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Abstract

This thesis introduces a generic method to compute the prime implicates of
a logical formula, i.e., the most general clausal consequences of a given logical
formula, in any given decidable theory. The principle used is to recursively add to
an initially empty set, literals taken from a preselected set of hypotheses until it
can be proven that the disjunction of these literals is a consequence of the formula
under consideration. Proofs of the termination, correctness and completeness of this
algorithm are provided, which ensures that the clauses the method computes are
indeed implicates and that all the prime implicates that can be constructed from
the initial set are indeed returned. This algorithm is then applied in the context of
program verification, in which it is used to generate loop invariants that permit to
verify assertions on programs. The Abdulot framework, a C++ implementation
of the system, is also introduced. Technical considerations required for the design of
such systems are detailed, such as their insertion within a well-furnished ecosystem
of provers and SMT-solvers. This implemented framework will be used to perform
an experimental evaluation of the method and will show its practical relevance, as
it can be used to solve a large scope of problems.

This thesis also presents introductory work on an implicant minimizer and ap-
plies it in the context of separation logic. The method described in this part could
also be used to perform bi-abduction in separation logic, with an algorithm that is
described but has not been implemented.

Résumé

Le travail présenté dans cette thèse introduit une méthode générique pour calcu-
ler les impliqués premiers d’une formule logique donnée dans une théorie décidable.
Il s’agit intuitivement des conséquences clausales les plus générales de cette formule
modulo cette théorie. Cette méthode fonctionne en ajoutant récursivement à un
ensemble initialement vide des littéraux extraits d’un ensemble d’hypothèses présé-
lectionnées, et ce jusqu’à ce qu’elle puisse démontrer que la disjonction des littéraux
de cet ensemble est une conséquence de la formule sur laquelle elle travaille. On
démontrera la terminaison, la correction et la complétude de cet algorithme. Cela
confirmera qu’il calcule effectivement des impliqués de la formule de départ et qu’il
retourne tous les impliqués premiers qui peuvent être construits à partir de l’en-
semble d’hypothèses de départ. On construira ensuite à partir de cette méthode
un algorithme l’appliquant à la génération d’invariants de boucles de programmes
que l’on cherche à vérifier. On présentera également une implémentation C++ de
ces deux méthodes, regroupées dans une infrastructure logicielle baptisée Abdu-
lot. Cette implémentation sera utilisée pour évaluer expérimentalement les deux
méthodes. On découvrira à cette occasion qu’elles sont capables de générer des so-
lutions pour une large classe de problèmes.

Cette thèse présente également un travail introductif sur la minimisation de mo-
dèles en logique de séparation et son implémentation. La méthode décrite pourrait
également être utilisée pour résoudre des instances de bi-abduction en logique de
séparation, à l’aide d’un algorithme qui sera décrit mais pas implémenté.
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Résumé détaillé

Cette section a pour but de proposer un résumé en français, chapitre par chapitre, de ce
manuscrit. Les travaux qui y sont présentés concernent l’étude et le développement de
méthodes pour le raisonnement abductif modulo des théories et une de ses applications : la
vérification de programmes. Bien qu’épuré des détails théoriques et techniques nécessaires
pour établir les résultats scientifiques présentés, il pourra fournir au lecteur peu familier
avec la langue anglaise un aperçu du contenu et de la portée de ces travaux.

Chapitre 1 — Contexte et définitions
Le premier chapitre présente les définitions nécessaires à la compréhension des travaux
présentés dans ce document. Nous commençons par y rappeler les notions habituelles de
logique du premier ordre, en particulier celles d’interprétation, de modèle et de consé-
quence logique. Nous y présentons ensuite les notions plus spécifiques à l’abduction et
à la méthode étudiée dans cette thèse pour automatiser ce type de raisonnement : la
génération d’impliqués premiers. En effet, si le problème d’abduction consiste à cher-
cher des formules logiques (impliquants) qui permettent de déduire les propriétés que
nous considérons, il est possible de résoudre le problème par son dual en cherchant les
impliqués de la négation de ces propriétés. Nous introduisons ensuite des définitions et
propriétés pertinentes pour gérer le problème de redondance des impliqués. Ces défini-
tions sont utiles pour éviter la génération d’impliqués que l’on pourrait déduire d’autres
plus généraux et déjà connus. Le chapitre sert également à préciser le contexte dans lequel
ces travaux s’appliquent et les définitions qui y sont associées. Dès lors qu’il existe une
procédure pour tester la satisfaisabilité des formules logiques modulo des théories, il sera
possible d’appliquer les algorithmes présentés dans cette thèse. Nous introduisons enfin
les démonstrateurs modulo des théories [78, 51, 10], outils dont nous nous servirons pour
effectuer lesdits tests de satisfaisabilité.

Chapitre 2 — État de l’art
Le chapitre 2 présente brièvement l’état de l’art des deux domaines de recherche sur
lesquels cette thèse repose : le raisonnement abductif automatisé par la génération d’im-
pliqués premiers et la génération d’invariants de boucles de programmes.

Pour la génération d’impliqués premiers, qui consiste à calculer les conséquences clau-
sales minimales d’une formule logique donnée, il est de coutume de rechercher des pro-
cédures complètes. De telles procédures retournent un ensemble de clauses minimales de
sorte que toute clause conséquence de la formule de départ soit aussi la conséquence de
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l’une des clauses retournées. Nous décrivons dans ce chapitre les différentes méthodes qui
ont été développées pour effectuer cette tâche, d’abord en logique propositionnelle, puis
dans des logiques plus expressives. Nous y parlons en particulier des méthodes ZRes-
Tison [171, 163] et primer [141] qui, à l’heure actuelle, font partie des méthodes les
plus efficaces pour générer des impliqués premiers en logique propositionnelle. En ce qui
concerne les logiques plus expressives, nous détaillons la méthode SOL [96, 127], qui cible
la logique du premier ordre, et l’algorithme cSP [173] pour la logique equationnelle.

Nous présentons ensuite un bref état de l’art des méthodes pour générer automati-
quement des invariants de boucles de programme. Ce problème, déjà très étudié, consiste
à obtenir pour chaque boucle d’un programme des formules logiques vérifiant les deux
propriétés suivantes : 1. la formule est vraie dès lors que le programme entame l’exécution
de la boucle et 2. lorsque la formule est vérifiée au début de la boucle, elle l’est toujours à
la fin de l’exécution du code que la boucle contient. L’objectif de cette partie n’est pas de
donner au lecteur une vision exhaustive des travaux de recherche sur la génération d’in-
variants de boucles, mais plutôt de lui donner un aperçu des alternatives efficaces de la
littérature. Nous présentons ainsi certaines méthodes couramment utilisées pour résoudre
les problèmes de ce type telles que l’interprétation abstraite [42, 44], les méthodes à base
de patrons [72], les méthodes abductives [57] et les méthodes dynamiques [137, 130].

Partie I — Une infrastructure générique pour le
raisonnement abductif modulo des théories

Chapitre 3 — Un générateur d’impliqués premiers
efficace modulo des théories

Le chapitre 3 nous sert à introduire et à présenter un nouvel algorithme pour générer
des impliqués premiers modulo des théories, et ce indépendamment de la théorie considé-
rée, dès lors qu’il est possible de tester la satisfaisabilité des formules dans cette théorie.
On y présente en premier lieu un algorithme naïf, nommé ImpGen, à partir duquel on
obtiendra ensuite une version plus efficace. Ce premier algorithme construit des impli-
qués à partir d’un ensemble initial de littéraux que l’on nomme littéraux abducibles. Il
explore ensuite des conjonctions de ces littéraux jusqu’à construire une hypothèse dont
l’adjonction à la formule initiale est insatisfaisable. La négation d’une telle hypothèse
étant nécessairement une conséquence logique de la formule de départ, l’algorithme peut
ainsi retourner un impliqué de cette formule. Cette première version fonctionne en ex-
plorant toutes les conjonctions possibles. Elle définie et applique ensuite des méthodes
de gestion de redondance, ce qui lui permet de retourner tous les impliqués premiers
(non-redondants) qu’il est possible de construire à partir des littéraux abducibles qui lui
auront été fournis.

L’énumération systématique de toutes les conjonctions possibles n’étant pas efficaces,
nous proposons des améliorations pour réduire l’espace de recherche et rendre l’algorithme
suffisamment efficace pour être utilisable en pratique. Parmi ces améliorations, nous nous
intéressons d’abord à l’utilisation d’un ordre sur les littéraux. Grâce à celui-ci, nous
pouvons éviter de reconstruire plusieurs fois le même impliqué en ajoutant ses littéraux
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dans des ordres différents. Nous détaillons aussi l’utilisation que nous pouvons faire des
modèles qu’il est possible de récupérer lors des tests de satisfaisabilité. Nous montrons
que grâce à cela, nous pouvons réduire le nombre de littéraux à tester lorsque certains
d’entre eux sont vrais dans ces modèles. Nous présentons alors un algorithme final, nommé
ImpGen-PiD, intégrant l’ensemble de ces ajustements.

Nous démontrons alors que, dès lors que le problème de la satisfaisabilité d’une formule
est décidable pour la théorie dans laquelle nous travaillons et que l’ensemble des littéraux
abducibles est fini, cet algorithme termine. Nous démontrons également que l’algorithme
de départ et celui obtenu après l’ajout des améliorations sont à la fois correctes, c’est-
à-dire qu’ils génèrent uniquement des impliqués de leur formule de départ, et complet,
c’est-à-dire qu’ils génèrent tous les impliqués premiers de leur formule d’entrée, dès lors
qu’il peuvent être construits à partir des littéraux abducibles fournis. Dans le cas général,
la terminaison de l’algorithme n’est pas garanti. Il est toutefois possible de forcer cette
terminaison en sacrifiant la complétude. Cela peut être réalisé en imposant un temps
maximal aux tests de satisfaisabilité et en considérant que tout test dépassant ce temps
ne dénotait pas la présence d’un impliqué.

Nous terminons le chapitre en étudiant ce qu’il est possible de changer dans ce nouvel
algorithme pour améliorer ses performances dans une théorie particulière, la plus simple,
en logique propositionnelle. Cela passe par l’intégration plus en profondeur de l’algorithme
dans une procédure classique vérifiant la satisfaisabilité des formules en logique propo-
sitionnelle (CDCL [47, 178]). Grâce aux conflits détectés lors l’application des règles de
propagation unitaire de cette procédure, nous pouvons détecter et ajouter des impliqués
supplémentaires en amont du test qui les auraient détectés. Par ailleurs, l’exploitation des
informations calculées par ces mêmes règles nous permettent de minimiser les impliqués
ainsi obtenus en utilisant les raisons pour lesquelles les littéraux en conflits ont été choisis
par la procédure de décision. L’algorithme obtenu spécifiquement pour cette logique est
également présenté.

Chapitre 4 — Stockage et réutilisation des impliqués
modulo des théories

Dans le chapitre 4, nous nous intéressons au stockage des impliqués générés par l’algo-
rithme du chapitre précédent. Nous nous concentrons en particulier sur deux objectifs.
D’une part, nous cherchons à obtenir une structure qui réduit au maximum la complexité
des opérations de stockage d’impliqués, notamment grâce une gestion de la redondance
par des opérations de suppression des conséquences logiques. D’autre part, nous cherchons
une structure qui nous permet de réutiliser efficacement les impliqués déjà engendrés pour
éviter des calculs inutiles à l’algorithme principal.

Pour ce faire, nous introduisons une structure ordonnée sur les littéraux que nous
appelons A-arbre-préfixe, et dont chaque chemin de la racine à une feuille sera interprété
comme un impliqué. Nous détaillons ensuite les opérations classiques sur cette structure
permettant l’insertion et la suppression d’impliqués. Nous détaillons également un algo-
rithme permettant de vérifier s’il existe dans l’A-arbre-préfixe une conséquence logique
d’une formule donnée et un autre algorithme permettant de vérifier si une formule don-
née est la conséquence logique d’un des impliqués de l’A-arbre-préfixe. Ces deux derniers
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algorithmes réalisant des appels à un SMT-solver pour vérifier les propriétés d’implica-
tions, nous préciserons que le nombre de tels tests est de l’ordre de la profondeur de
l’A-arbre-préfixe pour le premier algorithme et de celle de la taille de l’A-arbre-préfixe
pour le second.

Nous achevons le chapitre en donnant une version adaptée de l’algorithme ImpGen-
PiD utilisant nos A-arbre-préfixes pour stocker et réutiliser les impliqués générés.

Partie II — Une infrastructure générique pour utiliser
le raisonnement abductif dans un cadre de vérification

Chapitre 5 — Un modèle abstrait pour utiliser un
générateur d’impliqués premiers en vérification

Ce chapitre présente une infrastructure générale permettant l’utilisation d’algorithmes
d’abduction pour la résolution de problèmes de vérification. Ce travail se concentre sur la
résolution des problème pour lesquels il est possible d’obtenir des conditions de vérifica-
tions, formules logiques qui, lorsqu’elles sont valides, assurent la correction du problème.
Nous introduisons ainsi une représentation des problèmes de vérification définie par un
ensemble de formules dites « guides » et par un ensemble de « générateurs », fonctions
associant aux formules guides un ensemble de conditions de vérifications. Le problème
est alors de trouver un ensemble de formules guides à partir desquelles les générateurs ne
produisent que des conditions de vérifications valides.

À partir de cette représentation, nous construisons un algorithme basé sur les tra-
vaux de Dillig et al. [57], nommé Ilinva, pour résoudre ces problèmes de vérification.
Recevant en entrée la représentation d’un problème dont certains générateurs produisent
des conditions de vérification non-valides, l’algorithme renforce successivement les for-
mules guides de la représentation jusqu’à ce que le problème soit résolu. Pour ce faire,
il commence par sélectionner un générateur dont l’image n’est pas une formule valide. Il
appelle ensuite la procédure d’abduction développée en partie I sur cette formule pour
obtenir des hypothèses supplémentaires qui garantissent sa validité. Il choisit alors une
de ces solutions et la traduit dans le contexte du programme de telle sorte que son ajout
à l’une des formules guides du problème garantisse que l’image du générateur considéré
à cette étape soit désormais une formule valide. L’existence d’une telle traduction devra
être garantie par la définition des générateurs de conditions de vérification. L’algorithme
renforce alors la formule guide choisie avec cette traduction puis poursuit son travail sur
les autres conditions de vérification. Si besoin, il peut également revenir sur certaines de
ses décisions (choix de solution, choix de formule guide, choix de générateur) pour essayer
les autres possibilités. Un tel retour arrière est nécessaire lorsque des choix de précédents
ont conduit à un programme dont certaines conditions de vérification ne peuvent plus
être renforcées pour être valide. Il termine lorsqu’il obtient une représentation valide ou
échoue après avoir essayé toutes les possibilités.

Nous concluons alors le chapitre en donnant une preuve que si l’algorithme n’échoue
pas, son résultat est effectivement une séquence de formules guides pouvant remplacer
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celles du problème de départ et de sorte que tous les générateurs du problème ainsi
construit ne retournent que des formules valides.

Chapitre 6 — Une application du modèle pour générer
des invariants de boucles de programmes

Dans le chapitre 6, nous définissons une spécialisation de l’algorithme Ilinva que nous
avons introduit au chapitre précédent. Nous commençons par proposer une représentation
standardisée des programmes. Nous définissons notamment les constructions que l’on
autorise, la manière dont nous y représentons les invariants de boucle (potentiels) ainsi que
la manière nous y ajoutons des assertions : formules logiques supposées vraies à l’endroit
où elles apparaissent dans un programme. Nous rappelons ensuite les méthodes usuelles
pour générer des conditions permettant d’assurer que des assertions sont effectivement
vérifiées et que des invariants de boucle potentiels sont effectivement des invariants de
boucles.

Nous détaillons ensuite la manière dont nous utilisons le cadre du chapitre 5 pour
représenter ces programmes. Nous utilisons les formules guides pour représenter les inva-
riants de boucle potentiels et les générateurs de conditions de vérification pour représenter
la sémantique du programme et obtenir les conditions de vérification assurant la validité
de ses assertions et de ses invariants. Nous obtenons ainsi une représentation qui nous
permet d’utiliser l’algorithme Ilinva pour mettre à jour ces invariants potentiels jusqu’à
ce qu’ils soient de vrais invariants et qu’ils permettent de démontrer que les assertions
du programme sont vérifiées.

Nous poursuivons en détaillant les différents ajustements nécessaires pour rendre l’uti-
lisation de l’algorithme Ilinva sur cette représentation utilisable en pratique. En parti-
culier, nous expliquons quelles heuristiques nous utilisons pour choisir les générateurs,
les impliqués et les invariants de boucle potentiels. Nous développons également une mé-
thode pour générer les littéraux abducibles nécessaires à l’algorithme ImpGen-PiD pour
résoudre nos problèmes d’abduction. En extrayant du programme les variables et fonc-
tions qu’il utilise, nous construisons des littéraux correspondant à leur traduction dans
la logique utilisée par les conditions de vérification que l’on obtient des générateurs et
que l’on utilise pour l’abduction. Nous précisons enfin les paramètres avec lesquels nous
configurons le générateur d’impliqués pour en obtenir les meilleurs performances possibles
dans cette application.

Le chapitre conclut en détaillant les différences avec les travaux dont l’algorithme
Ilinva est inspiré (Dillig et al. [57]), ainsi que les limites théoriques de la méthode pré-
sentée dans cette partie, notamment le fait que certaines de nos heuristiques de sélection
nous empêchent de résoudre certains problèmes.

Partie III — Implémentation et évaluation

La troisième partie de la thèse est consacrée à la description et à l’évaluation d’une
infrastructure logicielle générique dans laquelle nous avons implémenté les algorithmes
présentées dans les deux parties précédentes. À l’aide d’un système d’interfaces avec des
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outils externes, nous pouvons tirer partie de la généricité de ces algorithmes pour obtenir
des outils pratiques conservant cette généricité. En branchant cette infrastructure à des
démonstrateurs automatiques et à la plateforme Why3 [21, 74, 75] pour travailler sur
les programmes, nous obtenons des exécutables sur lesquels nous effectuons des tests de
performance.

Chapitre 7 — Une infrastructure logicielle générique

Nous utilisons le chapitre 7 pour présenter le développement d’une infrastructure logicielle
permettant de tirer partie de la généricité théorique des algorithmes ImpGen-PiD de la
partie I et Ilinva de la partie II.

Nous commençons par présenter une méthode pour brancher nos outils avec des dé-
monstrateurs automatiques que nous traitons comme boites noires. Nous proposons pour
cela des modèles d’interface capables de construire des tests de satisfaisabilité puis d’in-
voquer un démonstrateur pour obtenir l’état de la formule.

Le chapitre présente ensuite une infrastructure pour l’implémentation du générateur
d’impliqués premiers ImpGen-PiD. Cette infrastructure est constituée de trois compo-
sants : un exécutant l’algorithme, un second travaillant sur le choix des littéraux pour
construire l’hypothèse servant à obtenir les impliqués, et enfin une interface avec un
démonstrateur. Nous détaillons alors la manière dont le composant qui construit les
conjonctions de littéraux implémente l’ensemble des aménagements réduisant l’espace
de recherche proposés au chapitre 3. Nous appelons l’outil obtenu GPiD. Nous introdui-
sons ensuite un format de fichier pour représenter les littéraux utilisés pour l’abduction
et nous détaillons sa syntaxe à l’aide d’exemples.

Nous détaillons également dans ce chapitre la manière dont nous implémentons l’al-
gorithme Ilinva, toujours de manière générique, à l’aide d’une interface qui aura pour
but de représenter les problèmes traités. Cette interface s’occupe en particulier de trans-
mettre au composant exécutant l’algorithme les conditions de vérifications non-valides
du problème qu’elle représente, ainsi que de choisir les formules guides qui devront être
modifiées par les solutions retournées par GPiD. L’interface sert enfin à implémenter
les techniques de traduction nécessaire pour transformer les conditions de vérification
du programme en formules traitables pour la procédure d’abduction et, inversement, les
impliqués obtenus en formules syntaxiquement valides dans les assertions du programme.
Nous appelons l’outils obtenu Ilinva.

Chapitre 8 — Des interfaces pour brancher
l’infrastructures à des outils concrets

Le chapitre 8 nous permet de détailler l’implémentation d’interfaces concrètes. Nous y
expliquons les adaptation nécessaires pour brancher de vrais démonstrateurs ou vérifica-
teurs de programmes dans notre infrastructure.

Nous détaillons ainsi la création d’interfaces pour le démonstrateur de logique propo-
sitionnelle MiniSAT [70], les démonstrateurs modulo des théories Alt-Ergo [39], CVC4
[7], VeriT [24] et Z3 [50], ainsi que les raisons justifiant la création d’une interface plus
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générale, pouvant être utilisée comme sur-couche à n’importe quel démonstrateur capable
de traiter des problèmes exprimés au format SMT-lib [9].

Nous présentons ensuite l’implémentation d’une interface de représentation de pro-
gramme pour Ilinva qui utilise la plateforme de raisonnement déductif pour programmes
Why3 [21, 74, 75]. Cette plateforme, déjà capable de générer les conditions de vérifica-
tions dont nous avons besoin, nous permet de traiter la plupart du travail sur les pro-
grammes considérés en boite grise à l’extérieur de notre infrastructure. En représentant
nos programmes dans le format de fichier défini par Why3 (WhyML), nous pouvons
obtenir une interface pratique pour la génération d’invariants de boucles dans ces pro-
grammes, moyennant quelques ajustements sur la configuration de GPiD. Nous détaillons
également la manière dont nous extrayons les littéraux pour l’abduction des programmes
WhyML, en ajoutant dans nos fichiers de littéraux des informations supplémentaires sur
le contexte des variables du programme. Ces informations serviront notamment à retra-
duire correctement la syntaxe des impliqués de la logique du démonstrateur à la logique
de WhyML.

