Matrix Multiplication Based Computations of the Characteristic Polynomial

Clément Pernet,

 joint work with Arne StorjohannSymbolic Computation Group
University of Waterloo
Joint Lab Meeting ORCCA-SCG,
February 9, 2007

Introduction

Dense Linear Algebra over a Field:

- one of the usual models for complexity in linear algebra
- applied to
- \mathbb{R} : floating point linear algebra
- $G F(q), Z_{p}$ and \mathbb{Z} (using CRT)

Introduction

Dense Linear Algebra over a Field:

- one of the usual models for complexity in linear algebra
- applied to
- \mathbb{R} : floating point linear algebra
- $G F(q), Z_{p}$ and \mathbb{Z} (using CRT)

Applications in exact computation:
Cryptography :
Representation theory :
Topology:
Graph theory :
number field sieves null space basis
Smith normal forms
characteristic polynomial

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms
\Rightarrow Balance between asymptotic complexity and practical efficiency considerations

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms
\Rightarrow Balance between asymptotic complexity and practical efficiency considerations
- space complexity

Outline

(1) Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication
(2) Computing the characteristic polynomial
- State of the art
- A new algorithm
- Algorithm into practice

Outline

(1) Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication
(2) Computing the characteristic polynomial
- State of the art
- A new algorithm
- Algorithm into practice

Outline

(9) Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

Matrix multiplication: a building block

Asymptotic complexity

Matrix multiplication:

Folklore:
$2 n^{3}-n^{2}$

$$
7 n^{2.807}+o\left(n^{2.807}\right)
$$

$$
6 n^{2.807}+o\left(n^{2.807}\right)
$$Strassen 1969:

Winograd 1971:
Coppersmith Winograd 1990:
$\Rightarrow \mathcal{O}\left(n^{\omega}\right)$, where ω denotes an admissible exponent

Efficiency in practice

The most efficient routine in linear algebra.

Several reasons:

- dedicated processor instruction fused-mac: $z \leftarrow x y+z$

Efficiency in practice

The most efficient routine in linear algebra.
Several reasons:

- dedicated processor instruction fused-mac: $z \leftarrow x y+z$
- simple structure of the dot-product (pipelining is easy)

Efficiency in practice

The most efficient routine in linear algebra.
Several reasons:

- dedicated processor instruction fused-mac: $z \leftarrow x y+z$
- simple structure of the dot-product (pipelining is easy)
- enables better memory management

Matrix multiplication: a building block

Efficiency in practice

The most efficient routine in linear algebra.
Several reasons:

- dedicated processor instruction fused-mac: $z \leftarrow x y+z$
- simple structure of the dot-product (pipelining is easy)
- enables better memory management
- sub-cubic algorithm
- used to be considered as not practicable
- beware of unstability with floating point numbers
- but improves efficiency over finite fields

Efficiency in practice

The most efficient routine in linear algebra.
Several reasons:

- dedicated processor instruction fused-mac: $z \leftarrow x y+z$
- simple structure of the dot-product (pipelining is easy)
- enables better memory management
- sub-cubic algorithm
- used to be considered as not practicable
- beware of unstability with floating point numbers
- but improves efficiency over finite fields

Memory management considerations

CPU-Memory communication: bandwidth gap \Rightarrow Hierarchy of several cache memory levels

Memory management considerations

CPU-Memory communication: bandwidth gap
\Rightarrow Hierarchy of several cache memory levels
Imposes a structure for algorithms: operations must be blocked to increase data locality and fit in the cache

Memory management considerations

CPU-Memory communication: bandwidth gap
\Rightarrow Hierarchy of several cache memory levels
Imposes a structure for algorithms: operations must be blocked to increase data locality and fit in the cache

Reuse of the data

- Work \gg Data to amortize memory transfer \Rightarrow reach the peak performance of the CPU
- Matrix multiplication: $n^{3} \gg n^{2}$
\Rightarrow well suited for block design

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Matrix multiplication: a building block
Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Matrix multiplication: a building block
Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Matrix multiplication: a building block
Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Matrix multiplication: a building block
Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Outline

(1) Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication
(2) Computing the characteristic polynomial
- State of the art
- A new algorithm
- Algorithm into practice

Other linear algebra problems

Asymptotic complexity:

- Used to be in $\mathcal{O}\left(n^{3}\right)$
- Room for improvement: $\mathcal{O}\left(n^{\omega}\right)$ for everyone ?

