
IOPE: Interactive Ontology Population and
Enrichment Guided by Ontological Constraints

Shadi Baghernezhad-Tabasi1, Löıc Druette2, Fabrice Jouanot1, Celine
Meurger2, and Marie-Christine Rousset1,3

1 Université Grenoble Alpes, CNRS, LIG, Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

2 Université Claude Bernard Lyon 1, SAMSEI, Lyon, France
firstname.lastname@univ-lyon1.fr

3 Institut Universitaire de France, Paris, France

Abstract. Specialized ontologies are constructed to capture the skills of
experienced experts, with the goal of sharing them with a larger commu-
nity of trainees and less experienced experts in the domain. A challenging
task in the engineering pipeline of specialized ontologies is ontology up-
dating, which encompasses enrichment and population. Domain experts
require an understanding of the RDF notation and OWL semantics to
update their ontologies, which is not often the case. In this paper, we
present IOPE, an interactive framework for the automatic construction
of a Graphical User Interface (GUI) to support the controlled update
process, by enabling the experts to easily interact with their ontology.
We contribute a set of “mapping rules” to transform the ontological
constraints into interactive widgets organized in the form of pre-filled
Web pages in the GUI, and a set of “binding rules” to transform the
expert interactions into RDF graphs, and hence perform the updates.
In an extensive set of experiments, we illustrate the efficacy of IOPE in
empowering medical experts to update their specialized ontology.

1 Introduction

Ontologies are the backbone of many information systems that require access
to structured knowledge. By their very nature, real world ontologies are dy-
namic artifacts that evolve both in their structure (i.e., the data model) and
their content (i.e., instances). Keeping them up-to-date is a critical operation
for most applications which rely on semantic Web technologies. Ontology up-
dates encompass both enrichment and population. Ontology enrichment is the
task of extending an existing data model of an ontology with additional concepts
and semantic relations, while ontology population is the task of adding new in-
stances of concepts to the ontology, through domain documentations. Ontology
updates are typically performed in an exploratory and manual fashion, as the
non-documented knowledge of the domain expert is required to be taken into
consideration. However, these manual updates put burden on the experts and
render the whole ontological ecosystem inefficient. In this paper, we advocate

2 Baghernezhad-Tabasi et al.

for an alternative and more effective approach, and propose to handle updates
automatically through a few interactions with the expert, using a Graphical User
Interface (GUI).

The challenges associated to interaction-based automatic updates are two-
fold: (i) While ontologies are typically represented in the form of graphs, it
is inherently difficult and counterintuitive to provide a graphical graph-based
representation of ontologies for the consumption of experts. While there exist
several methods to visualize a graph structure [10, 8], the outcome is often hard to
digest by domain experts. (ii) It is unclear how experts should perform ontology
updates through the interactions, without the prior knowledge of the formal
syntax and the semantics of ontology languages.

In this paper, we demonstrate IOPE (Interactive Ontology Population and
Enrichment), a framework for the automatic construction of a Graphical User
Interface (GUI) using prefilled Web forms. We leverage Web forms as a natural
interaction means to tackle the challenge of counterintuitive ontology represen-
tations. IOPE generates and prefills the Web forms from ontological constraints,
which support the controlled update process of a given ontology. While IOPE
is generic and can be applied to ontologies from a variety of domains, we em-
ploy an ontology called OntoSAMSEI [4] as a use case, whose content helps
the domain experts design teaching units for learning skills in simulation-based
Medicine. OntoSAMSEI is a hierarchy of classes and properties enriched by
ontological constraints on those classes and properties, that convey the con-
straints that will have to be fulfilled by their future sub-classes, sub-properties
or instances. We show how to exploit such ontological constraints as a source
of guidance for (possibly less experienced) educators willing to design their own
simulation sessions, hence addressing the challenge of expert noviceship. In [3],
we present practical examples of the application of IOPE on OntoSAMSEI.
Moreover, OntoSAMSEI’s IOPE GUI is accessible via the following link (in
French): http://iope.tabasi.info.

The paper is organized as follows. Section 2 describes the formal background
of the ontologies that we consider. Section 3 describes our methodology for the
automatic construction of a GUI from an input ontology, and its usage for guiding
its update (population and enrichment). Section 4 summarizes the evaluation
conducted to assess the added value of the GUI for ontology updating. Section 5
is dedicated to related works while Section 6 concludes the paper.

