
Datalog revisited for reasoning in Linked Data ?

Marie-Christine Rousset1,2, Manuel Atencia1, Jerome David1, Fabrice Jouanot1,
Olivier Palombi3,4, and Federico Ulliana5
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Abstract. Linked Data provides access to huge, continuously growing amounts
of open data and ontologies in RDF format that describe entities, links and prop-
erties on those entities. Equipping Linked Data with inference paves the way to
make the Semantic Web a reality. In this survey, we describe a unifying frame-
work for RDF ontologies and databases that we call deductive RDF triplestores.
It consists in equipping RDF triplestores with Datalog inference rules. This rule
language allows to capture in a uniform manner OWL constraints that are use-
ful in practice, such as property transtivity or symmetry, but also domain-specific
rules with practical relevance for users in many domains of interest. The expres-
sivity and the genericity of this framework is illustrated for modeling Linked Data
applications and for developing inference algorithms. In particular, we show how
it allows to model the problem of data linkage in Linked Data as a reasoning prob-
lem on possibly decentralized data. We also explain how it makes possible to effi-
ciently extract expressive modules from Semantic Web ontologies and databases
with formal guarantees, whilst effectively controlling their succinctness. Experi-
ments conducted on real-world datasets have demonstrated the feasibility of this
approach and its usefulness in practice for data integration and information ex-
traction.

1 Introduction

Thanks to the RDF data model, the Semantic Web has become a reality with the rapid
development of Linked Data. Linked Data provides access to huge, continuously grow-
ing amounts of open data in RDF format that describe properties and links on entities
referenced by so-called Uniform Resource Identifiers (URIs).

RDFS and OWL languages [5] allow to express a lot of useful logical constraints on
top of RDF datasets, and existing Semantic Web tools implement inference algorithms
to exploit them. In particular, the Jena environment 6 includes a rule-based reasoner that
implements the RETE algorithm [21]. When the inference mode is launched, the satu-
rated dataset is computed, which is the set of RDF facts that can be logically inferred
? This work has been partially supported by the ANR projects Pagoda (12-JS02-007-01) and
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from the input RDF dataset and a given set of rules. The saturation process is guaran-
teed to terminate if the rules are safe, i.e., if the variables appearing in the conclusion
of each rule also appear in its condition part.

Safe rules (also called Datalog rules) on top of RDF facts capture in a uniform way
most of the OWL constraints useful in practice, as well as mappings across different
datasets, and also domain knowledge provided by experts, while guaranteeing a poly-
nomial data complexity of reasoning and query answering [2].

In the setting of a unifying framework that we have called deductive RDF triple-
stores, we have followed a rule-based approach to address several problems raised
by exploiting semantic web knowledge bases. For this, we have extended and adapted
forward-chaining and backward-chaining algorithms intially developed for Datalog de-
ductive databases.

This survey is structured as follows. In Section 2, we first recall the ingredients of
Linked Data and we define what we call a deductive RDF dataset to capture several on-
tological constraints expressing data semantics. In Section 3, we survey the rule-based
data linkage approach that we have developed in the context of Linked Data based on
reasoning for inferring differentFrom and sameAs facts. In Section 4, we summarize our
approach for extracting bounded-level modules from RDF knowledge bases. Finally, in
Section 5, we illustrate our methodology for rule-based integration of heterogeneous
data and ontologies through several applications related to Medicine. Finally, we con-
clude in Section 6.

2 Datalog rules on top of RDF datasets

We first recall the ingredients of Linked Data and then we define what we call a deduc-
tive RDF dataset to capture several ontological constraints expressing data semantics.

2.1 RDF datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL u and a set F of RDF facts that
are accessible as URL through a query endpoint. We will denote by ds(u) the set F of
RDF facts that can be queried at the URL u.

An RDF fact is a triple t = (s, p, o) where the subject s is either a URI or a blank
node, the predicate p is a URI, and the object o may be either a URI, a blank node or
a literal. We will denote the vocabulary used in ds(u) by voc(u) , i.e., the names of
predicates used to declare triples in the dataset accessible at the URL u.

2.2 Queries over RDF datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries entered through a given
query endpoint accessible at a given URL. In this paper, we use a simplified notation
for SPARQL queries, and, without loss of generality, we consider that all variables are
distinguished.

A query q(u) asked to an RDF dataset identified by (and accessible at) the URL
u is a conjunction of triple patterns denoted by TP1(v1), . . . , TPk(vk) where each



triple pattern TPi(vi) is a triple (sv, pv, ov) in which the subject sv , the predicate pv , or
the object ov can be variables: vi is the set of variables appearing in the triple pattern.
Variables are denoted by strings starting by ‘?’. TPi(vi) is a ground triple pattern if its
set of variables vi is empty (denoted by TPi()). A ground triple pattern corresponds to
a RDF fact. A boolean query is a conjunction of ground triple patterns.
The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over the dataset ds(u) con-
sists in finding substitutions θ assigning the variables in

⋃
i∈[1..k] vi to constants (i.e.,

identifiers or literals) such that TP1(θ.v1), . . . , TPk(θ.vk) are RDF facts in the dataset.
The corresponding answer is equally defined as the tuple of constants assigned by

θ to the variables or as the set of corresponding RDF facts TP1(θ.v1), . . . , TPk(θ.vk)
that will be denoted by θ.q(u). In the remainder of the paper, we will adopt the latter
definition. The answer set of the query q(u) against the dataset ds(u) = F is thus
defined as:

Answer(q(u), F ) =
⋃

{θ|θ.q(u)⊆F}

{θ.q(u)}

For a boolean query q(u), either the answer set is not empty and we will say that
the query is evaluated to true, or it is empty and we will say that it evaluated to false.

For a query q(u) to have a chance to get an answer when evaluated over the dataset
ds(u), it must be compatible with the vocabulary used in this dataset, i.e., (a) the
predicates appearing in the triple patterns of q(u) must belong to the set voc(u) of
predicates known to occur in ds(u), (b) the URIs appearing as constants in the triple
patterns of q(u) must have u as prefix.

In accordance with SPARQL queries allowing different FROM operators, a con-
junctive query can in fact specify several entry points u1, . . . , un of datasets over which
the query has to be evaluated. We will denote such a query q(u1, . . . , un). The above
definitions of answers and compatibility can be generalized appropriately by replacing
the dataset ds(u) by the union

⋃
i∈[1..n] ds(ui) of the specified datasets.

2.3 Deductive RDF datasets

In order to capture in a uniform way semantic constraints that can be declared on top of
a given RDF dataset, but also possibly mappings between local predicates and external
predicates within the vocabulary of other datasets, and domain knowledge provided by
domain experts, we consider that RDF datasets can be enriched with Datalog rules.
The Datalog rules that we consider are of the form: Condr → Concr, in which the
condition Condr is a conjunction of triple patterns (i.e., a conjunctive query) and the
conclusion Concr is a triple pattern. We consider safe rules, i.e., rules such that all the
variables in the conclusion are also in the condition. Datalog rules on top of RDFS facts
capture most of the OWL constraints used in practice, while guaranteeing a polynomial
data complexity for reasoning and query answering.

A deductive RDF dataset dds(u) accessible at the URL u is thus a local knowledge
base (F,R) made of a set of RDF facts F and a set R of rules. The application of
rules allows to infer new facts that are logically entailed from F ∪ R. A rule r can be
applied to F if there exists a substitution θ such that θ.Condr ⊆ F and the result of the
rule application is F ∪ {θ.Concr}. These new facts can in turn trigger rules and infer



additional facts. This is formalized in the following definition of the standard semantics
of a knowledge base F ∪ R composed of a finite set of facts F and a finite set of rules
R, based on the least fixed point of immediate consequence operator TR.

Definition 1 (Datalog semantics).
- (F,R) `1 f iff there exists a rule TP1(v1) ∧ . . . ∧ TPk(vk) → TP (v) is in R and

there exists a mapping θ from its variables to constants such that f = θ.TP (v) and
θ.TPi(vi) ∈ F for every i ∈ [1..k].
- (F,R) ` f iff there exists i such that f ∈ TR(Fi) where F0 = F , and for every i ≥ 0,
Fi+1 = TR(Fi) = Fi ∪ {f |Fi, R `1 f}

For a finite set of facts F and a finite set of safe rules R, there exists a unique least
fixed point Fn (denoted by SAT (F,R)) such that for every k ≥ n Fk = TR(Fn), i.e.,
there exists a step in the iterative application of the immediate consequence operator
for which no new fact is inferred. Several forward-chaining algorithms exist to compute
SAT (F,R), in particular the semi-naive bottom-up evaluation in Datalog [2], and the
RETE algorithm [21] that is implemented in many rule-based reasoners, including in
Semantic Web tools such as Jena 7.

Query evaluation over a deductive dataset
The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over a deductive dataset
dds(u) consists in finding substitutions θ such that the facts TP1(θ.v1), . . . , TPk(θ.vk)
can be inferred from the deductive dataset, or equivalently belong to the result
SAT (F,R) of the facts that can be inferred from F and R:

Answer(q(u), (F,R)) = Answer(q(u), SAT (F,R))

Thus, a boolean query q(u) is evaluated to true if and only if q(u) ∈ SAT (F,R), i.e.,
if and only if (F,R) ` q(u), where ` is the standard notation for logical inference.

Within the vocabulary of a deductive dataset, we distinguish the extensional predicates
(EDB predicates for short) that appear in the triplets of the dataset F , from the inten-
tional predicates (IDB predicates) that appear in conclusion of some rules in R. Like
in deductive databases, and without loss of generality (i.e., by possibly renaming pred-
icates and adding rules), we suppose that these two sets are disjoint. We will denote
ODB predicates the external predicates (i.e., defined in a different namespace than the
considered deductive dataset) that possibly appear in the dataset or in the rules. These
predicates are the core of Linked Data in which a good practice is to re-use existing
reference vocabularies. We suppose (again, without loss of generality) that the set of
ODB predicates is disjoint from the set of IDB predicates (but not necessarily from the
set of EDB predicates).

7 https://jena.apache.org/documentation/inference/



3 Rule-based data linkage

Data linkage consists in deciding whether two URIs refer to the same real-world entity.
This is a crucial task in Linked Data. In particular, it is very important to correctly
decide whether two URIs refer to the same real-world entity for developing innovative
applications on top of Linked Data, that exploit the cross-referencing of data [26, 20].
This task is often referred to as data interlinking, and is also known as record linkage
and entity resolution, and it has been widely studied for the case of relational data
[16]. As regards to Linked Data, data linkage is especially challenging since (1) tools
need to scale well with large amounts of data, (2) data is frequently described using
heterogeneous vocabularies (ontologies), and (3) tools need to deal with data which is
inherently incomplete, and very often noisy.

In the context of Linked Data and RDF data, different approaches to data linkage
have been proposed. Most of them are based on numerical methods that use linkage
rules to compare property values of resources, using similarity measures to handle noisy
data. They conclude weighted sameAs links, from which the links with higher weights
are expected (but never guaranteed) to be correct [48, 34]. These approaches suffer
from two weaknesses. First, rules cannot be chained, as they are thought to be applied
only once; and second, weights are combined in a non-formal manner, since there is no
formal semantics that captures the combination of weights.

In contrast, like a few other works [40, 31], we promote a rule-based approach
equipped with full reasoning.

First, we have investigated a logical approach that exploits uniqueness constraints
(such as inverse functional properties and keys) and other schema constraints, domain
knowledge and alignments between different vocabularies which can be modelled as
logical rules. This enables to infer all certain sameAs and differentFrom facts that are
logically entailed from a given set of domain constraints and input facts. Our main
contribution is a novel algorithm, called Import-by-Query, that enables the scalable de-
ployment of such an approach in the decentralized setting of Linked Data. The main
challenge is to identify the data, possibly distributed over several datasets, useful for in-
ferring owl:sameAs and owl:differentFrom facts of interest. Compared to the approach
reported in [31], relying on a global import obtained by a breadth-first crawl of the
Linked Data cloud, we perform a selective import while guaranteeing completeness
for the inference of the targeted owl:sameAs and owl:differentFrom facts. For doing
so, the Import-by-Query algorithm that we have designed alternates steps of sub-query
rewriting and of tailored querying of the Linked Data cloud to import data as specific
as possible to infer owl:sameAs and owl:differentFrom facts. It is an extension of the
well-known query-subquery algorithm for answering Datalog queries over deductive
databases. Experiments conducted on a real-world dataset have demonstrated the feasi-
bility of this approach and its usefulness in practice for data linkage and disambiguation.

We summarize this logical approach in Section 3.1.
Logical approaches applying only certain rules over clean and complete data guar-

antee to provide sound results, i.e., a 100% precision. However, the recall may be low
because in Linked Data, data is inherently incomplete and possibly noisy. Input facts
may be missing to trigger rules, either because some values for properties involved in
rules conditions are absent for some URIs, or because some of these values are noisy



with some misspelling that prevents some conditions to be satisfied. In addition, rules
may be missing to infer sameAs facts with certainty, although some strong evidence
could be obtained from the combination of soft constraints. In order to handle this, we
have modeled the general data linkage problem as a reasoning problem with uncer-
tainty. We have introduced a probabilistic framework for modelling and reasoning over
uncertain RDF facts and rules that is based on the semantics of probabilistic Datalog,
and we have designed an algorithm, ProbFR, based on this framework. This approach
is summarized in Section 3.2

3.1 Logical approach for data linkage [4]

Illustrative Scenario
We describe here a simplified scenario inspired by the task of disambiguation of named
entities in a large real-world RDF documentary catalog produced by the French Na-
tional Audiovisual Institute (INA), and that we have used in our experiments.