Other linear algebra problems

Asymptotic complexity:

- Used to be in $\mathcal{O}\left(n^{3}\right)$
- Room for improvement: $\mathcal{O}\left(n^{\omega}\right)$ for everyone ?

Practical efficiency: reuse the efficient matrix multiplication kernel

Reductions to matrix multiplication

Matrix Inversion [Strassen 69]

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & \\
C A^{-1} & I
\end{array}\right]
$$

Reductions to matrix multiplication

Matrix Inversion [Strassen 69]

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & \\
C A^{-1} & I
\end{array}\right]
$$

1: Compute $E=A^{-1}$
2: Compute $F=D-C E B$
3: Compute $G=F^{-1}$
4: Compute $H=-E B$
5: Compute $J=H G$
6: Compute $K=C E$
7: Compute $L=E+J K$
8: Compute $M=G K$
(Recursive call)
(MM)
(Recursive call)

9: Return $\left[\begin{array}{ll}E & J \\ M & G\end{array}\right]$

Reductions to matrix multiplication

TRSM: Multiple triangular system solving

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{ll}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

Reductions to matrix multiplication

TRSM: Multiple triangular system solving

$$
\left[\begin{array}{ll}
A & B \\
& C
\end{array}\right]^{-1}\left[\begin{array}{l}
D \\
E
\end{array}\right]=\left[\begin{array}{ll}
A^{-1} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
I & -B \\
& I
\end{array}\right]\left[\begin{array}{ll}
I & \\
& C^{-} 1
\end{array}\right]\left[\begin{array}{l}
D \\
E
\end{array}\right]
$$

1: Compute $F=C^{-1} E$
2: Compute $G=D-B F$
3: Compute $H=A^{-1} G$
4: Return $\left[\begin{array}{l}H \\ F\end{array}\right]$

Reductions to matrix multiplication

LU decomposition

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
L_{A} & \\
C U_{A}^{-1} & L_{E}
\end{array}\right]\left[\begin{array}{cc}
U_{A} & L_{A}^{-1} B \\
& U_{E}
\end{array}\right]
$$

where $E=D-C A^{-1} B$

Reductions to matrix multiplication

LU decomposition

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
L_{A} & \\
C U_{A}^{-1} & L_{E}
\end{array}\right]\left[\begin{array}{cc}
U_{A} & L_{A}^{-1} B \\
& U_{E}
\end{array}\right]
$$

where $E=D-C A^{-1} B$
1: Compute $A=L_{A} U_{A}$
2: Compute $F=C U_{A}^{-1}$
(Recursive call)
(TRSM)
3: Compute $G=L_{A}^{-1} B$
(TRSM)
4: Compute $E=D-F G$
5: Compute $E=L_{E} U_{E}$
(MM)

6: Return $\left(\left[\begin{array}{cc}L_{A} & L_{E} \\ F & L_{E}\end{array}\right],\left[\begin{array}{cc}U_{A} & G \\ & U_{E}\end{array}\right]\right)$

Reductions to matrix multiplication

Divide and conquer approach:
\Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i=1 \ldots \log _{2} n$
\Rightarrow overall time complexity by geometric progression

$$
\sum_{i=1}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{\omega}=\mathcal{O}\left(n^{\omega}\right)
$$

Reductions to matrix multiplication

Divide and conquer approach:
\Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i=1 \ldots \log _{2} n$
\Rightarrow overall time complexity by geometric progression

$$
\sum_{i=1}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{\omega}=\mathcal{O}\left(n^{\omega}\right)
$$

These reductions reduce to in $\mathcal{O}\left(n^{\omega}\right)$ the following problems

- det, rank, rank profile,
- echelon form, inverse, system solving.

