
Distributed Reasoning in a Peer-to-Peer Setting
P. Adjiman and P. Chatalic and F. Goasdoué and M.-C. Rousset and L. Simon1

1 Introduction

In a peer-to-peer system, there is no centralized control or hierarchi-
cal organization: each peer is equivalent in functionality and cooper-
ates with other peers in order to solve a collective task. Such systems
have evolved from simple keyword-based peer-to-peer file sharing
systems like Napster and Gnutella to schema-based peer data man-
agement systems like Edutella [3] or Piazza [2], which handle seman-
tic data description and support complex queries for data retrieval.

In this paper, we are interested in peer-to-peer inference systems
in which each peer can answer queries by reasoning from its local
(propositional) theory but can also ask queries to some other peers
with which it is semantically related by sharing part of its vocabulary.
This framework encompasses several applications like peer-to-peer
information integration systems or intelligent agents, in which each
peer has its own knowledge (about its data or its expertise domain)
and some partial knowledge about some other peers. In this setting,
when it is solicited to perform a reasoning task and if it cannot solve
completely that task locally, a peer must be able to distribute appro-
priate reasoning subtasks among its acquainted peers.

The contribution of this paper is the first consequence finding al-
gorithm in a peer-to-peer setting: it is anytime and computes conse-
quences gradually from the solicited peer to peers that are more and
more distant. We have exhibited a sufficient condition on the acquain-
tance graph of the peer-to-peer inference system for guaranteeing the
completeness of this algorithm. Our algorithm splits clauses if they
involve vocabularies of several peers. Each piece of a splitted clause
is transmitted to the corresponding theory to find its consequences.
The consequences that are found for each piece of splitted clause
must be recomposed to get the consequences of that clause.

2 Peer-to-peer inference: problem definition

A peer-to-peer inference system (P2PIS) is a network of peer the-
ories. Each peer P is a finite set of propositional formulas of a lan-
guage LP . We consider the case where LP is the language of clauses
without duplicated literals that can be built from a finite set of propo-
sitional variables VP , called the vocabulary of P . Peers can be se-
mantically related by having common variables in their respective
vocabularies, called shared variables. In a P2PIS, no peer has the
knowledge of the global P2PIS theory. Each peer only knows its own
local theory and that it shares some variables with some other peers
(its acquaintances). It does not necessarily know all the peers with
which it shares variables. When a new peer joins a P2PIS it simply
declares some acquaintances, i.e., the peers it knows to be sharing
variables with. A P2PIS can be formalized as an acquaintance graph.

Definition 1 (Acquaintance graph) Let P = (Pi)i=1..n be a fam-
ily of clausal theories on their respective vocabularies VPi

, let V =

1 Université Paris-Sud XI – CNRS (LRI) & INRIA (Futurs), Bâtiment 490,
Université Paris-Sud XI, 91405 Orsay Cedex, France

∪i=1..nVPi
. An acquaintance graph is a graph Γ = (P, ACQ) where

P is the set of vertices and ACQ ⊆ V×P×P is a set of labelled edges
such that for every (v, Pi, Pj) ∈ ACQ, i 6= j and v ∈ VPi

∩ VPj
.

(v, Pi, Pj) expresses that peers Pi and Pj know each other to be
sharing the variable v. For a peer P and a literal l, ACQ(l, P) denotes
the set of peers sharing with P the variable of l.

For each theory P , we consider a subset of target variables
T VP ⊆ VP , supposed to represent the variables of interest for the
application. The goal is, given a clause (called the query), to find all
the consequences (called answers) that belong to some target lan-
guage. The point is that the query only uses the vocabulary of the
queried peer, but the expected answers may involve target variables
of different peers. The target languages handled by our algorithm are
defined in terms of target variables and require that a shared variable
has the same target status in all the peers sharing it.

Definition 2 (Target Language) Let Γ = (P, ACQ) be a P2PIS,
and for very peer P , let T VP be the set of its target variables such
that if (v, Pi, Pj) ∈ ACQ then v ∈ T VPi

iff v ∈ T VPj
. For a subset

SP of peers of P , we define its target language T arget(SP) as the
language of clauses (including the empty clause 2) involving only
variables of

S

P∈SP
T VP .

