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Asymptotic complexity

Matrix multiplication:

Folklore: 2n3 − n2

Strassen 1969: 7n2.807 + o(n2.807)

Winograd 1971: 6n2.807 + o(n2.807)

...
Coppersmith Winograd 1990: O

(
n2.376)

⇒O (nω), where ω denotes an admissible exponent
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Efficiency in practice

The most efficient routine in linear algebra.
Several reasons:

dedicated processor instruction fused-mac: z ← xy + z

simple structure of the dot-product (pipelining is easy)

sub-cubic algorithm
used to be considered as not practicable
beware of unstability with floating point numbers
but improves efficiency over finite fields
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Memory management considerations

CPU-Memory communication: bandwidth gap
⇒Hierarchy of several cache memory levels

Imposes a structure for algorithms: operations
must be blocked to increase data locality and fit
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CPU

L1

RAM

L2

L3

Reuse of the data
Work� Data to amortize memory transfer
⇒reach the peak performance of the CPU

Matrix multiplication: n3 � n2

⇒well suited for block design
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Reductions to matrix multiplication

Matrix Inversion [Strassen 69]

[
A B
C D

]−1

=

[
A−1

I

] [
I −B

I

] [
I

(D − CA−1B)−1

] [
I

CA−1 I

]

1: Compute E = A−1 (Recursive call)
2: Compute F = D − CEB (MM)
3: Compute G = F−1 (Recursive call)
4: Compute H = −EB (MM)
5: Compute J = HG (MM)
6: Compute K = CE (MM)
7: Compute L = E + JK (MM)
8: Compute M = GK (MM)

9: Return
[

E J
M G

]
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TRSM: Multiple triangular system solving[
A B

C

]−1 [
D
E

]
=

[
A−1

I

] [
I −B

I

] [
I

C−1

] [
D
E

]

1: Compute F = C−1E (Recursive call)
2: Compute G = D − BF (MM)
3: Compute H = A−1G (Recursive call)

4: Return
[
H
F

]
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Reductions to matrix multiplication

LU decomposition[
A B
C D

]
=

[
LA

CU−1
A LE

] [
UA L−1

A B
UE

]
where E = D − CA−1B

1: Compute A = LAUA (Recursive call)
2: Compute F = CU−1

A (TRSM)
3: Compute G = L−1

A B (TRSM)
4: Compute E = D − FG (MM)
5: Compute E = LEUE (Recursive call)

6: Return
([

LA
F LE

]
,

[
UA G

UE

])
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Reductions to matrix multiplication

Divide and conquer approach:
⇒ involves computations with dimensions n

2i for i = 1 . . . log2 n

⇒ overall time complexity by geometric progression

log2 n∑
i=1

2i
( n

2i

)ω

= O (nω)

These reductions reduce to in O (nω) the following problems
det, rank, rank profile,
echelon form, inverse, system solving.

What about the characteristic polynomial ?
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Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton’s formula
improved/rediscovered by Souriau, Faddeev,
Frame and Csanky
O

(
n4), based on Matrix multiplication

Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
⇒O

(
n3)

Hessenberg 1942: transformation to quasi-upper triangular
and determinant expansion formula.
⇒O

(
n3)

But no trivial translation into a block algorithm with O (nω)
complexity.
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Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix
multiplication
⇒O

(
nω+1)

Keller-Gehrig 1985, alg.1: computes (A2i
)i=1... log2 n to form a

Krylov basis.

O (nω log n)
the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block
operations

O (nω)
Only valid with generic matrices
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Statement

Theorem

If A is a n × n matrix over a field having more than 2n2

elements, the characteristic polynomial of A can be computed
in O (nω) field operations by a Las Vegas randomized algorithm.
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Definition (degree d Krylov matrix of one vector v )

K =
[
v Av . . . Ad−1v

]
Property

A× K = K ×


0 ∗
1 ∗

. . . ∗
1 ∗



⇒if d = n, K−1AK = CPA
car

⇒[Keller-Gehrig, alg. 2] computes K in O (nω)
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Definition (degree k Krylov matrix of several vectors vi )

K =
[

v1 . . . Ak−1v1 v2 . . . Ak−1v2 . . . vl . . . Ak−1vl
]

Property

1

0

1

1

0

1

1

0

1

k k k

A× K = K×
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Fact
If (d1, . . . dl) is lexicographically maximal such that

K =
[

v1 . . . Ad1−1v1 . . . vl . . . Adl−1vl
]

is non-singular, then

1

0

1

0

1

1

1

0

1

d2 dld1

K−1AK =
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Principle

k -shifted form:

1

0

1

1

0

1

1

0

1

k k ≤ k

try to inflate each slice by one ...
... to obtain the k + 1-shifted form

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

k -shifted form:

1

0

1

1

0

1

1

0

1

k k ≤ k

try to inflate each slice by one ...

... to obtain the k + 1-shifted form

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

k + 1-shifted form:

1

0

1

0

1

0

1

1

1

≤ k + 1k + 1 d3

try to inflate each slice by one ...
... to obtain the k + 1-shifted form

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

Compute iteratively from 1-shifted form to d1-shifted form

each diagonal block appears in the increasing degree
until the shifted Hessenberg form is obtained:

1

0

1

0

1

1

1

0

1

d2 dld1

How to transform from k to k + 1-shifted form ?