Reductions to matrix multiplication

Divide and conquer approach:
\Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i=1 \ldots \log _{2} n$
\Rightarrow overall time complexity by geometric progression

$$
\sum_{i=1}^{\log _{2} n} 2^{i}\left(\frac{n}{2^{i}}\right)^{\omega}=\mathcal{O}\left(n^{\omega}\right)
$$

These reductions reduce to in $\mathcal{O}\left(n^{\omega}\right)$ the following problems

- det, rank, rank profile,
- echelon form, inverse, system solving.

What about the characteristic polynomial ?

Outline

> (1) Matrix multiplication based linear algebra
> - Matrix multiplication: a building block
> - Reductions to matrix multiplication
(2) Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

Outline

> (1) Matrix multiplication based linear algebra
> - Matrix multiplication: a building block
> - Reductions to matrix multiplication
(2) Computing the characteristic polynomial - State of the art

- A new algorithm
- Algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
$\Rightarrow \mathcal{O}\left(n^{3}\right)$

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
$\Rightarrow \mathcal{O}\left(n^{3}\right)$
Hessenberg 1942: transformation to quasi-upper triangular and determinant expansion formula.
$\Rightarrow \mathcal{O}\left(n^{3}\right)$

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}\left(n^{4}\right)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations
$\Rightarrow \mathcal{O}\left(n^{3}\right)$
Hessenberg 1942: transformation to quasi-upper triangular and determinant expansion formula.
$\Rightarrow \mathcal{O}\left(n^{3}\right)$
But no trivial translation into a block algorithm with $\mathcal{O}\left(n^{\omega}\right)$ complexity.

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication
 $\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)$

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication
$\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)$
Keller-Gehrig 1985, alg.1: computes $\left(A^{2^{i}}\right)_{i=1 \ldots \log _{2} n}$ to form a Krylov basis.

- $\mathcal{O}\left(n^{\omega} \log n\right)$
- the best complexity up to now

Post-Strassen age

Preparata \& Sarwate 1978: Update Csanky with fast matrix multiplication

$$
\Rightarrow \mathcal{O}\left(n^{\omega+1}\right)
$$

Keller-Gehrig 1985, alg.1: computes $\left(A^{2 i}\right)_{i=1 \ldots \log _{2} n}$ to form a Krylov basis.

- $\mathcal{O}\left(n^{\omega} \log n\right)$
- the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block operations

- $\mathcal{O}\left(n^{\omega}\right)$
- Only valid with generic matrices

State of the art
A new algorithm
Algorithm into practice

Outline

> (1) Matrix multiplication based linear algebra
> - Matrix multiplication: a building block
> - Reductions to matrix multiplication
(2) Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

Statement

Theorem

If A is a $n \times n$ matrix over a field having more than $2 n^{2}$ elements, the characteristic polynomial of A can be computed in $\mathcal{O}\left(n^{\omega}\right)$ field operations by a Las Vegas randomized algorithm.

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

$$
\Rightarrow \text { if } d=n, K^{-1} A K=C_{P_{c a r}^{A}}
$$

Definition (degree d Krylov matrix of one vector v)

$$
K=\left[\begin{array}{llll}
v & A v & \ldots & A^{d-1} v
\end{array}\right]
$$

Property

$$
A \times K=K \times\left[\begin{array}{llll}
0 & & & * \\
1 & & & * \\
& \ddots & & * \\
& & 1 & *
\end{array}\right]
$$

\Rightarrow if $d=n, K^{-1} A K=C_{P_{c a r}^{A}}$
$\Rightarrow\left[\right.$ Keller-Gehrig, alg. 2] computes K in $\mathcal{O}\left(n^{\omega}\right)$