2 Formal Background

An ontology is a shared formalization of a domain of interest based on a struc-
tured vocabulary made of classes, properties and instances. Ontological con-
straints are declared on classes and properties to constrain their formal seman-
tics to fit with their actual meaning in the domain of application. Then, factual
statements can be added to describe specific entities as instances of classes with

IOPE: Interactive ontology population and enrichment ... 3

Table 1. RDFS and OWL constraints considered in this paper

Type Shortened syntax Semantics

Class specialization (C rdfs:subClassOf D) ∀ i ((i rdf:type C) ⇒ (i rdf:type D))

Property specialization (p rdfs:subPropertyOf q) ∀ i ∀ j ((i p j) ⇒ (i q j))

Domain restriction (p rdfs:domain C) ∀ i ∀ j ((i p j) ⇒ (i rdf:type C))

Range restriction (p rdfs:range D) ∀ i ∀ j ((i p j) ⇒ (j rdf:type D))

Value restriction (C p owl:hasValue v) ∀ i ((i rdf:type C) ⇒ (i p v))

Alternative values restriction (C p owl:oneOf [v1, ..., vn]) ∀ i ((i rdf:type C) ⇒
∨

k∈[1..n] (i p vk))

Cardinality restriction (C p min k D) ∀ i ((i rdf:type C) ⇒ ∃o1, ... ok(
∧

i,j∈[1..k] oi 6= oj
∧
∧

j∈[1..k] (oj rdf:type D) ∧ (i p oj))

specific values for some properties. The ontological constraints are defined in
RDFS4 and OWL5, and described as RDF graphs.

2.1 RDF Format

Let I, L and B be countably infinite pairwise disjoint sets representing respec-
tively IRIs, literals and blank nodes. IRIs (Internationalized Resource Identifiers)
are standard identifiers used for denoting any Web resource involved in RDF
statements. A literal is a string that represents a specific value for some proper-
ties. A blank node represents an anonymous resource (either a literal or an IRI)
that can have a local identifier, such as :b1.

An ontology in RDF (a.k.a. a knowledge graph) is a set of (factual or onto-
logical) statements expressed as triples (s, p, o) ∈ (I ∪B)× I × (I ∪L∪B) that
form a graph whose nodes are IRIs, blank nodes or literals.

2.2 Ontological Constraints

The ontological constraints that we consider are RDFS constraints and some
OWL constraints (displayed in Table 1). Figure 1 visualize the RDF graphs as-
sociated to two constraints declared in the OntoSAMSEI ontology on the prop-
erty samsei:equipmentSupplies, for the class samsei: PortACathPlacement,
which is a particular type of simulation learning unit that trains students to place
a port or a catheter. The RDF graph in Figure 1(a) expresses that samsei:steri-
le compress (which is an instance of Bandage material) is declared in the on-
tology as a mandatory value of the property samsei: equipmentSupplies. The
RDF graph depicted in Figure 1(b) expresses that at least one equipment of
type samsei:protectiveSupplies is mandatory for simulating a placement of
a port or a catheter.

3 Interactive Ontology Update

Our approach consists of transposing the RDF data and the ontological con-
straints of a given domain ontology into a graphical user interface (GUI) named

4 Resource Description Framework Schema (RDFS):
https://www.w3.org/TR/rdf-schema

5 Web Ontology Language (OWL): https://www.w3.org/TR/owl-features

4 Baghernezhad-Tabasi et al.

samsei:ressourcesowl:Restric4on samsei:sterile_compress

samsei:equipment
Supplies

owl:onPropertyrdfs:subClassOf

rdf:type owl:hasValue

Sterile compress

rdf:type rdfs:label

rdfs:label

samsei:PortA
CathPlacement

Bandage material samsei:BandageMaterial

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:label

samsei:ressources

owl:Restric4on

samsei:equipment
Supplies

owl:onPropertyrdfs:subClassOf

rdf:type

owl:onClass

Protec:ve supplies

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:labelsamsei:Protec4veSupplies

1

owl:minCardinality

Simula4on
training session
of Port-a-cath

placement

rdfs:label

rdfs:label

Simula4on
training session
of Port-a-cath

placement

(a) hasValue constraint: samsei:equipmentSupplies value samsei:sterile_compress

(b) Cardinality constraint: samsei:equipmentSupplies min 1 samsei:Protec4veSupplies samsei:ressources

owl:Restric4on

owl:onPropertyrdfs:subClassOf

rdf:type

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Simulator-type
resources

Resources

rdfs:label

rdfs:label

1

owl:minCardinality

samsei:VenousChest
SimulatorManikin

Venous-access chest simulator manikin

samsei:simulator
Ressources

rdfs:label
owl:onClass

Simula4on
training session
of Port-a-cath

placement

Cardinality constraint: samsei:simulatorRessources min 1 samsei:VenousChestSimulatorManikin

example constraints

_:b3

_:b2

_:b1

Fig. 1. Two constraint graphs (a) and (b) on the property equipmentSupplies for the
class PortACathPlacement

IOPE GUI (step 1 in Figure 2). It functions as a guidance for domain experts
to easily explore the ontology (step 2) and update it (step 3) through interac-
tive graphical widgets. The input entered by domain experts through the IOPE
GUI are then transformed into RDF triples (step 4) that must be verified by
an ontology engineer (step 5) before being permanently added in the domain
ontology (step 6). Figure 2 provides an overview of IOPE’s workflow.