Figure 1 shows an extract of the INA vocabulary and a sample of RDF triples from
the INA dataset.8 Any person entity is an instance of the class ina:PhysicalPerson, which
has two subclasses: ina:Person and ina:VideoPerson. The class ina:Person is used for
representing French personalities while ina:VideoPerson is used for identifying person
entities that play a role in a video. INA experts want to disambiguate individuals within
ina:Person, and link these individuals to the ones of ina:VideoPerson.

Three homonymous persons are described in Figure 1, all named “Jacques Mar-
tin”: ina:per1, ina:per2 and ina:per3. It is unknown if these entities represent the same
or different persons, but some additional information is given: ina:per1 is known to
be the presenter of a program recorded in the video ina:vid1 whose title is “Le Pe-
tit Rapporteur”, whereas ina:per2 and ina:per3 have dates of birth “1933-06-22” and
“1921-09-25”, respectively.

Our approach to disambiguating the person entities ina:per1, ina:per2 and ina:per3
consists in exploiting domain knowledge and constraints, as well as general properties
of owl:sameAs and owl:differentFrom, all this knowledge being expressed in a uniform
way by rules. Table 1 shows rules which, for the purpose of this simplified scenario, we
can assume they have been validated by INA experts. R1-R3 are domain-specific rules.
R1 expresses that ina:birthdate is functional. This rule can be used to infer that ina:per2
and ina:per3 are different because they have different dates of birth. R2 expresses that
ina:name and ina:birthdate form a key (within the INA dataset), and R3 the fact that two
persons who have the same name and presented programs recorded in videos with the
same title must be the same. R2 and R3 indeed could be useful for deciding if ina:per1
refers to the same person as ina:per2 or ina:per3, but some information is missing: the
date of birth of ina:per1 is not known, or whether ina:per2 or ina:per3 are presenters
and of which programs.

The above missing information can be completed thanks to external data coming
from DBpedia. In Figure 2, we show DBpedia facts describing the DBpedia person en-
tity db:per1, and an extract of the DBpedia vocabulary. Rules R4 and R5 in Table 1

8 We have slightly modified the INA vocabulary (e.g. translating French terms into English
terms) for the sake of readability.



�ina:vid1, rdf:type, ina:Video�
�ina:vid1, ina:title, “Le Petit Rapporteur”�
�ina:per1, rdf:type, ina:VideoPerson�
�ina:per1, ina:name, “Jacques Martin”�
�ina:per1, ina:presenter, ina:vid1�
�ina:per2, rdf:type, ina:Person�
�ina:per2, ina:name, “Jacques Martin”�
�ina:per2, ina:birthdate, “1933-06-22”�
�ina:per3, rdf:type, ina:Person�
�ina:per3, ina:name, “Jacques Martin”�
�ina:per3, ina:birthdate, “1921-09-25”�

ina:PhysicalPerson

ina:VideoPerson ina:Person

ina:Video xsd:date

rdfs:subClassOf rdfs:subClassOf

ina:presenter

ina:title

ina:birthDate ina:name

rdfs:Literal

rdfs:Literal

Fig. 1. An extract of INA vocabulary and RDF facts.

translate mappings from the INA and DBpedia vocabularies. Specifically, these map-
pings state that ina:name and ina:birthdate are equivalent to foaf:name and foaf:birthdate,
respectively, and that the composition of ina:presenter and ina:title is equivalent to
db:presenter. Let us assume that rules R4 and R5 have been validated by INA experts
too. With these rules it can be inferred that db:per1 is the same as ina:per1 because they
have the same name and they have presented a program with the same title; and that
db:per1 is the same as ina:per2 since they have the same name and birthdate. Therefore,
by transitivity of same-as (rule R6 in Table 1), it can be inferred that ina:per1 is the same
as ina:per2, and, since ina:per2 is different from ina:per3 then (due to R7) ina:per1 is
different from ina:per3 too.

�db:per1, rdf:type, db:Person�
�db:per1, foaf:name, “Jacques Martin”�
�db:per1, db:presenter, “Le Petit Rapporteur”�
�db:per1, foaf:birthdate, “1933-06-22”�

db:Person

rdfs:Literal

db:presenterfoaf:name

rdfs:Literal

foaf:birthdate

rdfs:Literal

Fig. 2. An extract of DBpedia vocabulary and RDF facts.



R1 : (?x1, ina:birthdate, ?b1), (?x2, ina:birthdate, ?b2), (?b1, notEqualTo, ?b2)→ (?x1, owl:differentFrom, ?x2)
R2 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x2, ina:birthdate, ?b), (?x1, ina:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R3 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x1, ina:presenter, ?v1), (?x2, ina:presenter, ?v2), (?v1, ina:title, ?t),

(?v2, ina:title, ?t)→ (?x1, owl:sameAs, ?x2)
R4 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:presenter, ?v), (?v, ina:title, ?t), (?x2, db:presenter, ?t)

→ (?x1, owl:sameAs, ?x2)
R5 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:birthdate, ?b), (?x2, foaf:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R6 : (?x1, owl:sameAs, ?x2), (?x2, owl:sameAs, ?x3)→ (?x1, owl:sameAs, ?x3)
R7 : (?x1, owl:sameAs, ?x2), (?x2, owl:differentFrom, ?x3)→ (?x1, owl:differentFrom, ?x3)
R8 : (?x1, ina:name, ?n1), (?x2, foaf:name, ?n2), (?n1, built-in:name-similar, ?n2), (?x1, ina:birthdate, ?b),

(?x2, foaf:birthdate, ?b)→ (?x1, owl:sameAs, ?x2)
Table 1. Rules in the INA illustrative scenario.

To avoid downloading the complete DBpedia, and, more generally, the whole Linked
Open Data (something that is not practical), our import-by-query approach generates,
for each targeted owl:sameAs fact, a sequence of external sub-queries as specific as
possible to obtain just the missing facts. The external sub-queries generated by our al-
gorithm for the particular query (ina:per1, owl:sameAs, ina:per2) in our example are
shown in Figure 3.

Fig. 3. The resultant external sub-queries submitted to DBpedia and their returned answers.

Problem statement

Given a deductive dataset dds(u) = (F,R), and a boolean query q(u) the local
evaluation of which gives an empty answer set (i.e., (F,R) 6` q(u)), we aim to con-
struct a set of external queries q1(u1), . . . , qk(uk) for which we can guarantee that the
subsets of external facts resulting from their evaluation over the (possibly huge) external
datasets are sufficient to answer the initial query. More formally:

(F ∪
⋃

i∈[1..k]

Answer(qi(ui), ds(ui)), R) ` q(u)

iff (F ∪
⋃

i∈[1..k]

ds(ui), R) ` q(u)



The more specific the external queries are, the less external facts have to be added
and stored to the local dataset and therefore the more interesting a proposed approach
is to solve this problem.

The iterative Import-by-Query Algorithm
We now describe the algorithm that we have designed and implemented for solving the
problem stated above.
Given an input boolean same-as query q, a deductive dataset (F,R), and a set ū of
query entry points to external datasets, Import-by-Query iteratively alternates steps of
sub-query rewriting based on backward chaining and of external query evaluation.

Each sub-query rewriting step is realized by an adaptation of the Query-Subquery al-
gorithm [47, 2] that is a set-oriented memoing backward chaining method [29] used
in deductive databases for evaluating Datalog programs. This results in the Query-
External-Subquery (QESQ for short) algorithm. For space limitation, here we just ex-
plain its main principles, compared to Query-Subquery, when applied to a list SG of
subgoals. QESQ handles the subgoals built on EDB or IDB predicates exactly like
Query-Subquery, i.e., iteratively removes subgoals built on EDB predicates if they can
be matched with local facts, propagates the corresponding substitutions to the remaining
subgoals, replaces a subgoal g built on an IDB predicate by the list of partially instan-
tiated conditions of a rule whose conclusion can be matched to g. As for the subgoals
on ODB predicates, they are handled by QESQ before the subgoals on IDB predicates,
and once all the subgoals built on EDB predicates have been removed, and after the cor-
responding substitutions are applied to the remaining subgoals in the list. These ODB
subgoals are conjuncted to obtain an external query qext, the compatibility of which
must be checked w.r.t. ū to be considered further. QESQ then treats the remaining list
SGidb of subgoals on IDB predicates just as Query-External-Subquery, i.e., triggers
the recursive call QESQ(SGidb). It will return as output either true or false (if it has
enough local information to infer a result to the input boolean query), or a set of external
queries that, if compatible with the vocabulary of the given external datasets, are then
conjuncted with qext to constitute the output returned by QESQ(SG). As a result QESQ
({q}) succeeds in handling locally the goal q using F and R just like Query-Subquery
and then the process is stopped and the result returned by Import-by-Query is true or
false accordingly, or it produces a set {q1(ū1), . . . , qk(ūk)} of external queries the eval-
uation of which is likely to bring missing facts to F for proving the goal q using R. If
this set is empty, the process is stopped and the result returned by Import-by-Query is
false.

Each evaluation step simply consists in choosing one of the external query qi(ūi) pro-
duced by the sub-query rewriting step and to submit it to Linked Data through the
specified query entry points. The result is either an empty set (negative result) or a set
of external facts (positive result) that can be added to the current local dataset. In both
cases, the result is memorized in an associated answer table for the sub-query qi(ūi)
that will be thus marked as an already processed subgoal for which the (positive or
negative) result is known and can be directly exploited later on. If the result is positive,



a new iteration of Import-by-Query is started on the same input except for the set of
facts F that is enriched with the facts obtained as the result of the evaluation of the
external query qi(ūi). If the result is negative, another external query qj(ūj) in the set
produced by the current call to QESQ is evaluated. If the evaluation of all the external
queries in the set returns ’false’, then the process is stopped and the result returned by
Import-by-Query on q is false.

The termination of the Import-by-Query algorithm relies on the termination of
QESQ, which is guaranteed by the same memoing technique as Query-Subquery (i.e.,
by handling goal and answer tables for each ODB and IDB predicate). The sound-
ness and completeness of the Import-by-Query algorithm results from the soundness
and completeness of Query-Subquery [47] and from the observation that the result pro-
duced by Query-Subquery, if applied to the same input in which the ODB predicates are
just considered as additional EDB predicates, would be the same as the one produced
by Import-by-Query. The reason is that the only difference of Import-by-Query is to re-
place successive matching of atomic goals against the facts by matching all at once the
atomic goals composing the external queries produced by QESQ. This does not impact
the global boolean result of the sequence of goal matching.

Combining forward and backward chaining
Like any backward chaining method, Import-by-Query (and its main component QESQ)
re-starts from scratch for each new goal it tries to solve, even if the facts and the rules
remain unchanged. The intermediate subgoals generated and handled by QESQ can be
simplified if the input rules are replaced by their (partial) instantiations obtained by the
propagation of the facts into (the conditions of) the rules.

Fact propagation is a forward chaining method used in inference engines such as
RETE [21] for rule-based systems. It avoids redundant evaluation of same conditions
appearing in several rules by memorizing, for each fact f , which condition it satisfies
in which rule (possibly already partially instantiated by facts previously propagated),
and the corresponding variable substitution that is then applied to all the remaining
conditions of the rules.

In our setting, we perform fact propagation as a pre-processing step of the Import-
by-Query algorithm, by computing at the same time the set SAT (F,R) of facts that can
be inferred locally, and the set PI(F,R) of partial instantiations of the rules in R. This
forward reasoning step can be summarized as follows, where SAT (F,R) is initialized
as F and PI(F,R) is initialized as R:

– FOR each f in SAT (F,R)
FOR each rule Condr → Concr in PI(F,R) having a condition c that can be
matched with f , i.e., there exists θ such that θ.c = f

∗ IF c is the only condition in Condr THEN add θ.Concr to SAT (F,R)
∗ ELSE add to PI(F,R) the rule obtained from θ.Condr → θ.Concr by

removing the condition θ.c (that is satisfied by the fact f ).
– Remove from PI(F,R) those rules whose condition contains EDB predicates that

are not ODB predicates (and thus cannot be satisfied by local facts).
– RETURN (SAT (F,R), P I(F,R))



Each partially instantiated rule ri returned in PI(F,R) is issued from an input rule
r in which some conditions have been matched to facts f1, ..., fk that have been inferred
before (and added to SAT (F,R)), and thus allows us to infer the same conclusion as the
input rule r on any set of facts including f1, ..., fk. The result SAT (F,R)∪PI(F,R) is
then logically equivalent to the input deductive dataset F ∪R for inferring facts on IDB
predicates from the union of F and a set OF of external facts (with ODB predicates),
i.e. for every fact f an external set of facts OF :

(F ∪OF,R) ` f iff (SAT (F,R) ∪OF,PI(F,R)) ` f

Therefore, it can be equivalently used for proving goals by checking whether they
belong to SAT (F,R), or for rewriting goals by applying QESQ to the PI(F,R) (in-
stead of the original R).

