Matrix Multiplication Based Computations of the Characteristic Polynomial

Clément PERNET, joint work with Arne Storjohann

Symbolic Computation Group University of Waterloo

Joint Lab Meeting ORCCA-SCG, February 9, 2007

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

Dense Linear Algebra over a Field:

- one of the usual models for complexity in linear algebra
- applied to
 - R: floating point linear algebra
 - $GF(q), Z_p$ and \mathbb{Z} (using CRT)

ヘロト ヘワト ヘビト ヘビト

-

Introduction

Dense Linear Algebra over a Field:

- one of the usual models for complexity in linear algebra
- applied to
 - \mathbb{R} : floating point linear algebra
 - $GF(q), Z_p$ and \mathbb{Z} (using CRT)

Applications in exact computation:

Cryptography : Representation theory :

. . .

Topology :

Graph theory :

number field sieves null space basis Smith normal forms characteristic polynomial

ヘロト ヘワト ヘビト ヘビト

э

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

• Deterministic or Las Vegas randomized algorithmns

ヘロト ヘワト ヘビト ヘビト

э

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms

イロト イポト イヨト イヨト

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms

 \Rightarrow Balance between asymptotic complexity and practical efficiency considerations

イロト イポト イヨト イヨト

Approach

Problem

Compute the characteristic polynomial of a dense matrix over a field

- Deterministic or Las Vegas randomized algorithmns
- Asymptotic time complexity...
- ... and practical algorithms

 \Rightarrow Balance between asymptotic complexity and practical efficiency considerations

space complexity

イロト イポト イヨト イヨト

Outline

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

2 Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

・ロト ・ 同ト ・ ヨト ・ ヨト

Matrix multiplication: a building block Reductions to matrix multiplication

Outline

- Matrix multiplication: a building block
- Reductions to matrix multiplication
- 2 Computing the characteristic polynomial
 - State of the art
 - A new algorithm
 - Algorithm into practice

・ロト ・ 同ト ・ ヨト ・ ヨト

Matrix multiplication: a building block Reductions to matrix multiplication

Outline

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication
- Computing the characteristic polynomial
 - State of the art
 - A new algorithm
 - Algorithm into practice

Matrix multiplication: a building block Reductions to matrix multiplication

Asymptotic complexity

Matrix multiplication:

. . .

Folklore: Strassen 1969: Winograd 1971: $2n^{3} - n^{2}$ $7n^{2.807} + o(n^{2.807})$ $6n^{2.807} + o(n^{2.807})$

ヘロン ヘアン ヘビン ヘビン

Coppersmith Winograd 1990:

 $O(n^{2.376})$

-

 $\Rightarrow \mathcal{O}(n^{\omega})$, where ω denotes an admissible exponent

Matrix multiplication: a building block Reductions to matrix multiplication

Efficiency in practice

The most efficient routine in linear algebra. Several reasons:

● dedicated processor instruction fused-mac: z ← xy + z

ヘロト ヘワト ヘビト ヘビト

э

Matrix multiplication: a building block Reductions to matrix multiplication

Efficiency in practice

The most efficient routine in linear algebra. Several reasons:

- dedicated processor instruction fused-mac: z ← xy + z
- simple structure of the dot-product (pipelining is easy)

Matrix multiplication: a building block Reductions to matrix multiplication

Efficiency in practice

The most efficient routine in linear algebra. Several reasons:

- dedicated processor instruction fused-mac: z ← xy + z
- simple structure of the dot-product (pipelining is easy)
- enables better memory management

Matrix multiplication: a building block Reductions to matrix multiplication

Efficiency in practice

The most efficient routine in linear algebra. Several reasons:

- dedicated processor instruction fused-mac: z ← xy + z
- simple structure of the dot-product (pipelining is easy)
- enables better memory management
- sub-cubic algorithm
 - used to be considered as not practicable
 - beware of unstability with floating point numbers
 - but improves efficiency over finite fields