INPUT

RDF Data Ontological Constraints Updated RDF
Data

Updated Ontological
 Constraints

(1) Decode

User Interface Interac.ons

(4) Encode

D
om

ai
n

ex
pe

rt

(2) Guide (3) Fill

IOPE GUI

Updates

O
nt

ol
og

y
ex

pe
rt

(5) Validate

OUTPUT

(6) Enrich
 and

populate

Fig. 2. The overview of IOPE’s workflow.

The Web form templates on which the IOPE GUI is built are described using
a Web form ontology called IOPEWeb that we have developed by adapting
RaUL [9].

IOPE: Interactive ontology population and enrichment ... 5

3.1 The IOPEWeb Ontology

The IOPEWeb ontology is shown in Figure 3. It is organized around 4 main
classes, i.e., IOPE:Page, IOPE:PageLayout, IOPE:Container and IOPE:Widget.
These classes are related by properties for modeling Web pages. The Web pages
themselves are structured in the form of containers filled with widgets. Each
Web page is also associated to a page layout.

IOPE:Page

IOPE:Container

IOPE:Widget

IOPE:contain IOPE:partOf

IOPE:hasWidget

IOPE:LABEL IOPE:TREE VIEW IOPE:CHECKBOXIOPE:LISTBOX IOPE:TEXTBOX

rdfs:subClassOf

xsd:boolean
IOPE:hidden

IOPE:mul.ple

xsd:string

IOPE:name

xsd:boolean

IOPE:required

IOPE:onClick

xsd:string

IOPE:placeholder

xsd:boolean

IOPE:readonly

xsd:string IOPE:list
 owl:Thing

∪
∪

xsd:string xsd:int ∪

IOPE:value

IOPE:label
IOPE:dataSource

xsd:string

IOPE:PageLayout IOPE:has

xsd:boolean

xsd:boolean

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

IOPE:Range
ClassContainer

IOPE:Range
InstanceContainer

IOPE:FreeEntry
Container

IOPE:Alterna:ve
ValuesContainer

rd
fs
:su

bC
la
ss
O
f

Fig. 3. The IOPE Web form ontology

The widgets are the direct point of user interaction, which are associated
to the underlying RDF graph for the input ontology. The visualization and the
user interaction are done using several types of widgets, such as label, tree view,
list box, text box, and check box. These widgets constitute the subclasses of the
main class IOPE:Widget, and inherit the standard widget properties described
in IOPEWeb.

IOPEWeb describes how the input and output of widgets are modeled.
We employ the IOPE:dataSource property for the assignment of an input data
(from a domain ontology) of type xsd:string, simple or nested list IOPE:list,
or owl:Thing, to their corresponding widgets. The IOPE:value property is filled
by the value, entered by the user through the widget.

Widgets can be grouped in a Web page within containers. The containers
themselves can be nested using the IOPE:partOf property. In our setting, differ-
ent types of specific containers are considered as subclasses of IOPE:Container
to express that the different types of ontological constraints will be rendered
differently in IOPE GUI.

6 Baghernezhad-Tabasi et al.

3.2 Ontology-Based GUI Construction

In a declarative approach, we employ a set of mapping rules to generate au-
tomatically pre-filled Web pages, and a set of binding rules to generate RDF
graphs from the values entered by users through the widgets.

Input: The input required for GUI construction is a domain ontology in which
the ontological constraints are automatically saturated by a reasoning algorithm
as detailed in [5].

Initialization: The GUI construction is initiated with the selection of one
class of interest in the ontology by the user, called the focus class F. The set
Constraints(F) of the ontological constraints associated to F is decomposed
in groups Group(P, F) of all the constraints involving sub-properties of a given
property P . For the focus class F , and for each group of properties Group(P, F),
an instance of a Web page is created with the page layout depicted in Figure 4.
The page layout defines the organization of the Web page with a set of specific
containers dedicated to different ontological constraints on sub-properties p of
P for which there exists constraints in Group(P, F).

28

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX
TREE VIEW

LABEL

FreeEntryContainer p

TEXT BOX

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

Other :

Or

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX
TREE VIEW

LABEL

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

Or

AlternaDveValuesContainer p
CHECKBOX

FreeEntryContainer p
TEXT BOXOther :

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

FreeEntryContainer p
TEXT BOXOther :

RangeClassContainer

RangeContainer p,C

TREE VIEW Or LABEL

RangeInstanceContainer

LIST BOX TEXT BOX

RangeClassContainer
RangeContainer p,C

TREE VIEW

Or

LABEL

RangeInstanceContainer

LIST BOX

TEXT BOX

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

AlternaDveValuesContainer p
CHECKBOX

TREE VIEW

Or

LABEL

Fig. 4. Web page template prepared for the rendering of constraints of the focus class
F for each property p which is a specialization of a same property P .