Le chapitre se conclut par des remarques sur la documentation, la compilation et la
distribution de l’infrastructure, disponible publiquement sur la plateforme GitHub [160].

Chapitre 9 — Évaluation expérimentale de GPiD et
Ilinva

Le dernier chapitre de la partie III est consacré à l’évaluation expérimentale des outils
présentés dans les deux chapitres précédents. Après avoir présenté l’infrastructure tech-
nique sur laquelle les expériences ont été effectuées, nous étudions les résultats obtenus
pour le générateur d’impliqués premiers et le générateur d’invariants.

Nous commençons par l’évaluation de GPiD en logique propositionnelle, où nous
observerons que sur de nombreux exemples tirés de dépôts standards (not. SAT-lib [94]),
notre outils est capable de générer soit tous les impliqués premiers en quelques secondes,
soit au moins quelques impliquées en moins d’une minute. Nous observons également que,
comme attendu, l’algorithme se comporte d’autant mieux que les problèmes qu’il traite
contiennent moins de littéraux d’abduction ou possèdent peu d’impliqués. En comparant
notre outil aux meilleurs concurrents disponibles : ZRes [163] et primer [141], nous
constatons que le temps de calcul observé est du même ordre de grandeur que celui de ces
outils dès lors que les problèmes considérés possèdent beaucoup de contraintes. Pour les
autres problèmes, notre algorithme met généralement plus de temps que les deux autres
pour retourner des impliqués.

Nous poursuivons ensuite l’évaluation de GPiD en lui faisant traiter des problèmes
avec égalités entre variables et des problèmes d’arithmétique linéaire sur les entiers, tous
tirés des bibliothèques de problèmes SMT-lib [9]. Nous observons que, pour tous ces
exemples, GPiD est capable de générer des impliqués, bien que la génération de tous les
impliqués soit en général impossible au regard de la taille importante de cet ensemble.
Pour les problèmes equationnels, nous comparons également les performances de notre
générateur à celles de cSP [173]. Nous observons que nous sommes systématiquement
capable de générer des impliqués plus rapidement que cSP sur les exemples étudiés.
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La deuxième partie du chapitre est consacrée à l’évaluation de notre générateur d’in-
variants de boucles Ilinva. Après avoir construit un ensemble de programmes à partir de
problèmes de génération d’invariants habituels et des bibliothèques d’exemples de Why3,
nous testons notre algorithme afin de vérifier s’il est capable de générer des invariants
satisfaisants. Nous observons que, même si le temps de calcul est généralement élevé,
notre outil est capable de générer des solutions pour des exemples dans diverses théories,
dont certaines n’étaient pas connues pour être dans le domaine des outils précédents.
Nous nous intéressons également aux limites mises en évidence par les résultats. Nous
relevons notamment le fait que le nombre de littéraux envoyés aux problèmes d’abduction
a un impact significatif sur la performance du système global et que, d’une manière géné-
rale, davantage de travaux pour réduire l’espace de recherche du générateur d’impliqués,
peut-être aux dépends de sa complétude, seront nécessaires pour obtenir de meilleures
performances.

Partie IV — Un algorithme de minimisation de
modèles pour le raisonnement abductif en logique de
séparation

La dernière partie de cette thèse est consacrée à l’élaboration d’un algorithme alternatif
pour obtenir des impliquants d’une formule logique. Cet algorithme consiste à utiliser un
modèle de la formule pour construire un impliquant initial. Ensuite, grâce à une décom-
position de cet impliquant en sous-formules et à des règles d’affaiblissement prédéfinies,
nous affaiblissant les sous-formules de cet impliquant tant que la formule obtenue reste
un impliquant de celle de départ.

Chapitre 10 — Un algorithme générique de
minimisation d’implicants

Le chapitre 10 présente l’algorithme de minimisation d’impliquant évoqué ci-dessus. Notre
algorithme se base sur une procédure de minimisation de modèles en logique proposition-
nelle [26]. Cette méthode peut être vue comme la minimisation d’un impliquant d’une
formule propositionnelle obtenu en prenant la conjonction de tous les littéraux valides
dans un modèle. Elle retire ensuite des littéraux de cet impliquant tant que ces sup-
pressions ne brisent pas son caractère d’impliquant. Cette suppression est réalisée en
découpant l’ensemble des littéraux en deux dès lors qu’ils ne peuvent pas tous être re-
tirés, puis en appliquant récursivement la méthode sur ces deux parties en considérant
l’autre comme étant fixe. L’algorithme retourne alors un impliquant plus faible que le
premier.

L’algorithme que nous présentons étend cette méthode pour qu’elle soit capable de
traiter des théories dans lesquelles l’affaiblissement d’un impliquant ne résume pas à la
suppression de certains de ses littéraux, mais peut consister à les remplacer successivement
par des formules moins fortes. Il permet aussi d’étendre la décomposition en sous parties à
plus de deux. Pour faire cela, nous définissons des séquences de formules, qui représentent
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les affaiblissements successifs des sous-formules de l’impliquant initial. À l’aide de règle de
généralisation, prédéfinies pour le contexte des formules traitées, l’algorithme ajoute à ces
séquences les généralisations associées aux formules qu’elles représentent, et ne considère
ainsi que la dernière formule de chaque séquence comme partie de l’impliquant potentiel
représenté. Grâce à des opérateurs permettant de reconstruire une séquence minimale
dont la représentation implique toujours la formule de départ, nous obtenons une structure
sur laquelle appliquer l’algorithme pour affaiblir au maximum et sur plusieurs niveaux
les sous-formules de l’impliquant initial.

Nous poursuivons ensuite en proposant deux spécialisations de cet algorithme (ce qui
consiste à définir les règles de généralisation et les formules considérées) pour obtenir
une version équivalent à l’algorithme en logique propositionnelle dont nous nous sommes
inspirés [26] et une version permettant de minimiser des formules en logique de sépa-
ration [151]. Nous terminons le chapitre en proposant un algorithme simple qui utilise
cette procédure de minimisation pour résoudre des problèmes d’abduction en logique de
séparation (dans lesquels la conjonctions est remplacée par la conjonction séparée).

Chapitre 11 — Implémentation et évaluation de
l’algorithme et de son utilité pour la logique de
séparation

Le chapitre 11 présente l’implémentation et l’évaluation de l’algorithme de minimisation
et de ses spécialisations présentées dans le chapitre 10. Nous commençons par y décrire
une spécialisation simple de l’algorithme qui a pour but de simplifier son évaluation (en
en réduisant le temps de calcul). Nous détaillons ensuite les considérations qui doivent
être étudiées pour l’implémentation de l’algorithme de minimisation et nous présentons
comment cela a été fait dans l’infrastructure Abdulot. Une interface utilisant la procé-
dure de décision vérifiant la satisfaisabilité des formules en logique de séparation proposée
par le démonstrateur CVC4 [7] a également été implémentée. Les détails de cette implé-
mentation sont présentés à la suite de celle de l’algorithme de minimisation.

Nous évaluons ensuite l’algorithme en comptant le nombre de tests de satisfaisabilité
(nécessaire pour vérifier si une formule est bien un impliquant) qu’il exécute, et le compa-
rant au nombre de tests effectués par un algorithme de minimisation naïf. Les expériences
montrent que l’algorithme proposé est particulièrement efficace pour minimiser des im-
pliquants lorsque le nombre de composant que contiennent ces derniers est important ou
que ces composants peuvent être généralisés de nombreuses fois (plus de cinq). Il appa-
rait également que cet algorithme est efficace lorsqu’une part importante des composants
de l’impliquant initial peuvent être généralisés. Dans les autres cas, les tests de satisfai-
sabilité provoqués par la décomposition en partitions échouent et provoquent ainsi un
surcoût par rapport à l’algorithme naïf. Nous évaluons également le nombre de tests de
satisfaisabilité et le temps de calcul nécessaire à la minimisation en pratique de formules
simples en logique de séparation, puis vérifions s’il est possible d’utiliser cette méthode
en pratique pour résoudre quelques problèmes d’abduction. Les résultats montrent que
tant que les formules ne contiennent ni quantificateur ni implication séparée, l’algorithme
est capable de minimiser les impliquants obtenus à partir des modèles du démonstrateur
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modulo des théories. En revanche, lorsque les formules contiennent des quantificateurs
ou implications séparées, le démonstrateur modulo des théories n’est plus en mesure de
résoudre les problèmes qui lui sont envoyés.

Conclusion
Les contributions principales de ce travail de thèse sont la conception et l’implémentation
de deux systèmes génériques. L’un automatisant un raisonnement abductif en générant
des impliqués premiers de formules logiques. L’autre utilisant le premier pour générer des
invariants de boucles de programmes.

Les résultats expérimentaux montrent l’intérêt pratique de ces travaux pour générer
des solutions à des problèmes qui n’avaient pas de solution automatisée connue. Ils ouvrent
également la voie à des travaux de recherche s’intéressant à la limitation de leurs espaces
de recherche et à la génération des littéraux abducibles.

Annexe A — Grammaire des fichiers de littéraux
abducibles utilisés par Abdulot

Cette annexe présente la grammaire complète de la syntaxe des fichiers de littéraux pour
la procédure d’abduction.

Annexe B — Exemple de condition de vérification
générée par Why3

Cette annexe présente des conditions de vérification complète générées par Why3 pour
les exemples détaillés dans ce mémoire.

Annexe C — Manuel utilisateur de l’infrastructure
logicielle Abdulot

Cette annexe présente un court manuel utilisateur à utiliser pour installer et démar-
rer l’infrastructure logicielle Abdulot, comportant GPiD, Ilinva, et plusieurs outils
associés.
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Introduction

One day, one person may make the following hypothesis: “If I am an animal, then I can
cross a bridge”. Another day, a smarter person will assess the opposite, build a rope
bridge between two buildings and have a carp try to cross it.

This ability to produce conjectures and then try to decide whether they are true or
false is a structural foundation of mathematics and scientific reasoning [140]. On one
end, people devise hypotheses based on either their intuition or observations and, on the
other end, they devise theoretical or experimental techniques to either prove or provide
evidence for these hypotheses.

Both hypothesis assessment and verification have been done more or less successfully
by human beings through history. However, with the development of computer science, it
became possible to search for automated methods to perform these bases of mathematical
reasoning.

Let us first talk about the problem of automatically deciding whether a given con-
jecture holds. In computer science, this has been studied under the name of automated
theorem proving [153]. Being a little more formal, we first need to decide on a common
language to express facts as well as on a logic to determine whether these facts are true
or not. Now if we define a theory by a set of axioms, or facts we admit hold, the goal
of such methods is to automatically check if given properties can be deduced from them.
Typically, if we can define a theory in which we can express what an animal is, what
a bridge is and what crossing is, then, we may be interested in obtaining an automatic
system to prove or disprove conjectures expressed in it, such as whether an animal can
cross a bridge or not. Different approaches have been tried to produce such systems.
Some are designed to imitate the process humans use to prove conjectures, by defining
deduction rules and letting an algorithm apply them until it reaches the expected con-
clusion [4, 91, 128]. Others rewrite the problems in a form that is more adapted to the
use of computers and design alternative techniques that would be very fastidious for hu-
mans to apply but can be naturally processed by computers [47, 178]. This has produced
an ecosystem of tools we call automated theorem provers, in which each tool is usually
adapted for solving problems in a specific logic and theory (such as propositional logic
[70], first order logic [159, 111, 125], modal logic [12, 11, 133], etc).

When the conjectures we want to prove are expressed in theories that are too hard
for such systems to reason on, one could also use another class of system that are called
proof assistants [79]. Such systems may be able to produce a valid logical proof of the
conjectures with the help of some additional input from their users. They may also make
use of automated theorem provers to produce proofs of parts of their reasoning [19].
For instance, there could exist a bridge crossing simulation that, given the model of an
animal and the model of a bridge, can provide a proof detailing why the animal can or
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cannot cross the bridge successfully. The user of such a system would then be tasked
with providing the simulation with interesting animal and bridge models or abstractions
in order to prove some given property on this bridge crossing experiment, such as what
family of animals is always able to cross bridges. Again, a large collection of tools has
been produced, in which each tool is well-adapted/oriented for handling a particular
type of problem or formalism (such as program proofs [21], mathematical or logic proofs
[40, 132], etc).

Concerning the ability to produce conjectures from a set of observations, various
methods have also been explored. The method we take an interest in for this work is a
logical formalism called abduction [101]. The idea behind it is, given some logical axioms
and a set of facts unexplained by them, to look for additional conjectures that, when
added to the initial axioms, allow us to explain those facts. For instance, even though
they were shown evidence that not all animals can cross any bridge, our first person
may be interested in finding additional restrictions that would make this possible, that
is, additional conjectures stating among others the fact that a carp cannot cross a rope
bridge. Examples of such conjectures would typically be restrictions on the shape of
the animals or on the type of the bridge. Obviously, we do not want these additional
conjectures to be too weak (typically by choosing the unexplained facts themselves, such
as “if I am an animal that can cross a bridge, then I can cross a bridge”), or contradictory
(such as “if I am an animal that is not an animal, then I can cross a bridge”). What we
actually look for is a set of conjectures as generic as possible, consistent, and if possible
minimal.

Many techniques have been tried to automatically perform abductive reasoning, some
of which will be presented in Chapter 2. In this thesis, we devise a new method for
it that is theory-generic and, as such, can be applied to solve abduction problems as
long as there exists an algorithm to check if a given additional candidate permits to
prove the initial goal. Our technique uses an initial set of abducible literals, that is, a
set of elementary hypotheses we have good reasons to think may be part of a satisfying
additional candidates. The method then efficiently builds logical conjunctions of these
literals to produce such additional candidates. The theorem prover is used to check
whether these hypotheses permit to entail de desired property. If we go back to our
illustration and assume that we do own some sort of animal-bridge checker that, given
an animal and a bridge, can tell us whether or not the animal can cross the bridge,
our algorithm would then build from an initial set of animal parts and bridge parts
possible solutions for the problem. It will then check these possible solutions using the
animal-bridge checker and return only those that work. As our algorithm returns minimal
solutions, we will obtain the set of minimal restrictions on our animals and bridges that
could allow them to successfully perform this crossing experiment.

Still, a picky person may wonder how we can be certain that the program we use to
check if an animal can cross a bridge is not broken, giving results that are not actually
consistent due to some implementation mistakes or design incompleteness. Thankfully,
theorem proving can be naturally applied to the verification of systems [177], in particular
for computer software, hardware structures [84], etc. Indeed, with the development of
computer programs and their applications to many critical tasks (such as traffic lights,
automated pilot, banking, etc), people got interested in obtaining evidence that these
programs were indeed executing the tasks they were designed to accomplish. This has first

xiv



been done extensively by running tests on the programs, but this method does not ensure
any property out of the conditions of these tests, which can have tragic consequences.

In order to obtain such proofs, researchers have designed what are called static analysis
verification techniques. Such techniques use the programs themselves along with a model
of their behaviour to try and prove the expected properties. Here also, it is possible that
a given technique fails to return a proof for a given program property. For those cases,
researchers have designed methods to find additional preconditions on the inputs of a
program that could be added to ensure that its properties are verified. Again, a brief
overview of some of these techniques will be presented in Chapter 2. In this thesis, we use
a generic algorithm developed in [57] that uses abduction to solve this second problem.
To prove a property on a program, such as the fact that a condition is always satisfied
at the end of its execution, it is usually necessary to establish intermediate properties
within the program, to show that those are also verified, that they are preserved by the
loops of the programs or by the functions it invokes. By starting from an initially empty
set of additional conjectures, we try to prove the properties expected from the handled
program and, if this fails, we use abduction to produce the additional conjectures allowing
the system to make this proof. Thanks to the genericity of the abduction algorithm we
devised, we will be able to use this algorithm to target the generation of preconditions in
a large range of problems.

This covers the scope of this thesis: the design of an automated theory-generic method
of abduction and its application to program verification. It presents both the theoretical
frameworks and their implementation and shows that they permit to generate solutions
in a large range of theories.

Outline and publications
This thesis is organized as follows. After recalling the theoretical notions and terminology
we use (Chapter 1) and presenting the related and state-of-the-art automated techniques
used to solve the issues we introduced (Chapter 2), we will present our techniques for
abductive reasoning (Part I) and for program verification (Part II, extending the work of
Dillig et al. [57]). These two works have been published and presented in international
peer-reviewed committee computer science conferences: the abduction algorithm at the
International Joint Conference on Automated Reasoning (IJCAR), 2018, Oxford, U.K.
[65] and then theory-generic abduction-based loop invariant generator at the Frontiers of
Combining Systems (FroCoS) conference, 2019, London, U.K. [66]. These two theoretical
framework descriptions will be followed in Part III by the details on how we implemented
our approaches in practice. We will also perform an experimental evaluation of the result-
ing tools. Finally, Part IV will present a closely related implicant minimization algorithm
extending a propositional logic model minimizer [26]. This technique will use the models
we can recover from the satisfiability tests we use to prove that a given set of literals is
an implicant of a formula (such as the ones we used in Part I), construct an implicant
from this model and refine this implicant by decomposing it into several components that
will be weakened independently. This implicant minimizer will additionally be used to
perform abduction in separation logic [151].
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Chapter 1

Context and general definitions

This chapter presents the theoretical background that is common to all the parts of this
work. We start by recalling usual notions of logic, then pursue with the definitions of the
core concepts this work is built upon. In the last section, we will also recall definitions
required by the use of theories as external dependencies.

1.1 Usual notions of logics
The notions and notations used within this work for propositional logic and first order
logic are mostly standard. We present the exact formalism we use in this thesis and
highlight some required differences with standard definitions, as introduced in, e.g., [34].

Definition 1. A sorted signature Σ is a set of function symbols and types (or sorts), as
well as a function σ assigning to every function in its domain a tuple of sorts the first
element of which defines the return type of the function’s value and the other elements
define the type of its parameters. We assume that a signature Σ always contains a boolean
sort B. If the return type of a function is this boolean sort, we will call this function
a predicate. For clarity reasons, we will assume that the denomination function in this
context will not refer to predicates. We will call arity of a function or predicate symbol
the number of its parameters. If the arity of a function or predicate is equal to zero, we
will call it a constant. We also assume that a countably infinite set of variables V of every
sort is given.

In all the following, will assume given a fixed sorted signature Σ and a set of variables
V on its sorts.

Notation 2. Given a variable v ∈ V , we will denote by sort(v) the sort of the variable v.

Definition 3. We define the terms on Σ recursively as follows:

• Any constant of Σ is a term.

• Any variable of V for any sort is a term.

• Given a function or predicate f in Σ such that σ(f) = (s0, s1, . . . sn) and t1, . . . , tn
such that n is the arity of f and such that for any i ∈ J1, nK, ti is either a constant
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of sort si, a variable of sort si or a term whose outermost symbol has the return
type si, then f(t1, . . . , tn) is a term.

Remark 4. Note that, contrarily to the usual practice, we allow function or predicate
symbols with boolean parameters. This choice has been made to ease the use of generic
provers and fits in with the SMT-lib standard.

Remark 5. For simplicity reasons, we will assume that Σ contains an equality predicate for
all the sorts it contains. We will denote these predicates using their usual infix notation
', independently of the sort they apply to.

Definition 6. We call atoms the terms of the sort B. We will denote by K the set of
atoms that can be built on Σ and V .

Definition 7. We define the set of logical formulas on Σ, denoted by S, inductively as
follows:

• > and ⊥ are elements of S.

• Any atom of K is an element of S.

• If φ ∈ S, then its negation ¬φ is in S.

• For any two formulas φ, ψ ∈ S, their conjunction φ∧ψ and their disjunction φ∨ψ
are also formulas in S.

• Given a formula φ ∈ S and a variable v ∈ V the quantified expressions ∀v.φ and
∃v.φ are formulas in S.

Definition 8. We call literal either an atom of K or its negation. We will denote by L
the set of all literals that can be built on Σ and V .

Notation 9. For any two formulas φ, ψ ∈ S, we will use the usual notations φ ⇒ ψ for
¬φ ∨ ψ and φ⇔ ψ for (φ⇒ ψ) ∧ (ψ ⇒ φ).

Definition 10. Given a formula φ ∈ S, we define φ the complement of φ inductively as
follows:

• > = ⊥.

• ⊥ = >.

• If φ is an atom of L, then φ = ¬ψ.

• If φ = ¬ψ with ψ ∈ S, then φ = ψ.

• If φ = ψ1 ∧ ψ2 with ψ1, ψ2 ∈ S, then φ = ψ1 ∨ ψ2.

• If φ = ψ1 ∨ ψ2 with ψ1, ψ2 ∈ S, then φ = ψ1 ∧ ψ2.

• If φ = ∀v.ψ with v a variable in Σ and ψ ∈ S, then φ = ∃v.ψ.

• If φ = ∃v.ψ with v a variable in Σ and ψ ∈ S, then φ = ∀v.ψ.
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Example 11. In order to illustrate the notions introduced in this chapter, we will consider
a signature Σ0 containing the function symbols a, b, c of arity 0 and return type N, the
usual unary minus and sum functions −,+ over integers, and the usual equality predicate
'. In this context, expressions such as a ' b, ¬(b ' c), a + b ' −c are elements of L0.
Likewise, expressions such as a ' b ∧ ¬(b ' c), ¬(a ' b) ∨ c ' c, ¬(a ' c) ∧ a ' b are
elements of S0.