Matrix multiplication: a building block Reductions to matrix multiplication

Efficiency in practice

The most efficient routine in linear algebra. Several reasons:

- dedicated processor instruction fused-mac: z ← xy + z
- simple structure of the dot-product (pipelining is easy)
- enables better memory management
- sub-cubic algorithm
 - used to be considered as not practicable
 - beware of unstability with floating point numbers
 - but improves efficiency over finite fields

Matrix multiplication: a building block Reductions to matrix multiplication

Memory management considerations

CPU-Memory communication: bandwidth gap ⇒Hierarchy of several cache memory levels

ヘロト ヘワト ヘビト ヘビト

э

Matrix multiplication: a building block Reductions to matrix multiplication

Memory management considerations

CPU-Memory communication: bandwidth gap ⇒Hierarchy of several cache memory levels

Imposes a structure for algorithms: operations must be blocked to increase data locality and fit in the cache

< ロト < 同ト < ヨト < ヨト

Matrix multiplication: a building block Reductions to matrix multiplication

Memory management considerations

CPU-Memory communication: bandwidth gap ⇒Hierarchy of several cache memory levels

Imposes a structure for algorithms: operations must be blocked to increase data locality and fit in the cache

Reuse of the data

- Work ≫ Data to amortize memory transfer ⇒reach the peak performance of the CPU
- Matrix multiplication: n³ ≫ n² ⇒well suited for block design

< ロト < 同ト < ヨト < ヨト

Matrix multiplication: a building block Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Clément Pernet

Matrix multiplication: a building block Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Clément Pernet

Matrix multiplication: a building block Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Clément Pernet

Matrix multiplication: a building block Reductions to matrix multiplication

Practical implementation over finite fields

Matrix multiplication

Clément Pernet

Matrix multiplication: a building block Reductions to matrix multiplication

Outline

- Matrix multiplication: a building block
- Reductions to matrix multiplication
- 2 Computing the characteristic polynomial
 - State of the art
 - A new algorithm
 - Algorithm into practice

Matrix multiplication: a building block Reductions to matrix multiplication

Other linear algebra problems

Asymptotic complexity:

- Used to be in $\mathcal{O}(n^3)$
- Room for improvement: $\mathcal{O}(n^{\omega})$ for everyone ?

Matrix multiplication: a building block Reductions to matrix multiplication

Other linear algebra problems

Asymptotic complexity:

- Used to be in $\mathcal{O}(n^3)$
- Room for improvement: $\mathcal{O}(n^{\omega})$ for everyone ?

Practical efficiency: reuse the efficient matrix multiplication kernel

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

Matrix Inversion [Strassen 69]

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} \\ I \end{bmatrix} \begin{bmatrix} I & -B \\ I \end{bmatrix} \begin{bmatrix} I \\ (D - CA^{-1}B)^{-1} \end{bmatrix} \begin{bmatrix} I \\ CA^{-1} & I \end{bmatrix}$$

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

Matrix Inversion [Strassen 69]

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} \\ I \end{bmatrix} \begin{bmatrix} I & -B \\ I \end{bmatrix} \begin{bmatrix} I \\ (D - CA^{-1}B)^{-1} \end{bmatrix} \begin{bmatrix} I \\ CA^{-1} & I \end{bmatrix}$$

1: Compute
$$E = A^{-1}$$
(Recursive call)2: Compute $F = D - CEB$ (MM)3: Compute $G = F^{-1}$ (Recursive call)4: Compute $H = -EB$ (MM)5: Compute $J = HG$ (MM)6: Compute $K = CE$ (MM)7: Compute $L = E + JK$ (MM)8: Compute $M = GK$ (MM)9: Return $\begin{bmatrix} E & J \\ M & G \end{bmatrix}$