The following instances of the IOPE:Container class are created, with their
pre-allocated positions in the empty Web page template shown in Figure 4.

IOPE: Interactive ontology population and enrichment ... 7

– “IOPE:FocusClass F Container” denotes the main container of the created
Web page for the focus class F ;

– “IOPE:Group(P, F) Container” denotes the container that groups all the
other containers corresponding to the constraints holding for the class F on
the sub-properties of P ;

– “IOPE:ConstraintContainer p” denotes the container which contains re-
strictions of F on the property p, where p is a sub-property of P ;

– “IOPE:HasValueContainer p” denotes the container which contains the
HasValue restrictions of F on the property p;

– “IOPE:AlternativeValuesContainer p” denotes the container which con-
tains the AlternativeValues restrictions of F on the property p;

– “IOPE:CardinalityContainter p, C” denotes the container which contains
the cardinality restrictions of F on the property p and the class C;

– “IOPE:RangeContainter p, C” denotes the container which contains the
range restrictions of F on the property p, where the range of p is the class
C;

– “IOPE:FreeEntryContainer p” denotes the container which enables the user
to add new classes involved in the cardinality restrictions for the property p.

Then, the mapping rules are triggered to map components of each ontological
constraint to the widgets inside the aforementioned containers, and fill each Web
page guided by the ontology.

Mapping rules: Each mapping rule has a constraint graph pattern in its left-
hand side, and an IOPEWeb graph pattern in its right-hand side. The con-
straint graph pattern expresses a particular ontological constraint on a property
and a (focus) class, and the IOPEWeb graph pattern specifies how to pre-fill
the corresponding container to render this ontological constraint. Each rule is
instantiated by mapping the constraint graph pattern in its left-hand side to the
constraints graphs present in the input ontology and involving the chosen focus
class. The mapping rules can be triggered in a forward-chaining manner and in
any order. The resulting IOPEWeb graph provides the full RDF specification
of the pre-filled Web pages that have to be created for the focus class F chosen
by the user. We provide the exhaustive set of mapping rules in [5]. In this paper
though, we just give two of them in their instantiated form for clarity purpose.

Figure 5 shows a mapping rule for a value restriction (F p value v). The
specific container “IOPE:HasValueContainer p” is decomposed into two sub-
containers defined as blank nodes, whose types are IOPE:HasValueInstanceCon-
tainer and IOPE:HasValueClassContainer. For the two sub-containers, wid-
gets of type IOPE:LABEL are created as blank nodes with the property IOPE:data-
Source filled by the corresponding labels of v and its class C from the domain
ontology. The property IOPE:required is set to True for the first widget, to
show that the value v is mandatory for the property p.

Figure 6 shows a mapping rule for a cardinality restriction (F p min n C)

such that n > 0, where C has a hierarchy of sub-classes and a list of instances in
the domain ontology. The specific container “IOPE:CardinalyContainer p, C”

8 Baghernezhad-Tabasi et al.

Has value

owl:Restric:on v

p
owl:onPropertyrdfs:subClassOf

rdf:type
owl:hasValue

v_label

rdf:type rdfs:label

C_label rdfs:label

F

C

IOPE:HasValueContainer p

IOPE:partOf

v_label

C_label

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

owl:Restric:on v

p
owl:onPropertyrdfs:subClassOf

rdf:type
owl:hasValue

v_label

rdf:type rdfs:label

C_label rdfs:label

F

C

IOPE:HasValueContainer p

IOPE:partOf

v_label

C_label

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

_:b1

_:b1

_:b2

_:b3

_:b4

Fig. 5. Mapping rule for a value restriction (F p value v) where v rdf:type C

is decomposed into two sub-containers defined as blank nodes, with types “IOPE:
CardinalityClassContainer” and “IOPE:CardinalityInstanceContainer”.cardinality model 1-V 3

IOPE:partOf

True

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has

widget

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

n>0,
subClasses(C) = list of all subclasses of class C and its other C,
instances(C) = list of all instances of class C.

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

_:b1

_:b2

_:b3

_:b4

_:b5

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

Lf

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

uf

u_label

_:b1

_:b2

_:b3

_:b4

_:b1

_:b2

_:b3

_:b4

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality

F _:b1

Fig. 6. Mapping rule for a Cardinality constraint where subClasses(C) and
instances(C) are not empty, and n > 0.

For the first sub-container, a widget of type IOPE:TREEVIEW is created as
a blank node with the property IOPE:dataSource filled by the tree view of
subClasses(C), i.e., the hierarchy of C’s sub-classes in the domain ontology,
enriched with an additional item Other C. The property IOPE:required and
IOPE:onClick are also set to True for this widget to indicate that (i) entering
at least one value is mandatory for the property p, and (ii) this widget supports
the interaction with users to display the sub-class hierarchy, interactively.