We now briefly recall the usual notions of interpretations, models and satisfiability.
Though we will mostly work with total interpretation and models in this thesis, partial
models will be required in Section 3.4. This explains why we give a definition for partial
interpretations and not exclusively for total interpretations.

Definition 12. Given a signature Σ, an interpretation of Σ is a tuple I : (Is, If ) such
that:

1. Is is a total function associating to each sort s in Σ a non-empty set of possible
values denoted by Is(s). We also impose that, for any two sorts s0, s1 in Σ, if s0 6= s1

then Is(s0) ∩ Is(s1) = ∅.

2. Is(B) = {>,⊥}.

3. If is a partial function associating to each function symbol f ∈ Σ, in the domain of
σ and such that σ(f) = (s0, s1, . . . , sn), If (f) a function from Is(s1)× . . .× Is(sn)
to Is(s0).

Definition 13. Given a set of variables of V and an interpretation I, we call interpretation
of the variables, and denote by Iv, a partial function associating to any variable v of the
sort s in its domain a value in Is(s). Given an interpretation of the variables Iv, a variable
v and x ∈ Is(sort(v)), we will denote by Ivv 7→x the function defined on Dom(Iv) ∪ {v},
such that

∀v′ ∈ Dom(Iv) \ {v}, Ivv 7→x(v′) = Iv(v)

and such that
Ivv 7→x(v) = x.

Definition 14. Given a term t on Σ, an interpretation I and an interpretation of the
variables of V Iv, the evaluation of the term t, denoted by JtKI,Iv , is defined inductively
as follows:

• If t is a constant, then JtKI,Iv is the image of If (t) if t ∈ Dom(If ) and is undefined
otherwise.

• If t is a variable, then JtKI,Iv = Iv(t) if t ∈ Dom(Iv) and is undefined otherwise.

• If t = f(t1, . . . , tn) where t1, . . . , tn are terms, then JtKI,Iv is undefined if the evalu-
ation of at least one of the terms t1, . . . , tn is undefined or if f is not in the domain
of If . Otherwise, JtKI,Iv = If (t)(Jt1KI,Iv , . . . , JtnKI,Iv).

Definition 15. Given a formula φ, an interpretation I of Σ and a mapping of the variables
Iv, we call evaluation of φ in I, Iv and denote by JφKI,Iv the value in {>,⊥, ι} defined
inductively as follows:
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• J>KI,Iv = >.

• J⊥KI,Iv = ⊥.

• If φ is an atom, then JφKI,Iv is equal to the evaluation of the term φ if it exists.
Otherwise, JφKI,Iv = ι.

• If φ = ¬ψ then JφKI,Iv = > if and only if JψKI,Iv = ⊥ and JφKI,Iv = ⊥ if and only if
JψKI,Iv = >. Otherwise, JφKI,Iv = ι.

• If φ = ψ1 ∧ ψ2 then JφKI,Iv = > if and only if both Jψ1KI,Iv = > and Jψ2KI,Iv = >.
If either Jψ1KI,Iv = ⊥ or Jψ2KI,Iv = ⊥, then JφKI,Iv = ⊥. Otherwise, JφKI,Iv = ι.

• If φ = ψ1 ∨ ψ2 then JφKI,Iv = > if and only if either Jψ1KI,Iv = > or Jψ2KI,Iv = >.
If both Jψ1KI,Iv = ⊥ and Jψ2KI,Iv = ⊥, then JφKI,Iv = ⊥. Otherwise, JφKI,Iv = ι.

• If φ = ∀v.ψ with v a variable in Σ then JφKI,Iv = > if and only if, for any element
x in Is(sort(v)) we have JψKI,Ivv 7→x

= >. If there exists an element x of Is(sort(v))
such that JψKI,Ivv 7→x

= ⊥, then JφKI,Iv = ⊥. Otherwise, JφKI,Iv = ι.

• If φ = ∃v.ψ with v a variable in Σ then JφKI,Iv = > if and only if there exists an x
element of Is(sort(v)) such that JψKI,Ivv 7→x

= >. If for any element x of Is(sort(v))
we have JψKI,Ivv 7→x

= ⊥, then JφKI,Iv = ⊥. Otherwise, JφKI,Iv = ι.

Given a closed formula φ and an interpretation I, we call evaluation of φ in I and
denote by JφKI the value JφKI,∅.

Definition 16. We say that an interpretation I is total if If is a total function. Other-
wise, we say that I is a partial interpretation.

Proposition 17. Let I be a total interpretation. For any formula φ with no free variables,
JφKI ∈ {>,⊥}.

In all the following, unless we explicitly mention the use of partial interpretations, we
will only consider closed formulas and total interpretations.

Example 18. Assume we interpret the functions and predicates of Example 11 with their
usual definition on integers. If we take an interpretation I that maps, a and c to 0 and b
to 1, then we will have Ja ' cKI = >, Ja+ b ' cKI = ⊥, Ja ' c ∧ ¬(a ' b)KI = >.
Remark 19. We will assume that for any interpretation I and for any sort s of Σ, we have
for the equality predicate ' of s that If (') = (tl, tr) 7→ tl = tr.

Definition 20. Given a formula φ and an interpretation I, we say that I is a model of
φ if JφKI = >. In this case, we will write I |= φ.

If we review Example 18, we can say that the interpretation I is a model of a '
c ∧ ¬(a ' b).

Definition 21. If there exists a model of a formula φ, we say that φ is satisfiable. If no
such interpretation exists, we say that φ is unsatisfiable.

Proposition 22. A formula φ is unsatisfiable if and only if φ |= ⊥.
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Notation 23. As a consequence of proposition 22, we will use the notation φ 6|= ⊥ to
denote that a formula φ is satisfiable and φ |= ⊥ to denote that φ is unsatisfiable.

Typically, a ' c∧¬(a ' b) is a satisfiable formula, as we exhibited a model of it. The
formula a ' b ∧ ¬(a ' b) however, does not admit any model, as an interpretation I ′

such that Ja ' bKI′ = > will impose that J¬(a ' b)KI′ = ⊥ and conversely. This formula
is thus unsatisfiable.

Definition 24. Let φ1 and φ2 be two formulas. We say that φ1 entails φ2, and writeφ1 |=
φ2, if all the total models of φ1 are also models of φ2. In this case, we will also say that
φ2 is a logical consequence of φ1.

Definition 25. Given a signature Σ and the set S of logical formulas we can build on
it, we call theory a subset T ⊆ S such that any logical consequence of T belongs to T .

We will say that an interpretation I is a model of the theory T if I |= T .

Definition 26. Let T be a theory. Given a formula φ and an interpretation I such that
I |= T , we say that I is a T -model of φ, and write I |=T φ, if JφKI = >.

If such an interpretation exists for a given formula φ, we will say that this formula is
T -satisfiable. If no such interpretation exists, we will say that φ is T -unsatisfiable

When all the T -models of a formula φ are also models of another formula ψ, we will
write φ |=T ψ and say that φ entails ψ in T or that ψ is a T -consequence of φ.

Proposition 27. Given a theory T , a formula φ is T -unsatisfiable if and only if φ |=T ⊥.

Similarly to what we did in Notation 23, we may thus write φ 6|=T ⊥ to denote that
φ is T -satisfiable and φ |=T ⊥ to denote that it is T -unsatisfiable.

Usual examples of theories include the theory of linear arithmetic [64, 83] or the theory
of arrays [33]. The main goal of this work is to define systems that are theory-independent.
This means that we do not want to design algorithms that will use particular properties
of one given theory but rather that will remain generic until instantiated with external
systems that deal with the specific theory.

In all the following, and unless specified otherwise, we will assume that we are given
a specific but undetermined theory T . We will also assume the existence of a correct
procedure to check whether a given formula is T -satisfiable or not, that is, for which it is
guaranteed that when it gives an answer, this answer correctly describes the status of the
formula. Even though it is clear that it is better to work with decidable procedures, we
do not impose the decidability of the satisfiability problem in general. We will later pro-
pose solutions to handle semi-decidable procedures at the expense of some completeness
properties for the algorithms we will present.

Definition 28. We call tautology any formula that is satisfied by every total interpreta-
tion. Given a theory T , we call T -tautology any formula that is satisfied by every model
of T .

Notation 29. In all the following, we will identify sets of formulas with the conjunction
of their elements. That is, given a finite set of formulas Φ = {φ1, . . . φn} and any other
formula ψ, the notation ψ |= Φ will be equivalent to ψ |=

∧
i∈J1,nK φi, the formula ψ ∧ Φ

to ψ ∧
∧
i∈J1,nK φi, etc.
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Within the context of Example 11, we will write indistinctively {a ' b,¬(c ' b)} and
a ' b ∧ ¬(c ' b).

Definition 30. We define clauses as possibly empty disjunctions of literals with no
repetition. If a clause contains only one literal, we will call it is a unit clause. If a clause
does not contain any literal, we will call it the empty clause.

A consequence of Definition 30 is that, for two clauses C and D, if C ∨ D is also a
clause, then C and D share no literal.

For clarity reasons, we will also identify unit clauses with the literal they contain.
In this work, we will mostly study the generation of logical consequences that can be

represented as clauses.

Notation 31. We will denote the empty clause by ⊥. This is justified by the fact that the
empty clause has no model.

Notation 32. As a consequence of Notation 29, for a given clause C = l1 ∨ . . .∨ ln we will
denote by C the set {l1, . . . , ln}.

Notation 33. Given a set of clauses Φ, we will denote by Lits(Φ) the set of literals
contained in at least one clause of Φ.

Proposition 34. Let l be a literal and let C,D be clauses. The following statements
hold:

1. l ∨ C |=T D iff l |=T D and C |=T D.

2. C |=T l ∨D iff C ∧ l |=T D.

Proof. Let l be a literal and let C,D be clauses.

1. Let us assume that l ∨ C |=T D. The definition of the disjunction gives us both
that l |=T l ∨ C and C |=T l ∨ C. This means that all models l are models l ∨ C,
thus models of D. Thus we have that l |=T D. Similarly we have that C |=T D.

Conversely, if we assume that both l |=T D and C |=T D, as any model of of l ∨ C
if necessarily a model of l and/or a model of C, we have that l ∨ C |=T D.

2. Let us assume that C |=T l ∨ D. Let us take a model of C ∧ l. The definition of
conjunctions ensures that this model is both a model of C and of l. The first point
gives us that it is model of l ∨D and the second that it is not a model of l, hence
that it is necessarily a model of D. Conversely, if we assume that C ∧ l |=T D, we
can split the models of C into those that also satisfy l (in which case the hypothesis
gives us that they satisfy D, thus also l ∨ D), and those that do not, and thus
necessarily satisfy l, thus l ∨D.
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1.2 Implicates and implicants

The main line of contribution of the work presented here is the computation and usage of
logical consequences of a given formula (the implicates of this formula). We will restrict
this work to the computation of logical consequences in the form of clauses, and define
the corresponding notions accordingly:

Definition 35. We say that a clause C is an implicate of a formula ψ if ψ |= C. Similarly,
we say that C is a T -implicate of ψ if ψ |=T C.

We also define the dual notion of implicants : a set of literals Q is an implicant of ψ
if Q |= ψ and a T -implicant of ψ if Q |=T ψ.

Remark 36. The definitions of implicates and implicants could be extended to include
formulas that cannot be represented by a conjunction of clauses. As we will not compute
formulas of this form in this work, we will stick to this definition to clarify what we
compute.

It is easy to see that the implicates of a formula can be numerous and redundant.
Let us take, for instance, the formula a ' b ∨ b ' c in the context of Example 11. If
interpreted within the theory of linear arithmetic, this formula admits many implicates
(such as ¬(a ' c) ∨ a ' b, a ' b ∨ a ' c ∨ b ' c, a ' b ∨ a ' c ∨ b ' c – in a different
order – or a ' b∨ b ' c – the formula itself) which could all be derived from the formula
itself. This is why we are interested in a minimality property for the set of implicates of
a formula. To obtain a set of implicates only composed of formulas that carry mutually
distinct information from the others, we define the concept of prime implicates.

Definition 37. An implicate C of a formula ψ is a prime implicate of ψ if for every
implicate D of ψ, D |= C only if C |= D. Similarly, C is a prime T -implicate of ψ if for
every T -implicate D of ψ, D |=T C only if C |=T D.

Similarly to what we did in Definition 35, we will also consider the dual notion of prime
implicant and prime T -implicant : an implicant Q of a formula ψ is a prime implicant of
ψ if for every implicant D of ψ, D |= Q only if Q |= D, and it is a prime T -implicant of
ψ if for every T -implicant D of ψ, D |=T Q only if Q |=T D.

As previously explained, we will mostly consider sets of formulas (typically sets of
implicates). This means that will we need a way to express whether a formula is already
a consequence that could be derived from an element in the a set. The following definitions
serve this purpose.

Definition 38. Given a set of formulas Φ and a formula φ, we say that Φ strongly entails
φ, and write Φ ||= φ, if there is a formula ψ ∈ Φ such that ψ |= φ. Identically, we will say
that Φ strongly entails φ in T , and write Φ ||=T φ, if there is a formula ψ ∈ Φ such that
ψ |=T φ.

Definition 39. Given two sets of formulas Φ and Ψ, we say that Φ strongly entails Ψ,
and write Φ ||= Ψ, if Φ strongly entails all the formulas in Ψ. Identically, we will say that
Φ strongly entails Ψ in T , and denote Φ ||=T Ψ, if and only if ∀ψ ∈ Ψ,Φ ||=T ψ.
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Definition 40. We will say that two sets of formulas Φ1 and Φ2 are identical modulo
T -equivalence if they verify both Φ1 ||=T Φ2 and Φ2 ||=T Φ1. Such a property will be
written Φ1 ∼T Φ2.

Such sets carry the same information about the consequences of the formulas they
represent.

The following definitions are aimed at defining more precisely the problem we tackle,
and a first requirement for that is the definition of a framework to reduce a set of impli-
cates into a minimal equivalent one.

Notation 41. In all the following, we will assume the existence of a total well-founded
order ≺ on clauses, that agrees with inclusion. This means that for any two clauses C
and D, we will have C ≺ D whenever C ( D.

Example 42. Let us consider the clauses C0 : a ' b, C1 : a ' b∨ c ' d, C2 : c ' d. As we
have C0 ⊂ C1 and C2 ⊂ C1, we will necessarily have C0 ≺ C1 and C2 ≺ C1. The clauses
C0 and C2 can then be ordered arbitrarily, e.g., C0 ≺ C2.

Definition 43. Given a set of clauses Φ, we denote by SubMin(Φ), and call entailment
minimal equivalent of Φ, the set obtained by deleting from Φ all clauses D such that one
of the following hold:

1. D is a tautology.

2. There exists C ∈ Φ such that C entails D and either C is not an implicate of D or
C ≺ D.

Similarly, given a theory T , we call subsumption minimal equivalent in T , and denote
by SubMinT (Φ), the set obtained by deleting from Φ all clauses D such that either

1. D is a T -tautology.

2. There exists C ∈ Φ such that C entails D in T and either C is not a T -implicate
of D or C ≺ D.

Example 44. If we consider the set of clauses Ψ = {a ' b, a ' b∨ c ' d, c ' d, a ' a, d '
c}, with ' interpreted with the usual definition of the equality, we first notice that the
clause a ' a is a T -tautology. As we saw in the previous example, a ' b ∨ c ' d is a
logical consequence of both a ' b and c ' d. We also have both c ' d |=T d ' c and
d ' c |=T c ' d. Let us assume that we have c ' d ≺ d ' c. In this case, we will
have SubMinT (Ψ) = {a ' b, c ' d} as we removed the T -tautology, the weaker logical
consequence a ' b∨ c ' d and kept only the smallest of the two equivalent clauses c ' d
and d ' c.

Proposition 45. Given a set of clauses Φ containing at least one formula that is not a
T -tautology, SubMin(Φ) ∼T Φ.

Proof. SubMin(Φ) ⊂ Φ by definition. This gives us that Φ ||=T SubMin(Φ) as any
formula entails itself. Now let us take a formula D ∈ Φ. If D ∈ SubMin(Φ), then it
entails itself and we have found a satisfying entailing formula. If it is not the case, then
by Definition 43, it is either a T -tautology (in which case it is entailed by any formula
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of SubMin(Φ)) or it verifies the second point of the definition. In this case, there exists
C ∈ Φ entailing D that is either not entailed by D or smaller than D with respect to ≺.
If C ∈ SubMin(Φ), we have found our entailing clause. If not, we can recursively apply
the same definition to C. We are certain to find one clause of SubMin(Φ) because ≺ is
well-founded, This gives us that SubMin(Φ) ||=T Φ

Definition 46. In the following, we will also consider the notion of abducible literals,
that is, a finite subset of L upon which we want to obtain implicates or implicants of a
given formula.

Given a set of abducible literals A, we will say that an implicate I of a formula φ
is an A-implicate of φ if I ⊆ A. Similarly, we will say that an implicant I of φ is an
A-implicant of φ if I ⊆ A, that a T -implicate I of φ is a (T ,A)-implicate of φ if I ⊆ A,
and that a T -implicant I of φ is a (T ,A)-implicant of φ if I ⊆ A.

Intuitively, the set of abducible literals will contains the literals that are considered
interesting in the context of the formula we are studying. Typically, if the formula
is obtained from the logical representation of a program, it could exclude the literals
containing symbols not corresponding to any inputs available to the programmer.

Example 47. Let us consider the sample program presented in Algorithm 1.1 on two inte-
ger inputs x and y. And let us consider the problem of computing a sufficient precondition
for the program not to perform a division by zero at Line 4. An obvious precondition for
this to be verified would be that δ 6= 0. However, it is clear that, in the context, the user
has not way to act directly on the value of δ, as it is a variable only used by the program
internally. This means that the precondition we are actually interested in is the expressed
in the form of x+ y 6= 0 (which in this case is strictly equivalent). This type of issue can
be solved by using this concept of abducible literals. Indeed, in this context composed of
the three integer constants x, y, δ, will we define a set of abducible literals such that it
does not contain any literal referencing δ. This will permit to prune the logical solutions
containing it and to generate only the ones that are relevant in the context.

Algorithm 1.1: SP0
1 input x Int;
2 input y Int;
3 let δ ← x+ y;
4 return x

δ
;

It is clear that the notion of abducible literals puts an addi-
tional burden on the user of any method using it, as he will also
be tasked with defining this set and forwarding it to the system.
We will see (Chapter 6.4) however that we can design generic
methods relevant to the problems we tackle that generate sets
of abducible literals that, even if they contain some non-relevant
elements, allow to obtain an acceptable solution for the problems
we aim to solve.

We now define the notations we will use to represent the sets of implicates we will
generate.

Notation 48. For any given theory T , set of formulas Φ and set of abducible literals A,
we will denote by IT ,A(Φ) the set consisting of all the (T ,A)-implicates of Φ, and by
I∗T ,A(Φ) the one consisting all the prime (T ,A)-implicates of Φ.

In a context where we do not consider any theory, we will also use the notation IA(Φ)
for the set of A-implicates of Φ, as well as I∗A(Φ) for its prime A-implicates. Likewise,
we will allow the notations IT (Φ) and I∗T (Φ) when a theory but no abducible literal set
is considered.
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Proposition 49. For any given theory T , set of formulas Φ and set of abducible literals
A, we have I∗T ,A(Φ) ∼T SubMinT (IT ,A(Φ)).

Proof. This is a direct consequence of Proposition 45 and of the fact that I∗T ,A(Φ) ∼T
IT ,A(Φ).

1.3 Theories as external dependencies
As explained in both this chapter’s introduction and content, one of the major advantages
of the work presented in this thesis is its independence on the concrete theory it handles.
Users can express the problems they want to solve in the theory they deem appropriate
then plug our systems with tools that can handle the theories they chose. This genericity
suggests that we can abstract the usage of the theory-dependent elements used within
the methods we provide. This will be done through the framework we present in this
section.

Definition 50. Given a signature Σ and a theory T , we call satisfiability problem in T
the problem of deciding whether a given formula admits a model in T , that is if there
exists a model of T that is also a model of this formula.

In the work presented in this thesis, all the tasks delegated to theory-related operations
will be in the form of satisfiability tests. This means that as long as one can provide an
algorithm to decide such satisfiability queries in a theory, it will be possible to use the
methods presented in this work within this theory. We formalize this fact with the
following definition:

Definition 51. By a slight abuse of words, we will say that a given theory T is decidable
if there exists an algorithm that is able to decide for any formula φ expressible within
T if it admits a model in T or not. If no such algorithm exists, we shall say that T is
undecidable.

In what follows, when we talk about theories and genericity modulo theories, we
restrict ourselves to decidable theories, because the queries we require an answer for are
satisfiability tests. We point out here that more general properties could be derived as,
technically, we should not require full decidability for the theories we use, but only that
of the fragment we use. We will also see that, in practice (see Chapters 6.4 and 8), we
can in some cases tweak our algorithms to bypass some satisfiability tests whose results
cannot be computed but still reach an acceptable conclusion for the problem we tackled.
However, within the theoretical presentation of those methods, we will stick to decidable
theories.

We will call decision procedure any algorithm that decides a satisfiability problem in
at least one theory. The theory will be detailed when necessary and a decision procedure
for a given theory T will be called a T -decision procedure. A technical system for
computationally deciding such queries is called an SMT-solver [78, 10, 51, 125]. Such
systems usually implement several T -decision procedures.

We will assume that a decision procedure will always return an element of B =
{Sat, Unsat, Unknown}. For a formula φ and a theory T , we will assume that the decision
procedure ensures the following:
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1. If it returns Sat, then φ is T -satisfiable.