Clément Pernet Matrix multiplication based Characteristic Polynomial

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

TRSM: Multiple triangular system solving

$$\begin{bmatrix} A & B \\ & C \end{bmatrix}^{-1} \begin{bmatrix} D \\ E \end{bmatrix} = \begin{bmatrix} A^{-1} \\ & I \end{bmatrix} \begin{bmatrix} I & -B \\ & I \end{bmatrix} \begin{bmatrix} I \\ & C^{-1} \end{bmatrix} \begin{bmatrix} D \\ E \end{bmatrix}$$

Clément Pernet Matrix multiplication based Characteristic Polynomial

ヘロン ヘアン ヘビン ヘビン

э

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

TRSM: Multiple triangular system solving

$$\begin{bmatrix} A & B \\ & C \end{bmatrix}^{-1} \begin{bmatrix} D \\ E \end{bmatrix} = \begin{bmatrix} A^{-1} \\ & I \end{bmatrix} \begin{bmatrix} I & -B \\ & I \end{bmatrix} \begin{bmatrix} I \\ & C^{-1} \end{bmatrix} \begin{bmatrix} D \\ E \end{bmatrix}$$

- 1: Compute $F = C^{-1}E$
- 2: Compute G = D BF
- 3: Compute $H = A^{-1}G$
- 4: Return $\begin{bmatrix} H \\ F \end{bmatrix}$

(Recursive call) (MM) (Recursive call)

イロト 不得 とくほ とくほ とうほ

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

LU decomposition

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} L_A \\ CU_A^{-1} & L_E \end{bmatrix} \begin{bmatrix} U_A & L_A^{-1}B \\ & U_E \end{bmatrix}$$

where $E = D - CA^{-1}B$

イロト イポト イヨト イヨト

э

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

LU decomposition

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} L_A \\ CU_A^{-1} & L_E \end{bmatrix} \begin{bmatrix} U_A & L_A^{-1}B \\ & U_E \end{bmatrix}$$

where $E = D - CA^{-1}B$

1: Compute $A = L_A U_A$ 2: Compute $F = CU_A^{-1}$ 3: Compute $G = L_A^{-1}B$ 4: Compute E = D - FG5: Compute $E = L_E U_E$ 6: Return $\left(\begin{bmatrix} L_A \\ F & L_F \end{bmatrix}, \begin{bmatrix} U_A & G \\ U_F \end{bmatrix} \right)$ (Recursive call) (TRSM) (TRSM) (MM) (Recursive call)

э

ヘロト 人間 ト くほ ト くほ トー

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

Divide and conquer approach:

 \Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i = 1 \dots \log_2 n$

 \Rightarrow overall time complexity by geometric progression

$$\sum_{i=1}^{\log_2 n} 2^i \left(\frac{n}{2^i}\right)^{\omega} = \mathcal{O}\left(n^{\omega}\right)$$

ヘロン ヘアン ヘビン ヘビン

э

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

Divide and conquer approach:

 \Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i = 1 \dots \log_2 n$

 \Rightarrow overall time complexity by geometric progression

$$\sum_{i=1}^{\log_2 n} 2^i \left(\frac{n}{2^i}\right)^{\omega} = \mathcal{O}\left(n^{\omega}\right)$$

These reductions reduce to in $\mathcal{O}(n^{\omega})$ the following problems

- det, rank, rank profile,
- echelon form, inverse, system solving.

イロト 不得 とくほ とくほ とうほ

Matrix multiplication: a building block Reductions to matrix multiplication

Reductions to matrix multiplication

Divide and conquer approach:

 \Rightarrow involves computations with dimensions $\frac{n}{2^{i}}$ for $i = 1 \dots \log_2 n$

 \Rightarrow overall time complexity by geometric progression

$$\sum_{i=1}^{\log_2 n} 2^i \left(\frac{n}{2^i}\right)^{\omega} = \mathcal{O}\left(n^{\omega}\right)$$

These reductions reduce to in $\mathcal{O}(n^{\omega})$ the following problems

- det, rank, rank profile,
- echelon form, inverse, system solving.