Definition (degree k Krylov matrix of several vectors v_{i})

$$
K=\left[\begin{array}{lll}
v_{1} & \ldots & \left.\left.A^{k-1} v_{1}\left|\begin{array}{lll}
v_{2} & \ldots & A^{k-1} v_{2}
\end{array}\right| \ldots \right\rvert\, \begin{array}{lll}
v_{l} & \ldots & A^{k-1} v_{l}
\end{array}\right]
\end{array}\right.
$$

Property

Fact

If $\left(d_{1}, \ldots d_{l}\right)$ is lexicographically maximal such that

$$
K=\left[\begin{array}{lll}
v_{1} & \ldots & A^{d_{1}-1} v_{1}|\ldots| l l l
\end{array} v_{l} \ldots A^{d_{l}-1} v_{l}\right]
$$

is non-singular, then

State of the art

Principle

k-shifted form:

Principle

k-shifted form:

- try to inflate each slice by one ...

Principle

$k+1$-shifted form:

- try to inflate each slice by one ...
- ... to obtain the $k+1$-shifted form

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form

Principle

- Compute iteratively from 1 -shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree

Principle

- Compute iteratively from 1-shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

Principle

- Compute iteratively from 1-shifted form to d_{1}-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

How to transform from k to $k+1$-shifted form ?

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Krylov normal extension

for any k-shifted form

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Krylov normal extension

compute the $n \times(n+k)$ matrix

Introduction
Matrix multiplication based linear algebra
Computing the characteristic polynomial
Conclusion and perspectives

Krylov normal extension

compute the $n \times(n+k)$ matrix

and form K by picking its first linearly independent columns.

Krylov normal extension

Lemma

If $\# F>2 n^{2}$, with high probability, the matrix K will have the form

and $A_{k+1}=K^{-1} A_{k} K$ will be in $k+1$ shifted form

The algorithm

- Form \bar{K} : just copy the columns of A_{k}

The algorithm

- Form \bar{K} : just copy the columns of A_{k}
- Compute K : rank profile of \bar{K}

The algorithm

- Form \bar{K} : just copy the columns of A_{k}
- Compute K : rank profile of \bar{K}
- Apply the similarity transformation $K^{-1} A_{k} K$

The algorithm

- Form \bar{K} : just copy the columns of A_{k}
- Compute K : rank profile of \bar{K}
- Apply the similarity transformation $K^{-1} A_{k} K$

How to use matrix multiplication knowing the structure ?

State of the art

Permutations: compressing the dense columns

Permutations: compressing the dense columns

Reduction to Matrix multiplication

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Reduction to Matrix multiplication

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Similarity transformation: parenthesing
$K^{-1} A K=Q^{\prime T}\left[\begin{array}{ll}1 & * \\ 0 & *\end{array}\right] P^{\prime T} Q\left[\begin{array}{ll}I & * \\ 0 & *\end{array}\right] P Q^{\prime}\left[\begin{array}{ll}I & * \\ 0 & *\end{array}\right] P^{\prime}$

Reduction to Matrix multiplication

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Similarity transformation: parenthesing
$K^{-1} A K=Q^{\prime T}\left(\left[\begin{array}{ll}I & * \\ 0 & *\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}I & * \\ 0 & *\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}I & * \\ 0 & *\end{array}\right]\right)\right)\right)\right) P^{\prime}$

Reduction to Matrix multiplication

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Similarity transformation: parenthesing

$$
\begin{aligned}
K^{-1} A K=Q^{\prime T} & \left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Reduction to Matrix multiplication

Rank profile: derived from LQUP

$$
\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
$$

Similarity transformation: parenthesing

$$
\begin{aligned}
K^{-1} A K=Q^{\prime T} & \left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P^{\prime T} Q\left(\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\left(P Q^{\prime}\left[\begin{array}{ll}
I & * \\
0 & *
\end{array}\right]\right)\right)\right)\right) P^{\prime} \\
& \Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)
\end{aligned}
$$

Overall complexity: summing for each iteration:

$$
\sum_{k=1}^{n} k\left(\frac{n}{k}\right)^{\omega}=n^{\omega} \sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\omega-1}=\mathcal{O}\left(n^{\omega}\right)
$$