2. If it returns Unsat, then φ is T -unsatisfiable.

If T is a decidable theory, we will assume that any decision procedure handling this
theory will never return Unknown. Even though, in practice, an SMT-solver may still
return Unknown.

When Sat is returned, the decision procedure (and the SMT-solver) may additionally
return a model of the formula it computed. If it is the case, we assume that we can
retrieve this model.

In all the following, every time we test a satisfiability problem, we will assume that it
is handled by a decision procedure handling the underlying theory. We assume that such
queries will thus be handled by an SMT-solver in any practical system implementing the
algorithms we will define in Chapters 3 to 6.

An SMT-solver is incremental if it offers a way to update only a part of the formula it
was trying to determine the satisfiability of. Intuitively, we expect that if the SMT-solver
previously obtained a result for an initial formula, the computation for the updated one
will be more efficient than if it was restarting from scratch.

Such solvers are particularly adapted to algorithms that compute their solutions by
incrementally building hypotheses and test them against a given formula until reaching
the desired conclusion. As we will see in the following chapters, the algorithms we design
in this work comply with this framework, which makes the use of incremental SMT-solver
to decide the satisfiability tests they contain particularly relevant.

This consideration concludes this chapter of global definitions to which the readers can
continuously refer when browsing this document. The readers can also read the Index of
definitions and symbols at the end of this document. They will be redirected from there
to the corresponding definition within this chapter or any of the following ones. We will
tackle the actual scientific contributions of this PhD thesis.
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Chapter 2

State of the art

This chapter aims at presenting the context the research of this thesis was carried out in.
The terminology used in this chapter complies with the one introduced in Chapter 1 and
any additional notion specific to this chapter will be specified when it is used. We start
by presenting the related methods for the abduction technique we consider in this work
: the generation of the prime implicates of logical formulas. Prime implicate generation,
and abduction in general, is used in a wide range of applications and in a large range of
logical frameworks. We can note in particular its use in error diagnosis [56] and program
synthesis as well as its recent applications to description logic [107, 53, 63] and separation
logic [35, 61]. In this thesis we consider an application of abductive reasoning to generate
(property-directed) loop invariants of programs, that is, formulas associated to a program
loop that should be and remain true whenever the loop is executed (see also Definition
130). Thus, we will also briefly introduce alternatives and state-of-the-art algorithms for
performing loop invariant generation.

2.1 Prime implicate computation
We start by presenting in this section an overview of the various methods existing for per-
forming abduction by computing prime implicates, that is, minimal clausal consequences
of a given formula (see also Definitions 35 and 37). Prime implicate computation is a
natural method to perform abduction. Indeed, finding the missing conjunctive hypothe-
ses M allowing a formula φ to entail another formula ψ (i.e. ensuring that φ ∧M |= ψ)
can be done simply by computing the implicates of φ ∧ ¬ψ. The negation of any such
implicate is a conjunctive hypothesis ensuring such an entailment.

Example 52. Let us consider the following logical formula over the four boolean variables
p, q, r, s:

φ = (p ∨ ¬q ∨ r)
∧ (q ∨ ¬r ∨ ¬s)
∧ (¬p ∨ ¬q ∨ s)

If one wants to find the minimal set for inclusion of minimal consequences of φ expressed
in the form of disjunctions of boolean constants or their negation, they will find that the
three disjunctions (made explicit by the lines of the formula description) belong to this

15



set. Moreover, the clause C = ¬q ∨ r ∨ s is another consequence that was not originally
part of the formula. Any consequence of φ will be a logical consequence of one of these
four disjunctive formulas.

2.1.1 Early prime implicate computation in propositional logic

The concept of prime implicate for propositional logic was introduced by Quine [142]
at the beginning of the second half of the twentieth century. Since then, work has
been done to develop techniques to automatically compute the prime implicates of a
propositional formula. The complexity of this computation has been found to be DP-
hard [109, 113, 71, 16]. This ensures that any general algorithm automatically computing
the prime implicates of propositional formulas will have at least an exponential complexity
(unless P = NP).

For almost twenty years, the tools tackling this problem were built upon a specific
representation of propositional formulas: the minterm representation [23]. This consists
in substituting the formula by the set of its models, usually represented as sequences of
boolean values to explicitly exhibit the value of each propositional variable in a given
model.
Example 53. Let us consider once again the formula φ of Example 52. This formula
admits ten models:

p = >, q = >, r = ⊥, s = > (2.1)
p = >, q = >, r = >, s = > (2.2)
p = >, q = ⊥, r = ⊥, s = ⊥ (2.3)
p = >, q = ⊥, r = >, s = ⊥ (2.4)
p = >, q = ⊥, r = ⊥, s = > (2.5)
p = ⊥, q = >, r = >, s = > (2.6)
p = ⊥, q = >, r = >, s = ⊥ (2.7)
p = ⊥, q = ⊥, r = >, s = ⊥ (2.8)
p = ⊥, q = ⊥, r = ⊥, s = ⊥ (2.9)
p = ⊥, q = ⊥, r = ⊥, s = > (2.10)

By always representing the variables in the order p, q, r, s and interpreting 0 as ⊥ and 1 as
>, we can represent φ using the minterm representation by the set {(1, 1, 0, 1), (1, 1, 1, 1),
(1, 0, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 1), (0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 0, 0), (0, 0, 0, 1)}.

This representation is space consuming (exponential w.r.t. to the size of the initial
formula), which is one of the main reasons why, even though polynomial algorithms were
found to compute the prime implicates of formulas previously rewritten using minterms
[167], those were never able to perform efficiently on even reasonably sized problems. We
let the reader refer to more detailed surveys (e.g. [148]) for additional information on
these early works.

Around 1970, people started working on alternative approaches for computing prime
implicates, which were based directly on the formula. These methods are usually arranged
in two categories: those based on the resolution rule and those based on a decomposition
of the formula, though other approaches not fitting in any of these classes also exist.
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2.1.2 Resolution-based prime implicate computation in
propositional logic

Prime implicate computation methods fitting in this category are built upon the resolution
calculus [4] which consists of the following rule:

Definition 54. Given two clauses (disjunctions of boolean variables or their negation,
see also 30) C = l ∨ χ and D = ¬l ∨ ρ, the (propositional) resolution rule is

C D

χ ∨ ρ
The clause that is generated is called a resolvent.

As this rule is defined for clauses, these methods will require their input formula to
be in conjunctive normal form (CNF). They will then select two clauses, produce their
resolvent and remove both the tautologies and the clauses subsumed by another within
the updated clause set. This will be performed until a fixed-point in found for the set of
clauses, this fixed-point being the expected set of prime implicates of the formula.
Example 55. Let us consider once again the formula φ of Example 52. The clausal form
of this formula consists of three clauses {p ∨ ¬q ∨ r, q ∨ ¬r ∨ ¬s,¬p ∨ ¬q ∨ s}. Applying
the resolution rule on these clauses will, most of the time, result in a valid clause (that
is, satisfied in all interpretations or a tautology). For instance, applying the resolution
rule on the clauses p ∨ ¬q ∨ r and q ∨ ¬r ∨ ¬s on the variable q generates the resolvent
p ∨ r ∨ ¬r ∨ ¬s which is a valid clause. One can get the missing implicate of this set by
applying the resolution rule on p ∨ ¬q ∨ r and ¬p ∨ ¬q ∨ s for the variable p. Once all
the tautologies have been removed, and as no smaller clauses can be generated, the set
will be composed of all the prime implicates of φ.

An improvement of this algorithm introduced by Tison [171] and refined as the incre-
mental technique IPIA [106] makes use of an order on the variables. By following this
order and applying all the possible resolutions on a given variable at the same time, it is
able to limit as much as possible the number of redundant resolution steps, as it avoids
the need to reapply the resolution rule on one of the previously handled variables. It is
also important to consider the problem of selecting on which clauses the resolution rule
should be applied, as a smarter choice has a good chance to reduce the total number
of steps of the algorithm. Such techniques have been implemented in yet another incre-
mental refinement of Tison’s method called PIGLET [99], where the authors have chosen
to prioritize the selection of clauses sharing literals, producing smaller resolvent that are
more likely to be minimal. This technique was found to be more efficient than IPIA.

Another line of work that has been investigated over IPIA and Tison’s method is
related to the efficiency of clausal subsumption tests. By using tries [77] to store the
clauses (thus represented as ordered sets of literals), one can perform the subsumption
tests directly within the storage structure which improves the general performance sig-
nificantly. This was implemented in a method called CLTMS [49] which incrementally
constructs the trie of all the prime implicants for a formula. The method permitted to
solve non-trivial prime implicate generation problems for the first time.

Refining this work on the efficient storage of prime implicates, Simon and del Val
proposed a last algorithm based on Tison’s method [163] called ZRes or ZRes-Tison. In
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q ∨ ¬r ∨ ¬s ¬q ∨ p ∨ r ¬q ∨ ¬p ∨ s
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¬q

p
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¬p
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Figure 2.1: Trie representation of the formula φ from Example 52; literal order q > ¬q >
p > ¬p > r > ¬r > s > ¬s

ZRes-Tison, clauses are represented using Zero-suppressed binary decision diagrams (or
ZBDDs) [122], in which they appear as paths between the root and a 1-labeled terminal
node (see Figure 2.2). Moreover, by applying multi-resolution (a variant of the resolution
calculus) directly on the ZBDD, ZRes-Tison can perform all the resolutions on a given
variable at the same time, thus making the algorithm independent of the number of
actual resolution steps. All those considerations allow ZRes-Tison to produce ZBDDs
containing all the prime implicates of a set of clauses very efficiently.

2.1.3 Decomposition-based prime implicate computation in
propositional logic

The other main class of prime implicate generators (those not built upon inference rules)
is usually referred to as decomposition-based. Algorithms is this category tend to de-
compose their input problems into smaller formulas, clauses, conjunction of literals, etc,
recursively compute a result on these smaller part and finally merge these computed
results. Depending on the type of decomposition they perform, they may accept more
various forms of input problems than the one we described in the previous subsection
(such as disjunctive normal forms (DNF), negative normal forms (NNF)). One of the old-
est decomposition-based prime implicate generation method is called the Tree Method
[164]. It works by constructing the set of prime implicates by a depth-first search in an
ordered semantic tree with edges labelled by literals and nodes labelled by DNF formulas.
This technique has also been improved by using set enumeration trees, a generalization
of the semantic trees used in the Tree Method [155].

The Matrix Method [100] is another approach similar to the Tree Method but browsing
the tree in breadth instead and labelling nodes based on conjunctions of literals instead
of the literals themselves. Jackson and Pais additionally compared the two approaches
and showed that their method (Matrix Method) performed better.
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Figure 2.2: ZBDD representation of the prime implicates of the formula φ from Example
52; literal order q > ¬q > p > ¬p > r > ¬r > s > ¬s

By requiring their input formula to be expressed in a specific form before being pro-
cessed (CNF, DNF, NNF), the prime implicate generators previously introduced (includ-
ing those based on resolution) can be impractical to use in some contexts [129, 144, 143].
GEN-PI [129] is an incremental algorithm proposed to solve this issue. By computing
closure operations, it is able to compute all the prime implicates of inputs expressed as
conjunctions of DNF formulas. Ngair showed that this algorithm is as efficient as CLTMS
in general but exhibits much better performances on formulas one cannot easily represent
in normal form. An alternative approach extending the Matrix Method for NNF formulas
[143, 144] by looking for paths in a previously simplified graph representation of the NNF
formula has also been tried, but it was found to require numerous subsumption tests.

A tentative to reduce the need for logical operation by choosing an adequate repre-
sentation of the input and results was proposed by Coudert and Madre in 1992. They
combined the use of Binary decision diagrams (BDD) [1] to store clauses and a meta-
product representation of the variables of an initial DNF formula. This resulted in an
algorithm only depending on BDD operations to compute the prime implicates, which
put into light the need for a variables ordering leading to a BDD as compact as possible.
Most such orderings are heuristic-based (see e.g. [116]).

Manquinho et al. [116] later compared Coudert and Madre’s method with a more
efficient strategy, introduced by Errico et al. [73], and making use of integer linear pro-
gramming (ILP) [158]. This technique computes the prime implicates of a DNF formula
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by converting it into an ILP problem by representing literals with integer variables and
constructing constraints that correspond to the formulas of the problem. It is also able
to compute the prime implicates one at a time and can be hinted on the literals the next
generated implicate should be comprised of. The other major advantage of the use of
integer linear programming is that it gives us access to all the techniques already devel-
oped for solving such problems. The prime implicate generator exposed in [116] made use
of the search algorithm GRASP [162, 131], inspired from the propositional satisfiability
testing algorithm DPLL [48, 47], and specifically optimized for its use in prime implicate
generation.

Coudert and Madre’s technique [115] has been reused beside ILP to produce many
other modern decomposition-based prime implicate generators. Examples include the
algorithm by Henocque [88] creating three cases for the variables of DNF input formulas
in a DPLL fashion and Matusiewicz et al.’s method using prime implicate tries [119, 120]
for CNF formulas. By using BDDs in the first case and prime implicate tries in the latter
to store the prime implicates efficiently, these techniques managed to tackle problems
with up to tens of quintillions of prime implicates. The refinement of Matusiewicz et al.’s
method [120] was also shown to perform twice as fast as resolution-based methods.

2.1.4 Other approaches for prime implicate computation in
propositional logic

More recently, alternative approaches have emerged for generation of prime implicates.
For instance, Bittencourt et al. applied the use of quantum notation [17] on DNF for-
mulas, which annotates each literal with the identifiers of each conjunction of literals it
belongs to and then selects the smallest set of quanta covering all terms to obtain the
prime implicates. Alternative approaches also include the work of Ribeiro et al. [152]
which learns transition rules and uses specialization to obtain the prime implicants of a
formula.

Finally, the most efficient method to generate prime implicates in propositional logic
up to this date is built upon works from Jabbour et al. [98] and Palopoli et al. [135]
and reduces the problem of computing prime implicates to a model building problem by
transforming the formula. It is thus possible to obtain the prime implicates of the initial
formula by performing a model enumeration of the new one [141].

Example 56. Consider one last time the formula φ of Example 52. The method of Previti
et al. generates the equisatisfiable formula ψ ∪ D where ψ = (lp ∨ l¬q ∨ lr) ∧ (lq ∨ l¬r ∨
l¬s) ∧ (l¬p ∨ l¬q ∨ ls) and D = (¬lp ∨ ¬l¬p) ∧ (¬lq ∨ ¬l¬q) ∧ (¬lr ∨ ¬l¬r) ∧ (¬ls ∨ ¬l¬s).

The method then generates formulas encoding the fact that when a variable is eval-
uated to true, then the clause it appears in does not require its literals to be true any
longer. In our case, this gives us the following formulas:
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(¬lp ∨ ¬l¬q) ∧ (¬lp ∨ ¬lr) (2.11)
(¬l¬q ∨ ¬lp) ∧ (¬l¬q ∨ ¬lr) (2.12)
(¬lr ∨ ¬l¬q) ∧ (¬lr ∨ ¬lp) (2.13)
(¬lq ∨ ¬l¬r) ∧ (¬lq ∨ ¬l¬s) (2.14)
(¬l¬r ∨ ¬lq) ∧ (¬l¬r ∨ ¬l¬s) (2.15)
(¬l¬s ∨ ¬lq) ∧ (¬l¬s ∨ ¬l¬r) (2.16)

(¬l¬p ∨ ¬l¬q) ∧ (¬l¬p ∨ ¬lq) (2.17)
(¬l¬q ∨ ¬l¬p) ∧ (¬l¬q ∨ ¬ls) (2.18)
(¬ls ∨ ¬l¬p) ∧ (¬ls ∨ ¬l¬q) (2.19)

From this onwards, the algorithm looks for the models of the union of these formulas
with ψ ∪D to find the implicants or the implicates of φ.

This method has been implemented in a tool called primer and found to perform
better than all the previously introduced methods.

If the reader is interested in a more complete survey of the methods and algorithms
presented in this chapter for the computation of prime implicates of propositional formu-
las, it can refer to, e.g., [118]. .

2.1.5 Prime implicate computation out of propositional logic

To extend prime implicate generation out of propositional logic, various lines of work have
been explored [96, 117, 108, 36, 147, 149, 15, 174, 145, 58, 146, 68, 173, 69], mainly focusing
on restricted subsets of logical interest of the theory their consider. This first required
to extend the notion of prime implicate to first-order logic, which was done by Marquis
in 1991 [117], which also permitted to identify related issues that were not present in
propositional logic, such as the minimality of the set of implicates or the undecidability
of their computation. These additional difficulties led to the subsequent definition of
classes of first-order logic formulas for which the computation of prime implicates can be
performed, such as the clauses of bounded length and of bounded depth. Most methods
devised to compute prime implicates in first-order logic use either first-order resolution
[117] or the sequent calculus [36]. The greater complexity of the problem is probably
a cause to the fact that only few prime implicate generators for first-order logic can
display reasonable performance. One of them is the SOL calculus [96], for full first-order
logic, based on tableau resolution for theorem refutation [95]. After building a tableau
for the formula, it uses a skip rule to stop developing branches of the tableau without
refuting them, letting the leaves of the skipped branches form an implicate of the formula.
This method has been implemented in a Java program called SOLAR [127]. By using
a modification method [31, 97], the tool can also work natively with equational formula
[170].

Another method of practical use for the computation of prime implicates in subsets
of first-order logic has been devised by Dillig et al. [58]. It can be used for any formula
expressed in a first-order theory for which both a quantifier elimination procedure and a
decision procedure for satisfiability exist, and has been implemented within the MISTRAL
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SMT-solver [59, 56], using a branch and bound algorithm. This method is, however, not
complete, and only computes the implicates of the formula that can be expressed as the
negation of minimum partial variable assignments falsifying the formulas.

Prime implicate generation methods targetting other specific logics have also been
developed. Examples of such techniques include the work of Knill et al. [108] which
analyses unification failures to generate prime implicates for first order logic or equational
logic formulas, the work of Tran et al. [174] using the superposition calculus [3] to generate
positive and unit prime implicates and the work of Sofronie-Stokkermans [165, 166] relying
on external first-order satisfiability checkers to generate application-targetted constraints.
It was shown however [108, 67] that the superposition calculus is not complete out of the
scope of positive unit prime implicates. Furthermore, no result simplification procedure
is known to simplify the constraints generated in [165, 166].

To bypass these limitations, Tourret et al. devised an alternative approach using
instantiated equality axioms [68, 69] built over the work of de Kleer et al. [49]. This
approach is based is based on constrained calculus defined by the usual inference rules
of the superposition calculus together with additional rules to dynamically assert new
abducible hypotheses on demand into the search space. The asserted hypotheses are
attached to clauses as constraints and, when an empty clause is generated, the negation
of these hypotheses yields an implicate. They shown that their approach, targetting the
generation of prime implicates in equational logic, offered better results than previously
mentioned approaches.

Other approaches experimenting the generation of prime implicate in other logics such
as modal logics [18, 15, 146], where decomposition algorithms similar to those used in
propositional logic have been devised.

2.2 Loop invariant generation
We present in this section a brief overview of some known practical techniques to generate
loop invariants of programs. As a lot of work has been done on this problem, we do not try
to provide the reader with an exhaustive introduction to the many existing approaches.
More complete descriptions of method-specific techniques can be found in e.g. [62, 124,
125]. Rather, we present a small introduction that should help the readers familiarize
themselves with the loop invariant generation issue and get some pointers on the efficient
techniques that have been proposed to tackle it.

Example 57. Let us consider the very simple program presented in Sample Program 2.1,
for which we would have to obtain a proof of the proposition it contains at its last line
(y ≥ 1). It is clear that, in this case, the expected property cannot be derived from
the negation of the loop condition. This means that the proof will require an invariant
for the loop from which we would be able to derive the asserted formula. A satisfying
invariant for this program would be, e.g., y ≥ 1 ∧ x ≥ 1, in which the first part ensures
the validity of the assertion and the second part is necessary to ensure that this property
is preserved by the loop (see also Example 131). The problem considered here is the one
of automatically generating such an invariant.

The work on loop invariant generation derived from early works on automated pro-
gram verification [91, 105]. Those led to many different approaches that are usually
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Sample Program 2.1: LoopCheck1()

1 let x← 1;
2 let y ← 1;
3 while random({>,⊥}) do
4 invariant [?];
5 let _x← x;
6 let _y ← y;
7 x← _x+ _y;
8 y ← _x+ _y;

9 assert y ≥ 1;

classified as either static or dynamic.

2.2.1 Static loop invariant generation

Static approaches for loop invariant generation consist in building an abstract representa-
tion of the considered programs from which we can derive interesting properties. The first
historical approaches for loop invariant generation fall in this category (see e.g. [105]).
One of the most successful approach for static property inference is the Abstract inter-
pretation framework [42, 44], which performs a symbolic execution of the program over
an abstract domain. It then computes over-estimations of possible memory states after
an unbounded number of loop iterations and removes from these sets the ones it finds
contradict other known program constraints. This process is then repeated until a fixed
point is reached, which gives us the invariant exhibited by the method on the selected
abstract domain.