What about the characteristic polynomial ?

・ロト ・ 理 ト ・ ヨ ト ・

State of the art A new algorithm Algorithm into practice

Outline

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

2 Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

・ロト ・ 同ト ・ ヨト ・ ヨト
Outline

State of the art A new algorithm Algorithm into practice

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

2 Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

・ロト ・ 同ト ・ ヨト ・ ヨト

State of the art A new algorithm Algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}(n^4)$, based on Matrix multiplication
- Suited for parallel computation model

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}(n^4)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations $\Rightarrow \mathcal{O}(n^3)$

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}(n^4)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations $\Rightarrow \mathcal{O}(n^3)$

Hessenberg 1942: transformation to quasi-upper triangular and determinant expansion formula.

 $\Rightarrow \mathcal{O}(n^3)$

ヘロン ヘアン ヘビン ヘビン

State of the art A new algorithm Algorithm into practice

Pre-Strassen age

Leverrier 1840: trace of powers of A, and Newton's formula

- improved/rediscovered by Souriau, Faddeev, Frame and Csanky
- $\mathcal{O}(n^4)$, based on Matrix multiplication
- Suited for parallel computation model

Danilevskii 1937: elementary row/column operations $\Rightarrow \mathcal{O}(n^3)$

Hessenberg 1942: transformation to quasi-upper triangular and determinant expansion formula. $\Rightarrow O(n^3)$

But no trivial translation into a block algorithm with $\mathcal{O}(n^{\omega})$ complexity.

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix multiplication $\Rightarrow \mathcal{O}(n^{\omega+1})$

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix multiplication $\Rightarrow \mathcal{O}(n^{\omega+1})$

Keller-Gehrig 1985, alg.1: computes $(A^{2^i})_{i=1...\log_2 n}$ to form a Krylov basis.

- $\mathcal{O}(n^{\omega} \log n)$
- the best complexity up to now

ヘロア 人間 アメヨア 人口 ア

State of the art A new algorithm Algorithm into practice

Post-Strassen age

Preparata & Sarwate 1978: Update Csanky with fast matrix multiplication $\Rightarrow \mathcal{O}(n^{\omega+1})$

Keller-Gehrig 1985, alg.1: computes $(A^{2^i})_{i=1...\log_2 n}$ to form a Krylov basis.

- $\mathcal{O}(n^{\omega} \log n)$
- the best complexity up to now

Keller-Gehrig 1985, alg.2: inspired by Danilevskii, block operations

- *O*(*n*^ω)
- Only valid with generic matrices

・ロット (雪) (日) (日)

Outline

State of the art A new algorithm Algorithm into practice

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

Computing the characteristic polynomial

State of the art

A new algorithm

Algorithm into practice

・ロト ・ 同ト ・ ヨト ・ ヨト

Statement

State of the art A new algorithm Algorithm into practice

Theorem

If A is a $n \times n$ matrix over a field having more than $2n^2$ elements, the characteristic polynomial of A can be computed in $\mathcal{O}(n^{\omega})$ field operations by a Las Vegas randomized algorithm.

ヘロア 人間 アメヨア 人口 ア

State of the art A new algorithm Algorithm into practice

Definition (degree d Krylov matrix of one vector v)

$$K = \begin{bmatrix} v & Av & \dots & A^{d-1}v \end{bmatrix}$$

Property $A \times K = K \times \begin{bmatrix} 0 & * \\ 1 & * \\ & \ddots & * \\ & & 1 & * \end{bmatrix}$

イロン 不同 とくほ とくほ とう

State of the art A new algorithm Algorithm into practice

Definition (degree d Krylov matrix of one vector v)

$$K = \begin{bmatrix} v & Av & \dots & A^{d-1}v \end{bmatrix}$$

Property

$$\Rightarrow$$
if $d = n$, $K^{-1}AK = C_{P_{car}^A}$

イロン 不同 とくほ とくほ とう

State of the art A new algorithm Algorithm into practice

Definition (degree d Krylov matrix of one vector v)

$$K = \begin{bmatrix} v & Av & \dots & A^{d-1}v \end{bmatrix}$$

Property

$$A \times K = K \times \begin{bmatrix} 0 & & * \\ 1 & & * \\ & \ddots & & * \\ & & 1 & * \end{bmatrix}$$

