocation. Other solutions includes reference counting
and explicit "end of use” functions.

3 Software abstraction layer for parallelism

Efficient parallel applications must take into consideration hardware character-
istics (number of cores, memory hierarchy, etc.). It is time consuming or impos-
sible for a single developer to program a high performance computer algebra
application, with state of the art algorithms, while exploiting all the available
parallelism. In order to separate the domains of expertise we have designed a
software abstraction layer between computer algebra algorithms and parallel
implementations which may employ automatic dynamic scheduling.

LINBOX memory, parallelism, compilation models 3

3.1 Parallel building blocks

Computer algebra algorithms have three main characteristics: 1) they are com-
plex and require a deep knowledge of the problem in order to obtain the most
efficient sequential algorithm; 2) they may be highly irregular. This enforces a
runtime use of load balancing algorithms; 3) they are generic in the sense that
they are usually designed to work over several algebraic domains.

In the case of LINBOX algorithms, we have decided to base our software ab-
straction, called Parallel Building Blocks (PBB), on the STL algorithms (Stan-
dard Template Like) principles. Indeed, C++ data structures in LINBOX let us
have random access iterators over containers which are naturally parallel. We
have already defined several STL-like algorithms and the list will be extended
in the near future:
for_each, transform, accumulate®: the PBB versions of these algorithms are
similar to the STL versions except that the involved operators (or function object
classes), given as parameters, are required to have their return value reference
passed as the first parameter of the function. This is in accordance with the
memory model of LINBOxX. The STL return-by-value semantic is not appropri-
ate.

The fundamental idea of PBB is that at the computer algebra level, the par-
allelization of all the loops and more generally of all the STL-like algorithms
will already enable good performance and easy switching among multiple im-
plementations. Regarding performance, this parallelization of the inner loops of
the underlying linear algebra is sufficient in many cases. Regarding implemen-
tations, this abstraction provides for programming independent of the parallel
model with selection of the parallel environment depending on the target archi-
tecture. The parallel blocks can be implemented using many different parallel
environments, such as OpenMP%; TBB” (Thread Building Blocks) or Kaapi [6];
using both static and dynamic work-stealing schedulers [8]. The current imple-
mentations are built on OpenMP and Kaapi.

3.2 Accumulate_until and early termination

To bound the complexity of many linear algebra problems, one of the key ideas
is to use an accumulation with early termination.

For instance, this is used in Chinese Remaindering algorithms. The computa-
tion is performed modulo a sequence of (co)prime numbers and the result is built
from a sequence of residues, until a condition is satisfied [3]. The termination of
the algorithm depends on the accumulated result.

In order to parallelize such algorithms, we proposed an extension of the STL
algorithms called accumulate_until . The algorithm takes an array v of length
N, a unary operator f to be applied to each array entry and a specific binary up-
date operator/predicate for the accumulation. This accumulator with a signature

5 www.sgi.com/tech/stl
5 openmp.org, threadingbuildingblocks.org

4 J-G. Dumas, T. Gautier, C. Pernet, B. D. Saunders

like bool accum(a, b) behaves like an in place addition (a+=b) and returns true
to indicate sufficiently many values are accumulated. Let S, =2, o f(v[i])
with k& € {0, N}. The algorithm computes and returns n < N and S,, such that
one accumulation during the computation of S, returned true or n = N. In
indended use, we know any additional accumulation would also return true.

This algorithm will be used for the early termination Chinese remaindering
algorithms of LINBOX. Though not yet using PBB and accumulate_until , a
sequential version and parallel versions with OpenMP and Kaapi can be found
in the LINBOX distributions as 1inbox/algorithms/cra-domain-*.h.

3.3 Memory contention and thread safe allocation

Many computer algebra programs allocate dynamic memory for the intermediate
computations. Several experiments with LINBOX algorithms on multicore archi-
tectures have shown that these allocations are quite often the bottleneck. An
analysis of the memory pattern and experiments with three well known memory
allocators (ptmalloc, Hoard and TCMalloc from Google Perf. Tools”) have been
conducted. The goal was to decide whether the parallel building blocks model
was suitable to high-performance exact linear algebra. We used dynamic libraries
to exchange allocators for the experiments, but one can use them together in
the LINBOX library if needed [7, §7]. Preliminary experiments on early termi-
nated Chinese remaindering, not the easiest to parallelize, have demonstrated
the advantage, in our setting, of TCMalloc over the others [3]. One of the main
reasons for that fact is that our problems required many temporary allocations.
This fits precisely the thread safe caching mechanism of TCMalloc.

4 Automated Generic Separate compilation

LiNBoX is developed with several kinds of genericity: 1) genericity with respect
to the domain of the coefficients, 2) genericity with respect to the data structure
of the matrices, 3) genericity with respect to the intermediate algorithms. While
this is efficient in terms of capabilities and code reusability, there is a combinato-
rial explosion of combinations. Consider that each of 50 arithmetic domains may
be combined with each of 50 matrix representations in each of 10 intermediate
algorithm forms for a single problem as simple as matrix rank. This lengthens
the compilation time and generates large executable files.

For the management of code bloat LINBOX has used an “archetype mech-
anism” which enables, at the user’s option, to switch to a compilation against
abstract classes [2, §2.1]. However, this can reduce the efficiency of the library.
Therefore, we propose here a way to provide a generic separate compilation.
This will not deal with code bloat, but will reduce the compilation time while
preserving high performance. This is useful for instance when the library is used
with unspecialized calls. This is largely the case for some interface wrappers

v goog-perftools.sourceforge.net/doc/tcmalloc.html

LINBOX memory, parallelism, compilation models 5

to other Computer algebra systems such as SAGE or MAPLE. Our idea is to
automate the technique of [5] which combines compile-time instantiation and
link-time instantiation, while using template instantiation instead of void point-
ers. The mechanism we propose is independent of the desired generic method,
the candidate for separate compilation, and is explained in algorithm 1.