For the second sub-container, a widget of type IOPE:LISTBOX is created as a
blank node with the property IOPE:dataSource filled by the list instances(C)
of instances of the class C. The IOPE:label property is set to “select existing
item(s) or enter new item(s)” and the IOPE:hidden property is set to True to
make the widget invisible until the first interaction of the user through the
widget of type IOPE:TREEVIEW. A widget of type IOPE:TEXTBOX is also created
with the IOPE:placeholder property, whose value is set to “enter the new item(s)
(separated by a comma)”, in order to enable the user to enter new instances.

IOPE: Interactive ontology population and enrichment ... 9

The input entered through user interactions must then be bound to RDF
data corresponding to new instances or new constraints submitted to populate
or enrich the domain ontology. This binding mechanism is based on a set of
binding rules which are triggered on the IOPEWeb graph to generate RDF
graphs. Next, we will discuss these binding rules.

Binding rules: The role of binding rules is to transform user interactions into
RDF graphs. A binding rule has an IOPEWeb graph pattern in its left-hand
side, and a RDF graph pattern in its right-hand side. The binding rule is trig-
gered when an input is entered by a user in a IOPEWeb form instantiating the
left-hand side of the binding rule. The corresponding instantiation of the right-
hand side provides RDF triples that have to be added in the output RDF graph.
There are 9 binding rules. In this paper, we describe 2 of them, and provide the
rest in [5]. The binding rule shown in Figure 7 is triggered when a focus class F
is chosen by the user. Once triggered, the rule creates an instance new f of the
focus class F in the output RDF graph.

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has

widget

IOPE:LABEL

IOPE:data

Source

rdf:type

IOPE:Container

rdf:type

rdf:typenew_f F

new_f

Other

IOPE:FreeEntryContainer p

IOPE:has

widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

unew_f

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass

1

u_label

_:b1

_:b1

_:b1

_:b1

_:b2

_:b3

_:b4

_:b1

_:b2

_:b3

_:b4

Fig. 7. for creating an instance new f of a focus class F .

The other binding rules are triggered when the IOPE:value property is filled
by an input provided by the user through an interactive widget. Figure 8 shows
the binding rule for the IOPE:TEXTBOX widget in the free entry container of a
property p for the focus class F . Once this binding rule is triggered, a new
constraint graph will be generated which expresses a new class and a new
cardinality constraint for F on the property p.

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has

widget

IOPE:LABEL

IOPE:data

Source

rdf:type

IOPE:Container

rdf:type

rdf:typenew f F

new f

Other

IOPE:FreeEntryContainer p

IOPE:has

widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value

IOPE:partOf

IOPE:partOf

IOPE:has

widget

IOPE:has

widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

unew f

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass

1

u_label

_:b1

_:b1

_:b1

_:b1

_:b2

_:b3

_:b4

_:b1

_:b2

_:b3

_:b4

Fig. 8. Binding rule for free entry container on property p and a focus class F

10 Baghernezhad-Tabasi et al.

4 Evaluation

The objective of our study is to evaluate the efficiency, the users’ satisfaction
and the effectiveness of the IOPE interface with the purpose of populating and
enriching the OntoSAMSEI ontology. The users involved in our user study are
a subgroup of 22 experts in simulation-based training in Medicine. They are
domain experts, but they are not familiar with RDF and OWL. The user study
was organized in two steps for each expert. In the first step, the expert logs
in the system with her credentials, picks one simulation training session, and
begins to observe and update the information in the pre-filled Web pages. In the
second step, she will be transferred to a survey form to evaluate some qualitative
aspects of IOPE and OntoSAMSEI ontology and reflect her viewpoint based
on her interactions with the IOPE interface.

4.1 Evaluation of the IOPE GUI Efficiency

Time Spent by Users and Number of Interactions. Each expert spent
163 seconds (2.72 minutes) on average, maximum 320 seconds (5.33 minutes),
minimum 67 seconds (1.12 minutes). On average, their number of interactions
with IOPE is 5.78, with a maximum of 14 and a minimum 3. The majority
of interactions are with check box widget (56.15%) followed by text box
widget (32.30%) and list box widget (11.53%). Table 2 shows the distribution
of experts in two categories of groups. In terms of number of interactions, we
have built the groups of “prolific” experts (having more than 6 interactions with
IOPE), “active” experts (having between 3 and 6 interactions), and “moder-
ate” experts (with less than 3 interactions). In terms of interaction duration, we
have built the groups of experts spending “short-time” (less than 2 minutes),
“medium-time” (between 2 and 4 minutes), and “long-time” (more than 4 min-
utes). Table 3 reports the distribution of time groups for each interaction activity
groups. We notice that more interactions do not necessary yield to more time
spent to interact. This shows that IOPE helps experts to fulfill their task in a
reasonable amount of time, even for prolific experts.