⇒if d = n, $K^{-1}AK = C_{P^A_{car}}$ ⇒[Keller-Gehrig, alg. 2] computes K in $\mathcal{O}(n^{\omega})$

イロト 不得 とくほ とくほう 二日

State of the art A new algorithm Algorithm into practice

Definition (degree k Krylov matrix of several vectors v_i)

$$K = \begin{bmatrix} v_1 & \dots & A^{k-1}v_1 \mid v_2 & \dots & A^{k-1}v_2 \mid \dots \mid v_l & \dots & A^{k-1}v_l \end{bmatrix}$$

Property

Clément Pernet

Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

Fact

If (d_1, \ldots, d_l) is lexicographically maximal such that

$$K = \begin{bmatrix} v_1 & \dots & A^{d_1-1}v_1 \end{bmatrix} \dots \begin{bmatrix} v_l & \dots & A^{d_l-1}v_l \end{bmatrix}$$

is non-singular, then

Clément Pernet

Matrix multiplication based Characteristic Polynomial

ヘロト ヘワト ヘビト ヘビト

ъ

State of the art A new algorithm Algorithm into practice

Principle

k-shifted form:

Clément Pernet Matrix multiplication based Characteristic Polynomial

イロト イポト イヨト イヨト

State of the art A new algorithm Algorithm into practice

Principle

k-shifted form:

• try to inflate each slice by one ...

・ロト ・ 同ト ・ ヨト ・ ヨト

State of the art A new algorithm Algorithm into practice

Principle

k + 1-shifted form:

- try to inflate each slice by one ...
- ... to obtain the k + 1-shifted form

・ロト ・ 同ト ・ ヨト ・ ヨト

algebra State of the art A new algorithm Algorithm into practice

Principle

• Compute iteratively from 1-shifted form to d1-shifted form

イロト イポト イヨト イヨト

ъ

State of the art A new algorithm Algorithm into practice

Principle

- Compute iteratively from 1-shifted form to d1-shifted form
- each diagonal block appears in the increasing degree

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Principle

- Compute iteratively from 1-shifted form to d₁-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

イロト イポト イヨト イヨ

State of the art A new algorithm Algorithm into practice

Principle

- Compute iteratively from 1-shifted form to d₁-shifted form
- each diagonal block appears in the increasing degree
- until the shifted Hessenberg form is obtained:

How to transform from k to k + 1-shifted form ?

Clément Pernet

Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

Krylov normal extension

イロト イポト イヨト イヨト

State of the art A new algorithm Algorithm into practice

Krylov normal extension

Clément Pernet Matrix multiplication based Characteristic Polynomial

ヘロト ヘワト ヘビト ヘビト

ъ

State of the art A new algorithm Algorithm into practice

Krylov normal extension

and form K by picking its first linearly independent columns.

・ロト ・ 同ト ・ ヨト ・ ヨト

State of the art A new algorithm Algorithm into practice

Krylov normal extension

Lemma

If $\#F > 2n^2$, with high probability, the matrix K will have the form

and $A_{k+1} = K^{-1}A_kK$ will be in k + 1 shifted form

Clément Pernet

Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

The algorithm

• Form \overline{K} : just copy the columns of A_k

Clément Pernet Matrix multiplication based Characteristic Polynomial

イロン 不同 とくほ とくほ とう

ъ

State of the art A new algorithm Algorithm into practice

The algorithm

- Form \overline{K} : just copy the columns of A_k
- Compute K: rank profile of \overline{K}

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

The algorithm

- Form \overline{K} : just copy the columns of A_k
- Compute K: rank profile of \overline{K}
- Apply the similarity transformation $K^{-1}A_kK$

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

The algorithm

- Form \overline{K} : just copy the columns of A_k
- Compute K: rank profile of \overline{K}
- Apply the similarity transformation $K^{-1}A_kK$

How to use matrix multiplication knowing the structure ?