Experiments
We have conducted experiments on a real deductive dataset composed of 35 rules and
about 6 million RDF facts from INA dataset. Most of the 35 rules capture local knowl-
edge in the domain (functional properties and keys declared as schema constraints, and
rules provided by INA experts), mappings between INA and DBpedia vocabularies,
and general properties of owl:sameAs and owl:differentFrom. Some of the rules of our
experiments involve a built-in predicate (called built-in:name-similar) to allow slight
differences when comparing literal values corresponding to person names (e.g. R8 in
Table 1). This predicate depends on a built-in function which checks if the similarity
of the two name strings is above a given threshold. In all our experiments we used edit
distance and 0.99 as a threshold. Other built-in predicates involved in the rules are not-
equal, less-or-equal, sum, etc. It is worth noting that the 35 rules can be extended or
modified without the need of changing the algorithmic machinery of our approach.

Experimental Goals and Set-Up
The goal of our experiments was threefold: (1) to show that external information avail-
able in Linked Open Data is useful to infer owl:sameAs and owl:differentFrom facts
within INA referenced persons, and, thus, to disambiguate local homonyms; (2) to as-
sess the gain in reduced imported facts of our Import-by-Query approach compared to
approaches based on forward reasoning only; and (3) to evaluate the runtime of our
Import-by-Query algorithm and the possible amortized gain if fact propagation is per-
formed beforehand.

The external datasets from Linked Open Data with which the INA vocabulary shares
terms are DBpedia.org and DBpedia.fr. The baseline for evaluating our two first goals
is a set of 0.5 million external facts obtained by downloading from DBpedia.org and
DBpedia.fr (using their SPARQL endpoints) all the facts about entities having the same
name as one of the homonyms in the INA dataset. We applied a preprocessing step
on the original INA dataset to keep only the facts on predicates appearing in the rules
conditions. The resulting dataset contains almost 1.15 million of RDF facts and will be
the INA dataset referred to henceforth.

Our algorithms have been implemented in SWI-Prolog. All the evaluations were
done on a machine with an Intel i7 Quad-core processor and 6 GB of memory.



Experimental Results
For evaluating our first goal, we applied (using our forward reasoner) the set of 35 rules
to (a) the INA dataset only and (b) the union of the INA dataset with the baseline ex-
ternal facts, and then we compared the number of owl:sameAs and owl:differentFrom
facts on INA homonyms we obtained. The rules applied to the INA dataset only al-
lowed to infer 2 owl:sameAs facts and 108 owl:differentFrom facts, compared to the
4,884 owl:sameAs and 9,764 owl:differentFrom facts inferred when the external facts
were added to the process. This clearly demonstrates the benefit of using external infor-
mation from Linked Open Data for local disambiguation. These resulting 14,648 facts
are guaranteed to be correct under the assumption that both rules and data are correct.
However, since this is not ensured for DBpedia data, we asked INA experts to evaluate
a random sample of 500 of such facts, and all of them were assessed to be true.

The rule expressing sameAs transitivity is crucial for inferring all the owl:sameAs
facts that cannot be inferred locally. More generally, full reasoning is very important
to discover owl:sameAs and owl:differentFrom facts. In order to show this, we applied
Silk to the same two datasets (the INA dataset only, and the union of the INA dataset
with the baseline external facts). For doing so, we first had to translate our rules into
the Silk specification language. It is not possible, however, to translate into Silk our
rules concluding on owl:differentFrom atoms. Thus, we focused on the rules leading
to owl:sameAs inference. Among the 4,884 owl:sameAs facts discovered by our full
forward reasoner, Silk (which does not perform full reasoning) only discovered 88, i.e.
less than 2% of the total. This shows that inference is important for data linkage.

For evaluating our second experimental goal, we took as reference boolean queries
the above sample of 500 owl:sameAs and owl:differentFrom facts, and we applied our
Import-by-Query algorithm to each of these boolean queries. The number of external
facts imported by our algorithm for all boolean queries was 6,417, which makes, on
average, 13 imported facts per boolean query. In contrast, the total number of base-
line external facts needed to conclude the boolean queries with the forward reasoner
was much higher (∼500,000). This shows that our Import-by-Query algorithm reduces
drastically the number of imported facts needed for disambiguating local data.

Concerning the runtime evaluation, the import-by-query algorithm requires 3 itera-
tions on average — it successively outputs and evaluates 3 external sub-queries (each
of them being produced by calling QESQ) — before termination. It takes on average
186 s per boolean query when applied to the initial set of rules and the local dataset.
This drops to 7 s when it is applied to the partially instantiated rules obtained by fact
propagation beforehand, which means a gain in time of 179 s (∼96%). With respect to
the fact propagation, we propagated all facts involving properties of class ina:Person.
This took 191 s but it is done only once for all queries, and its cost is amortized very
fast, as shown by the above numbers.

Discussion
We have proposed a novel approach for data linkage based on reasoning and adapted to
the decentralized nature of the Linked Data cloud. This approach builds on the formal
and algorithmic background of answering Datalog queries over deductive databases,
that we have extended to handle external rewriting when local answers cannot be ob-



tained. In contrast with existing rule-based approaches for data linkage [40, 31] based
on forward reasoning to infer same-as facts, Import-by-Query is a backward chaining
algorithm that imports on demand only external facts useful to infer target same-as facts
handled as boolean queries. Our experiments have shown that this approach is feasible
and reduces the number of facts needed to be imported. Compared to the depth-first ap-
proach sketched in [1] for distributed Query-Subquery, our QESQ algorithm generates
external rewriting in a breadth-first way.

Performing fact propagation beforehand in order to apply Import-by-Query to a
set of more specific rules than the original ones is an optimization close to the ones
proposed in QueryPIE [46] for efficient backward reasoning on very large deductive
datasets. One important difference, though, is that in the QueryPIE setting, the problem
of handling recursive rules can be fully delegated to forward reasoning because all the
facts are given and the recursive rules concern a well identified subset of them (so called
terminological facts). Another major difference is that Import-by-Query performs query
rewriting if no local answer is obtained from the input deductive dataset.

The Import-by-Query approach in [25] is limited to ABox satisfiability queries
used as oracles in Tableau-based reasoning. Compared to the many recent works on
ontology-based data access initiated by [14], in which query rewriting is done inde-
pendently of the data, we have designed a hybrid approach that alternates (external)
query rewriting and (local) query answering. We plan to look into this hybrid approach
further, in particular to deal with ontological constraints expressible in Datalog+− [13].

The interest of our rule-based approach is that it is generic and declarative: new rules
can be added without changing the algorithmic machinery. At the moment the rules that
we consider are certain. As a result, the same-as facts that they allow to infer are guaran-
teed to be correct (under the assumption that the input data does not contain erroneous
facts). This is crucial to get automatically same-as facts that are certain, in particular
when the goal of discovering same-as links is data fusion, i.e. replacement of two URIs
by a single one in all relevant facts. Another added-value to get certain same-as and
different-from facts is to find noisy data thanks to contradictions. However, in many
cases, domain knowledge is not 100% sure such as pseudo-keys [11] and probabilis-
tic mappings [45]. Data itself may be uncertain due to trust and reputation judgements
towards data sources [9]. Handling uncertain domain knowledge should enable to dis-
cover more same-as facts that may be true even if inferred with some uncertainty. This
is addressed in the next section.

3.2 Reasoning over uncertain RDF facts and rules [3]

We have designed a probabilistic framework to model and reason on uncertain RDF
facts and rules, based on the semantics of probabilistic Datalog [23]. Probabilistic Dat-
alog extends (deterministic) Datalog [2] by associating each ground fact and each in-
stantiated rule with a basic probabilistic event that the corresponding fact or rule is true.
Each derived fact is then inferred with its provenance in the form of an event expres-
sion made of a boolean combination of the basic events of the ground facts and rules
involved in its derivation. It can be put in disjunctive normal form, in which a conjunc-
tion of events represents a derivation branch, and disjunctions represent the different
derivation branches. Some simplifications can be performed before the computation of



the resulting probabilities: a conjunction containing disjoint events can be suppressed
; basic events known to be certain can be removed from the conjunctions where they
are involved thus leading to conjunctions with only uncertain events. An extreme case
is when a conjunction is made of certain events only, which represent a way to derive a
fact with certainty. In this case the whole event expression can be simplified to> which
denotes certain events. The logical semantics of the (simplified) event expression is then
the basis for computing the probability of the corresponding derived fact in function of
the probabilities assigned to the events identifying the input facts and rules participat-
ing to its derivation. In the general case, computing the probability of the disjunction
of conjunctions of events requires to know the probabilities of all the combinations of
events in the expression. In practice, in particular in applications dealing with large
amounts of data, only the probabilities of single events will be known. We will then
make the same default assumptions of independence or disjointness of single events, as
usually done in most Information Retrieval models [22]. To fit with such assumptions,
we have to impose some constraints on the rules, that will be explained below.

Probabilistic RDF facts extends the standard data model of Linked Data used to
state properties on entities referenced by so-called Uniform Resource Identifiers (URIs).
Properties are themselves identified by URIs. So-called data properties relate entities
with literals (e.g., numbers, strings or dates), while object properties relate two entities.

A probabilistic RDF fact is an RDF triple t = (s, p, o) (in which the subject s
is a URI, the predicate p is a URI, and the object o may be either a URI or a literal)
associated with an event key e denoting the probabilistic event that t is true. A prob-
abilistic RDF rule is a safe rule with variables, associated with an event key denoting
the probability that any of its instantations is true.

Each probabilistic RDF fact and rule are assigned a distinct event key, except the
certain facts and rules that are assigned the special event key > denoting events that are
certain. For a probabilistic fact f (respectively rule r), we will denote e(f) (respectively
e(r)) the probabilistic event e associated with the fact f (respectively the rule r).

In the rules, we also allow conditions B(x̄, ā) where B is a built-in predicate (i.e., a
function call), x̄ a vector of variables appearing in the triple conditions of the same rule,
and ā may be a non empty set of values of parameters for calling B. The following rule
is an example of a rule with a built-in predicate:Similar(?s1, ?s2, levenshtein, 0.2):
r0 : (?xhasName ?s1)∧ (?y hasName ?s2)∧ Similar(?s1, ?s2, levenshtein, 0.2)

→ (?x sameName ?y)

For each pair of strings (s1, s2) for which the two triple conditions are satisfied by
facts (i1 hasName s1) and (i2 hasName s2), Similar(s1, s2, levenshtein, 0.2) ap-
plies the normalized Levenshstein distance levenshtein(s1, s2) on the two strings s1
and s2, and if this distance is less than 0.2 returns the corresponding probabistic fact
Similar(s1, s2, levenshtein, 0.2) with 1− levenshtein(s1, s2) as probabilty.

The semantics of inferred probabilistic facts is defined by extending the definition of
SAT (F,R) (see Definition 1) with their provenance defined as boolean combinations
of all the events associated with the input facts and rules involved in their inference.



Definition 2 (Provenance-based semantics of probabilistic inferred facts).
For every fact f in SAT (F,R), its provenance (denoted ProvR,F (f)) is defined as

follows:

– if f ∈ F : ProvR,F (f) = e(f)
– else: ProvR,F (f) =

∨
(r,θ)∈R(f) e(r) ∧

∧
i∈[1..k] ProvR,F (θ.TPi(vi))

where R(f) is the set of instantiated rules (r, θ) having f as conclusion ( i.e., rules
r of the form TP1(v1) ∧ . . . ∧ TPk(vk) → TP (v) for which θ is a mapping such
that θ.TP (v) = f and θ.TP(vi) ∈ SAT (F,R) for every i ∈ [1..k]).

For every fact f in SAT (F,R), its probability (denoted P (f)) is defined as the proba-
bility of its provenance: P (f) = P (ProvR,F (f))

Illlustrative example
Let us consider the following probabilistic RDF facts and rules (for which we omit to
display the event keys) composed of 5 input facts and of 4 rules expressing different
ways to infer sameAs facts between individuals (to have the same name, to have the
same name and the same birthdate, to be married to the same individual, or by transi-
tivity of the sameAs relation):
f1: (i1 sameName i2)
f2: (i1 sameBirthDate i2)
f3: (i1marriedTo i3)
f4: (i2marriedTo i3)
f5: (i2 sameName i4)
r1: (?x sameName ?y)→ (?x sameAs ?y)
r2: (?x sameName ?y), (?x sameBirthDate ?y)→ (?x sameAs ?y)
r3: (?xmarriedTo ?z), (?ymarriedTo ?z)→ (?x sameAs ?y)
r4: (?x sameAs ?z), (?z sameAs ?y)→ (?x sameAs ?y)
Three derived facts are obtained with their provenance:
ProvR,F ((i1 sameAs i2)) =

(e(r1) ∧ e(f1)) ∨(e(r2) ∧ e(f1) ∧ e(f2)) ∨ (e(r3) ∧ e(f3) ∧ e(f4))
ProvR,F ((i2 sameAs i4)) = (e(r1) ∧ e(f5))
ProvR,F ((i1 sameAs i4)) =

e(r4) ∧ ProvR,F ((i1 sameAs i2)) ∧ProvR,F ((i2 sameAs i4))
The first one captures that the fact (i1 sameAs i2) can be inferred as a result of 3 differ-
ent derivation branches (one using the rule r1 and the input fact f1, another one using
the rule r2 and the input facts f1 and f2, and the third one using the rule r3 and the
input facts f3 and f4). The second one captures that (i2 sameAs i4) results from a sin-
gle derivation branch, using the rule r1 and the fact f5. The last one illustrates how the
provenances can be built iteratively during the saturation process: the last derivation
step leading to the inference of (i1 sameAs i4) involves the rule r4 and two facts in-
ferred at a previous iteration (namely, (i1 sameAs i2) and (i2 sameAs i4)) for which
the event expressions computed beforehand as their provenance can be combined with
the event key of r4.