Among the possible answers we distinguish local answers, involv-
ing only target variables of the solicited peer, navigational answers,
which involve target variables of a single peer, and integrating an-
swers which involve target variables of several peers.

Definition 3 (Proper prime implicate wrt a theory) Let P be a
clausal theory and q be a clause. A clause m is said to be:
• a prime implicate of q wrt P iff P ∪{q} |= m and for any other

clause m′, if P ∪ {q} |= m′ and m′ |= m then m′ ≡ m.
• a proper prime implicate of q wrt P iff it is a prime implicate of

q wrt P but P 6|= m.

Definition 4 (Consequence finding problem) Let P = (Pi)i=1..n

be a family of clausal theories with respective target variables
(T VPi

)i=1..n and let Γ = (P, ACQ) be a P2PIS. The consequence
finding problem is, given a peer P and a clause q ∈ LP to find the
set of proper prime implicates of q wrt

S

i=1..n
Pi which belong to

T arget(P).

3 Distributed consequence finding algorithm

The distributed algorithm that we have designed is a message pass-
ing algorithm implemented locally at each peer. It handles an his-
tory which is initialized to the empty sequence. An history hist is
a sequence of triples (l, P, c) (where l is a literal, P a peer, and c a
clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] rep-
resents a branch of reasoning initiated by the propagation of the lit-
eral l0 within the peer P0, and the splitting of the clause c0: for every
i ∈ [0..n − 1], ci is a consequence of li and Pi, and li+1 is a literal
of ci, which is propagated in Pi+1.

The algorithm is composed of three procedures, each one being
triggered by the reception of a message.
The procedure RECEIVEQUERYMESSAGE is triggered by the re-
ception of a query message m(Sender,Receiver, query, hist, l)
sent by the peer Sender to the peer Receiver which executes the
procedure: on the demand of Sender, with which it shares the
variable of l, it processes the literal l.
The procedure RECEIVEANSWERMESSAGE is triggered by
the reception of an answer message m(Sender,Receiver,

answer, hist, r) sent by the peer Sender to the peer Receiver

which executes the procedure: it processes the answer r (which is a
clause involving target variables only) sent back by Sender for the
literal l (last added in the history) ; it may have to combine it with
other answers for literals being in the same clause as l.
The procedure RECEIVEFINALMESSAGE is triggered by the recep-
tion of a final message m(Sender, Receiver, final, hist, true):
the peer Sender notifies the peer Receiver that answer com-
putation for the literal l (last added in the history) is completed.
Those procedures handle two data structures stored at each peer:
ANSWER(l, hist) caches the answers resulting from the propa-
gation of l within the reasoning branch corresponding to hist ;
FINAL(q, hist) is set to true when the propagation of q within the
reasoning branch of the history hist is completed. The reasoning is
initiated by the user (denoted by a particular peer User) sending to a
given peer P a message m(User, P, query, ∅, q), which triggers the
procedure RECEIVEQUERYMESSAGE(m(User, P, query, ∅, q))
that is locally executed by P . In the description of the procedures,
since they are locally executed by the peer which receives the
message, we will denote by Self the receiver peer.

In the following, we will use the notations:
• for a literal q, Resolvent(q, P) denotes the set of clauses ob-

tained by resolution between q and a clause of P ,
• for a literal q, q̄ denotes its complementary literal,
• for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjonc-

tion of literals of c whose variables are shared (resp. not shared),
• > is the distribution operator on sets of clauses: S1 > · · · > Sn

= {c1 ∨ · · · ∨ cn |c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, we
will use the notation >l∈LSl to denote Sl1 > · · · > Slp .