State of the art
A new algorithm
Algorithm into practice

Outline

> (1) Matrix multiplication based linear algebra
> - Matrix multiplication: a building block
> - Reductions to matrix multiplication
(2) Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

Heuristic improvement

The randomization:
the iterate vectors at the first iteration must be random vectors. or equivalently
the matrix has to be preconditioned: $M^{-1} A M$ for a random matrix M.
\Rightarrow as expensive as the rest of the algorithm

State of the art
A new algorithm
Algorithm into practice

A block Krylov preconditoner

1: Pick n / c random vectors $U=\left[\begin{array}{lll}u_{1} & \ldots & u_{n / c}\end{array}\right]$.
2: $M=\left[\begin{array}{llll}U & A U & \ldots & A^{c-1}\end{array}\right]$

A block Krylov preconditoner

1: Pick n / c random vectors $U=\left[\begin{array}{lll}u_{1} & \ldots & u_{n / c}\end{array}\right]$.
2: $M=\left[\begin{array}{llll}U & A U & \ldots & A^{c-1}\end{array}\right]$
3: if M is non singular then
4: $\quad M^{-1} A M=H_{c}$ is in c-shifted form.

A block Krylov preconditoner

1: Pick n / c random vectors $U=\left[\begin{array}{lll}u_{1} & \ldots & u_{n / c}\end{array}\right]$.
2: $M=\left[\begin{array}{llll}U & A U & \ldots & A^{c-1}\end{array}\right]$
3: if M is non singular then
4: $\quad M^{-1} A M=H_{c}$ is in c-shifted form.

5: else

6: complete M into a non singular matrix \bar{M} by adding some columns at the end
7: then $\bar{M}^{-1} A \bar{M}=\left[\begin{array}{ll}H_{C} & * \\ & R\end{array}\right]$
8: end if

Efficiency balancing parameter

- c small: full square matrix multiplications, but more ops
- c large: tends to matrix-vector products, but less ops

Efficiency balancing parameter

- c small: full square matrix multiplications, but more ops
- c large: tends to matrix-vector products, but less ops \Rightarrow parameter c balances efficiency

Efficiency balancing parameter

- c small: full square matrix multiplications, but more ops
- c large: tends to matrix-vector products, but less ops \Rightarrow parameter c balances efficiency

Experiments

n	LU-Krylov	New algorithm
200	0.024	0.032
300	0.06 s	0.088 s
500	0.248 s	0.316 s
750	1.084 s	1.288 s
1000	2.42 s	2.296 s
5000	267.6 s	153.9 s
10000	1827 s	991 s
20000	14652 s	7097 s
30000	48887 s	24928 s

Computation time for 1 Frobenius block matrices, Itanium2-64 1.3Ghz, 192Gb

State of the art

A new algorithm

Algorithm into practice

Experiments

Timing comparison between the new algorithm and LU-Krylov, logarithmic scales, Itanium2-64 1.3Ghz, 192Gb

Comparison to Magma

n	magma-2.11	LU-Krylov	New algorithm
100	0.010 s	0.005 s	0.006 s
300	0.830 s	0.294 s	0.105 s
500	3.810 s	1.316 s	0.387 s
800	15.64 s	4.663 s	1.387 s
1000	29.96 s	10.21 s	2.755 s
1500	102.1 s	33.36 s	7.696 s
2000	238.0 s	79.13 s	17.91 s
3000	802.0 s	258.4 s	61.09 s
5000	3793 s	1177 s	273.4 s
7500	MT	4209 s	991.4 s
10000	MT	8847 s	2080 s

Computation time for 1 Frobenius block matrices, Athlon 2200, 1.8Ghz, 2Gb

MT: Memory thrashing

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}\left(n^{\omega}\right) \ldots$
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}\left(n^{\omega}\right) \ldots$
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

Still to be done:

- Condition on the size of the field is a limitation. Eberly's algorithm ?
- Ideally: derandomization? (deterministic)