These event expressions can be simplified by exploiting facts and rules that are
certain. For instance, if we know that the two facts f2 and f3 are certain as well as



the rule r4, we can suppress e(f2), e(f3) and e(r4) in the conjuncts of the above ex-
pressions because they are all equal to the event > always true. We now obtain for
ProvR,F ((i1 sameAs i2)): (e(r1) ∧ e(f1)) ∨ (e(r2) ∧ e(f1)) ∨ (e(r3) ∧ e(f4))

When many facts and several rules are certain, such simplifications lead to a drastic
reduction of the size of event expressions, which is important for the feasibility and the
scalability of the approach in practice.

This example illustrates how the construction and the simplification of the prove-
nance can be incorporated into the saturation process and thus how a given forward-
reasoning algorithm can be easily extended to compute the provenance during the in-
ference of the corresponding facts.

The ProbFR algorithm.
Algorithm 1 describes the ProbFR algorithm that we have implemented and used in our
experiments.

Algorithm 1: The ProbFR algorithm
Input: A set F of input (probabilistic) facts and a set R of (probabilistic)
rules
Output: The set Fsat of inferred (probabilistic) facts with for each inferred
fact f its event expression x(f)
(1) for each f ∈ F : x(f)← e(f)
(2) Fsat ← F
(3) ∆← F
(4) repeat
(5) ∆1 ← ∅
(6) foreach rule r: c1 ∧ . . . ∧ ck → c for which there exists a

substitution θ and facts f1, . . . , fk ∈ Fsat (among which atleast
one of them belongs to ∆) such that fi = θ.ci for every i ∈ [1..k]:

(7) let f = θ.c:
(8) if f 6∈ Fsat

(9) add f to ∆1

(10) x(f)← N∨(e(r) ∧
∧

i∈[1..k] x(fi))

(11) else x(f)← x(f)∨
(12) N∨(e(r) ∧

∧
i∈[1..k] x(fi))

(13) Fsat ← Fsat ∪∆1

(14) ∆← ∆1

(15) until ∆1 = ∅
(16) return Fsat

It starts with the set of initial facts and rules and repeats inference steps until satura-
tion. Each inference step (Line (4) to (15)) triggers all the rules whose conditions can be
matched with known facts (i.e., input facts or facts inferred at previous steps). At each
iteration, the set ∆ contains the facts that have been inferred at the previous iteration.
The constraint (expressed in Line (6)) that rules are only triggered if atleast one of their



conditions can be matched with facts in∆ guarantees that instantiated rules are not trig-
gered twice during the inference process. The algorithm stops as soon as no new fact
has been inferred during a given iteration (i.e., ∆1 remains empty over this iteration).
The algorithm returns the set Fsat of inferred facts, and computes for each of them an
event expression x(f) (Lines (10) and (11)). The function N∨ denotes the transforma-
tion of a conjunction into its disjunctive normal form. It consists in applying ieratively
the distributivity of the conjunction connector (∧) over the disjunction connector (∨),
and in simplifying when possible the (intermediate) results as follows: (1) remove the
duplicate events and the certain events > from each conjunction of events, (2) if a con-
junction within a disjunction becomes empty (i.e., if all its events are certain), replace
the whole disjunction by >. Each event expression x(f) is thus either > or of the form
Conj1 ∨ ... ∨ Conjl where each Conji is a conjunction of event keys tracing the un-
certain input facts and rules involved into one of the l branches of uncertain derivation
of f .

The termination of the ProbFR algorithm is guaranteed by the fact that the rules are
safe.The only facts that can be inferred from safe rules and a set F of ground atoms
are instantiations of conclusion atoms by constants appearing in F . Their number is
finite. More precisely, since the input facts and conclusion atoms are built on are binary
predicates, the number of constants appearing in the input facts is less than 2× |F | (at
most two distinct constants per input fact), and the number of inferred facts is then less
than 4× |R| × |F |2 (atmost as many predicates in conclusion as rules, and for each of
them, atmost as many instantiations as pairs of constants).

The following theorem states the soundness and completeness of the algorithm.

Theorem 1.
Let Fsat be the result returned by ProbFR(F,R):
Fsat = SAT (F,R).

For each f ∈ Fsat, let x(f) be the event expression x(f) computed by ProbFR(F,R):
x(f) ≡ ProvF,R(f)

For the first point, we prove by induction on i that each iteration i ≥ 1 of the
algorithm computes the set of facts Fi = TR(Fi−1) (as defined in Definition 1), and
thus SAT (F,R) at the last iteration where the least fixed point reached. For the second
point, for a derived fact f , we prove, by induction on the number n of iterations of
ProbFR after which no new instantiation of rules can infer f , that x(f) is a disjunctive
normal form of ProvF,R(f), and therefore is logically equivalent to it.

As a result of Definition 2 and Theorem 1, it worths to emphasize that the probabil-
ities values of inferred facts is independent of the order in which the rules are triggered
to derive them.

Data complexity analysis.
We are interested in estimating how the worst-case time complexity of the algorithm
depends on the size |F | of the input data, which is the most critical parameter in the
setting of Linked Data. The number of iterations of ProbFR is atmost |Fsat|, which is
less than 4 × |R| × |F |2 as shown just above. At each iteration, in the worst case, the
condition part of each rule must be evaluated against the facts, and the event expres-
sions for the provenance of the inferred facts must be computed. Let c the maximum



number of conditions per rule. The evaluation of each condition part of each rule can
be performed in polynomial time (in fact, in at most |R| × |Fsat|c elementary steps).

For the computation of the event expressions, the most costly operation is the trans-
formation N∨ into disjunctive normal form of conjunctions e(r) ∧∧

i∈[1..k] x(fi). The
number k of conjunctions is less than the bound c of conditions per rule, and each x(fi)
is a disjunction of at most l conjunctions of event keys, where l is the maximum number
of uncertain derivation branches for inferred facts. This parameter l is bounded by bd

where d is the maximal depth of reasoning to infer a fact from F and R, and b is the
maximal branching factor of ground(F,R) (which denotes the set of rules triggered
during the execution of ProbFR(F,R)). Therefore, each call of N∨ performs at most
bd×c distributivity operations on conjunctions of at most |F | + |R| event keys. Since
the maximal depth of reasoning is the number of iterations of ProbFR(F,R), d can be
equal to |Fsat|. Then, the data complexity of the provenance computation may be expo-
nential in the worst-case. This meets known results on query evaluation in probabilistic
databases [43]. Different solutions are possible to circumvent this worst-case complex-
ity, like restricting the form of rules/queries like in [17] or imposing some constraints
on the input facts (such as a bounded treewidth in [6]). In practice, in particular if most
of the input facts are certain, the size of the event expressions remains small. If all the
input facts are certain, the only event keys that can be involved in the event expressions
are the ones attached to the uncertain rules. The complexity of the algorithm can be
controlled by imposing a practical bound in the number l of conjunctions produced in
Line (11). This solution is justified in our setting since the computed probabilities are
used to keep only the most probable inferred facts, i.e., the facts that are inferred with
a probability greater than a given high threshold. For our experiments, we have limited
this number l to be 8.

Effective computation of probabilities of inferred facts from their provenance.
For each inferred fact, given its provenance as an event expression in disjunctive normal
form, the following formula is the basic theoretical tool to compute its probability:

(1)P (A ∨B) = P (A) + P (B)− P (A ∧B).
The recursive application of the above formula for computing the probability of a dis-
junction of l conjunctions of events E1∨ . . .∨El leads to alternate the subtractions and
additions of the probabilities of all the possible conjunctions Ej1 ∧ . . .∧Eji .This raises
two major issues: first, their number is exponential in l; second the exact values of all
these probabilities is usually not available.

An usual way to circumvent the latter is to make the assumption of independence
between events, as it is done in probabilistic databases [43] or in most Information Re-
trieval models [22]. In our case however, two rules such that the condition part of one
rule is contained in the condition part of the second (like the rules r1 and r2 of the ex-
ample) are obviously not independent. For such rules, we enforce pairwise disjointness
by imposing that the more general rule applies only if the more specific rules do not
apply. In this way, we are sure that the corresponding dependent events do not appear
in any event expression computed during the saturation process. To be consistent with
the probabilistic setting, we also impose that the probability assigned to the event cor-



responding to the more specific rule (r2 in our example) is higher than the one assigned
to the event of more general rule (r1 in our example).

For each pair r, r′ with same conclusion (up to variables names), let us denote r � r′
if Condr is contained into Condr′ . Checking whether r � r′ can be done by using any
conjunctive query containment algorithm [15] with a complexity independent of the
data.
To summarize, we make the assumptions of :

- pairwise disjointness between events associated with pairs of rules r, r′ such that
r � r′

- independence of the events that are not disjoint.
For the effective computation of the probability of an inferred fact f ,

- first, the provenance expressions x(f) = E1 ∨ . . .∨El computed by the ProbFR
algorithm are simplified by removing each conjunction of events Ei in which an event
e(r) appears if there is a conjunction of events Ej (j 6= i) such that e(r′) appears in Ej
and r � r′.

- second, the probability of f is computed by iteratively applying the formula (1) on
the resulting event expression.
In our example, the rules r2 and r1 are such that r1 � r2. We can thus remove the
conjuncts containing e(r1) and we obtain for x((i1 sameAs i2)):

(e(r2) ∧ e(f1)) ∨ (e(r3) ∧ e(f4)).
Now, considering the remaining events as independent, we can compute the effective
probability P ((i1 sameAs i2)) as follows:
P ((i1 sameAs i2)) =

(P (e(r2))× P (e(f1))) + (P (e(r3))× P (e(f4)))

−(P (e(r2))× P (e(f1))× P (e(r3))× P (e(f4)))

Note that the above simplification can be incorporated into the ProbFR algorithm at
each update of event expression (Line (11)) and that determining the possible pairs of
rules r, r′such that r � r′ can be done in advance before launching ProbFR as it is
independent of the set of facts F .

This simplification has an impact on the practical complexity of the effective com-
putation of the probabilities, even if, in theory and in the worst-case, it remains ex-
ponential in the number l of conjunctions within provenance expressions. As we have
explained it before, this number l can be bounded in practice.

The assumption of disjointness between events associated with rules r, r′ such that
r � r′ is important for the feasability of the approach but it also fits well with the open-
world assumption that holds in Linked Data. In fact, it captures a restricted form of
negation since, under this disjointness assumption, the event e(r) models worlds where
the condition of r is satisfied and the additional conditions of r′ are not satisfied.

Setting up of the input probabilities.
The above approach for probabilistic inference is agnostic with respect to the way the
input probabilities are obtained, either given by experts, returned by built-in predicates
or tools, or learned by supervised methods. This said, it is important to note that training
sets (required by supervised machine learning techniques) that would be big enough to



scale to the setting of Linked Data do not exist and are almost impossible to build man-
ually. On the other hand, it is quite easy for domain experts to decide whether a given
rule is uncertain, but setting up its probability is tricky. The two-steps computation of
a provenance-based approach as ours has the big advantage to possibly re-compute the
numerical values of probabilities for the inferred facts from the provenance expressions
computed once for all. This enables to start with a rough setting of rules probabilities
chosen from a small set of values just for distinguishing rules on a simple scale of un-
certainty ( for instance set at 0.9 the rules a priori considered as almost always certain,
0.8 the rules judged as highly probable but less than the previous ones, and so on),
and to adjust these values a posteriori based on a feedback on a sample of results. The
provenance of wrong sameAs links inferred with a high probability provides explicitly
the rules involved in the different reasoning branches leading to their derivation. It is
a useful information for a domain expert to choose the rules to penalize by decreasing
their numerical probabilities.

3.3 Rule-based data linkage with uncertainty

When used for data interlinking, rules typically translate varied knowledge that com-
bines schema constraints, alignments between different ontologies and general proper-
ties on OWL relations such as owl:sameAs. This knowledge may be certain, but, very
often, it has some degree of uncertainty. It is the case when a correspondence in an on-
tology alignment is attached a confidence value lower than 1, or when domain experts
provide knowledge they are not 100% sure about, or the case of pseudo-keys that are
automatically computed by pseudo-key discovery tools [11, 44]. This uncertain knowl-
edge can be translated by means of probabilistic rules.