Example 58. Let us consider the Sample Program 2.1. Now let us consider a symbolic
execution of this program over the abstract domain of linear inequalities, that is, associ-
ating to each program state a set intervals for each variable, representing its execution.
After the initial assignments of Lines 1 and 2, the program state would typically be
{1 ≤ x ≤ 1, 1 ≤ y ≤ 1}. To obtain an invariant from this symbolic execution, an abstract
interpretation framework will start by executing the content of the loop one time on its
abstract domain. As both variables are increased by the value of the other, this would
give us, at the end of Line 8, the set {2 ≤ x ≤ 2, 2 ≤ y ≤ 2}. Now, the program will
detect that some of the states represented by the set are unreachable due to the con-
dition of the loop (as the loop may never be entered due to its condition). Removing
these unreachable states from the intervals we obtained would give us the updated set
{1 ≤ x ≤ 2, 1 ≤ y ≤ 2}. By executing the code of the loop again and repeating the
same state exclusion process (and, as required in this case, by using a widening operation
to obtain the limit of the execution states), the framework will generate the fixed point
representing the set of abstracted states reachable at the end of loop on the domain of
integer intervals: {1 ≤ x ≤ +∞, 1 ≤ y ≤ +∞}. This set gives us an invariant for the
considered loop (x ≥ 1 ∧ y ≥ 1) and additionally permits to prove the assertion Line 9.

The technique has been refined from the initial work of Cousot and Cousot to obtain
efficient abstract domains [123] and handle other modern program structures [87]. Though
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it may be difficult to find an abstract domain in which the generated invariants are precise
enough [121], the abstract interpretation framework was successfully applied to develop
tools of practical use for program verification [43, 89].

Other successful static approaches for loop invariant generation use decision pro-
cedures over specific domains to compute exact estimations of possible memory states
after the loop for some specific templated invariant shapes [72, 169, 102]. The initial
property can also be iteratively reinforced until it is found to be inductive for a given
transition relation [28, 92]. It is also possible to abstract the states of a program us-
ing predicates and then use model checking techniques to automatically generate such
predicates, among which are loop invariants [82, 5]. Researchers have also investigated
the use of other theoretical framework to obtain invariants from symbolic execution such
as the use of SMT-solvers [37] or quantifier-elimination based abduction [57]. In the
latter case, authors derived from an initial oracle-found invariant necessary consequences
after loop executions through Hoare logic [91]. When such consequences did not per-
mit to ensure pre-existing safety-property within the program, they used an quantifier
elimination-based algorithm to infer missing requirements within these invariants.

Example 59. Consider once more Sample Program 2.1. Here the method consists in
starting by replacing the placeholder invariant Line 4 by a propagating invariant for the
considered loop, e.g., >. Using Hoare Logic, one can derive from this initial placeholder in-
variant a formula that should hold if the assertion Line 9 is verified. For this program and
the current placeholder invariant, this condition will be (> ⇒ y ≥ 1). As it is clear that
this formula does not hold (take for instance y = 0), the algorithm will try to strengthen
the invariant by finding an abductive strengthening in the form of a placeholder ψ for the
formula (true ∧ ψ ⇒ y ≥ 1). Many solutions for this problem exists but let us assume
that we always obtain a good solution for the sake of keeping this example small. Using
a quantifier-elimination based algorithm for Presburger arithmetic [86] to produce this
solution, we will obtain that for instance, ψ = y ≥ 1 works as intended. The algorithm
will then replace the place holder invariant Line 4 by the new computed one (true∧y ≥ 1,
or simply y ≥ 1) and proceed with Hoare Logic to ensure that new placeholder invariant
is a true invariant (is is preserved by the content of the loop). The formula derived to
ensure this fact will in this case be (y ≥ 1 ⇒ (x + y ≥ 1)). Once again, this formula is
not verified (take for instance y = 1 and x = −8000), which will lead the algorithm to
generate a new abduction problem for this condition: (y ≥ 1 ∧ ψ ⇒ (x + y ≥ 1)). Ap-
plying the quantifier-elimination based abduction algorithm again will return a satisfying
solution such as x ≥ 1, whose resulting invariant y ≥ 1 ∧ x ≥ 1 will finally be proven to
both propagate and ensure the safety of the assertion Line 9.

In general, static analysis techniques rely on theoretical results over the mathematical
domain they build their inference procedures on [134]. The mathematical theories they
usually target and for which they have been found to produce invariants efficiently include
numeric domains [26, 27, 29, 102], linear inequality [44, 38], polynomial invariants [154,
156], octagons [123], arrays [30, 25, 110, 80], etc. More recently, methods to combine
these theories or extend the methods to work with higher-level properties have been
investigated. Such techniques were developed for the combination of linear arithmetic and
uninterpreted function symbols [14] by reducing the invariant inference to the verification
of a sequence of arithmetic, for first-order logic [112] by extracting interpolants from
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local or split proofs using symbol-eliminating inferences, for universal invariants [103]
by extending the work of Bradley et al. on incremental invariant reinforcement, and for
parametric systems [138] again by iteratively strengthening based on a symbol-elimination
procedure.

2.2.2 Dynamic loop invariant generation

Another class of techniques to generate loop invariants use direct executions of the pro-
gram to infer the invariants, and are thus referred to as dynamic. These methods are
briefly presented in this section but stay mainly out of the scope this work.

Early works on dynamic loop invariant generation [72] showed the practical efficiency
of executing the program over many possible inputs to detect in an initial set of possible
invariants those that happen to be violated by these executions. Refinements of this
technique [137, 130, 45] lead to efficient dynamic loop invariant generators. Though
such techniques do not provide formal proofs that the invariants they generate are indeed
correct, a posteriori evidence [176] has shown that they are able to produce true invariants
most of the time.

2.3 Summary
We have seen in this chapter various techniques to computes prime implicates of logical
formulas in propositional logic and beyond. We saw that most of the techniques proposed
required their input formulas to be expressed in a specific format (such as CNF, DNF,
NNF) and that, beyond propositional logic, the existing methods were either specialized
for a very specific subclass of logical formulas or unable to perform very efficiently. In
this thesis, we will present a novel approach for prime implicate generation that solves
these two issues by relying on satisfiability tests modulo theories.

We also briefly presented the issue of loop invariant generation of programs and some
of the approaches that can be used to solved it. We also explained how Dillig et al. used
an abduction algorithm to generate loop invariants for numeric programs. In this thesis,
we will extend their work by replacing their quantifier-based abduction algorithm by our
approach to prime implicate generation. We will then adapt their algorithm to fit our
needs and produce a loop invariant generator independent of the theory.
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Part I

A generic framework for abduction
modulo theories
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Chapter 3

Efficient prime implicate generation
modulo theories

The core contribution of this work is the design of a generic, in the sense of theory-
independent, algorithm to compute prime implicates of a formula. More formally, given
a decidable theory T , a finite set of T -satisfiable abducible literals A ⊆ L and a set
of formulas Φ, we will construct an algorithm that is able to generate all the prime
(T ,A)-implicates of Φ (modulo T -equivalence).

The algorithm we present is based on the fact that a clause C is a (T ,A)-implicate of
a set of clauses Φ if and only if C ⊆ A and Φ∪C |=T ⊥. This means that we can find the
(T ,A)-implicates of Φ by simply enumerating the subsets of A and keeping those whose
union with Φ is T -unsatisfiable.

3.1 An intuitive decomposition algorithm for prime
implicate generation

We start by presenting in this section a naive but intuitive algorithm to perform this
task. It consists in a systematic enumeration of the subsets of A performed by adding
one of its elements to a candidate implicate or hypothesis until the union of this candidate
with the set Φ is unsatisfiable. Each of these sets is the complement of an implicate of Φ.
Then, after finding an implicate, we can backtrack to the last literal added and pursue
the exploration until the whole set of abducible literals A has been explored. Clearly
this is not an efficient algorithm. For instance, we are certain that the same non-unit
(T ,A)-implicate will be generated several times, depending on the order in which the
literals are selected. However, it serves as a basis algorithm to present the core concept
of the method and as a didactic framework for its applications in the following chapters.
It will be improved in the following sections of the chapter to obtain a more efficient
algorithm that can be used in practice.

We start by exposing formally the reasons that allow us to construct (T ,A)-implicates
iteratively by decomposition:

Definition 60. Let Φ be a set of formulas. Let M,A be sets of literals such that
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M ∪ A ⊆ A. We define

IM,A(Φ) =
{
C ∈ IT ,A(Φ)

∣∣ ∃Q ⊆ A, C = M ∨Q
}
,

I∗M,A(Φ) = SubMinT (IM,A(Φ)).

Intuitively, a clause M ∨ Q thus belongs to IM,A(Φ) if and only if Q is a (T , A)-
implicate of Φ∪M . This justifies the fact that we can handle a single candidate (T ,A)-
implicate to which we successively add relevant literals of A until we obtain an actual
(T ,A)-implicate. We also have to justify that we can stop adding literals to this candidate
implicate and backtrack when it is an actual implicate.

Proposition 61. Let Φ be a set of formulas,M and A be sets of literals such thatM∪A ⊆
A. If M is T -satisfiable, then Φ ∪M is T -unsatisfiable if and only if I∗M,A(Φ) = {M}.
If M is T -unsatisfiable, then I∗M,A(Φ) = ∅.

Proof. If Φ ∪M is T -unsatisfiable then Φ |=T M and M ∈ IT ,A(Φ), thus M ∈ IM,A(Φ)
(by letting Q = ∅ in Definition 60). By definition, for any clause C ∈ IM,A(Φ), we have
M ⊆ C; thus M � C and M |=T C. Since M is not a T -tautology by hypothesis,
we deduce that SubMinT (I∗M,A(Φ)) = {M}. Conversely, if I∗M,A(Φ) = {M} then M ∈
IT ,A(Φ) by definition, hence Φ ∪M is T -unsatisfiable.

IfM is T -unsatisfiable, then any clause containingM is a T -tautology. Consequently,
all clauses in IM,A(Φ) are T -tautologies, and I∗M,A(Φ) is empty.

Proposition 61 justifies both that we can stop adding literals when our candidate
(T ,A)-implicate M is a (T ,A)-implicate of the initial formula (as it will not be possible
to construct implicates that are not consequences of M by adding more literals to it),
and that we can stop adding literals to it when the candidate (T ,A)-implicate is by itself
unsatisfiable.

Proposition 62. Let Φ be a set of formulas and M ⊆ A. If Φ ∪M ∼T Ψ ∪M , then
IM,A(Φ) = IM,A(Ψ).

Proof. Assume that C ∈ IM,A(Φ). Then C = M∨Q, with Q ⊆ A and C ∈ IT ,A(Φ). Since
C ∈ IT ,A(Φ) we have Φ |= C, hence Φ∪M ∪Q |=T ⊥. Since Φ∪M ∼T Ψ∪M we deduce
that Ψ ∪M ∪ Q |=T ⊥, hence C ∈ IT ,A(Ψ), and therefore C ∈ IM,A(Ψ). Consequently,
IM,A(Φ) ⊆ IM,A(Ψ). By symmetry, we deduce that IM,A(Φ) = IM,A(Ψ).

Propositions 61 and 62 prove that the exploration schema that was described in the
introduction allows us to generate a set of prime (T , A)-implicates entailing the set of
(T , A)-implicates of the initial formula. Still, it clear that some very obvious and minimal
improvements can be made in the choice of the literals we add to a candidate (T , A)-
implicate. Typically, it is clear that it is useless to add a new hypothesis l into M both if
M ∪ {l} is T -unsatisfiable (because the obtained T -implicate would be a T -tautology),
or if this set is equivalent to M (because the T -implicate would not be minimal). This
motivates the following definition:

Definition 63. Let Φ be a set of formulas and let M,A be two sets of literals. We
denote by fix(M,A,Φ) a set obtained by deleting from A some literals l such that either
M ∪ Φ |=T l or Φ |=T l.
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This definition permits to reduce the number of abducible hypotheses to try, and thus
the search space of the algorithm. Still, we do not assume that all the literals l satisfying
the condition above are to be deleted because, in practice, such literals may be hard to
detect. Hence, we prefer to state the properties of our algorithm without relying on this
assumption. To ensure termination, we will assume, however, that no element from M is
in fix(A,M,Φ).

Proposition 64. Given a set of formulas Φ, a set of abducible literals A, and a set of
literals M , we have I∗M,fix(A,M,Φ)(Φ) ⊆ I∗M,A(Φ).

Proof. Let I ∈ I∗M,fix(A,M,Φ)(Φ). As fix(A,M,Φ) ⊆ A, we have that I ∈ IM,A(Φ). As
I ∈ I∗M,fix(A,M,Φ)(Φ), we are certain that I is not a T -tautology. Now let us consider
a clause C ∈ IM,A(Φ) such that C |=T I. Necessarily C contains at least one literal
l ∈ A \ fix(A,M,Φ). This means that either M ∪ Φ |=T l or that Φ |=T l, from which
we can deduce from the form of C that I |= C.

At this point, we have described the core elements of an algorithm to compute a set
of (T , A)-implicates for a set of formulas Φ, and such that no prime (T , A)-implicate
is missed. What misses from this point to the goal we have set is to reduce this set of
(T , A)-implicates we obtained in order to keep the most general ones only. In order to do
this, we devise a method to build the set of (T , A)-implicates incrementally. Proposition
65 provides a method to inductively enlarge the set of (T , A)-implicates by incrementally
adding new elements to it. If Proposition 61 represented the base cases of our algorithm,
Proposition 65 presents the inductive case to guarantee its completeness.

Proposition 65. Consider a set of formulas Φ and two sets of literals M,A such that
I∗M,A(Φ) 6= {M}. The following equalities hold:

1. I∗M,A(Φ) = SubMinT (
⋃
l∈A I

∗
M∪{l},A(Φ)).

2. I∗M,A(Φ) = I∗M,fix(A,M,Φ)(Φ).

Proof. 1. It suffices to prove that IM,A(Φ) =
⋃
l∈A\M IM∪{l},A(Φ)). Let C ∈ IM,A(Φ).

By hypothesis, C is of the form M ∨ Q, where Q ⊆ A and M ∩ Q = ∅. Since
I∗M,A(Φ) 6= {M}, necessarily C 6= M and Q 6= ∅. Let l ∈ Q and m = l. We have
C = M ∨m∨Q′, with Q′ = Q \ {l}, and since l ∈ A, C ∈ IM∪{l},A(Φ). Conversely,
if C ∈ IM∪{l},A(Φ) with l ∈ A, then C ∈ IM,A(Φ) and C = M ∨ l ∨ Q, for some
Q ⊆ A, so that C ∈ IM,A(Φ).

2. Since fix(A,M,Φ) ⊆ A, we have by proposition 64 that I∗M,fix(A,M,Φ)(Φ) ⊆ I∗M,A(Φ).
Now let l be a literal in A such that either M ∪ Φ |= l or M |= l. If C ∈
SubMinT (IM,A(Φ)) is of the form M ∨ Q, then Q cannot contain l: indeed, in
the former case l could be removed from Φ∪C while preserving equivalence, hence
the implicate would not be minimal, and in the later case C would be a T -tautology.

The results above lead to a basic algorithm for generating (T , A)-implicates which is
described in Algorithm 3.1.

31



Algorithm 3.1: ImpGen (Φ,M,A)
1 if M |=T ⊥ then
2 return ∅ ;
3 if Φ ∪M |= ⊥ then
4 return {M} ;
5 let B = fix(A,M,Φ) ;
6 foreach l ∈ B do
7 let Pl = ImpGen(Φ,M ∪ {l}, B) ;

8 return SubMinT (
⋃
l∈B Pl) ;

Lemma 66. I∗M,A(Φ) = ImpGen(Φ,M,A).

Proof. The result is proved by a straightforward induction on Card(A\M). As explained
above, the algorithm works by adding literals from A as hypotheses until a contradiction
can be derived. The return statement at Line 4 avoids enumerating the subsets that
strictly containM once it is known that Φ∪M is T -unsatisfiable. The return statement
at Line 2 similarly avoids the generation of inconsistent (T , A)-implicates. Thus by
Proposition 61, I∗M,A(Φ) = ∅ if M is T -unsatisfiable, and I∗M,A(Φ) = {M} if M is T -
satisfiable and Φ ∪M is T -unsatisfiable.

Otherwise, after reducing the set of abducible literals according to Definition 63 (Line
5), we generate the (T , A)-implicates we can derive from all the possible adding to our hy-
pothesis still available (Line 7). by Proposition 65, we have I∗M,A(Φ) = I∗M,fix(A,M,Φ)(Φ) =

I∗M,B(Φ). By the induction hypothesis, for each l ∈ A, Pl = I∗M∪{l},B(Φ), and by Propo-
sition 65, Pl = I∗M∪{l},A(Φ); we deduce that I∗M,A(Φ) = SubMinT (

⋃
l∈A Pl). Note that at

each recursive call, a new element is added to M , since fix(A,M,Φ) is assumed not to
contain any element from M .

This leads to the following result:

Theorem 67. If Φ is a set of formulas then I∗T ,A(Φ) = ImpGen(Φ, ∅,A).

We obtain a very simple algorithm that is able to compute all the prime (T , A)-
implicates of a set of formulas in any decidable theory. However, as announced in the in-
troduction, this algorithm is clearly not efficient, and thus not usable in practice. Though
it is easy to design simple improvements on this algorithm, we are going to push this fur-
ther and dedicate Section 3.2 to the design of an efficient algorithm based on this one.

Remark 68. As mentioned in the introduction of the chapter, we have assumed that
all the satisfiability tests we query in our algorithm are decidable. This is obviously a
result that will depend on the theory in which the formulas we handle are expressed. In
practice, as long as the SMT-solver used is correct, Algorithm 3.1 will also be correct (in
the sense that all the clauses it will generate will indeed be (T , A)-implicates of Φ). The
Algorithm will be complete, and thus return a set of clauses entailing the set of prime
(T , A)-implicates of Φ, only if the SMT-solver is also complete (never returns Unknown).
Finally, if the SMT-solver may not terminate, Algorithm 3.1 may not either, though this
limitation will be discussed in Chapters 6.4 and 8.
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3.2 Improving the prime implicates generator

In this section, we present several improvements that can be made to the previous algo-
rithm to prevent as many redundant or uninteresting (as in not permitting to obtain an
implicate) recursive call to be made. This results in a significant decrease of the size of
the exploration tree (as supported by experiments in Chapter 9). The final algorithm is
presented as Algorithm 4.1, and will conclude this part of the work.

3.2.1 Reducing the number of candidates

Let us start with the example of our chapter introduction, where l1∨ l2 is a prime (T ,A)-
implicate of a set Φ, but is generated twice by the ImpGen algorithm. Such redundant
calls are quite straightforward to avoid by ensuring that every invocation of the algorithm
corresponds to a distinct set of literalsM . This can be done by fixing an ordering< among
literals in A, and by assuming that hypotheses are always added in increasing order with
respect to <. Typically, in our case, assuming that l1 < l2, the order will prevent the
generation of this implicate in the form l2 < l1, as at the moment l2 has been added as an
hypothesis in our candidate (T ,A)-implicate, the algorithm will not be allowed to add l1
after it.

Another interesting method for restricting the set of candidate hypotheses is to exploit
information that can be extracted from the satisfiability tests made by the algorithm.
Indeed, along with the result of a satisfiability test occurring at line 1 of Algorithm 3.1, if
Φ∪M is satisfiable, it is likely that we can also recover a model of Φ∪M . Let us assume
that Φ ∪ {l1} is satisfiable, and that we can recover the corresponding model. Then if
the model of this set also satisfies l2, we are already certain that Φ ∪ {l1} ∪ {l2} is also
satisfiable (as the same model ensures this fact). Thus, it is not necessary to consider l2
as a hypothesis. In particular, if a model of Φ∪{l1} validates all the literals in A at Line
1 of Algorithm 3.1, then I∗M,A(Φ) is necessarily empty and no literal should be selected.
We can thus take advantage of the existence of a model of Φ ∪M in order to guide the
choice of the next literals in A. We will refer to this refinement as a semantic guidance
on the choices of the literals.

Observe, however, that this refinement interferes with the previous one based on the
order <. Indeed, non-minimal hypotheses will have to be considered if all the smaller
hypotheses are dismissed because they are true in the model.

Example 69. To illustrate this conflict between literal ordering and semantic guidance
using models, let us consider the following example. Assume that we have a set of
abducible literals A = {a, b, a, b} such that a < b < b < a, and that we are looking for the
prime (T , A)-implicates of Φ = {a ∨ b}. Now let us choose to prune the set of abducible
literals using our order on literals (such that we do not consider smaller literals) and
semantic guidance using models when we can recover them from the satisfiability tests.
Let us execute our (T , A)-implicate generation algorithm starting with a hypothesis set
M = ∅.

We start the execution by verifying the satisfiability of Φ. As it is satisfiable, we will
assume that we recover a model from the satisfiability test, such asM = a ∧ b. In this
case, we will prune from the set of abducible literals the literals the model satisfies, which
will result in A = {b, a}.
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At this step, we have to choose which literal we want to add to our hypothesis. We
follow the rule we set at the beginning of the example and take M = {b}, then call the
algorithm again. From this point, we will not be able to derive any (T , A)-implicate of Φ,
because all the satisfiable hypotheses we can obtain by adding literals from A to {b} would
not be in contradiction with a ∨ b. This means that, after trying those possibilities, the
algorithm will backtrack to the initial level where it will try the other possible addition
to the empty hypothesis set: M = {a}.

From here, one would expect that it could derive the (T , A)-implicate of Φ, but as
b (which is the literal required to generate the (T , A)-implicate) happens to be smaller
than a in our example, it will never be added as a hypothesis during this stage. And
because it was pruned from A at the previous level, it was never added as a hypothesis
there either. Thus the algorithm will terminate without generating the (T , A)-implicate
we wanted to obtain, which is a shame.

Notice that this problem only occurs due to the joint usage of literal ordering and
semantic guidance. This exhibits the fact that if we want to use them simultaneously, we
will need to tweak the algorithm to prevent such (T , A)-implicates to be missed.

These two improvement ideas and the consideration detailed in Example 69 justify
the following formalization of the principles. In what follows, we consider a total ordering
< on the elements of A, not necessarily related to the ordering ≺ on clauses.