Table 2. Distribution of expert groups

moderate active prolific short-time medium-time long-time

Expert
population

22.73% 50% 27.27% 50% 31.82% 18.18%

Time-to-Insight Users’s Evaluation. After they are done with using the
IOPE interface for fulfilling their task, we ask the experts the following question
to estimate the time-to-insight for a future interaction with IOPE : “how much
time do you expect to take for setting up a new simulation training session with
IOPE?”. The response is in the form of a Likert scale from 1 to 5 where “1”
means “very short time” and “5” means “very long time”.

IOPE: Interactive ontology population and enrichment ... 11

Table 3. Distribution of interaction time groups for interaction volume groups.

Interaction volume groups
moderate active prolific

Interaction
time

groups

short-time 0.80 0.46 0.33
medium-time 0.00 0.27 0.67

long-time 0.20 0.27 0.00

Figure 9 shows the results. We observe that the majority of experts chose
“short time” and “average time”, i.e., options 2 and 3 in the Likert scale. More-
over, prolific experts and long-time perceive shorter expected time compared to
the active and moderate experts. A possible interpretation is that more interac-
tions and more time sent interacting with the system boosts the perception of
faster delivery of required information.

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Usability

0

20

40

60

80

1 2 3 4 5

Adop-on

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Accuracy

0

20

40

60

80

1 2 3 4 5

Completeness

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

U-lity

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Pr
ol

ifi
c

ex
pe

rt
s

Ac
-v

e
ex

pe
rt

s
A

ll
ex

pe
rt

s
M

od
er

at
e

ex
pe

rt
s

0

20

40

60

80

1 2 3 4 5

Lo
ng

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5M
ed

iu
m

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5Sh
or

t-
-m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

All experts

0

20

40

60

80

1 2 3 4 5

Prolific experts

0

20

40

60

80

1 2 3 4 5

Ac-ve experts

0

20

40

60

80

1 2 3 4 5

Moderate experts

0

20

40

60

80

1 2 3 4 5

Long--me experts

0

20

40

60

80

1 2 3 4 5

Medium--me experts

0

20

40

60

80

1 2 3 4 5

Short--me experts

0

20

40

60

80

1 2 3 4 5

1

Fig. 9. Prediction of experts about time-to-insight for their next utilization of the
IOPEinterface. Dashed bars show the average values of time-to-insights for all the
experts.

Comparative Efficiency of IOPE with a Standard Ontology Editor.
The goal of this experiment was to measure the added-value of IOPE compared
to a standard ontology editor such as TopBraid [1], in terms of number of
interactions required to fulfill edition tasks mentioned in Table 4.1. The tasks
are categorized into three levels of difficulty based on [7].

Table 4. Tasks descriptions

Task Description (Given the simulation training session X ...)

Easy Fill the number of trainees for X

Medium Fill the target audience of X

Difficult Fill the required resources for X

For the fairness of this experiment, since none of the domain experts have
ever used TopBraid, the different tasks were fulfilled by the five authors of the
paper who have a sufficient knowledge about the domain, as well as a sufficient
experience using both IOPE and TopBraid.

12 Baghernezhad-Tabasi et al.

Figure 10 shows the average number of interaction steps to fulfil those tasks
in IOPE and TopBraid.

Table 1

Description (Given the workshop X …) Average # pages
in IOPE

Average # queries
in TopBraid

Easy task How many participants are needed to setup X? 1.31 10.24

Medium task What are the disciplines targeted for X? 1.62 164.17

Difficult task What are the necessary resources to setup X? 2.41 978.48

1

10

100

1000

Easy task Medium task Difficult task

978.48

164.17

10.24

2.41
1.621.31

Average # interac:on steps in IOPE
Average # interac:on step in TopBraid

Table 1-1

Description (Given the workshop X …) Average # pages
in IOPE

Average # queries
in TopBraid

Easy task How many participants are needed to setup X? 3.00 5.00

Medium task What are the disciplines targeted for X? 3.60 7.50

Difficult task What are the necessary resources to setup X? 5.72 21.37

0

5.75

11.5

17.25

23

Easy task Medium task Difficult task

21.37

7.50

5.00 5.72

3.603.00

Average # interac:on steps in IOPE
Average # interac:on steps in TopBraid

1
Fig. 10. Average number of interactions in IOPE and TopBraid.

We observe that for both tools, the number of interaction steps increases
with the difficulty of the tasks. However, the IOPE’s trend grows from average
3.00 steps for an easy task to average 5.72 steps for a difficult task, while using
TopBraid grows from average 5.00 steps for an easy task to average 21.00 steps
for a difficult task. This shows that IOPE , by weaving relevant information
together using constraints, enables the experts to fulfill their tasks more rapidly
than by using a standard editor.