Tables 2 and 3 show rules translating, respectively, certain and uncertain knowledge
for the task of interlinking person entities in DBpedia and MusicBrainz datasets. These
rules are actually part of the rules that we used in our experiments (reported in Sec-
tion 3.4). Rule musicalArtist in Table 2, for example, is a certain rule that translates
the DBpedia knowledge that the class dbo:musicalArtist is subsumed by dbo:Artist.
Rule enrich dboBand1 translates a certain correspondence in an alignment between
Schema.org vocabulary and DBpedia ontology stating that the class schema:Person is
subsumed by dbo:Person. The rule sameAsVIAF is a certain rule that translates the
assertion that the VIAF id is a key for persons and, therefore, allows to infer sameAs
links between person entities from DBpedia and MusicBrainz. Notice that this rule ac-
tually involves the two equivalent properties dbp:viaf and mb:ViafID of DBpedia and
MusicBrainz vocabularies. This means that the condition (?x dbp:viaf ?id) in the rule
will be instantiated by a DBpedia entity, and (?y mb:ViafID ?id) by a MusicBrainz
entity. This kind of “key across different datasets” is called a link key in the literature
[10]. Note also that, instead of using owl:sameAs, we use our own customized sameAs
predicates (:sameAsPerson) which allowed us to easily identify the type of the inferred
sameAs links in our experiments. Rule sameAsIsPerson1 is a certain rule that translates
transitivity of sameAs.



ID Conditions Conclusion
musicalArtist ( ?w dbo:musicalArtist ?x ) ( ?w dbo:artist ?x )

enrich dboBand1 ( ?x rdf:type schema:MusicGroup ) ( ?x rdf:type dbo:Band )

sameAsVIAF ( ?x dbp:viaf ?id ) , ( ?y mb:ViafID ?id ) ( ?x :sameAsPerson ?y )

sameAsIsPerson1 ( ?x :sameAsPerson ?y ), ( ?x :sameAsPerson ?z )
( ?z mb:is person ?y )

similarNamesPerson ( ?x rdf:type dbo:Person ), ( ?x :solrPSimilarName ?z )
( ?x rdfs:label ?l ),

MBsolrsimilar(?l,0.8,?z,’persons mb’)
Table 2. Certain rules for interlinking person entities in DBpedia and MusicBrainz.

ID Conditions Conclusion Weight
sameAsBirthDate ( ?x :solrPSimilarName ?l ), ( ?x :sameAsPerson ?y ) w1

( ?y skos:myLabel ?l ),
( ?x dbo:birthDate ?date ),
( ?y mb:beginDateC ?date (

sameAsPersonArtistWr ( ?w1 dbo:artist ?x ), ( ?x :sameAsPerson ?y ) w2

( ?w1 :solrWrSimilarName ?lw ),
( ?y mb:writer ?w2 ),

( ?w2 skos:myLabel ?lw ) ,
( ?x :solrPSimilarName ?lp ),

( ?y skos:myLabel ?lp )
sameAsMemberOfBand ( ?x :solrPSimilarName ?l ), ( ?x :sameAsPerson ?y ) w3

( ?y skos:myLabel ?l ),
( ?y mb:member of band ?gr2 ),

( ?gr2 skos:myLabel ?lg ),
( ?gr1 dbp:members ?x ),

( ?gr1 :solrGrSimilarName ?lg )
Table 3. Uncertain rules for interlinking person entities in DBpedia and MusicBrainz.

Rule similarNamesPerson deserves special attention because it contains a built-in
predicate (namely MBsolrsimilar) that encapsulates the call to a full-text search tool
(namely Solr 9) to extract strings from MusicBrainz similar to labels of person entities
in DBpedia. More precisely, for each string instantiation s of the variable ?l, obtained
by mapping with DBpedia facts the two first conditions (?x rdf:type dbo:Person) and
(?x rdfs:label ?l) of the rule, MBsolrsimilar(s, 0.8, ?z, ’person mb’) is a procedure call
returning as many probabilistic facts MBsolrsimilar(s, 0.8, s′, ’person mb’) as labels
s′ of person entities in MusicBrainz detected by Solr as similar to s with a similarity
greater than 0.8. The probability attached to each probabilistic fact MBsolrsimilar(s,
0.8, s′, ’person mb’) is the calculated string similarity. Thus similarNamesPerson is a
certain rule that will infer uncertain facts of the form (?x :solrPSimilarName ?z) due to
condition MBsolrsimilar(?l,0.8,?z,‘persons mb’), which will be instantiated with built-
in uncertain facts. Built-in predicates such as MBsolrsimilar enable to embed standard
similarity functions into our rule-based approach to overcome the problem of mis-

9 http://lucene.apache.org/solr/



spelling errors in names of persons, groups and songs that may occur in DBpedia and
MusicBrainz datasets.

Table 3 shows three additional rules allowing to infer sameAs links between person
entities from DBpedia and MusicBrainz datasets, but, in contrast with the sameAsVIAF
rule explained above, they are not 100% certain. Rule sameAsBirthDate, for example,
says that if two persons have similar names and the same birthdate then they are likely
to be the same person. This rule must be considered uncertain for two reasons. First, it
relaxes the strict condition of having exactly the same name by the soft constraint of
having similar names as it is specified by (?x :solrPSimilarName ?l). Second, strictly
speaking the properties ”name” and ”birthdate” do not constitute a key, even if it is
likely that two named entities representing persons that are well-known enough to be
described in datasets like DBpedia and MusicBrainz will refer to the same person if
they share the same name and birthdate. In fact, sameAsBirthDate translate a soft link
key, as it combines the equivalent properties dbo:birthDate and mb:beginDateC that are
used in DBpedia and MusicBrainz vocabularies to relate a person with her date of birth.
The rules sameAsPersonArtistWr and sameAsMemberOfBand are uncertain too. The
first one says that, if two persons have similar names and they are artists of songs with
similar names, they are the same person, and the second rule says that if two persons
have similar names and are members of musical bands with similar names, they are the
same person. Again, this may not be always true, but in most cases. The weights in
Table 3 correspond to the probabilistic events associated with each of these uncertain
rules.

An important point to emphasize is that the (certain or uncertain) rules allowed in
our rule-based modeling express pieces of knowledge that can be assembled and com-
bined through several reasoning steps. For instance, the condition (?w1 dbo:artist ?x) of
the sameAsPersonArtistWr rule may be triggered by facts inferred by the musicalArtist
rule. The chaining between rules is not known in advance and is determined by the input
datasets which they apply to. In addition, due to recursive rules (such as sameAsIsPer-
son rule), even if the termination of the saturation process is guaranteed, the number of
reasoning steps cannot be known in advance and also depends on the input datasets. It
is worthwhile to note that recursive rules add an expressive power that is required for
data linkage in particular to express sameAs transitivity.

The translation into rules can be semi-automatic, for instance for translating into
certain rules schema constraints that have been declared in OWL such as the func-
tionality or transitivity of some relations, or for translating into (certain or uncertain)
rules alignments discovered by ontology mapping tools [19]. A certain number of un-
certain rules useful for data interlinking must however be provided by domain experts
to express fine-grained knowledge that may be specific to the datasets concerned by
the linkage task. While it is quite easy for domain experts to decide whether a given
rule is uncertain, setting up its probability is tricky. The two-steps computation has the
big advantage to possibly re-compute the numerical values of probabilities for the in-
ferred facts, starting from the event expressions built once for all in the first step that
is a symbolic computation independent of the numerical values of rules probabilities.
This enables to start with a rough setting of rules probabilities chosen from a small set
of values just for distinguishing rules on a simple scale of uncertainty (for instance set



at 0.9 the rules a priori considered as almost always certain, 0.8 the rules judged as
highly probable but less than the previous ones, and so on), and to adjust these values a
posteriori based on a feedback on a sample of results. The event expressions of wrong
sameAs links inferred with a high probability provide explicitly the rules involved in
the different reasoning branches leading to their derivation. It is a useful information
for a domain expert to choose the rules to penalize by decreasing their numerical prob-
abilities.

In our experiments, such an incremental adjustment for the probabilities of the three
uncertain rules of Table 3 resulted into: w1 = 0.9, w2 = 0.4 and w3 = 0.6.

It is worth emphasizing that rules with quite low probabilities (such as 0.4 for the
sameAsPersonArtistWr rule) can yet significantly contribute to the final probability of
a fact inferred by different reasoning branches.

3.4 Experimental evaluation

We have conducted experiments to evaluate the performance of our method on real
datasets. Our main goal was to measure the effectiveness of our method to discover
links at large scale, and to assess the expected gain in terms of recall and the loss in
precision when using uncertain rules instead of certain rules only. We also wanted to
show how the probabilistic weights attached to the links allow to filter out incorrect
links. Finally, we aimed at comparing our tool to a state-of-the-art interlinking tool,
namely Silk [48].

Experimental Setting We used three datasets in our experiments: DBpedia, INA and
MusicBrainz. The objective was to find sameAs links between named entities of person,
musical band, song and album included in the datasets. Our choice of these datasets
was based upon the fact that these are all large datasets (tens of millions of triples),
and of a very different nature: DBpedia was built from Wikipedia infoboxes, INA from
catalog records mainly containing plain text, and MusicBrainz from more structured
data coming from a relational database.

The DBpedia version we used was DBpedia 2015-04,10 the latest version at the
time the experiments were conducted. From all available (sub) datasets, we only used
the ones including RDF triples with properties appearing in the rules that we used in
the experiments (below we give more details about the rules), which make together one
single dataset of around 73 million RDF triples. The INA dataset contains around 33
million RDF triples, while the MusicBrainz dataset around 112 million RDF triples.
The INA dataset was built from all the records (plain text) in a catalog of French TV
musical programs using an specialised RDF extractor. Some RDF facts in the INA
dataset have numerical weights between 0 and 1 since their accuracy could not be 100%
assessed during the extraction process. The MusicBrainz dataset was built from the
original postgreSQL table dumps available at the MusicBrainz web site using an RDF
converter. This version is richer than the one of the LinkedBrainz project.11

10 http://wiki.dbpedia.org/Downloads2015-04
11 http://linkedbrainz.org/



Table 4 shows the number of person, musical band, song and album entities in each
of the considered datasets, where Person, e.g. symbolises the class union of all the
classes that represent persons in each dataset. No bands or albums are declared in INA,
written NA (not applicable) in Table 4.

Class DBpedia MusicBrainz INA
Person 1,445,773 385,662 186,704
Band 75,661 197,744 NA
Song 52,565 448,835 67,943

Album 123,374 1,230,731 NA
Table 4. Number of person, musical band, song and album entities in DBpedia, MusicBrainz and
INA.

We have designed two sets of rules that we used as inputs for our algorithm to
interlink DBpedia and MusicBrainz first and then MusicBrainz and INA. We came up
with 86 rules for interlinking DBpedia and MusicBrainz, from which 50 of them are
certain and 36 are uncertain, and 147 rules for interlinking MusicBrainz and INA, 97 of
them certain and 50 uncertain. By a way of example, Table 2 and Table 3 of Section 3.3
include some of the certain and uncertain rules that we used for interlinking DBpedia
and MusicBrainz.

ProbFR has been implemented on top of Jena RETE and uses SWI-Prolog v6 to
compute the disjunctive normal forms for the event expressions during RETE inference.
Prolog is also used to implement the second step of ProbFR, i.e. to compute effective
probabilities given event expressions. In order to avoid potential combinatorial explo-
sion, the current parameter of ProbFR is tuned to a maximum of 8 derivation branches
for each event expression. All ProbFR experiments were run on a Bi-processor intel
Xeon 32 x 2.1GHz, 256 GB of RAM, with Linux CentOS 6 as operating system.

Experimental Results We ran our algorithm to interlink DBpedia and MusicBrainz
first, and then MusicBrainz and INA, using in each case the corresponding rules. Our
algorithm discovered 144,467 sameAs links between entities of DBpedia and Mu-
sicBrainz and 28,910 sameAs links between entities of MusicBrainz and INA. Addi-
tionally, our algorithm found 132,166 sameAs links internal to the INA dataset.

In order to evaluate the quality of the found links, and since no gold standard was
available, we estimated precision, recall and F-measure by sampling and manual check-
ing. In order to compute precision, for each of the classes considered we took a sample
of 50 links from the links found by our algorithm (i.e. 200 links in total for DBpedia
and MusicBrainz, and 100 links for MusicBrainz and INA), and we manually checked
whether these links were correct. For computing recall, we randomly selected 50 in-
stances of each of the classes, and we found links manually. Then, we calculated recall
based on this make-do gold standard. F-measure was based on the estimations of preci-
sion and recall.

In order to assess the gain of using uncertain rules, we also ran our algorithm only
with certain rules, and then we compared the results obtained using only certain rules



with the ones obtained using all rules (both certain and uncertain rules). This concerned
the experiments between DBpedia and MusicBrainz only, as no other certain rule than
sameAs transitivity was used for MusicBrainz and INA.

DBpedia and MusicBrainz MusicBrainz and INA
Only certain rules All rules Only certain rules All rules

P R F P R F P R F P R F
Person 1.00 0.08 0.15 1.00 0.80 0.89 NA NA NA 1.00 0.34 0.51
Band 1.00 0.12 0.21 0.94 0.84 0.89 NA NA NA NA NA NA
Song NA NA NA 0.96 0.74 0.84 NA NA NA 1.00 0.40 0.57

Album NA NA NA 1.00 0.53 0.69 NA NA NA NA NA NA
Table 5. Precision (P), recall (R) and F-measure (F) for the task of interlinking DBpedia and
MusicBrainz datasets, and MusicBrainz and INA datasets, using certain rules only, and certain
and uncertain rules together.