Definition 70. For A ⊆ A and l ∈ A, we define A[l]
def
= {l′ ∈ A | l < l′}. If I is a set of

literals then we denote by AI [l] the set
{
l′ ∈ A

∣∣ l′ < l ∧ l′ 6∈ I
}
∪ A[l].

Example 71. Assume that A = {pi,¬pi | i = 1, . . . , 6} and that for all i, j ∈ J1, 6K, for all
literals l ∈ {pi,¬pi} and l′ ∈ {pj,¬pj}, l < l′ if and only if either i < j or (i = j, l = pi
and l′ = ¬pi). Then A[p4] = {¬p4, p5,¬p5, p6,¬p6}.

If I = {p1,¬p2}, then AI [p4] = {p1,¬p2, p3,¬p3,¬p4, p5,¬p5, p6,¬p6}.
Intuitively, the definition A[l] is an implementation of the literal ordering pruning

strategy (based on a given literal l). It defines which literals can be kept as possible
hypotheses for the enclosed sublevels such that fewer redundant calls are made. The
definition AI [l] aims to repair the issue that was discussed in Example 69. It defines the
set of literals that should be considered when some have been removed by the use of a
model at the previous level. These literals are actually the ones that were consequences
of the model but happened to be smaller than the hypothesis added to the candidate
(T , A)-implicate for the current level.

We now have to define how we handle the models we may obtain from the satisfiability
tests in our framework. This is done through the following definitions:

Definition 72. Let Φ be a set of formulas. A set of literals I is Φ-compatible with respect
to A (or simply Φ-compatible) if every prime (T ,A)-implicate of Φ contains a literal in
I.

Intuitively, a Φ-compatible set I consists of literals l such that l will be allowed to be
added as a hypothesis to generate (T ,A)-implicates of Φ (see Lemma 78 below). The set
I can always be defined by taking the negations of all the abducible literals from A. In
this case, all literals will remain possible hypotheses. It is possible, however, to restrict
the size of I when a model of Φ is known, as evidenced by the following proposition:
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Proposition 73. If Φ is a set of clauses and J is a model of Φ, then the set I def
=

{l ∈ L | J |= l} is Φ-compatible.

Proof. Let M be a set of literals such that M is a prime (T ,A)-implicate of Φ, and
assume that for all l ∈ M , l 6∈ I, i.e., that for all l ∈ M , J 6|= l. Then J |= l holds for
every l ∈M , hence J |= Φ ∪M and M cannot be a (T ,A)-implicate of Φ.

The goal here will thus be to use the models we recover from the satisfiability tests
to build Φ-compatible sets that are as small as possible. Note that the condition of
having a model of Φ was not added to Definition 72 because in practice, such a model
cannot always be constructed efficiently, or may not be available. Still, this completes
the modification of the framework for using both literal orderings and models.

3.2.2 Reusing the (T , A)-implicates

The next update we will discuss is based on some considerations on how we can reuse the
logical consequences we generate during the execution of the algorithm. In this section, we
only work with sets of formulas in negative normal form. The results could be extended to
other formulas by reasoning on the polarity of their atoms (number of negations applied
to them). One thing we can do is to use the implicates we have generated to simplify
the formula we are computing, in the hope to detect additional consequences without the
need of a satisfiability test. We can also expect an SMT-solver to perform faster on a
simplified formula. The easiest consequences to reuse are the unit clauses of the problem.
This motivates the handling of the unit consequences we can derive from our initial set
of formulas Φ; it can pay off if we update Φ with them when they are derived.

Definition 74. Let Φ be a set of formulas and M ⊆ A. We denote by UT ,Φ,M the set of
unit clauses logically entailed by Φ ∪M modulo T , i.e.,

UT ,Φ,M
def
= {l ∈ L | Φ ∪M |=T l}

If Φ is a set of clauses, given a set U such that M ⊆ U ⊆ UT ,Φ,M , we denote by
UT ,M [U ](Φ) a formula obtained from Φ by replacing some (arbitrarily chosen) literals l′
by ⊥ if U |=T l′ and by > if M |=T l′.

Note that U is not necessarily identical to UT ,Φ,M , because in practice the latter set is
hard to generate. Similarly we do not assume that all literals l′ are replaced in Definition
74 since testing logical entailment may be costly. Thus we prefer to give a very general
and flexible formulation of the definition so that upcoming results hold for any possible
choice of U and l′. Lemma 76 shows that the (T ,A)-implicates of a set of clauses Φ and
those of UT ,M [U ](Φ) are identical. In the case where Φ is not a set of clauses, we will
assume that this property holds.

Proposition 75. Let Φ be a set of formulas and M ⊆ A. Consider a set of literals U
such that M ⊆ U ⊆ UT ,Φ,M . We have:

Φ ∪M ∼T UT ,M [U ](Φ) ∪M
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Proof. We have Φ ∪M |= UT ,M [U ](Φ), since Φ ∪M |=T U , and U |= (l′ ⇒ ⊥) if U |= l′.
Conversely, it is clear that UT ,M [U ](Φ) ∪M |= Φ ∪M .

Lemma 76. Let Φ be a set of formulas and M ⊆ A. Consider a set of literals U such
that M ⊆ U ⊆ UT ,Φ,M . Then:

IM,A(Φ) = IM,A(UT ,M [U ](Φ))

Proof. This is an immediate consequence of Proposition 75.

We are now left to implement the use of those newly acquired unit consequences
within our algorithm.

Definition 77. Let U,M,A be sets of literals. We define:

U∗T ,M,A,U(Φ)
def
=
{
M ∨ l

∣∣ l ∈ A ∧ l ∈ U}
The lemma below can be viewed as a refinement of Proposition 65. It is based on

the previous results, according to which, when adding a new hypothesis l, it is possible
to remove from the set of abducible literals A every literal that is strictly smaller than
l, provided its complementary is in I (because we can always assume that the smallest
available hypothesis is considered first). This is why the recursive call is on AI [l] instead
of A. Note also that due to the interference between semantic guidance and the ordering
<, the smaller the set I is, the larger AI [l] will be.

Lemma 78. Assume that Φ∪M is T -satisfiable and let I be an (Φ ∪M)-compatible set
of literals. Let U be a set of literals such that M ⊆ U ⊆ UT ,Φ,M . We have the following:

I∗M,A(Φ) = SubMinT (

U∗T ,M,A,U(Φ) ∪
⋃

l∈A,l∈I

I∗M∪{l},AI [l](Φ)

)

Proof. First note that I∗M,A(Φ) 6= {M}, since Φ∪M is T -satisfiable. We first prove that
I∗M,A(Φ) ⊆ U∗T ,M,A,U(Φ) ∪

⋃
l∈A,l∈I I

∗
M∪{l},AI [l](Φ). Let C ∈ I∗M,A(Φ). By hypothesis, C

is of the form M ∨ Q, where ∅ 6= Q ⊆ A. Since I is (Φ ∪M)-compatible, Q necessarily
contains a literal l ∈ A such that l ∈ I. Assume that l is the smallest literal in Q
satisfying this property. We distinguish the following cases.

Assume that Q contains a literal l′ such that l′ ∈ U . In this case, since U ⊆ UT ,Φ,M ,
Φ ∪M |=T l′. Since Q ⊆ A, we also have l′ ∈ A, and since I∗M,A(Φ) 6= {M}, we
deduce that M ∨ l′ ∈ I∗M,A(Φ). Since M ∨ l′ |=T C and C ∈ I∗M,A(Φ), C must be
smaller or equal to M ∨ l′, which is possible only if C = M ∨ l′. We deduce that
C ∈ U∗T ,M,A,U(Φ).

Otherwise, we show thatQ\{l} ⊆ AI [l]. By Definition 70, we have A[l] = {l′ ∈ A | l < l′}
and AI [l] = {l′ ∈ A | l′ < l ∧ l′ 6∈ l} ∪ A[l]. Let l′ ∈ Q, with l′ 6= l. If l′ > l then
l′ ∈ A[l] ⊆ AI [l]. If l′ 6> l, then since > is total and l 6= l′, necessarily l > l′.
Since l is the smallest literal in Q such that l ∈ I, we deduce that l′ 6∈ I. Thus
l′ < l and l′ 6∈ I, which entails that l′ ∈ AI [l]. Consequently, Q \ {l} ⊆ AI [l]. Since
C = M ∪ {l} ∨Q \ {l}, this entails that C ∈ I∗M∪{l},AI [l](Φ).
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We now prove that U∗T ,M,A,U(Φ) ∪
⋃
l∈B,l∈I I

∗
M∪{l},BI [l](Φ) ⊆ IM,A(Φ).

Let C ∈ U∗T ,M,A,U(Φ). By definition, C is of the form M ∪ l with l ∈ A ∩ U . Since
U ⊆ UT ,Φ,M , we deduce that Φ ∪M |=T l, i.e., that Φ |=T M ∨ l. Since l ∈ A, this
entails that M ∨ l ∈ IM,A(Φ), hence C ∈ IM,A(Φ).

Let C ∈ I∗M∪{l},AI [l](Φ) with l ∈ A, l ∈ I. By definition, C = M ∨ l ∨ Q, with
Q ⊆ AI [l] and C ∈ I∗T ,A(Φ). But AI [l] ⊆ A by definition, thus Q ∪ {l} ⊆ A and
C = M ∨ (Q ∨ l) ∈ IM,A(Φ).

We restrict the usage of this solution to the T -implicates of size one because using
larger ones could be numerous and thus increase the complexity of the related computa-
tion.

3.2.3 External restrictions to prune more candidates

Another change we can do to our algorithm targets a more user-oriented feature. As
the set of (T , A)-implicate can be very large, one may not necessarily want to generate
them all. Pruning the (T , A)-implicates that are not of use after their generation is
the easiest way to obtain the result we expect, but it may also be possible to use those
external restrictions directly within the generation algorithm. This has at least two
advantages. First, it removes the necessity to prune the first result set, which reduces
the total computation time. Second, it may be used to detect that some hypothesis M
would only lead to (T , A)-implicates violating the restrictions. Such discoveries can be
used to prevent those literals from being added to the candidate (T , A)-implicate and
reduce the computation time once more. In order to implement that into our framework,
we parametrize our algorithm by a predicate P . This predicate will be used to filter the
implicates that are generated according to the choices of the user. We also assume it has
the following property:

Definition 79. A predicate P on sets of literals is ⊆-closed if for all sets of literals A
such that P(A) holds, if B ⊆ A then P(B) also holds.

Examples of⊆-closed predicates include cardinality constraints: Pk
def
= λA.Card(A) ≤

k, where k ∈ N, or implicant constraints: Pφ
def
= λA. φ |=T A, where φ is a formula. Note

that ⊆-closed predicates can safely be combined by the conjunction and disjunction op-
erators.

An important feature of ⊆-closed predicates is that implicates verifying such predi-
cates can be generated on the fly without any post-processing step, as evidenced below:

Example 80. To understand the use of such predicates better, let us consider the following
example: Assume that a user wants to generate the (T , A)-implicates of a formula φ that
are not logical consequences of another formula ψ. If he were to use our algorithm
to generate all the prime implicates of the formula, then retain only those satisfying
this constraint, ImpGen would have made a lot work constructing hypotheses that are
necessarily consequences of ψ, typically when adding more literal to a hypothesis that
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was already a consequence of ψ while not being an implicate of φ. This also means that
a lot of additional satisfiability tests are performed. This work can typically take a lot of
time as the deeper the algorithm searches, the larger the exploration tree becomes (which
is a trivial consequence of the structure of the algorithm). Moreover, the user would have
to check, at the end of the computation, all the implicates that were generated to remove
from them those that are a consequence of ψ. If he were to use the version with a filter
predicate however, in this case P : V 7→ ψ 6|=T V , he could recover the same result while
preventing the algorithm from executing all the unnecessary computation. This, as we
will see in Chapter 9, can have a significant impact on the interest of our method.

3.3 An updated version of the prime implicate
generation algorithm

We now take some time to formally insert the previously described changes that have been
made to our initial Algorithm 3.1. The resulting algorithm is presented in Algorithm
3.2. The general structure remains identical. We add at Line 1 the restriction to the
hypotheses that derive from the use of a filtering predicate that is given as a parameter
of the algorithm. It removes from the exploration all the branches that do not satisfy P .
Lines 5 to 6 handle the update of the initial formula using the unit consequences that
could be derived at the time of the computation. The set of literals created at Line 8 will
typically be constructed from a model recovered from the satisfiability test performed
Line 3, as explained in Proposition 73. It is then used to prune the abducible literals we
try to add to our main hypothesis M in the branching loop Line 9; we point out that the
order on abducible literals is effectively used by the construction of the new abducible
set sent as a parameter to the recursive call Line 10. This same construction also handles
the correction necessary to use this method alongside the semantic guidance, as detailed
in previous sections. The minimal set of (T , A)-implicate we can obtain from all the
recursive calls is finally computed and returned at Line 11.

Algorithm 3.2: ImpGen-PiD (Φ,M,A,P)
1 if M |= ⊥ or ¬P(M) then
2 return ∅ ;
3 if Φ ∪M |= ⊥ then
4 return {M} ;
5 let U ⊆ UT ,Φ,M such that M ⊆ U ;
6 let Φ = UT ,M [U ](Φ) ;
7 let A = fix(M,A,Φ) ;
8 let I be an (Φ ∪M)-compatible set of literals ;
9 foreach l ∈ A such that l ∈ I do

10 let Pl = ImpGen-PiD(Φ,M ∪ {l}, AI [l],P) ;

11 return SubMinT (U∗M,A,U(Φ) ∪
⋃
l∈A Pl) ;

This leaves us with the task of proving that this modified algorithm still performs the
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way we expect it to.

Lemma 81. If P is ⊆-closed then ImpGen-PiD(Φ,M,A,P) = I∗M,A(Φ)∩
{
A
∣∣ A ∈ P}.

Proof. If one of M or Φ ∪M is T -unsatisfiable, or P(M) does not hold, then the result
follows from Proposition 61 and Definition 79. Otherwise the result is proved by induction
on Card(A \M), using Proposition 65 and Lemmata 78 and 76.

Theorem 82. If P is ⊆-closed then I∗T ,A(Φ)∩
{
A
∣∣ A ∈ P} = ImpGen-PiD(Φ, ∅,A,P).

Proof. This is a direct consequence of Lemma 81 and Definition 60

3.4 Improvements for performing abduction in
propositional logic

We present in this section some restrictions to the ImpGen-PiD Algorithm that can be
used to improve its efficiency when generating prime implicates of propositional formulas
[161]. It is important to note that the modifications presented in this section only apply
in the context of propositional logic as they use hypotheses verified in this context only
to preserve the completeness of the algorithm. Their use is thus not applicable in the
general context.

It is possible to represent any logical formula in clausal form. In propositional logic,
this can be done for instance by using the following transformation.

Definition 83. Let φ be a propositional logic formula. We define the Conjunctive normal
form transformation of φ, and denote cnf(φ), the formula inductively defined as follows:

• cnf(>) = >.

• cnf(⊥) = ⊥.

• If φ is an atom, then cnf(φ) = φ.

• If φ = ¬ψ then cnf(φ) = φ.

• If φ = ψ1 ∧ ψ2 then cnf(φ) = cnf(ψ1) ∧ cnf(ψ2).

• If φ = ψ1 ∨ ψ2 then cnf(φ) =
∧
Ci∈cnf(ψ1),Dj∈cnf(ψ2)(Ci ∨Dj).

Building on this result, we will assume in this section that the sets of formulas of
which we want to generate the prime implicates of are sets of clauses.

Remark 84. Note that the transformation of Definition 83 may, due to the last rule,
construct a new formula that is exponential in the size of φ. To solve this problem, there
exists structure-preserving transformations [139, 2] that construct clauses linear in the
size of φ by adding new variables. Such transformations could also be used here as long
as one does not consider these added variables when providing abducible literals to the
prime implicates generation algorithm.
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Definition 85. Given a propositional formula φ that admits a (possibly partial) model
M, we say thatM is a minimal model of φ if, for any model J of φ, either J =M or
J coincides withM on all the atoms interpreted in the latter and there exists an atom
in φ that has an interpretation in J but not inM.

We can easily see that, when we use models recovered from the satisfiability tests to
obtain sets of literals reducing the size of the search space in the ImpGen-PiD Algorithm
that, if we can minimize the model we use, we will also reduce the corresponding set of
literals and thus the search space. As we believe that the size of the search space is one of
the major factors that could degrade the performance of the prime implicate generator,
we will try to minimize the models we recover from the satisfiability tests when handling
propositional logic formulas. A method to perform this minimization is described in
Chapter 10. However, before we can minimize our models, we have to ensure that the
use of partial models in the ImpGen-PiD Algorithm preserves its properties.

Proposition 86. If Φ is a set of propositional clauses and J is a partial model of Φ,
then the set I def

= {l ∈ L | J |= l} is Φ-compatible (see Definition 72).

Proof. Let M be a set of literals such that M is a prime A-implicate of Φ, and assume
that for all l ∈ M , l /∈ I, i.e., that for all l ∈ M , J 6|= l. Then for every l ∈ M , either
J |= l, in which case J |= Φ∪M and M cannot be an A-implicate of Φ, or there exists
a model J ′ of Φ such that J ′ |= l, in which case M cannot be an A-implicate of Φ
either.

Moreover, it is possible to unfold the behaviour of the SAT-solver (especially the unit
propagation) within the execution of the ImpGen-PiD algorithm. Typically, instead of
performing a complete satisfiability test when the algorithm adds a new literal to its set
of hypotheses, we can delay this costly operation by unit-propagating this literal instead.
This means that we will update the set of formulas we consider by deleting the clauses
in which we detect that this selected literal appears and removing its complement from
the clauses where we detect that it appears. For efficiency reasons, these operations are
usually not performed in a systematic way in modern SAT-solver. Instead the program
merely watches two literals in each clause which is sufficient to detect when new unit
clauses are produced (which can be in turn unit propagated) [126]. This detection is
usually performed by watching two literals for each clause until the corresponding variable
is assigned by the SAT-solver. This permits to reduce the number of abducible candidates
for the next recursive call of the algorithm.

Similarly, unit propagation can be used to detect beforehand possible conflicts with
previously selected literals. In this case, we can immediately deduce that the current
hypothesis in an implicate of the initial formula.

Definition 87. Given a set of clauses Φ, the set of literals deduced by unit propagation
from Φ, which we will denote by U∗(Φ), and the explanation of a literal l in Φ are defined
inductively as follows:

• If l ∈ Φ is a unit clause, then l ∈ U∗(Φ) and E∗Φ(l)
def
= ⊥.

• If C ∈ Φ is of the form D ∨ l and D ⊆ U∗(Φ), then l ∈ U∗(Φ) and E∗Φ(l)
def
= C (if

several such clauses exist then one is chosen arbitrarily).
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With the help of Definition 87, we describe the unfolding of unit propagation in Al-
gorithm 3.3 and the adapted version of the ImpGen-PiD algorithm for the generation of
prime implicates in propositional logic in Algorithm 3.4. In both algorithms, the set of
prime implicates Π we construct is handled by reference. The calls to UpdateImplicates
and UpdateImplicatesLocal are assumed to update this set of implicates according
to the information they obtained from their location within the algorithms and by the
unfolding of the unit propagation of the literals. They proceed by applying the following
definitions:

Definition 88. Given a set of clauses Φ, three sets of literals M,U,A and a set of
clauses Π, UpdateImplicates(Φ,M, U,A,Π) is a strong entailment minimal equivalent
of the union of Π with a set of A-implicates of Φ ∧M denoted by Π′ and ensuring that
Π ∪ Π′ ||=

{
M ∨ l

∣∣ l ∈ A ∧ l ∈ U}.
Remark 89. As the choice of Π′ is arbitrary, Definition 88 does not ensure the unicity of
UpdateImplicates(Φ,M, U,A,Π).

In the ImpGen-PiD Algorithm, when checking whether Φ ∪M |= ⊥ or not at Line
3, we can (if the test succeeds) conclude that M is an A-implicate of Φ. This single
implicate is a good choice for the set Π′ of Definition 88 because the satisfiability test it
results from is already mandatory in the main algorithm.

Definition 90. Given a set of clauses Φ, two sets of literals M,A and a set of clauses
Π, UpdateImplicatesLocal(Φ,M,A,Π) is the strong entailment minimal equivalent
of the union of Π with a set of A-implicates of Φ ∧M denoted by Π′ and ensuring that
Π ∪ Π′ ||= M .

Definition 90 leaves us with the problem of finding good such subsets, as this is the
key point of this algorithmic improvement for propositional logic. Once again, we can
reuse the fact that we unfold unit propagation to our advantage and construct a method
of building such subsets that uses the reasons why literals are unit propagated.