4.2 Evaluation of IOPE Users’ Satisfaction

We have measured on a Likert scale in the range 1 to 5 the assessment by users
of three aspects of satisfaction, namely utility, usability, and adoption, through
the questions of the three first rows of Table 5.

Table 5. Measure definitions and corresponding questions asked in the survey.

Measures Definition Question asked in the survey

utility [16, 2]
The usefulness of the method
to fulfil a given task.

How do you evaluate the utility of IOPE for setting up
simulation training sessions?

usability [15, 2]
The easiness of interactions
with the method

To which degree do you find IOPE easy-to-use?

adoption [16]
The usefulness of the method
for future similar tasks

How often will you employ IOPE for setting up and describing
a new simulation training session in the future?

accuracy [14, 15]
The precision of information
based on expert’s prior knowledge.

How do you evaluate the accuracy of IOPE’s pre-filled information
for describing simulation training sessions?

completeness [15]
The retrieval exhaustiveness of the
necessary and required information.

How do you evaluate the sufficiency of IOPE’s pre-filled information
for describing simulation training sessions?

The aggregated results are shown in the three first column of Figure 11.

Utility. 82.35% of the participants have a positive view on the utility of IOPE.
However, the prolific experts appreciate the utility more than active experts.
This shows that more interactions increases the perception of utility, which is
also confirmed by long-time experts who are entirely on the positive spectrum.

IOPE: Interactive ontology population and enrichment ... 13

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Usability

0

20

40

60

80

1 2 3 4 5

Adop-on

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Accuracy

0

20

40

60

80

1 2 3 4 5

Completeness

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

U-lity

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Pr
ol

ifi
c

ex
pe

rt
s

Ac
-v

e
ex

pe
rt

s
A

ll
ex

pe
rt

s
M

od
er

at
e

ex
pe

rt
s

0

20

40

60

80

1 2 3 4 5

Lo
ng

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5M
ed

iu
m

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5Sh
or

t-
-m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

1

Fig. 11. Satisfaction and effectiveness metrics results.

Usability. Overall the experts perceived usability positively. However, there is a
vivid contrast between moderate experts versus active and prolific experts, where
the former group seems to not enjoy the usability of IOPE. We conjecture that
moderate experts got lost early in the process, and abandoned their task. There
is also a subset of long-time experts who assessed low usability. They probably
spent too much time to fulfil their tasks and got lost in the process also.

Adoption. The choice over adoption is from 1 to 5, where 1 means “never” and
5 means “always”. Most of the experts voted to adopt IOPE in the future.

4.3 Effectiveness of IOPE for Enriching the OntoSAMSEI Ontology

In this part of the experiment, we measure the experts’ assessment of accuracy
and completeness of the OntoSAMSEI ontology through its presentation to
the experts by IOPE GUI. We do it by asking the experts the questions in the
two last rows of the Table 5. The aggregated results (on the Likert scale from 1
to 5) are shown in the two last columns of Figure 11.

Accuracy. The majority of the participants are positive on accuracy, while
11.76% are negative. Short-time and moderate experts express more negative
votes on accuracy compared to long-time and prolific experts, respectively. This
is presumably because fewer investigations in the former groups did not enable
them a precise view of the ontology.

14 Baghernezhad-Tabasi et al.

Completeness. 76.46% of the participants find OntoSAMSEI complete enough.
However, prolific experts appreciate completeness less than the overall popula-
tion. We found out that they prominently interact with text-boxes, which shows
that they use IOPE to effectively enrich the ontology. The entire long-time ex-
pert group votes positively, which means that spending more time to go into the
details of the simulation training sessions convinces them of their completeness.

5 Related Work

In the literature, ontological updates are often performed using ontology editing
tools [13, 1]. However, these systems require a basic understanding of the RDF
notation and of the OWL semantics to edit the ontology consistently. Graph-
based editing approaches alleviate this limitation by leveraging shapes graphs
in the form of SHACL standard6 [19, 17]. While shapes graphs are well adapted
for editing complex data, they require the definition of such graphs for each
ontology. In contrast, IOPE abstracts all RDF/OWL technicalities and seam-
lessly enforces the ontological constraints as a strong guidance for the experts
to update the ontology, using the pre-filled forms.

WebVOWL [18] is a web application for the interactive graph-based visu-
alization of ontologies which employs the Visual Notation for OWL Ontologies
(VOWL) [11]. However, WebVOWL does not visualize the instances but only
the OWL part of a (possibly populated) ontology. Also, the graphs displayed by
the tool tend to become quickly illegible when their size increases. In IOPE, we
employ Web forms as a more widespread medium for visualizing information,
and we support the update of instances and of ontological constraints.