Table 5 shows all the results. Let us focus on the results concerning DBpedia and
MusicBrainz. As expected, when certain rules were used only, precision was 100%.
This only concerns Person and Band classes because the initial set of rules did not
include any certain rule concluding links for Song and Album (written NA in Table 5).
However, recall was very low: 0.08 for Person and 0.12 for Band. When both certain and
uncertain rules were used, a 100% precision was achieved for Person and Album classes
only, since for Band and Song, precision was 0.94 and 0.96, respectively. However,
recall increased significantly for Person and Band: 0.80 and 0.84. This shows the gain
of using uncertain rules for data linkage. Now, when looking at the samples of Band and
Song classes, we realised that all wrong links had a probability value lower than 0.9 and
0.6, respectively. This means that, when limited to those links having a probability value
higher or equal to 0.9 and 0.6, the estimated precision for the classes Band and Song
was 100% (Table 6). The estimated recall was 0.80 and 0.54. This shows the gain of
using weights for interlinking.

P R F
Band>0.90 1.00 0.80 0.89
Song>0.60 1.00 0.54 0.72

Table 6. Gain of using weights for interlinking DBpedia and MusicBrainz.

Table 7 shows the number of links that are discovered when n sameAs rules12 are
implied in the derivation. For instance, 28,614 links are discovered using two sameAs
rules, and among these links 27,692 are new links, i.e. they were not discovered using
only one rule. With tools like Silk and LIMES, using the same set of rules, we can
expect to find around 115,609 links only.
12 We only consider rules that conclude to sameAs statements because other rules can be handled

with preprocessing by tools like Silk or LIMES.



# rules # links # new links
1 115,609 115,609
2 28,614 27,692
3 1,790 1,152
4 59 14

Table 7. Number of links discovered when n rules are implied in the derivation. Results given
for interlinking DBpedia and MusicBrainz.

Comparison with Silk Since Silk cannot handle rule chaining, we divided the rules
used by ProbFR into sameAs rules (i.e. rules with sameAs in the conclusion), and inter-
mediate rules that are used to trigger antecedents of other rules (including the sameAs
rules). We manually translated these intermediate rules into SPARQL Update queries
and these updates were performed before the Silk execution. Some sameAs rules could
not be translated into Silk because they are recursive (sameAs appears in their an-
tecedent and conclusion). To be able to compare methods on the same basis, we em-
ployed the levenshtein normalised distance with a threshold of 0.2, which corresponds
to the similarity parameter set up to 0.8 in Solr. The aggregation of different compar-
isons within a rule was performed using maximum distance to be compliant with the
conjunction used in rules. We executed Silk for interlinking DBpedia and MusicBrainz.
Silk found 101,778 sameAs links, from which 100,544 were common to the ones found
by ProbFR. ProbFR found 43,923 links that were not discovered by Silk and Silk found
1,234 links not discovered by ProbFR. In theory all the links discovered by Silk should
have been discovered by ProbFR and Silk should have found up to 115,609 links. These
differences can be explained by the way levensthein distance are implemented in each
tools and by a normalisation of URL that is performed by ProbFR and not available in
Silk. As a conclusion, ProbFR outperformed Silk because of rule chaining (more links
are discovered). Dealing with uncertainty allows to enhance precision without losing
much recall.

In terms of time performance, Silk took more than 53 hours (with 16 threads, block-
ing activated, on a Bi-processor Intel Xeon, 24 x 1.9GHz) while ProbFR achieved the
task in 18 hours (on a Bi-processor Intel Xeon, 32 x 2.1GHz). Even if the difference
could be partially explained by the difference in hardware, the main reason comes from
implementation design. Silk mainly relies on disk indexing and uses few RAM (around
1-2 GB) while ProbFR runs into main memory and uses around 250 GB of RAM for
this experiment.

3.5 Discussion

Dedupalog [7] is a Datalog-like language that has been specially designed for handling
constraints useful for record linkage. It handles both hard and soft rules that define re-
spectively valid clusterings and their costs. The associated algorithm computes a valid
clustering with a minimal cost. Whereas the general problem is NP-complete, they
provide a practical algorithm that scales to the ACM database that contains 436,000
records. Even if the algorithmic techniques are very different from ours, the scalability



is obtained by similar restrictions on the rule language. However, the goal is to compute
a valid clustering and not to compute probabilities of inferred facts.

Probabilistic logical frameworks such as Markov logic [41] and Probabilistic Soft
Logic (PSL) [12] have been used for entity resolution. Markov Logic allows for full
probabilistic reasoning. The weights attached to formulas are learned either from data
or from probabilities arbitrarily given. This learning phase is made under closed-world
assumption. Once a Markov Logic Network is learned, the weighted satisfiability of
any candidate link has to be computed. This is not scalable in practice. Then, candidate
pairs are filtered using a cheap similarity such as TF.IDF: non matching pairs are added
as false atoms. Experiments have been conducted on Cora dataset (1295 instances) and
a sample of Bibserv (10, 000 instances). PSL allows probabilistic inference based on
similarities functions. As Markov Logic, formulas’ weights are learned making closed
world assumption. Furthermore, it allows to assign weights to facts using the similarity
of sets of property values (which assumes that sets are fully known). Like Datalog,
it is restricted to conjunctive rules. Experiments have been performed on the task of
Wikipedia article classification and ontology matching.

Contrary to aforementioned approaches, in ProbFR, probability computation and
inference are separated. All rules are iteratively applied to compute the saturation and
the provenances of every deduced facts. Probabilities are then computed from the prove-
nances. This allows to change the probabilities assigned to rules and reevaluated quickly
the probabilities of inferred facts without recomputing the saturation. Another differ-
ence is that probabilities attached to formulas can be given or learned from data. No
further learning is required.

Decoupling the symbolic computation of provenances from the numerical computa-
tion of probabilities makes probabilistic reasoning more modular and more transparent
for users. This provides explanations on probabilistic inference for end-users, and use-
ful traces for experts to set up the input probabilistic weights.

Currently, the threshold for filtering the probabilistic sameAs facts that will be re-
tained as being true must be set up and adjusted manually. As future work, we plan
to design a method to set up this threshold automatically by, besides inferring sameAs
facts, inferring differentFrom facts too, and then exploiting the sameAs and different-
From facts (and their probabilities) that are inferred for the same pairs of entities. We
also plan to design a backward-reasoning algorithm able to deal with probabilistic rules,
that could be combined with the ProbFR probabilistic forward-reasoner for importing
on demand useful data from external sources.



4 Extraction of modules from RDF knowledge bases [39]

The Semantic Web consolidated a legacy of ontologies and databases today seen as ref-
erence systems for building new Semantic Web applications. To illustrate, consider a
medical application for anatomy, whose goal is to showcase the structure of the human
body, the most common pathologies and diseases, and the scientists that contributed to
their study. A structural description of human anatomy can be drawn from FMA13 or
My Corporis Fabrica (MyCF).14 A taxonomy of clinical terms about diseases can be
extracted from SNOMED, 15 while biographical informations about scientists implied
in studies can be taken from DBPedia.16 These reference system contain knowledge
that can be reused to minimize the introduction of errors in the application. However, it
is inconvenient to integrate in the application the whole datasets, as they contain com-
plementary data and ontology axioms that are logically redundant. It is thus preferable
to extract lightweight fragments of these reference systems - the modules - that are
relevant for the application, and then to build on top of them.

While extracting modules from ontologies has been largely investigated for De-
scription Logics (DL) [24, 32], module extraction from RDF triplestores has received
little attention. Yet, more and more huge RDF datasets are flourishing in the Linked
Data and some of them, like DBPedia or YAGO [42], are increasingly reused in other
more specialized datasets. RDF is a graph data model based on triples accepted as the
W3C standard for Semantic Web data, with a simple ontology language, RDF Schema
(RDFS). The W3C proposed OWL for writing expressive ontologies based on DL con-
structors. Whereas OWL is often seen as an extension of RDFS, this is not exactly the
case. Both RDFS and the RDF query language (SPARQL) feature the possibility of ac-
cessing at the same time the ontology data and schema, by making variables ranging
over classes or properties. This domain meta-modeling goes beyond the first-order set-
ting typically considered in DL [18]. As a consequence, DL modularization frameworks
are not applicable to popular RDF datasets like DBpedia or YAGO. Also, the clear sep-
aration between the ABox and the TBox made in DL to define the semantics of modules
is not appropriate for RDF where facts and schema statements can be combined within
a single RDF triplestore to accommodate heterogeneous knowledge from the Web. An-
other limit of the current approaches is that the existing semantics do not allow to limit
the size of the extracted modules. As discussed in [24], the risk in practice is to output
large portions of the initial ontologies, thus jeopardizing the gains of modularization.

The RDF knowledge bases that we consider are deductive RDF datasets as defined
in Section 2.3: an RDF knowledge base is a pair 〈D,R〉 whereD is an RDF dataset and
R is a finite set of (possibly recursive) rules.

Figure 4 presents an RDF dataset, together with its graph version. The example is
inspired by the MyCF ontology [36], which classifies digital representation of human
body parts, acquired by IRMs or tomographies, according to anatomical knowledge.

13 fma.biostr.washington.edu
14 www.mycorporisfabrica.org
15 www.ihtsdo.org/snomed-ct
16 www.dbpedia.org



For instance, the type edge connecting irm42 with knee, corresponds to the triplestore
atom (irm42, type, knee), which is the standard RDF syntax for class membership.

( tendon, subClassOf, anatomical structure )
( anatomical structure, type, anatomical entity )
( tendon gastr. muscle, insertOn, knee )
( tendon gastr. muscle, subClassOf, tendon )
( knee, subClassOf, anatomical structure )
( knee, type, anatomical entity)
( irm42, type, knee )

Fig. 4. Triplestore D1

A path p(u0,un) = (u0, v1, u1), (u1, v2, u2), . . . , (un−1, vn, un) is a sequence of
atoms where each ui, vi are terms. The length of a path is the number of its atoms,
here |p(u0,un)| = n.

We denote a rule by r and a set of rules by R. To illustrate, the rules for class
subsumption
r1 : (x , type, y), (y , subClassOf, z )→ (x , type, z )
r2 : (x , subClassOf, y), (y , subClassOf, z )→ (x , subClassOf, z )
on D1 entail that irm42 has type anatomical structure, and that a subclass of this last
one is tendon gastr. muscle.

Datalog supports recursion by design. A rule r is said to be recursive if its con-
clusion unifies with one of its premises. In this work, we consider sets of rules where
recursion is limited to recursive rules, like

r1 : (x , hasPart, y)→ (y , partOf, x )
r2 : (x , insertOn, y), (y , partOf, z )→ (x , insertOn, z )
r3 : (x , partOf, y), (y , partOf, z )→ (x , partOf, z )

and, we exclude the presence of indirect recursion, in all cases where this involves non-
recursive rules, like

r4 : (x , contains, y)→ (x , partOf, y)
r5 : (x , partOf, y), (y , partOf, z )→ (z , contains, x )

This mild restriction on recursion is of practical relevance, as it is enjoyed by the most
relevant RDFS rules, like the mutually recursive ones for domain and range.



rdom : (x , domain, z ), (y , x , y ′)→ (y , type, z )
rran : (x , range, z ′), (y , x , y ′)→ (y ′, type, z ′)

Following Definition 1, the saturated RDF dataset obtained from D and the set of
rules R, is defined as SAT(D,R) = {t ∈ D′ |D,R ` D′} .

We write D,R ` p(u0,un) for the entailment of a path that holds if all path atoms
are in SAT(D,R).

Rule entailment, also referred as the immediate consequence operator for rules de-
fines, by means of semantic conditions, when a Datalog rule r is entailed by a set R.

Definition 3 (Rule Entailment). A rule r is entailed by a set R, denoted by R ` r, if
for all triplestore D it holds that SAT(D, r) ⊆ SAT(D,R). A set R′ is entailed from R,
denoted by R ` R′ when R ` r for all r ∈ R′.

Finally, knowledge base entailment, denoted by 〈D,R〉 ` 〈D′, R′〉, holds when
D,R ` D′ and R ` R′.

4.1 Bounded-level Modules

We propose a novel semantics for bounded-level modules allowing to effectively control
their size. We employ a notion of level of detail for modules in such a deductive setting.
For example, a signature ( subClassOf, partOf )3[ eye ] limits the module-data extracted
from a triplestore, by allowing to retrieve a description of all subclasses and subparts of
the eye up to three levels.

A module is declared by means of a signatureΣ of the formΣ = ( p1, . . . , pn )k[ a ]
where the constants p1, . . . , pn represent the properties of interest of the module, the
constant a represents an object of interest of the module, and k is a positive inte-
ger denoting the level of detail of the module. An example of module signature is
( partOf )3[ eye ]. Intuitively, a module M induced by a signature Σ on a reference
system 〈D,R〉 is a deductive triplestore M=〈DM , RM 〉 which is logically entailed
by 〈D,R〉 and conforming to Σ, in the sense that all data and rule atoms employ the
properties p1, . . . , pn only. Furthermore, to control the module size, the facts in M are
restricted to the paths rooted at the object of interest a, of length bounded by k.