The following theorems summarize the main properties of our dis-
tributed message passing algorithm. Their full proofs are given in [1].
Theorem 2 (completeness) is only guaranteed if the following prop-
erty holds on the acquaintance graph: if two local theories have a
common variable, there must exist a path between those two theo-
ries, all the edges of which are labeled with that variable.
Theorem 1 (Soundness and termination) If P receives from the
user the message m(User, P, query, ∅, q), then: a finite number of
answer messages will be produced and each produced answer mes-
sage m(P, User, answer, [(q, P,)], r) is such that r is an implicate
of q wrt S(P) which belong to T arget(P).
Theorem 2 (Completeness) If each local theory is saturated
by resolution and if P receives from the user the message
m(User, P, query, ∅, q), then for each proper prime implicates
r of q wrt S(P) belonging to T arget(P), an answer message
m(P, User, answer, [(q, P,)], r) will be produced.
Theorem 3 (Notification of termination) If r is the last re-
sult returned through an answer message m(P,User, answer,

[(q, P,)], r) then the termination will be notified to the user by a
message m(P, User, final, [(q, P, true)], true).

For sake of simplicity, our algorithm applies here to literals. Clausal
queries are handled by splitting them into literals and using the >

operator to recompose the results obtained for each literal.

An experimental analysis of this algorithm is provided in [1].

Algorithm 1: Message passing procedure for processing queries
RECEIVEQUERYMESSAGE(m(Sender,Self, query, hist, q))
(1) if (q̄, ,) ∈ hist

(2) send m(Self, Sender, answer, [(q, Self, 2)|hist], 2)
(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else if q ∈ Self or (q, Self,) ∈ hist

(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) LOCAL(Self)← {q} ∪Resolvent(q, Self)
(8) if 2 ∈ LOCAL(Self)
(9) send m(Self, Sender, answer, [(q, Self, 2)|hist], 2)
(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) LOCAL(Self) ← {c ∈ LOCAL(Self)| L(c) ∈

T arget(Self)}
(13) if for every c ∈ LOCAL(Self), S(c) = 2

(14) foreach c ∈ LOCAL(Self)
(15) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ LOCAL(Self)
(19) if S(c) = 2

(20) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) ANSWER(l, [(q, Self, c)|hist])← {l}
(25) else
(26) ANSWER(l, [(q, Self, c)|hist])← ∅
(27) FINAL(l, [(q, Self, c)|hist])← false

(28) foreach RP ∈ ACQ(l, Self)
(29) send m(Self, RP, query, [(q, Self, c)|hist], l)

Algorithm 2: Message passing procedure for processing answers
RECEIVEANSWERMESSAGE(m(Sender,Self, answer, hist, r))
(1)hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2) ANSWER(l′, hist)← ANSWER (l′, hist) ∪ {r}
(3) RESULT← >l∈S(c)\{l′}ANSWER(l, hist) > {L(c) ∨ r}
(4) if hist′ = ∅, U ← User else U ← the first peer P ′ of hist′

(5)foreach cs ∈ RESULT

(6) send m(Self, U, answer, [(q, Self, c)|hist′], cs)

Algorithm 3: Message passing procedure for notifying termination
RECEIVEFINALMESSAGE(m(Sender,Self, final, hist, true))
(1)hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2) FINAL(l′, hist)← true

(3) if for every l ∈ S(c), FINAL(l, hist) = true

(4) if hist′ = ∅ U ← User else U ← the first peer P ′ of hist′

(5) send m(Self, U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) ANSWER(l, [(l, Sender,), (q, Self, c)|hist′])← ∅

References
[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Si-

mon, ‘Distributed reasoning in a peer-to-peer setting’, Techni-
cal Report 1385, Université Paris-Sud XI, (2004). Available at
http://www.lri.fr/∼goasdoue/biblio/ACGRS-TR-1385.pdf.

[2] A. Halevy, Z. Ives, I. Tatarinov, and Peter Mork, ‘Piazza: data manage-
ment infrastructure for semantic web applications’, in WWW’03, (2003).

[3] W. Nedjl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nils-
son, M. Palmer, and T. Risch, ‘Edutella: a p2p networking infrastructure
based on rdf’, in WWW’02, (2002).