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Permutations: compressing the dense columns

イロト イポト イヨト イヨト

ъ

State of the art A new algorithm Algorithm into practice

Permutations: compressing the dense columns

Clément Pernet

Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP $\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)$

ヘロア 人間 アメヨア 人口 ア

ъ

State of the art A new algorithm Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP $\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)$

Similarity transformation: parenthesing

$$\mathcal{K}^{-1}\mathcal{A}\mathcal{K} = \mathcal{Q}^{\prime T} \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \mathcal{P}^{\prime T} \mathcal{Q} \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \mathcal{P} \mathcal{Q}^{\prime} \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \mathcal{P}^{\prime}$$

ヘロア 人間 アメヨア 人口 ア

State of the art A new algorithm Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP $\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)$

Similarity transformation: parenthesing

$$K^{-1}AK = Q'^{T}\left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(P'^{T}Q\left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(PQ' \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \right) \right) \right) P'$$

ヘロア 人間 アメヨア 人口 ア

State of the art A new algorithm Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP $\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)$

Similarity transformation: parenthesing

$$\begin{split} \mathcal{K}^{-1}\mathcal{A}\mathcal{K} &= \mathcal{Q}^{\prime T} \left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(\mathcal{P}^{\prime T} \mathcal{Q} \left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(\mathcal{P} \mathcal{Q}^{\prime} \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \right) \right) \right) \right) \mathcal{P}^{\prime} \\ &\Rightarrow \mathcal{O} \left(k \left(\frac{n}{k} \right)^{\omega} \right) \end{split}$$

ヘロア 人間 アメヨア 人口 ア
State of the art A new algorithm Algorithm into practice

Reduction to Matrix multiplication

Rank profile: derived from LQUP $\Rightarrow \mathcal{O}\left(k\left(\frac{n}{k}\right)^{\omega}\right)$

Similarity transformation: parenthesing

$$\begin{split} \mathcal{K}^{-1}\mathcal{A}\mathcal{K} &= \mathcal{Q}'^{T}\left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(\mathcal{P}'^{T}\mathcal{Q}\left(\begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \left(\mathcal{P}\mathcal{Q}' \begin{bmatrix} I & * \\ 0 & * \end{bmatrix} \right) \right) \right) \right) \mathcal{P}' \\ &\Rightarrow \mathcal{O}\left(k \left(\frac{n}{k} \right)^{\omega} \right) \end{split}$$

Overall complexity: summing for each iteration:

$$\sum_{k=1}^{n} k \left(\frac{n}{k}\right)^{\omega} = n^{\omega} \sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\omega-1} = \mathcal{O}\left(n^{\omega}\right)$$

ヘロン ヘアン ヘビン ヘビン

State of the art A new algorithm Algorithm into practice

Outline

Matrix multiplication based linear algebra

- Matrix multiplication: a building block
- Reductions to matrix multiplication

2 Computing the characteristic polynomial

- State of the art
- A new algorithm
- Algorithm into practice

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Heuristic improvement

The randomization:

the iterate vectors at the first iteration must be random vectors. or equivalently the matrix has to be preconditioned: $M^{-1}AM$ for a random matrix M.

⇒as expensive as the rest of the algorithm

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

A block Krylov preconditoner

1: Pick n/c random vectors $U = \begin{bmatrix} u_1 & \dots & u_{n/c} \end{bmatrix}$. 2: $M = \begin{bmatrix} U & AU & \dots & A^{c-1} \end{bmatrix}$

イロト イポト イヨト イヨト 三日

State of the art A new algorithm Algorithm into practice

A block Krylov preconditoner

- 1: Pick n/c random vectors $U = \begin{bmatrix} u_1 & \dots & u_{n/c} \end{bmatrix}$.
- 2: $M = \begin{bmatrix} U & AU & \dots & A^{c-1} \end{bmatrix}$
- 3: if *M* is non singular then
- 4: $M^{-1}AM = H_c$ is in *c*-shifted form.