We say that an atom conforms to Σ, denoted by (v1, u, v2)
◦
◦ Σ, if u is a property of

Σ or u ∈ VARS. A set of atoms ∆ conforms to Σ if all of its atoms do. Then, 〈D,R〉
conforms to Σ if so do D and R.

In Figure 5(c) it holds that D3
◦
◦ ( partOf, subClassOf )2[ knee ]. However, it does

not hold that D3
◦
◦ ( subClassOf )1[ knee ].

Restricting the module paths is a way to effectively control the module size. Nev-
ertheless, for the completeness of the module data, it is essential to guarantee that the
module entails all of such bounded paths entailed by 〈D,R〉. In a deductive setting,
adding new paths in the graph, defining properly DM becomes challenging.

First, we observe that to avoid incomplete modules, the paths of DM have to be
drawn from SAT(D,R). To see this, consider D2 in Figure 5(a) and a rule inferring
pairs of organs (y , z ) physically connected by a tendon
r2 : (x , insertOn, y), (x , insertOn, z ), (x , subClassOf, tendon)⇒(y , tendonConnected, z )

A user interested in the organs directly and indirectly connected to the femur of this



Fig. 5. Triplestore examples

triplestore can declare the module signatureΣ2=( tendonConnected )2[ femur ]. By re-
stricting the module data DM to the paths in D2 of length bounded by 2 that are rooted
at femur and that use the property tendonConnected only, we get:

DM = {(femur, tendonConnected, gastroc.Muscle)}.
This dataset has however to be considered incomplete. As shown in Figure 5(b), the
rule r2 entails on D2 also the fact

(gastroc.Muscle, tendonConnected, knee).
This forms a path of length two together with the original triple

(femur, tendonConnected, gastroc.Muscle),
that should be included in DM . The example illustrates clearly that DM depends from
the rules in R.

However, taking into account all paths in SAT(D,R) is not desirable for defining
modules of bounded size. In some cases, the triples entailed by recursive rules may pro-
duce new edges in the data graph that behave like shortcuts between resources, thereby
wasting the module parametricity. Consider D3 in Figure 5(c) and the recursive rule r3
defining the transitivity of partOf

r3 : (x , partOf, y), (y , partOf, z )→ (x , partOf, z )

The saturated triplestore SAT(D3, r3) is depicted in Figure 5(d).
It contains (patella, partOf, knee) but also
(patella, partOf, leg)

and (patella, partOf, inferiorBody).
More generally, it contains all triples of the form tb = (patella, partOf, b) entailed by
the transitivity of partOf. This means that if we take into account the recursive rule
r3 for defining the module paths, then all triples tb are likely to be part of the mod-
ule induced by signature ( partOf )1[ knee ]. This undermines the module parametricity
because it retrieves all resources connected with knee regardless of the level of detail k.

Our solution to both keep into account implicit triples and make parametricity ef-
fective, is to define the module data as a subgraph of a partially-saturated triplestore



obtained by applying non-recursive rules only, while fully delegating the recursive rules
to the module rules. This leads to the following novel definition of module.

Definition 4 (Module).
Let 〈D,R〉 be a deductive triplestore and Σ = ( p1, . . . , pn )k[ a ] a signature. Then,
M=〈DM , RM 〉 is a module for Σ on 〈D,R〉 if

1. 〈DM , RM 〉 ◦
◦ Σ

2. 〈D,R〉 ` 〈DM , RM 〉
3. if p(a,b)

◦
◦ Σ and |p(a,b)| ≤ k then

(a) D,RNonRec ` p(a,b) implies DM , RM ` p(a,b)
(b) DM , R ` p(a,b) implies DM , RM ` p(a,b)

Point 1 and 2 of the definition state the well-formedness and the logical entailment of the
modules, respectively. Point 3 is the crux of the definition. Property 3(a) says that every
path rooted at a of k-bounded length and conforming to Σ, that is entailed by the non-
recursive rules of the reference system RNonRec, must also be inferable by M . Property
3(b) enforces that the module rules RM infer the same paths conforming to Σ as the
whole set of rules R, but only when applied to the module data DM . In contrast with
the spirit of previous approaches (e.g., [24]), our definition does not enforce that every
fact in the signature entailed by the reference triplestore also belongs to the module.
Relaxing the module conditions in this way allows to control the module size, and cope
with recursive rules.

Fig. 6. Triplestore and module examples

To illustrate the definition, consider the triplestore D4 of Figure 6(a) equipped with
the rules below.
r4 : (x , hasFunction, y)→ (x , participatesTo, y)
r′4 : (x , participatesTo, y), (y , subClassOf, z )→ (x , participatesTo, z )



Figure 6(b) depicts SAT(D4, {r4, r′4}). Consider now:
Σ4=( participatesTo, subClassOf )2[ knee ].

A module M4 for Σ4 contains all paths rooted at knee of length at most 2, employ-
ing participatesTo and subClassOf only. Note that if the recursive rule r′4 is consid-
ered, then the triple t1=(knee, participatesTo, bodyPosture) is included in the module
dataset, which is not desirable. In contrast, t2 = (knee, participatesTo, kneePosture)
is expected to be in a module for the signature Σ4. A structure satisfying Definition 4
is M4 = 〈DM4 , RM4〉 with DM4 depicted in Figure 6(c) and RM4 = {r′4}. Note that
t2 is not explicitly in the module dataset DM4

but can be inferred by r′4 as shown in
Figure 6(d).

Next, we present two algorithms for extracting module data and rules compliant
with this novel semantics.

4.2 Extracting Module Data

The extraction of the module dataset can be done by leveraging on the evaluation of
Datalog queries and implemented on top of existing engines. Given a module signature
Σ = ( p1, . . . , pn )k[ a ], the Datalog program ΠΣ below computes all paths rooted at
a, of length bounded by k, and built on the properties of interest of Σ. It does so, in the
extension of the relation m, starting from a triplestore modeled with a single relation t.

ΠΣ=


t(a, pi, x ) → m1(a, pi, x )

mj(x1, y1, x ) , t(x , pi, y)→ mj+1(x , pi, y)

mj(x , y , z ) → m(x , y , z )

An instance of the rules is included for each i = 1..n and j = 1..k. ΠΣ is a non-
recursive set of rules of size O(nk) that can always be evaluated in at most k steps.
Then, to infer all paths of bounded length entailed by non-recursive rules of a reference
system, the set ΠΣ is evaluated together with RNonRec. As a result, the union ΠΣ ∪
RNonRec gives a non-recursive set of rules that can be evaluated in LOGSPACE data-
complexity. The completeness of module data extraction follows from the completeness
of Datalog query evaluation. Below, we write Qm(D,ΠΣ∪RNonRec) for the answer set
of the evaluation of the Datalog program ΠΣ∪RNonRec defining the relation m, on top
of the dataset D. This constitutes the module data DM .

Theorem 1 (Module Data Extraction) For all path p(a,b)
◦
◦ Σ with |p(a,b)| ≤ k we

have D,RNonRec ` p(a,b) if and only if p(a,b) ∈ Qm(D,ΠΣ∪RNonRec).

4.3 Extracting Module Rules

We now present an algorithm for module rule extraction that, together with the dataset
extracted in the previous section, yields a module compliant with our semantics.

By Definition 4, a module is constituted of rules entailed by that of the reference
system, and built on the properties of interest only. As the properties of interest of a
module may restrict those employed by a reference system, the module rules cannot



be just a subset of the original ones. Rule extraction is thus performed by an unfolding
algorithm, that proceeds by replacing the premises of a rule with that of another one,
until obtaining a set conforming to the signature. To illustrate, considerΣ = ( p, q )k[ a ]
and the rules below.
r1 : (x , q, y), (y , partOf, x )→ (x , q, y)
r2 : (x , p, y)→ (x , partOf, y)

Although the rule r1 does not conform to Σ, it can be unfolded with r2 so as to obtain
a module rule. As the atom (y , partOf, x ) in the body of r1 unifies with the conclusion
of r2, it can be replaced by (y , p, x ), so as to get the rule r̄ = (x , q, y), (y , p, x ) →
(x , q, y). Rule r̄ is called an unfolding of r1 with r2.

In the above example, one unfolding step is enough to have a rule r̄ that is conform
to the module signature and that, by construction, is entailed by {r1, r2}. It is easy to
see that this can be generalized, and that rules belonging to unfoldings of a set of rules
R are entailed by R. However, in presence of recursive rules the set of unfoldings of a
rule may be infinite, as illustrated below.

Example 2 Consider Σ = ( p, q )3[ a1 ] and R with
r1 : (x , partOf, y)→ (x , q, y)
r2 : (x , partOf, y), (y , partOf, z )→ (x , partOf, z )
r3 : (x , p, y)→ (x , partOf, y)

Here, r1 can be unfolded with r2 and r3, thus obtaining
r̄ : (x1, p, x2), (x2, p, x3)→ (x1, q, x3)

However, there exist infinitely many unfoldings of rule r2 with itself that yield ex-
pressions of the form (x1, p, x2), (x2, p, x3), (x3, p, x4) → (x1, q, x4) that use any finite
sequence of variables x1, . . . , xn. This set of unfoldings cannot be strictly speaking a
set of triplestore or module rules, because it is infinite.

Algorithm 2: MRE(NToUnfold, RToApply, Σ)
(1) for all r1 ∈ NToUnfold

(2) if r1
◦
◦ Σ then:

(3) RM ← r1
(4) remove r1 from RToApply

(5) else:
(6) for all r2 ∈ RToApply s.t. r1 6= r2
(7) for all r ∈ RuleUnfolding(r1, r2)
(8) if r ◦

◦ Σ then: RM ← r
(9) RM ←MRE({r}, RToApply\{r, r2}, Σ)
(10) return RM

To avoid ending up with infinite sets of module rules, we devised an unfolding algo-
rithm based on a breadth-first strategy. Algorithm MRE (Algorithm 2) performs Module
Rules Extraction. It takes as input a set of rules to be unfolded NToUnfold, a set of rules



to be used for the unfolding RToApply, and a signature Σ. Given a deductive triplestore
〈D,R〉 the first call to the algorithm is MRE(NToUnfold, R,Σ). The set NToUnfold ⊆ R is
constituted of all rules r ∈ R that conclude on a property of interest, that is head(r)

◦
◦ Σ.

Any rule belonging to NToUnfold (whose premises use properties that are not in Σ) is un-
folded in a breadth-first fashion until no rule in RToApply can be applied. All rules in R
are considered for unfolding (RToApply = R). Procedure RuleUnfolding(r1, r2) progres-
sively unfolds each subset of atoms in the body of r1 that unify with the conclusion of
r2. For example, the three breadth-first unfoldings of r1 : (x , p, y), (x , p, z )→ (x , p, y)
with r2 : (x , partOf, y)→ (x , p, y) are
r̄3 : (x , p, y), (x , partOf, z )→ (x , p, y)
r̄4 : (x , partOf, y), (x , p, z )→ (x , p, y)
r̄5 : (x , partOf, y), (x , partOf, z )→ (x , p, y)

Note that a rule is never unfolded with itself by the algorithm (thus avoiding a depth-
first fashion). The fact that r2 used for the unfolding is discarded fromRToApply (line 10)
ensures the termination of the extraction procedure, even in the presence of recursive
rules.

Theorem 3 (Rule Extraction Algorithm) Let R be a set of rules and Σ a module sig-
nature. Algorithm MRE always terminates in O(2|R|×|r|) and produces a set of rules
RM conforming to Σ such that for all r ◦

◦ Σ it holds

RM ` r implies R ` r (SOUNDNESS)

Furthermore, when RRec ◦
◦ Σ we also have

R ` r implies RM ` r (COMPLETENESS)

Algorithm MRE is sound, in the sense that it computes a set of rules entailed by
R. Furthermore, for the case where all recursive rules in R conform to Σ, the algo-
rithm is also complete, in the sense that it produces a set of rules RM that entails
all rules R can entail on the properties of Σ. As a consequence, any dataset DM

(computed as for Theorem 4) paired with RM constitutes a module meeting Defini-
tion 4, and in particular the point 3(b). If this condition does not hold, module ex-
traction may be incomplete. To see this, consider again 〈D,R〉 of Example 2 with
D = {(a1, p, a2), (a2, p, a3), (a3, p, a4)}. Recall that Σ = ( p, q )3[ a1 ], and then
notice that the recursive rule r2 6 ◦◦ Σ. Here, module data extraction yields DM = D.
Observe now that the atom (a1, q, a4) belongs to SAT(DM , R). As MRE outputs the
set RM = {(x , p, y), (y , p, z ) → (x , q, z )}, the triple (a1, q, a4) does not belong to
SAT(DM , RM ), while it should. Hence, 〈DM , RM 〉 does not satisfy Definition 4.