Algorithm 3.3: UnitUpdate(Φ,M,A, ref Π)

1 let ΠI ⊆ Π;
2 let U = U∗(M ∪ ΠI ∪ Φ);
3 repeat
4 UpdateImplicates(Φ,M, U,A,Π);
5 ΠI = Π′I ⊆ Π;
6 U = U ∪ U∗(M ∪ ΠI ∪ Φ);
7 until U is no longer updated ;
8 return U ;

Definition 91. Given a set of clauses, a hypothesis M and a set of abducible literals A,
we define the A-reason of a literal l in the addition of M to Φ and denote by RA,Φ,M(l)
the following set:

• If l ∈ Φ then RA,Φ,M(l)
def
= {∅}.
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Algorithm 3.4: ImpGen-Propositional(Φ, M , A, ref Π)
1 let U = UnitUpdate(Φ,M,A,Π) ;
2 let ΦU = {C ∈ Φ | U |= C} ;
3 let Φ′U =

{
C \ U

∣∣ C ∈ Φ \ ΦU

}
;

4 let A = A ∩
{
l ∈ L

∣∣ l ∈ Lits(Φ′U) ∧ {l, l} ∩ U = ∅
}
;

5 if ⊥ ∈ Φ′U or A = ∅ ∧ Φ′U |= ⊥ then
6 UpdateImplicatesLocal(Φ,M,A,Π) ;
7 return ;

8 let I = {l | M |= l} if a (partial) modelM of Φ ∪M is found, I = L otherwise.;
9 ImpGen-Propositional(Φ,M ∪ {max(A)},AI [max(A)],Π) ;

10 if P ||= M then
11 return ;

12 U = UnitUpdate(Φ,M,A,Π) ;
13 A = {li}i<j⇒li<lj ;
14 foreach li ∈

{
l ∈ A

∣∣ l ∈ I ∧ l 6= max(A)
}
in decreasing order do

15 if Π 6||= M ∨ li then
16 ImpGen-Propositional(Φ,M ∪ {li},AI [li],Π) ;

• If l ∈M \ Φ then RA,Φ,M(l)
def
= {{l}}.

• Otherwise, if E∗Φ∪M(l) = l1 ∨ . . . ∨ ln ∨ l, then

RA,Φ,M(l)
def
=

{
n⋃
i=1

Pi

∣∣∣∣∣ ∀i = 1, . . . , n, Pi ∈ RA,Φ,M(li)

} ⋃
if l∈A

{{l}}

.

Proposition 92. Let l ∈ U∗(Φ∪M). If P ∈ RA,Φ,M(l), then P ⊆ (A∪M)∩U∗(Φ∪M)
and P ∪ Φ |= l.

Proof. This is proved by induction. The result is obvious if l ∈ Φ or l ∈ M . Otherwise,
let D ∨ l = E∗Φ∪M(l), where D = l1 ∨ . . . ∨ ln, so that P =

⋃n
i=1 Pi and Pi ∈ RA,Φ,M(li).

By hypothesis, for all i = 1, . . . , n, Φ ∪ Pi |= li. Hence, Φ ∪ P |= Φ ∪ D |= l. The fact
that P ⊆ (A ∪M) ∩ U∗(Φ ∪M) is similarly proved by induction.

Proposition 93. For all l ∈ U∗(Φ∪M), there exists a P ∈ RA,Φ,M(l) such that P ⊆M .

Proof. The proof is by induction on the length of the derivation of l from Φ ∪ M . If
l ∈ Φ then RA,Φ,M(l) = {∅} and ∅ ⊆ M . If l ∈ M \ Φ then RA,Φ,M(l) = {{l}} and
{l} ⊆ M . Otherwise, necessarily E∗Φ∪M(l) = l1 ∨ · · · ∨ ln ∨ l where, for all i ∈ J1, nK,
li ∈ U∗(Φ∪M) and the derivation yielding li is strictly lower than that of l. Thus by the
induction hypothesis RA,Φ,M(li) contains a set Pi ⊆ M and RA,Φ,M(li) contains the set⋃n
i=1 Pi ⊆M .

Notation 94. We will denote by ρM(l) an (arbitrary) element P ∈ RA,Φ,M(l) such that
P ⊆M .
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Definition 95. Given a set of clauses Φ and a set of literals M , we let HA(Φ,M) be
defined by

HA(Φ,M)
def
=
{
P ∨ l

∣∣ l ∈ U∗(Φ ∪M) ∩ A ∧ P ∈ RA,Φ,M(l)
}

Lemma 96. If U = U∗(Φ ∪M), then we have

HA(Φ,M) ⊆
{
C
∣∣ C ⊆ U ∩ (M ∪ A) ∧ Φ ∪ C |= ⊥

}
(where C denotes a clause), and also

HA(Φ,M) ||=
{
M ∨ l

∣∣ l ∈ A ∧ l ∈ U}
.

Proof. Let P ∨ l ∈ HA(Φ,M), where l ∈ U ∩ A. By Proposition 92, P ⊆ (A ∪M) ∩ U
and Φ ∪ P ∪ {l} |= ⊥, which proves that P ∨ l ∈

{
C
∣∣ C ⊆ U ∩ (M ∪ A) ∧ Φ ∪ C |= ⊥

}
.

By definition, every clause in
{
M ∨ l

∣∣ l ∈ A ∧ l ∈ U} is of the form M ∨ l′ where
l′ ∈ U ∩A. By Proposition 93, there is a P ∈ RA,Φ,M(l′) such that P ⊆M , which proves
that HA(Φ,M) ||= M ∨ l′.

Lemma 97. Let l be a literal such that {l, l} ⊆ U∗(Φ ∪M) and let D = ρM(l) ∪ ρM(l).
Then D ||= M and Φ |= D.

Proof. By Proposition 92 we have Φ ∪D |= {l, l} |= ⊥.

The A-implicates of Φ that can be added to the set of already generated implicates
can therefore be taken from HA(Φ,M). Any subset of the latter that contains ρM(l) for
all l ∈ U∗(Φ∪M) can be safely added while maintaining the correctness of the algorithm.
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Chapter 4

Storing (T , A)-implicates efficiently

The number of implicates of a given formula may be huge, hence it is essential in practice
to have appropriate data structures to store them in a compact way. Moreover, as stored
implicates can be used to prune exploration branches (typically by detecting that all the
(T , A)-implicates it can generate will be a consequence of a stored one), it is also critical
to possess efficient algorithms to check that a newly generated (T , A)-implicate I is not
redundant (this is usually called forward subsumption modulo T ), and if so, to delete all
the already generated implicates that are less general than I (usually called backward
subsumption modulo T ), before inserting I into the structure for stored implicates.

4.1 A structure for storing the (T , A)-implicates

In this section, we devise a trie-like data structure to perform these tasks. We will also
explain how we can make use of this data structure to improve the efficiency of Algorithm
3.2.

In order to comply with the genericity restrictions of our main algorithm, once again,
the definition and usage of the structure we define only rely on the existence of a decision
procedure for testing satisfiability in T . We will use this procedure to perform the
implication verifications required for storing the implicates.

Definition 98. Let <s be an order on the literals in A, possibly, but not necessarily,
equal to the order < used for literal ordering in the implicate generation algorithm. An
A-trie is inductively defined as ⊥ (the empty leaf ) or a possibly empty set of pairs
{l1 : τ1, . . . , ln : τn}, where l1, . . . , ln are pairwise distinct literals in A and τi, i ∈ J1, nK is
an A-trie only containing literals that are strictly greater than li (according to the order
<s). An A-trie is associated with a set of A-clauses inductively defined as follows:

S(⊥)
def
= {⊥},

S({l1 : τ1, . . . , ln : τn})
def
=

⋃n
i=1 {li ∨ C | C ∈ S(τi)} .

Note in particular that S(∅) = ∅. Intuitively an A-trie may be seen as a tree in which
the edges are labeled by literals and the leaves are labeled by ∅ or ⊥, and represents a
set of clauses corresponding to paths from the root to ⊥.
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T

• •

⊥ ⊥ ⊥

f(a) ' f(b) d ' e

f(c) ' f(b) f(d) ' f(a) f(d) ' f(a)

Figure 4.1: A representation of an A-trie

Example 99. We represent an A-trie in Figure 4.1. Assuming we work in the theory of
equality with uninterpreted function, this A-trie contains three empty leaves and thus
three paths from its root T to a leaf. This A-trie thus represents the set of clauses
{f(a) ' f(b) ∨ f(c) ' f(b), f(a) ' f(b) ∨ f(d) ' f(a), d ' e ∨ f(d) ' f(a)}.

4.2 Algorithms to efficiently insert and reuse the
(T , A)-implicates

We now have to define the operations we need on this structure. We start by presenting
the straightforward algorithm permitting the insertion of a clause in an A-trie.

Definition 100. Let C be a clause and let τ be an A-trie. insert(τ, C) denotes the
A-trie defined inductively as follows:

• If C = ⊥ then insert(τ, C) = ⊥

• If C = l0 ∨ l1 ∨ . . . ln with l0 <s l1 <s . . . <s ln then

– If there exists a pair (l′, τ ′) ∈ τ verifying l′ = l0 then

insert(τ, C) = (τ \ {(l′, τ ′)}) ∪ {(l′, insert(τ ′, l1 ∨ . . . ln))}

– Otherwise, insert(τ, C) = τ ∪ {(l0, insert(∅, l1 ∨ . . . ln))}

Proposition 101. Given a clause C and an A-trie, S(insert(τ, C)) ||= S(τ) ∪ {C}.

Proof. This is ensured inductively. For any clause C, {C} ||= {C}. Moreover, for C =
l0 ∨D with D a clause, if S(insert(∅, D)) ||= S(∅) ∪ {D} then

S(τ ∪ {(l0, insert(∅, D))}) ||= S(τ) ∪ {C}

and if S(insert(τ ′, D)) ||= S(τ ′) ∪ {D} then

S((τ \ {(l′, τ ′)}) ∪ {(l′, insert(τ ′, D))}) ||= S(τ) ∪ {C}.
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One can remark that this algorithm does not perform any subsumption verification.
Indeed, we expect the subsumption verifications and modifications to be done before any
insertion into the A-trie. Before inserting a given clause, we will first verify that it is not
already entailed by another one in the storage, then remove from the A-trie any clause
that would be less general than it is, and then only insert it into the A-trie. We now
describe these two subsumption algorithms.

Definition 102. We introduce the following simplification rule (which may be applied
at any depth inside a tree, not only at the root level):

del : τ ∪ {l : ∅} → τ

Informally, the rule deletes all leaves labeled by ∅ except for the root. It may be
applied recursively, for instance {l : {l1 : ∅, . . . , ln : ∅}} →n+1

del ∅. Termination is immediate
since the size of the tree is strictly decreasing. This rule will be used to clean A-tries
after some path deletion operations have been performed in it (see below).

Proposition 103. If τ →del τ
′ then τ ′ is an A-trie and S(τ) = S(τ ′).

The following lemma provides a simple algorithm to check whether a clause is a logical
consequence modulo T of some clause in S(τ) (forward subsumption). The algorithm
proceeds by induction on the A-trie.

Lemma 104. Let C be a clause and let τ be an A-trie. We have S(τ) ||= C if and only
if one of the following conditions hold:

• τ = ⊥.

• τ = {l1 : τ1, . . . , ln : τn} and there exists i ∈ J1, nK such that li |=T C and S(τi) ||= C.

Proof. If τ = ⊥ then S(τ) = {⊥} ||= C hence the equivalence holds. Otherwise, let
τ = {l1 : τ1, . . . , ln : τn}. By definition, S(τ) ||= C holds if and only if there exists a clause
D ∈ S(τ) such that D |=T C. Since S({l1 : τ1, . . . , ln : τn}) =

⋃n
i=1 {li ∨ E | E ∈ S(τi)},

the previous property holds if and only if there exists i ∈ J1, nK and E ∈ S(τi) such that
li ∨ E |=T C, i.e., such that li |=T C and E |=T C by Proposition 34. By definition,
∃E (E |=T C ∧ E ∈ S(τi)) if and only if (S(τi) ||= C). Furthermore, li ||= C holds if and
only if C ∪ {li} is T -unsatisfiable, hence the result.

Example 105. Let us consider again the A-trie we presented in Example 99. Now let us
assume that we want to check if S(T ) ||=T D = f(d) ' f(e) ∨ f(d) ' f(a) with the
algorithm of Lemma 104. The execution is detailed in Figure 4.2 and described below. It
starts by verifying if a clause entailing D can be found in the left part of T . To do this, it
checks whether f(a) ' f(b) |=T D (second point of Lemma 104). As this is not the case,
it proceeds to the second possible literal it can find from the root of T : d ' e. This time,
we have d ' e |=T D. The algorithm will then look at the subtrie below this literal and
continue to check if they subsumes the clause. As we have both that f(d) ' f(a) |=T D
and that ⊥ is a subtrie below this literal, we can conclude that D is entailed by S(T ),
and that the clause showing this is d ' e ∨ f(d) ' f(a).
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T

• •

⊥ ⊥ ⊥

f(a) ' f(b) d ' e

f(c) ' f(b) f(d) ' f(a) f(d) ' f(a)

T

• •

⊥ ⊥ ⊥

f(a) ' f(b) d ' e

f(c) ' f(b) f(d) ' f(a) f(d) ' f(a)

Figure 4.2: Example of forward subsumption

Before inserting any clause into an A-trie, we will thus use this algorithm to check if
the insertion is useful. If it is, we will then use the following definition, which provides
an algorithm to remove, in a given A-trie, all branches corresponding to clauses that are
logical consequences of a given formula modulo T (backward subsumption).

Definition 106. Let φ be a formula and let τ be an A-trie. clear(τ, φ) denotes the
A-trie defined as follows:

• If φ is T -unsatisfiable, then clear(τ, φ)
def
= ∅.

• If φ is T -satisfiable, then:

– clear(⊥, φ)
def
= ⊥,

– clear({l1 : τ1, . . . , ln : τn}, φ)
def
=
⋃n
i=1{li : clear(τi, φ ∧ li)}.

Intuitively, starting with some clause φ, the algorithm incrementally adds to a tem-
porary set literals l1, . . . , ln occurring in the clauses D = l1 ∨ · · · ∨ ln ∈ S(τ) and invokes
the SMT-solver after each addition. If a contradiction is found then this means that
φ |=T D, hence the branch corresponding to D can be removed. The advantage of using
this within the A-trie is that the calls are shared among all common prefixes. Of course,
this algorithm is even more interesting if the SMT-solver is able to perform efficient in-
cremental satisfiability testing. The following Lemma provides a proof that the function
effectively removes from an A-trie the clauses entailed by its parameter.

Lemma 107. Let φ be a formula and let τ be an A-trie. Then clear(τ, φ) is an A-trie,
and S(clear(τ, φ)) = {C ∈ S(τ) | φ 6|=T C}.

Proof. The proof is by induction on τ . We also prove that all literals in clear(τ, φ) also
occur in τ . We distinguish several cases.

• If φ is T -unsatisfiable, then φ |=T C, for every C ∈ S(τ). Consequently,

{C ∈ S(τ) | φ 6|=T C} = ∅.

Furthermore, clear(τ, φ) = ∅, thus clear(τ, φ) is an A-trie and S(clear(τ, φ)) = ∅.
Therefore, the result holds. Note that clear(τ, φ) contains no literal at all.

48



• If φ is T -satisfiable and τ = ⊥, then S(τ) = {⊥} and φ 6||= ⊥, thus

{C ∈ S(τ) | φ 6|=T C} = {⊥}.

Furthermore, clear(τ, φ) = ⊥, thus clear(τ, φ) is an A-trie and the equality holds.
As in the previous case, clear(τ, φ) contains no literal.

• Now assume φ is T -satisfiable and τ = {l1 : τ1, . . . , ln : τn}, where l1, . . . , ln are
pairwise distinct, and all literals in τi are strictly greater than li. Then

S({l1 : τ1, . . . , ln : τn}) =
n⋃
i=1

{li ∨D |D ∈ S(τi)} .

hence

{C ∈ S(τ) | φ 6|=T C} =
n⋃
i=1

{li ∨D |D ∈ S(τi) and φ 6|=T li ∨D} .

By Proposition 34, we deduce that

{C ∈ S(τ) | φ 6|=T C} =
n⋃
i=1

{
li ∨D

∣∣D ∈ S(τi) and φ ∧ li 6|=T D
}
.

By the induction hypothesis, clear(τi, φ ∧ li) is an A-trie and

S(clear(τi, φ ∧ li)) =
{
D ∈ S(τi)

∣∣ φ ∧ li 6|= D
}

thus:

{C ∈ S(τ) | φ 6|=T C} =
n⋃
i=1

{
li ∨D

∣∣D ∈ S(clear(τi, φ ∧ li))
}
.

By definition, clear(τ, φ) =
⋃n
i=1{li : clear(τi, φ ∧ l)}. The l1, . . . , ln are pairwise

distinct and all literals in S(τi) also occur in τi, thus are greater than li. Hence this
entails that clear(τ, φ) is an A-trie, and

S(clear(τ, φ)) =
n⋃
i=1

{
li ∧D

∣∣D ∈ S(clear(τi, φ ∧ l))
}

= {C ∈ S(τ) | φ 6|=T C} .

By definition, the literals in clear(τ, φ) occur either in l1, . . . , ln or clear(τi, φ ∧ l)
(hence τi), thus must occur in τ .

Example 108. Let us consider one last time the A-trie of Example 99. This time, let us
consider that we are about to add the unit clause C = a ' b to T . Before that, we will
have to remove all the clauses contained in T that are logical consequences of C. We
describe this execution of the algorithm from Definition 106. It is also represented in
Figure 4.3. It starts at the root of T , by adding the complement of the first literal of the
node (f(a) ' f(b)) to C. As we can immediately derive a contradiction from this, the
algorithm will remove this whole subtrie. It then pursues its exploration of T with the
other literal it finds at the root: d ' e. No contradiction can be found with this second
literal, nor when we add the one in the related subtrie later. This means that we will
keep this part of the A-trie.
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T

• •

⊥ ⊥ ⊥

f(a) ' f(b) d ' e

f(c) ' f(b) f(d) ' f(a) f(d) ' f(a)

T

• •

⊥ ⊥ ⊥

f(a) ' f(b) d ' e

f(c) ' f(b) f(d) ' f(a) f(d) ' f(a)

Figure 4.3: Example of backward subsumption

Remark 109. The A-tries may be represented as directed acyclic graphs instead of trees.
In this case, it is clear that the complexity, when defined as the number of satisfiability
tests of forward subsumption (as defined in Lemma 104) is of the same order as the size
of the directed acyclic graph, since the recursive calls only depend on the considered
subtree. For backward subsumption (see Definition 106), the situation is different since
the recursive calls have an additional parameter that is the formula φ, which depends on
the path in the A-trie. The maximal number of satisfiability tests is therefore equal to
the size of the underlying tree, and not that of the directed acyclic graph.

4.3 An updated algorithm including storage
management

We provide in Algorithm 4.1 an updated version of ImpGen-PiD that uses A-tries to
store the generated implicates.

Algorithm 4.1: ImpGen-Storage (Φ,M,A, τ,P)
1 if M |= ⊥ or ¬P(M) or S(τ) |=T M then
2 return τ ;

3 if Φ ∪M |= ⊥ then
4 return insert(clear(τ,M),M) ;

5 let U ⊆ UT ,Φ,M such that M ⊆ U ;
6 let Φ = UT ,M [U ](Φ) ;
7 let A = fix(M,A,Φ) ;
8 let I be an (Φ ∪M)-compatible set of literals ;
9 foreach l ∈ A such that l ∈ I do

10 let τ = ImpGen-Storage(Φ,M ∪ {l}, AI [l], τ,P) ;

11 return τ ;
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Theorem 110. If P is ⊆-closed then

I∗T ,A(Φ) ∩
{
A
∣∣ A ∈ P} = ImpGen-Storage(Φ, ∅,A,⊥,P).

This concludes the presentation of the efficient generic algorithm to compute the prime
(T , A)-implicates of a set of formulas Φ. We have considered various improvements to
reduce the search space of the algorithm, provided a storage structure that permits to
store and work efficiently with the (T , A)-implicates we have already generated, and
added a user-tunable filter feature that can help pruning the search space even further
if we can design external restrictions on the form of the desired implicates. It is clear
that more improvements could be made to this algorithm, this will discussed in Chapter
11.6 after we have performed an extensive evaluation of the version we designed in this
chapter (see Chapter 9 for this). Still, this generic implicate generation algorithm will
be at the centre of an application to program loop invariants generation we will develop
in Chapters 5 and 6. Finally, the next chapter provides some interesting information on
methods that can be used to adapt this algorithm for the specific case of prime implicate
generation in propositional logic.
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Part II

Using abduction in verification
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Chapter 5

An abstract theoretical framework

In part I, we devised an algorithm that, given a set of formulas Φ expressed in a decidable
theory T and a set of abducible literals A, computes all the prime (T ,A)-implicates of Φ.
Now let us consider, for instance, a program, with a set of preconditions (a set of logical
formulas we assume to hold at the beginning of the program), and for which we want
to ensure some postconditions (a set of logical formulas we want to prove hold after the
execution of the program). A standard method to perform this type of verification is to
generate from the program, its preconditions and its postconditions, a set of verification
conditions that are valid if and only if the postconditions of the program hold. When the
program is only composed of a sequence of instructions with no loops or recursive calls,
it is usually easy to generate these verification conditions and to decide whether they
are valid or not. As long as the verification conditions are expressed in a simple enough
theory, we can decide whether or not they are verified, typically by tasking an SMT-solver
to answer this question. When no such restrictions are considered however, this problem
is undecidable. In the case where the programs under consideration contain loops, it
is possible to use loop invariants to extend this verification framework. Intuitively, a
loop invariant is a formula that holds when the program first enters the loop and is
preserved by the instructions contained in this loop. By using these loop invariants as
preconditions of loop-free sequences of instructions, it becomes possible to check whether
the postconditions of programs containing loops are verified. This, however, requires that
the loop invariants are also verified, that is, that they hold at the moment the program
enters the loop they refer to and they are preserved by the content of this loop. A similar
approach can be devised for recursive functions. This leaves us with the problem of
generating loop invariants for the programs we consider.

Given a program in which not all the verification conditions are valid, we want to up-
date the preconditions or find loop invariants to ensure that all the verification conditions
are satisfied.