Forms are also used in [12] in a nested structure to capture relational aspects
of knowledge graphs and update RDF data. However, the nested structure intro-
duces increasing complexity and hence lacks intuitiveness. Moreover, the focus
in [12] is solely on the population part and the approach does not extend to
OWL constraints. In [6], Web forms are generated from ontologies (using a User
Interface ontology, called RaUL) by interpreting ontology assertions as rules.
While the approach only incorporates individual assertions (ontology popula-
tion), IOPE serves both ontology enrichment and population, through interac-
tions with the experts. IOPE stresses on ontological constraints as first-class
citizens and renders pre-filled forms to provide a more aggregated view for the
experts, which is, to the best of our knowledge, nonexistent in the literature.

6 Conclusion

In this paper, we have presented the interactive IOPE framework for enrich-
ment and population of specialized ontologies.Given any input ontology, IOPE
exploits the ontological constraints and a set of mapping rules to generate a set
of user-friendly Web pages which assist the experts in editing the ontology. Bind-
ing rules are then used to derive the RDF graphs corresponding to the updates
entered by the experts. We have conducted an extensive set of experiments on

6 Shapes Constraint Language (SHACL): https://www.w3.org/TR/shacl/

IOPE: Interactive ontology population and enrichment ... 15

the domain of simulation-based medical education, for measuring IOPE’s effi-
ciency, effectiveness, as well as the experts’ satisfaction in fulfilling their tasks
using IOPE . In the future, we plan to improve the explainability of IOPE
to reduce the number of abandoned editing tasks and increase its usability by
domain experts not familiar with ontology engineering.

References

1. Topquadrant topbraid composer. https://www.topquadrant.com/products/

topbraid-composer/, accessed: 2021-01-15
2. Albert, W., Tullis, T.: Measuring the user experience: collecting, analyzing, and

presenting usability metrics. Newnes (2013)
3. Baghernezhad-Tabasi, S., Druette, L., Jouanot, F., Meurger, C., Rousset, M.C.:

IOPE: Interactive Ontology Population and Enrichment. In: SEMANTiCS (2021)
4. Baghernezhad-Tabasi, S., Druette, L., Jouanot, F., Meurger, C., Rousset, M.C.:

OntoSAMSEI: Interactive ontology engineering for supporting simulation-based
training in medicine. In: WETICE (2021)

5. Baghernezhad-Tabasi, S., Rousset, M.C., Druette, L., Jouanot, F., Meurger, C.:
IOPE: Interactive Ontology Population and Enrichment guided by ontological con-
straint. Tech. rep. (2021), https://hal.archives-ouvertes.fr/hal-03177176

6. Butt, A., Haller, A., Liu, S., Xie, L.: Activeraul: Automatically generated web
interfaces for creating rdf data. Semantic Web 2013 (2013)

7. Dimara, E., Franconeri, S., Plaisant, C., Bezerianos, A., Dragicevic, P.: A task-
based taxonomy of cognitive biases for information visualization. IEEE Trans. Vis.
Comput. Graph. 26, 1413–1432 (2020)

8. Fang, Y., Cheng, R., Luo, S., Hu, J., Huang, K.: C-Explorer: Browsing communities
in large graphs. VLDB (2017)

9. Haller, A., Umbrich, J., Hausenblas, M.: Raul: Rdfa user interface language - A
data processing model for web applications. In: WISE. vol. 6488, pp. 400–410.
Springer (2010)

10. Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social
networks. TVCG (2007)

11. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semantic Web 7(4), 399–419 (2016)

12. Maillot, P., Ferré, S., Cellier, P., Ducassé, M., Partouche, F.: Nested forms with
dynamic suggestions for quality RDF authoring. In: DEXA. Springer (2017)

13. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protégé-2000. IEEE Intell. Syst. 16(2), 60–
71 (2001)

14. Omidvar-Tehrani, B., Amer-Yahia, S.: Data pipelines for user group analytics. In:
SIGMOD Conference. pp. 2048–2053. ACM (2019)

15. Rahman, P., Jiang, L., Nandi, A.: Evaluating interactive data systems. VLDB J.
29(1), 119–146 (2020)

16. Thomas, J.J.: Illuminating the Path: The Research and Development Agenda for
Visual Analytics. IEEE Computer Society (2005)

17. Valdestilhas, A., Publio, G., Cimmino Arriaga, A., Riechert, T.: Voceditor an inte-
grated environment to visually edit, validate and versioning rdf vocabularies (2020)

18. Wiens, V., Lohmann, S., Auer, S.: Webvowl editor: Device-independent visual on-
tology modeling. In: ISWC 2018 Posters & Demonstrations (2018)

19. Wright, J., Méndez, S.J.R., Haller, A., Taylor, K., Omran, P.G.: Sch́ımatos: A
shacl-based web-form generator for knowledge graph editing. In: ISWC (2020)