Surprisingly enough, this case of incompleteness is independent of algorithm MRE.
In fact, when R includes recursive rules that do not conform to Σ, it does not exist an
algorithm that outputs a finite set of rules RM such that R ` r implies RM ` r, for
all r ◦

◦ Σ. As Example 2 illustrates, the extracted RM must mimic an infinite set of
rules of the form (x1, p, x2), (x2, p, x3). . .(xn−1, p, xn)→(x1, q, xn). One may think of
capturing this infinite set by adding a recursive rule rp : (x , p, y), (y , p, z ) → (x , p, z )
together with r̄ : (x1, p, x2), (x2, p, x3) → (x1, q, x3). However, adding this recursive
rule makes infer triples using p that are not entailed by the reference system, thereby
violating point 2 of Definition 4. We can also ask whether this infinite set of rules
can be reduced to a finite set that directly depends on k. Unfortunately, the answer is
negative. Furthermore, it is unpractical for real systems to consider a specific module
dataDM and bound byO(|DM |) the number of self-unfolding of a recursive rule during
extraction, as this can output an unmanageable set of rules, that are (still) not robust to
updates. Therefore, understanding when algorithm MRE is complete is key for module
extraction.

This kind of unfolding issues have also been recognized and studied by earlier works
on the optimization of recursive Datalog [28].

Finally, note that Theorem 3 is actually stronger than what required by Definition
4, because (i) it is based on semantic conditions and therefore it holds for any rule r
entailed by R (unfoldings are just a particular case) and (ii) it is independent from the
module data, and thus suitable for other module semantics.

A characterization of the whole module extraction task follows as a corollary of
Theorems 1 and 3.

4.4 Experiments

We implemented bounded-level module extraction on top of Jena 2.11.2 TDB, and com-
pared it against two related approaches to show its benefits in terms of flexibility and
succinctness of the extracted modules. We considered the following three Semantic
Web datasets.

MyCF 0.5M triples 11 domain-specific rules

GO 1M triples 15 domain-specific rules

Yago2∗ 14M triples 6 RDFS rules

Yago2∗ is the union of Yago2Taxonomy, Yago2Types and Yago2Facts datasets. We
sampled classes and properties from these ontologies, and combined them to obtain a
set of signatures used to run module extraction. We considered 2500 MyCF ontology
classes combined with 20 subsets of its properties, of size 1-4. For the GO ontology
(www.geneontology.org), we sampled 350 classes and 12 property sets (size 1-
4). Since Yago knowledge is more diverse than a domain-specific ontology, to avoid
empty modules we first selected three groups of properties that are frequently used
together, and then subset them (size 2, 4, 6). We tested 100 Yago resources for each
group. Finally, we made k ranging over {1, 2, 3, 5, 10}.



Closest competitor approaches Relevant methods to our work are Traversal Views
[35] and Locality-based modules [24]. Traversal Views (TV) compute a bounded-level
view of an RDF database, in the same spirit as our approach. This method does not
support inference rules, and it does not give any guarantee about extracted modules. In
practice, in the presence of rules, a traversal view may miss relevant triples. Locality-
Based (LB) module extraction computes a conservative extension of an ontology by
checking logical conditions on its schema. In contrast with our method, it cannot modu-
larize untyped RDF data and, because it enforces strong logical guarantees on a module,
it cannot control a priori its size.
Results of module data extraction Figures 7 and 8 report on the size of bounded-level
modules, compared with those of TV and LB.The graphs show the average number of
triples, for modules grouped by the same number of properties and k value, in logarith-
mic scale. In Figure 9 we report the test on Yago2 with our approach, since LB does not
support this RDF dataset.

Fig. 7. Size of Extracted Modules from MyCF

Fig. 8. Size of Extracted Modules from GO



Fig. 9. Size of Extracted Modules from Yago2

As expected, the succinctness of bounded-level modules depends on k. The tran-
sitivity of the properties declared in the signature also has an impact. This is evident
with Yago2 in Figure 9. Group 2 has properties inherently transitive (isLocatedIn,
isConnectedWith) dominating for example (created, owns) in group 1 and (hasGender,
isAffiliatedTo) in group 3. Hence, bounded-level modules can be very helpful to control
the data succinctness with transitive properties.

Being TV unaware of rules, it may miss relevant data when implicit triples are
not considered. We tested this claim, over the non-saturated MyCF ontology. Indeed,
42% (15072/35740) of the (non-empty) modules extracted by TV were missing relevant
triples wrt our approach, as some subproperty rules were not evaluated. To overcome
this limitation, we tested TV over the saturated MyCF. For concision, in Figure 7 we
report only the minimal level of detail (k = 1). This already outlines a lower bound
for the module size. As we can see, k = 1 already produces fairly larger modules than
our approach. This is because of the MyCF rules for transitivity and property-chains.
Increasing k gives modules of size in the order of the saturated triplestore. The same
discussion holds for GO in Figure 8. LB extraction for top-locality modules has been
tested thanks to the available prototype 17. For MyCF and GO, it outputs almost the
whole ontology (Figures 7 and 8). This is due to ontology axioms that cannot be ignored
for the logical completeness of the method.

17 www.cs.ox.ac.uk/ isg/tools/ModuleExtractor/



5 Rule-based integration of heterogeneous data and
models [36, 37]

Computer modeling and simulation of the human body is becoming a critical and central
tool in medicine but also in many other disciplines, including engineering, education,
entertainment. Multiple models have been developed, for applications ranging from
medical simulation to video games, through biomechanics, ergonomics, robotics and
CAD, to name only a few. However, currently available anatomical models are either
limited to very specific areas or too simplistic for most of the applications.

For anatomy, the reference domain ontology is the Foundational Model of Anatomy
(FMA [38]) which is a comprehensive description of the structural organization of the
body. Its main component is a taxononomy with more then 83000 classes of anatomical
structures from the macromolecular to the macroscopic levels. The FMA symbolically
represents the structural organization of the human body. One important limitation of
the state-of-the-art available ontologies is the lack of explicit relation between anatom-
ical structures and their functions. Yet, human body modeling relies on morphological
components on the one hand and functional and process descriptions on the other hand.
The need for a formal description of anatomical functions has been outlined in [30],
with some guidelines for getting a separate ontology of anatomical functions based on
an ontological analysis of functions in general formal ontologies such as GFO [27] or
Dolce [33]. Complex 3D graphic models are present in more and more application soft-
ware but they are not explicitly related to the (anatomical) entities that they represent
making difficult the interactive management of these complex objects.

Our approach for supporting efficient navigation and selection of objects in 3D
scenes of human body anatomy is to make explicit the anatomic and functional se-
mantics of 3D objects composing a complex 3D scene through a symbolic and formal
representation that can be queried on demand. It has been implemented in My Cor-
poris Fabrica (MyCF), which realizes a rule-based integration of three types of models
of anatomy: structural, functional model and 3D models. The added-value of such a
declarative approach for interactive simulation and visualization as well as for teaching
applications is to provide new visualization/selection capabilities to manage and browse
3D anatomical entities based on the querying capabilities incorporated in MyCF.

The core of MyCF is a comprehensive anatomical ontology, the novelty of which is
to make explicit the links between anatomical entities, human body functions, and 3D
graphic models of patient-specific body parts. It is equipped with inference-based query
answering capabilities that are particularly interesting for different purposes such as:

– automatic verification of the anatomical validity of 3D models. Indeed, it is im-
portant to select the correct set of anatomical entities that participates to a simula-
tion, e.g. a simulation of movements where the correct bones, muscles, ligaments,
. . . , are required to set up all the 3D and mechanical simulation parameters. These
requirements are very close to the selection requirements described in the ‘Back-
ground’ section. They can be regarded as equivalent to a selection operator;

– automatic selection and display of anatomical entities within a 3D scene. Anatom-
ical entities can vary largely in size, can be very close to each other or even hidden
by other anatomical entities. The use of geometric means to select useful sets of en-



tities is not suited whereas inference-based queries using human body functions can
provide much more suited means. Such selection capabilities are particular relevant
for diagnosis for instance;

– training students on anatomical entities participating to a certain body function.
Here again, this purpose is close to that of selection functions where the connec-
tion between function and anatomical entities provides new means to browse and
highlight features of anatomical structures accessible in 3D.

The current version of the ontology contains almost 74000 classes and relations
as well as 11 rules stored in a deductive RDF triple store using a Sesame server, and
that can be queried with a remote-access facility via a web server18. The ontology can
be easily updated, just by entering or deleting triples and/or by modifying the set of
rules, without having to change the reasoning algorithmic machinery used for answering
queries. It is the strength of a declarative approach that allows a fine-grained domain-
specific modeling and the exploitation of the result by a generic (domain-independent)
reasoning algorithm.

MyCF features three distinct taxonomies linked by relations and rules:

– Anatomical entities, such as knee, shoulder, and hand, denote parts of the human
body, and give a formal description of canonical anatomy;

– Functional entities, such as gait, breath, and stability, denote the functions of the
human body, and are the fundamental knowledge to explain the role of each anatom-
ical entity;

– Finally, 3D scenes with entities such as 3D-object, 3D-scene define the content
required to get 3D views of patient-specific anatomical entities described by 3D
graphical models related to anatomical entities.

Figure 10 shows an extract of this integrated ontology, in which the green classes
refer to the 3D models, the pink classes to the structural model and blue classes to the
functional entities.

Fig. 10. The general structure of MyCF integrated ontology (extract)

The inference rules of MyCF express complex connections between relations, within
or across the three taxonomies. For instance, the following rules express connections
18 http://mycorporisfabrica.org/mycf/



that hold in anatomy between the relations rdfs:subClassOf and mcf:InsertOn, but also
between rdfs:subClassOf and mcf:IsInvolvedIn , rdfs:subClassOf and mcf:participatesTo,
mcf:participatesTo and mcf:IsInvolvedIn , mcf:PartOf and mcf:InsertOn respectively.
The first rule says that if a given class representing an anatomical entity ?a (e.g., Sarto-
rius) is a subclass of an anatomical entity ?c (e.g., Muscle) that is known to be inserted
on an anatomical entity ?b (e.g., Bone), then ?a is inserted on ?b (Sartorius inserts on a
Bone).

( ?a rdfs:subClassOf ?c ) , ( ?c mcf:InsertOn ?b )→ ( ?a mcf:InsertOn ?b )

( ?a mcf:IsInvolvedIn ?c ), ( ?c rdfs:subClassOf ?b )→ ( ?a mcf:IsInvolvedIn ?b )

( ?a mcf:participatesTo ?c ) , ( ?c rdfs:subClassOf ?b )→ ( ?a mcf:participatesTo ?b )

( ?a mcf:participatesTo ?c ), ( ?c mcf:IsInvolvedIn ?b )→ ( ?a mcf:participatesTo ?b )

( ?a mcf:InsertOn ?c ), ( ?c mcf:PartOf ?b )→ ( ?a mcf:InsertOn ?b )

The following rule crosses the anatomy domain and the 3D domain and expresses that
the conventional color for visualizing bones in anatomy is yellow:

( ?x rdf:type 3D-object ), ( ?x mcf:Describes ?y ) , ( ?y rdfs:subClassOf Bone )
→ ( ?x mcf:hasColour yellow )

Fig. 11. Illustration of ontology-based querying and visualization using MyCF

Figure 11 illustrates a complete example from query to 3D visualization. Data are
presented as a graph with corresponding RDF triples on the bottom. The query is ex-



plained in English and translated in SPARQL. The answers are used to select and high-
light corresponding 3D models in the 3D scene.

We have extended this rule-based approach for 3D spatio-temporal modeling of
human enbryo development in [37]. It results in a unified description of both the knowl-
edge of the organs evolution and their 3D representations enabling to visualize dynam-
ically the embryo evolution.

In an ongoing work, following a similar methodology for ontology-based integra-
tion of data extracted from several heterogeneous sources, we are developing Onto-
SIDES to offer personalized and interactive services for student progress monitoring on
top of the national e-learning and evaluation platform of French medical schools.

6 Conclusion

We have shown that Datalog rules on top of RDF triples provides a good trade-off be-
tween expressivity and scalability for reasoning in the setting of Linked Data. It would
be worthwhile to investigate the usefulness in practice and the scalability of the Datalog
extension proposed in [8] allowing for value invention and stratified negation.
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[1] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo, ‘Diagnosis of asynchronous
discrete event systems: datalog to the rescue!’, in Proceedings of the Twenty-fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 13-15,
2005, Baltimore, Maryland, USA, pp. 358–367. ACM, (2005).

[2] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[3] Mustafa Al-Bakri, Manuel Atencia, Jerome David, Steffen Lalande, and Marie-Christine
Rousset, ‘Uncertaintly-sensitive reasoning for inferring sameas facts in linked data’, in
Proceedings of the European Conference on Artificial Intelligence (ECAI 2016), August
2016, The Hague, Netherland, (2016).

[4] Mustafa Al-Bakri, Manuel Atencia, Steffen Lalande, and Marie-Christine Rousset, ‘Infer-
ring same-as facts from linked data: an iterative import-by-query approach’, in Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA., pp. 9–15. AAAI Press, (2015).

[5] Dean Allemang and James Hendler, Semantic Web for the Working Ontologist: Modeling
in RDF, RDFS and OWL, Morgan Kaufmann, 2011.

[6] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart, ‘Provenance circuits for trees and
treelike instances’, in Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135
of Lecture Notes in Computer Science, pp. 56–68. Springer, (2015).
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