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

Compute iteratively from 1-shifted form to d1-shifted form
each diagonal block appears in the increasing degree

until the shifted Hessenberg form is obtained:

1

0

1

0

1

1

1

0

1

d2 dld1

How to transform from k to k + 1-shifted form ?

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

Compute iteratively from 1-shifted form to d1-shifted form
each diagonal block appears in the increasing degree
until the shifted Hessenberg form is obtained:

1

0

1

0

1

1

1

0

1

d2 dld1

How to transform from k to k + 1-shifted form ?

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Principle

Compute iteratively from 1-shifted form to d1-shifted form
each diagonal block appears in the increasing degree
until the shifted Hessenberg form is obtained:

1

0

1

0

1

1

1

0

1

d2 dld1

How to transform from k to k + 1-shifted form ?

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Krylov normal extension

for any k -shifted form

1

0

1

1

0

1

1

0

1

k k ≤ k

Ak = c1 c2 c3

compute the n × (n + k) matrix
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1
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1
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k kk

K = c1 c2 c3

and form K by picking its first linearly independent columns.
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Krylov normal extension

Lemma
If #F > 2n2, with high probability, the matrix K will have the form

1

1
1

1

1

1

k k ≤ k

K = c1 c2

and Ak+1 = K−1Ak K will be in k + 1 shifted form
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The algorithm

Form K : just copy the columns of Ak

Compute K : rank profile of K
Apply the similarity transformation K−1AkK

How to use matrix multiplication knowing the structure ?
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Permutations: compressing the dense columns
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1
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0

1

×PAk = = Q×c2
c2c3c1 c3

c1

1

1

0

1

1

1

1
1

1

×P′K = = Q′× c2c1c1 c2

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Permutations: compressing the dense columns

0

1

1

1

1

0

1

0

1

1

0

1

×PAk = = Q×c2
c2c3c1 c3

c1

1

1

0

1

1

1

1
1

1

×P′K = = Q′× c2c1c1 c2

Clément Pernet Matrix multiplication based Characteristic Polynomial



Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial

Conclusion and perspectives

State of the art
A new algorithm
Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP
⇒O

(
k

(n
k

)ω)

Similarity transformation: parenthesing

⇒O
(
k

(n
k

)ω)
Overall complexity: summing for each iteration:

n∑
k=1

k
(n

k

)ω

= nω
n∑

k=1

(
1
k

)ω−1

= O (nω)
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Outline

1 Matrix multiplication based linear algebra
Matrix multiplication: a building block
Reductions to matrix multiplication

2 Computing the characteristic polynomial
State of the art
A new algorithm
Algorithm into practice
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Heuristic improvement

The randomization:

the iterate vectors at the first iteration must be random vectors.
or equivalently

the matrix has to be preconditioned: M−1AM for a random
matrix M.

⇒as expensive as the rest of the algorithm
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A block Krylov preconditoner

1: Pick n/c random vectors U =
[
u1 . . . un/c

]
.

2: M =
[
U AU . . . Ac−1

]

3: if M is non singular then
4: M−1AM = Hc is in c-shifted form.
5: else
6: complete M into a non singular matrix M by adding some

columns at the end

7: then M
−1

AM =

[
Hc ∗

R

]
8: end if
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Efficiency balancing parameter

c small: full square matrix multiplications, but more ops
c large: tends to matrix-vector products, but less ops

⇒parameter c balances efficiency
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Experiments

n LU-Krylov New algorithm
200 0.024 0.032
300 0.06s 0.088s
500 0.248s 0.316s
750 1.084s 1.288s

1000 2.42s 2.296s
5000 267.6s 153.9s

10 000 1827s 991s
20 000 14 652s 7097s
30 000 48 887s 24 928s

Computation time for 1 Frobenius block matrices, Itanium2-64 1.3Ghz, 192Gb
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Comparison to Magma

n magma-2.11 LU-Krylov New algorithm
100 0.010s 0.005s 0.006s
300 0.830s 0.294s 0.105s
500 3.810s 1.316s 0.387s
800 15.64s 4.663s 1.387s
1000 29.96s 10.21s 2.755s
1500 102.1s 33.36s 7.696s
2000 238.0s 79.13s 17.91s
3000 802.0s 258.4s 61.09s
5000 3793s 1177s 273.4s
7500 MT 4209s 991.4s

10 000 MT 8847s 2080s

Computation time for 1 Frobenius block matrices, Athlon 2200, 1.8Ghz, 2Gb

MT: Memory thrashing
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Conclusion and perspectives

Results:

Las Vegas reduction to matrix multiplication,
The Frobenius normal form is easily derivable in O (nω)...
...but no transformation matrix
Adaptive combination with block Krylov in practice.

Still to be done:

Condition on the size of the field is a limitation. Eberly’s
algorithm ?
Ideally: derandomization ? (deterministic)
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