Algorithm 1 C++ Automatic separate compilation wrapping

Input: A generic function func.
Input: Template parameters TParam for separate specialization/compilation of func.
Output: A generic function calling func with separately compiled instantiations.
1: Create a header and a body files “func_instantiate.hpp” and “func_instantiate.cpp”;
2: Add a template function func_separate, with the same specification as func, to
the header;
3: Its generic default implementation is a single line calling the original function func.
{This enables to have a unified interface, even for non specialized class.}
4: for each separately compiled template parameter TParam do

5: Add a non template specification funcTParam, to the header file;

6: Add the associated body with a single line returning the instantiation of func
on a parameter of type TParam, to the body file;

7: Add an inline specialization body of func_separate on a parameter of type

TParam with a single line returning funcTParam, to the header file;
8: end for
9: Compile the body file “func_instantiate.cpp”.

This Algorithm is illustrated on figure 1, where the function is the rank and
the template parameter is a dense matrix over GF'(2), DenseMatrix<GF2>.

User interface

[template<c1ass Mat> Default call (template<class Mat> }

e
rank(const Mat&) | (rank_separate(const Mat&)
A \%
lzation
header
Specialized call | template<>
(rankDenseMatGFZ)<—(rank_separate(const DenseMat<GF2>&)J

[rankDenseMatGF2)

Separately compiled body

Irstantiate

and calls

Fig. 1. Separate compilation of the rank

Algorithm 1 has been simplified for the sake of clarity. To enable a more
user-friendly interface one can rename the original function and all its origi-
nal specializations func_original; then rename also the new interface simply
func. With the classical inline compiler optimizations, the overhead of calling
func_separate is limited to single supplementary function call. Indeed all the
one line additional methods will be automatically inlined, except, of course, the
one calling the separately compiled code. If this overhead is too expensive, it
suffices to enclose all the non generic specializations of “func_instantiate.hpp”
by a macro test. At compile time, the decision to separately compile or not can
be taken according to the definition of this macro.

6 J-G. Dumas, T. Gautier, C. Pernet, B. D. Saunders

We show in table 1 the gains in compilation time obtained on two examples
from LINBOX: the examples/{rank,solve}.C algorithms. Indeed, without any
specification the code has to invoke several specializations depending on run-time
discovered properties of the input. For instance solve.C requires 6 specializa-
tions for sparse matrices over the Integers or over a prime field, with a sparse
elimination, or an iterative method, or a dense method, if the matrix is small. . .

file real time‘user time‘sys. time||real time‘user time‘sys. time
Rank Solve
instantiate.o 143.43s| 142.47s 0.90s|| 171.62s| 170.42s 1.12s
{rank,solve}.o 18.58s| 18.26s| 0.30s|| 23.13s| 22.80s| 0.32s
link 0.80s 0.64s 0.15s 0.85s 0.70s 0.14s
Sep. comp. total|l 162.81s| 161.37s 1.35s|| 195.60s| 193.92s 1.58s
Full comp. 162.02s| 160.47s 1.21s|| 191.47s| 189.52s 1.40s
[speed-up I 8.4] 8.5] 2.7]] 8.0] 81] 3.0s]

Table 1. linbox/examples/{rank,solve}.C compilation time on an AMD Athlon 3600+,
1.9GHz, with gcc 4.5 -O2. instantiate.o contains to the separately compiled instanti-
ations (e.g. densegf2rank in figure 1); {rank, solve}.o contains to the user interface and
generic implementation compilation; 1ink corresponds to the linking of both .o and the
library; Full comp. corresponds to the compilation without the separate mechanism.

Acknowledgment

We thank the LINBOX group and especially Brice Boyer, Pascal Giorgi, Erich
Kaltofen, Dan Roche, Brian Youse for many useful discussions in particular
during the recent LINBOX developer meetings in Delaware and Dublin.

References

1. L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard.
Efficient matrix preconditioners for black box linear algebra. Linear Algebra and its
Applications, 343-344:119-146, 2002.

2. J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D.
Saunders, W. J. Turner, and G. Villard. LinBox: A generic library for exact linear
algebra. In A. M. Cohen, X.-S. Gao, and N. Takayama, editors, Proceedings of the
2002 International Congress of Mathematical Software, Beijing, China, pages 40-50.
World Scientific Pub., Aug. 2002.

3. J.-G. Dumas, T. Gautier, and J.-L. Roch. Generic design of chinese remaindering
schemes. In M. Moreno-Maza and J.-L. Roch, editors, PASCO 2010. Université de
Grenoble, France, July 2010.

4. J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime
fields: the fllas and ffpack packages. ACM Trans. Math. Softw., 35(3):1-42, 2008.

5. U. Erlingsson, E. Kaltofen, and D. Musser. Generic Gram-Schmidt orthogonaliza-
tion by exact division. In ISSAC’1996, pages 275-282, July 1996.

6. T. Gautier, X. Besseron, and L. Pigeon. KAAPI: a thread scheduling runtime
system for data flow computations on cluster of multi-processors. In PASCO’07,
pages 15-23, 2007.

LINBOX memory, parallelism, compilation models 7

7. E. Kaltofen, D. Morozov, and G. Yuhasz. Generic matrix multiplication and memory
management in LINBOxX. In ISSAC’2005, pages 216223, July 2005.

8. D. Traore, J. L. Roch, N. Maillard, T. Gautier, and J. Bernard. Deque-free work-
optimal parallel STL algorithms. In EUROPAR 2008, Las Palmas, Spain, aug 2008.