・ロト ・ 理 ト ・ ヨ ト ・

State of the art A new algorithm Algorithm into practice

A block Krylov preconditoner

- 1: Pick n/c random vectors $U = \begin{bmatrix} u_1 & \dots & u_{n/c} \end{bmatrix}$.
- 2: $M = \begin{bmatrix} U & AU & \dots & A^{c-1} \end{bmatrix}$
- 3: if *M* is non singular then
- 4: $M^{-1}AM = H_c$ is in *c*-shifted form.

5: **else**

6: complete M into a non singular matrix \overline{M} by adding some columns at the end

7: then
$$\overline{M}^{-1}A\overline{M} = \begin{bmatrix} H_c & * \\ & R \end{bmatrix}$$

8: end if

・ロト ・ 理 ト ・ ヨ ト ・

State of the art A new algorithm Algorithm into practice

Efficiency balancing parameter

- c small: full square matrix multiplications, but more ops
- *c* large: tends to matrix-vector products, but less ops

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Efficiency balancing parameter

- c small: full square matrix multiplications, but more ops
- *c* large: tends to matrix-vector products, but less ops

 \Rightarrow parameter *c* balances efficiency

ヘロト ヘワト ヘビト ヘビト

State of the art A new algorithm Algorithm into practice

Efficiency balancing parameter

- *c* small: full square matrix multiplications, but more ops
- *c* large: tends to matrix-vector products, but less ops

 \Rightarrow parameter *c* balances efficiency

Clément Pernet

Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

Experiments

n	LU-Krylov	New algorithm
200	0.024	0.032
300	0.06s	0.088s
500	0.248s	0.316s
750	1.084s	1.288s
1000	2.42s	2.296s
5000	267.6s	153.9s
10000	1827s	991s
20 000	14652s	7097s
30 000	48 887s	24 928s

Computation time for 1 Frobenius block matrices, Itanium2-64 1.3Ghz, 192Gb

イロト イポト イヨト イヨト 三日

State of the art A new algorithm Algorithm into practice

Experiments

Timing comparison between the new algorithm and LU-Krylov, logarithmic scales, Itanium2-64 1.3Ghz, 192Gb

Clément Pernet Matrix multiplication based Characteristic Polynomial

State of the art A new algorithm Algorithm into practice

Comparison to Magma

п	magma-2.11	LU-Krylov	New algorithm
100	0.010s	0.005s	0.006s
300	0.830s	0.294s	0.105s
500	3.810s	1.316s	0.387s
800	15.64s	4.663s	1.387s
1000	29.96s	10.21s	2.755s
1500	102.1s	33.36s	7.696s
2000	238.0s	79.13s	17.91s
3000	802.0s	258.4s	61.09s
5000	3793s	1177s	273.4s
7500	MT	4209s	991.4s
10000	MT	8847s	2080s

Computation time for 1 Frobenius block matrices, Athlon 2200, 1.8Ghz, 2Gb

MT: Memory thrashing

ヘロン ヘアン ヘビン ヘビン

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}(n^{\omega})$...
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

・ロト ・ 理 ト ・ ヨ ト ・

Conclusion and perspectives

Results:

- Las Vegas reduction to matrix multiplication,
- The Frobenius normal form is easily derivable in $\mathcal{O}(n^{\omega})$...
- ...but no transformation matrix
- Adaptive combination with block Krylov in practice.

Still to be done:

- Condition on the size of the field is a limitation. Eberly's algorithm ?
- Ideally: derandomization ? (deterministic)

イロト 不得 とくほ とくほう 二日