Example 111. Let us consider the sample program presented in Algorithm 5.1. It turns
out that the postcondition of this program is not verified. Take for instance an array T =
[−1, 0, 0], a = 1 and b = 1. After executing Algorithm 5.1, we would have T = [−1, 0,−1]
and thus T [b+ 1] < T [b], which contradicts the postcondition. Such instances of T, a and
b could be obtained from an SMT-solver. If we want to obtain an additional precondition
ensuring the postcondition holds however, we are not interested in trivial solutions such
as ⊥ or too restrictive solutions such as a = 0∧b = 1. The kind of “interesting conditions”
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Algorithm 5.1: ArrayExample(Array[Int] T , Int a, Int b)
1 requires T [a] > 0;
2 requires ∀x, y ∈ Ja, bK.x ≤ y ⇒ T [x] ≤ T [y];
3 let T [b+ 1] = T [b− 1] + T [b];
4 ensures ∀x, y ∈ Ja, b+ 1K.x ≤ y ⇒ T [x] ≤ T [y] ;

we look for are, for example a 6= b or T [b− 1] ≥ 0.

In this chapter, we present an algorithm that performs this task of finding meaningful
additional preconditions to ensure that a set of derived verification conditions is satisfied.
In [57], Dillig et al. proposed a similar approach to generate property-directed loop in-
variants of numeric programs, and restricted to theories admitting quantifier elimination.
In their work, given a program decorated with loop invariant candidates, preconditions
and postconditions, they derive verification conditions ensuring when valid that the con-
sidered candidates are indeed loop invariants and that they are strong enough to deduce
the postconditions. If not all these verification conditions are valid, they use an abduction
algorithm based on quantifier elimination to strengthen their candidate loop invariants
until they are able to obtain valid verification conditions only.

Here we reuse the techniques they introduced in [57] and combine them with the
more general abductive reasoning procedure introduced in Chapter 3. We thus obtain
a completely generic approach for computing either loop invariants or preconditions of
programs. In order to cope with the huge search space related to this genericity, we
will also instantiate and adapt this algorithm specifically for loop invariant generation in
Chapter 6, notably by introducing strategies to determine which verification conditions
should be considered first and which loop invariants should be strengthened.

5.1 A framework for describing verification problems

Definition 112. We define a verification structure P as a tuple (Φ,Υ) where Φ =
(ϕ1, . . . , ϕn) is a sequence of logical formulas called guide formulas, and where Υ =
(υ1, . . . , υm) is a sequence of functions from Sn to S called verification conditions gener-
ators.

We will say that a verification structure P = (Φ,Υ) is satisfied if |=
∧
i∈J1,mK υi(Φ). If

this is the case, we will write |= P

Intuitively, verification structures are a generic representation in which we can encode
our programs. The preconditions and loop invariants we consider will be encoded into
guide formulas and the content of the programs (as well the postconditions we want to
prove on them) will be encoded into verification condition generators. The fact that we
can have several guide formulas will be useful in the context of loop invariant generation,
where we can encode a loop invariant by a guide formula.

Notation 113. Given a verification structure P = (Φ,Υ), we will denote its ith guide
formula by Guidei(P ) and its jth verification condition generator by VCGenj(P ). We
will also denote by Guides(P ) the sequence Φ and by VCGen(P ) the sequence Υ.
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Definition 114. Given a verification structure P = (Φ,Υ), we will call verification
conditions of P the set of formulas

V C(P ) = {VCGeni(P )(Φ) | 1 ≤ i ≤ Card(Υ)} .

We will call ith verification condition of P the formula

V Ci(P ) = VCGeni(P )(Φ).

Example 115. Let us consider the sample program of Example 111 (Algorithm 5.1). We
can express the problem of whether the program verifies its postcondition within the
framework of Definition 112. Consider first the sequence Φ5.1 = ((∀x, y ∈ Ja, bK.x ≤ y ⇒
T [x] ≤ T [y]) ∧ T [a] > 0). Now consider the verification condition generator υ5.1 : φ 7→
¬φ ∨ (∀x, y ∈ Ja, b + 1K.x ≤ y ⇒ T [x] ≤ T [y]). If we consider the verification structure
P5.1 = (Φ5.1, (υ5.1)), we obtain a verification structure that represents the problem of
verifying whether Algorithm 5.1 verifies all its postconditions. As this is not the case,
our goal will be to update the guide formula of P5.1 until it represents a set of preconditions
that solves this problem.
Notation 116. Given a verification structure P = ((ϕ1, . . . , ϕi−1, ϕi, ϕi+1, . . . , ϕn),Υ) and
a formula φ, we will denote by P [i ←− φ] the verification structure in which we have
replaced the ith guide formula by φ, that is, ((ϕ1, . . . , ϕi−1, φ, ϕi+1, . . . , ϕn),Υ).

Similarly, given a verification structure P = ((ϕ1, . . . , ϕn),Υ) and a sequence of for-
mulas Φ = (φ1, . . . , φn) such that Card(Φ) = Card(Guides(P )), we will denote by
P [∗ ←− Φ] the verification structure in which all the guide formulas have been replaced
by the formulas at the same index in Φ, that is, ((φ1, . . . , φn),Υ).

Definition 117. We will say that two verification structures P1 = (Φ1,Υ1) and P2 =
(Φ2,Υ2) are similar if they only differ by their guide formulas, that is, if Υ1 = Υ2. In
this case, we will write P1 ∼ P2.

The problem we wish to solve is thus, given a verification structure P that is not
satisfied, to find a satisfied verification structure P ′ that is similar to P . Typically,
in Example 115, the verification structure P ′5.1 = P5.1[1 ←− Guide1(P5.1) ∧ a 6= b] is a
solution to this problem.

As mentioned in the introduction, we want to search for this similar verification struc-
ture by using an abduction algorithm to compute strengthenings of the guide formulas
we already have. In order to do that, we are going to select in our verification structure
a verification condition that is not valid, and use an abduction algorithm for the theory
it is expressed in to generate relevant additional formulas to make it valid. Once such a
formula is recovered, we will have to select one of the guide formulas of the verification
structure to strengthen. What we need to ensure is that, when the guide formula is
strengthened, the verification condition generated within the new program by the same
verification condition generator will be valid. We will succeed if we can find a sequence
of strengthenings to update our initial verification structure with and satisfy it.
Notation 118. Let P = (Φ,Υ) be a non-satisfied verification structure. We will denote
by pending(P ) the set of indices of verification condition generators returning non-valid
verification conditions in P . More formally, we have

pending(P ) = {j | 6|= VCGenj(P )(Guides(P ))} .
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Definition 119. Consider a verification condition generator υ and an index i such
that υ has at least i parameters. We say that υ depends on its ith parameter if we
have ∃(φ1, . . . , φi−1, φi+1, φn) ∈ Sn−1.∃ψ1, ψ2 ∈ S2.υ(φ1, . . . , φi−1, ψ1, φi+1, . . . , φn) 6=
υ(φ1, . . . , φi−1, ψ2, φi+1, . . . , φn).

Given a verification structure P = (Φ,Υ) and an index i such that the verification
condition generators of P have at least i parameters, we will denote by Di(P ) the set of
verification condition generators of P that depend on their ith parameter.

Definition 120. We say that a verification structure P0 is a strict update of another
verification structure P1, and write P0 ≺ P1, if P0 ∼ P1 and there exists an index i and
a formula φ such that P0 = P1[i←− φ], Guidei(P1) 6|= φ and φ |= Guidei(P1).

We say that a verification structure P0 is an update of another verification structure
P1, and write P0 ≺+ P1, if either P0 is a strict update of P1 or there exists a non-empty
finite sequence (Q0, . . . , Qn) such that P0 is a strict update of Q0, Qn is a strict update
of P1, and for any i ∈ J0, nJ, Qi is a strict update of Qi+1.

Definition 121. We say that a verification structure P is inconsistent if it is not satisfied
and there exists no satisfied update of P .

Verifying that a verification structure is inconsistent is undecidable in the general case.
However, it is still possible, in some particular cases, to detect that a given verification
structure in inconsistent.

Notation 122. We assume given a correct but incomplete procedure that always termi-
nates and that may detect that a verification structure is inconsistent. If this procedure
detects that a given verification structure P is inconsistent, we will write P −→ fails.

Remark 123. Note that P −→ fails entails that P is inconsistent but that the converse
does not hold.

Definition 124. Let P = (Φ,Υ) be a verification structure, υ be a verification condition
generator of P and let φ = υ(Φ). Let i be the index of a guide formula in Φ. We call
verification update inverter on i, and denote by υ−1|i any partial function such that for
any formula I, one of the following is verified:

• υ−1|i(I) does not exist.

• We have υ(Guides(P [i←− Guidei(P ) ∧ υ−1|i(I)]) = I ∧ φ.

Definition 124 will be used to translate the solution of the abduction problems into
corresponding updates for the verification structure. It is clear that if we want the
algorithm to work, we will need verification update inverters whose domain contains the
abduction solutions we generate on our verification conditions.

5.2 Using implicate generation to solve abstract
verification problems

We now have all the background required to present our strengthening algorithm. It is
shown in Algorithm 5.2.
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Algorithm 5.2: Ilinva(P )

1 if (|= P ) then
2 return P ;

3 if (P −→ fails) then
4 return failure ;

5 let j ∈ pending(P ) ;
6 let i such that VCGenj(P ) ∈ Di(P ) ;
7 let Ξ← IlinvaAbduce(P, j, i) ;
8 foreach ξ ∈ Ξ do
9 let Pξ ← P [i←− Guidei(P ) ∧ ξ] ;

10 Pξ ← Ilinva(Pξ) ;
11 if Pξ 6= failure then
12 return Pξ ;

13 return failure;

Note that we delegate the computation of the possible strengthenings to an abduction
algorithm Line 7. This abduction algorithm is presented in Algorithm 5.3. It starts by
recovering the verification condition it should perform abduction on (Line 1). Assuming
it can obtain a relevant set of abducible literals (we will detail methods to do that in
Chapters 6.4 and 8) and a filtering predicate if necessary, it will then invoke the ImpGen-
PiD algorithm to compute the prime implicates of the formula (Line 4). Once obtained,
we can update this initial result set of implicants, typically by constructing disjunctions
of the ones we recovered from the call to ImpGen-PiD. We present this Line 5 in the form
of a call to a procedure UpdateImplicants left unspecified. It is assumed to update the
initial set of implicants by either removing some it deemed irrelevant or by adding new
ones it is able to construct (such as disjunctions of the previous ones). Finally, as what
we currently have is a set of implicants for the formula obtained by applying a verification
condition generator, we need to translate these implicants into valid strengthenings for the
selected guide formula. This is what we do Line 6. We will generally assume that we have
selected our abducible literals such that we can ensure that we have Ξ ⊂ Dom(υ−1|i).

Algorithm 5.3: IlinvaAbduce(P, j, i)

1 let φ←− VCGenj(P )(Guides(P )) ;
2 let A a set of abducible literals for φ ;
3 let P a literal set predicate filter for φ ;
4 let Ξ←−

{
I
∣∣ I ∈ ImpGen-PiD(φ, ∅,A,P)

}
;

5 UpdateImplicants(Ξ) ;
6 return {υ−1|i(ξ) | ξ ∈ Ξ ∩Dom(υ−1|i)} ;

Theorem 125. Let P be a verification structure. If Ilinva(P ) terminates and if we have
Ilinva(P ) 6= failure, then Ilinva(P ) ∼ P and Ilinva(P ) is satisfied.
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Proof. The proof is by induction on the recursive calls. It is clear that Ilinva(P ) ∼ P
because the algorithm only modifies guide formulas. By construction (Line 1 of Algorithm
5.2), the verification structure returned must be satisfied. Similarly, when returning at
Line 4 or at Line 13, the result is always a failure by construction. By induction, we have
that any verification structure returned at Line 12 is necessarily satisfied.

Theorem 126. Let P be a verification structure and let T be a decidable theory. Let A
be a finite set of literals expressible in T . Assume that the verification conditions of P
and updates of P are in T . Assume also that for every such verification condition, the
associated set of abducible literals A (the one we recover at Line 2 of Algorithm 5.3) is
such that A ⊆ A, and such that the conjunction of any conjunction of its literals with the
verification condition is in T . Then Ilinva(P ) terminates.

Proof. Termination can be derived from the fact that there are only finitely many possible
guide formulas built on A. At each recursive call, the verification structure is strictly
strengthened, as one of the guide formulas is strictly updated and the other ones are left
unchanged. Hence, the multiset of guide formulas is strictly decreasing, according to the
multiset extension of the update relation.

Remark 127. We point out that, even though Theorem 126 assumes that T is decidable,
the result holds as long as we can decide the satisfiability of the verification conditions
we generate. If this is not the case, we will see in Chapter 7 that we can tweak the
computation of satisfiability tests to ensure termination, although we may miss some
possible solutions when doing so.

This concludes the presentation of the generic Ilinva algorithm to satisfy verification
structures by strengthening them. It can be used as is to generate, e.g., additional
preconditions for the verification of programs (see again Example 115). In the next
chapter, we will present an instantiation of the verification structures that will allow us
to use this algorithm to generate property-directed loop invariants of programs.
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Chapter 6

An instance of the framework to
generate loop invariants of programs

In Chapter 5, we devised an algorithm to strengthen unsatisfied verification structures
until they are satisfied. We saw (through Example 115), that we could use it to generate
additional preconditions for the verification of programs. In the present chapter, we
are going to develop an instance of verification structures that allow to use the Ilinva
algorithm for the generation of property-directed loop invariants. The problem tackled
is thus similar to that of [57] but the genericity of the abduction algorithm used within
Ilinva (the one we presented in Chapter 3.2) allows for the generation of loop invariants
in theories that are out of the scope of [57]. A more detailed comparison with this
approach will be proposed in Section 6.4.

6.1 Representing the programs

In order to define our problem formally, we will consider the class of programs we detail
in Definition 128. It is clear that all the work in this chapter could be adapted to other
definitions of programs, as long as we can obtain the associated verification condition
generators we detail later. We will also assume, to stick to the framework of Chapter 5
and for clarity reasons, that the logical formulas in which we express, within the programs,
properties on its memory (such as preconditions, postconditions, invariants) are expressed
within the same signature and theory as the ones the abduction algorithm will handle.
If this were not the case, one could tweak the definition of the verification conditions
generators and their inverters to perform the required translation.
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Definition 128. We define the programs we consider by induction as follows :

P ::= empty
| I;P

I ::= 〈base-instruction〉
| assume [φ]

| assert [φ]

| if C then P else P end
| while C do [φ] P done

where C is a condition on the state of the memory, φ is a formula and I is an instruction.

Notation 129. We will denote by P1 · P2 the concatenation of two programs P1 and P2.
That is, the program containing all the instructions of P1 followed by all the instructions
of P2.

The semantics of program sequences and conditionals are standard. Instructions are
executed in the order in which they appear in the program, within a conditional, the first
subprogram is executed if and only if the condition is satisfied and the second subprogram
if and only if the condition is not. The semantics for assumptions (assume [φ]) corre-
sponds to formulas that are taken as hypotheses, and thus assumed to hold where they
appear within a program. They are typically used to specify preconditions. Assertions
(assert [φ]) correspond to formulas that are to be proved. We say informally that a
program is verified if all the assertions it contains hold in all executions of the programs
that fulfills the assumptions. Base instructions are left unspecified, they shall depend on
the target language and application domain; they may include, for instance, assignments
and pointer redirections. The semantics of the loop instruction is also standard: the
subprogram is executed if and only if the initial condition is verified when the program
attains the loop instruction and, when its execution is complete, it jumps back the initial
condition of loop and executes the subprogram again as long as the condition is verified.
It jumps after the loop whenever its condition is not verified any longer.

Definition 130. Given a loop instruction while C do [φ] P done, we call the formula
φ a candidate loop invariant.

Given a loop instruction while C do [φ] P done, we will say that its candidate loop
invariant is a loop invariant if it holds every time the condition C is tested during any
execution of the program.

Example 131. Let us consider the sample program presented in Algorithm 6.1, expressed
within the framework of Definition 128.

This algorithm is standard for computing, given two integers n,m such that m ≥ 0
(expressed within an assumption Line 1), the quantity nm. The postcondition at Line 8
is meant to guarantee this is indeed the case. It contains base instructions at Lines 2,
3, 6, 7 and 9, and a loop at Line 4. The current candidate loop invariant of the loop
is > (Line 4), we will see later that it does not permit to deduce the assertion of the
program. We will delegate the generation of verification conditions and the satisfiability
tests required to check their validity to external tools. The method we design is an
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Algorithm 6.1: SampleExp(n,m)

1 assume [m ≥ 0] ;
2 let p←− 1 ;
3 let w ←− 0 ;
4 while w < m do
5 [>]
6 p←− p× n ;
7 w ←− w + 1 ;

8 assert [p = nm] ;
9 return p ;

algorithm that updates the candidate loop invariant to allow those tools to produce a
proof of the program’s assertions.

Definition 132. Given a program P , we define rmLoops(P ) by the program P in which
we have removed all the loop instructions.

Notation 133. In the following, we will sometime represent sequences of integers as
separated by a dot (such as 1.2.0 = 〈1, 2, 0〉). We will also extend this notation for
sets of sequences, which means that for any integer n and any two sets of sequences
L1,L2 we will write n.L1 = {n.n′ | n′ ∈ L1}, L1.n = {n′.n | n′ ∈ L1} and also L1.L2 =
{n1.n2 | n1 ∈ L1, n2 ∈ L2}.

As we want to express the problem of property-directed loop invariant generation in
the framework of Definition 112, it is fairly intuitive to use the candidate loop invariants
as guide formulas. What we need now is a generic method to construct verification
conditions generators that can generate conditions ensuring that all the properties we
want our programs to have hold. In the technical system (see Chapter 8), this will
be delegated to an external tool, for which we will only require that the validity of
the generated verification conditions guarantees all the properties of the program hold.
For self-completeness, we shall now briefly review a well-known algorithm for generating
verification conditions. It is based on calculi for computing weakest preconditions and
strongest postconditions of logical formulas.

The first element we need is a formal way to locate a specific instruction within a
program. This is the purpose of the following definition:

Definition 134. We define a location within a program or an instruction. We define
locs(P ) the set of locations within a program P inductively as follows:

empty 7→ {0}
I;P1 7→ {0} ∪ 0.locs(I) ∪ {(i+ 1).` | i.` ∈ locs(P1)}

〈base-instruction〉 7→ ∅
assume [φ] 7→ ∅
assert [φ] 7→ ∅

if C then P1 else P2 end 7→ 1.locs(P1) ∪ 2.locs(P2)

while C do [φ] P1 done 7→ 1.locs(P1)
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Definition 135. In the following, we will identify an instruction within a program by
the location preceding it. For a given program P and a given location ` within P , we will
denote the instruction appearing directly after ` in P by P |` and define it inductively as
follows:

I;P1|0 7→ I

I;P1|0.` 7→ I|`
I;P1|(i+1).` 7→ P1|i.` if P1 6= empty

if C then P1 else P2 end|1.` 7→ P1|` if P1 6= empty
if C then P1 else P2 end|2.` 7→ P2|` if P2 6= empty

while C do [φ] P1 done|1.` 7→ P1|` if P1 6= empty

Remark 136. Note that, given a program P , P | is a partial function, since locations
denoting the end of a sequence do not correspond to any instruction.

Notation 137. In all the following, we will order program locations as we would lexico-
graphically order sequences of integers. For two given locations `1, `2, we will denote
`1 < `2 if `1 is lower than `2, and `1 ≤ `2 if it is lower or equal.

Definition 138. Given a program P and two locations `, `′ in P , we define P[`:`′] the
subprogram of P between ` and `′ inductively as follows:

P[`:`] = empty
P[`:`′.(i+1)] = P[`:`′.i] · P |`′.i if ` ≤ `′.i

P[`:`′.0] = P[`:`′] if ` ≤ `′

P[`.i.`′:`.(i+1)] = P[`.i.`′:`.i.m] m = max({j | `.i.j ∈ locs(P )})

6.2 A standard method for verifying assertions within
programs

In all the following, we will associate to a given program P a verification structure (Φ,Υ),
where Φ are the candidate loop invariants of the program, in the order they appear in
(according to Notation 137). Υ will be a set of verification condition generators generating
all the verification conditions for the program at hand. We describe below how we
construct this set from a source program.

First, we distinguish three types of verification conditions for a program:

1. The assertion conditions, which check that the assertion formulas hold at the cor-
responding locations in the program. These conditions may also include so-called
property verifiers to ensure usual verifications not explicitly expressed within the
program (such as divisions by zero, bounds of array accesses, etc). Given a program
P , we will denote those by Vassert(P ).

2. The propagation conditions, which check that the candidate loop invariants within
the program do propagate. Given a program P , we will denote those by Vind(P )
and, given a loop L ∈ P , we will denote the propagation conditions for L byVL

ind(P ).

64



3. The loop preconditions, which check that the candidate loop invariants hold when
the program first enters the loop they appear in. Given a program P , we will
denote those by Vinit(P ) and, given a loop L ∈ P , we will denote the propagation
conditions for L by VL

init(P ).

Given a verification structure P representing a program, we assume that V C(P ) =
Vassert(P ) ∪Vind(P ) ∪Vinit(P ). Moreover, we expect that the pairwise intersections of
Vassert(P ), Vind(P ) and Vinit(P ) are all empty.

A classical way to generate such verification conditions from a program is to use a
weakest precondition calculus and/or a strongest postcondition calculus, such as the ones
presented in Definitions 139 and 140.

Definition 139. We define the weakest precondition of the formula ψ relatively to the
program P , and denote by wp(ψ, P ), the formula inductively defined as follows:

ψ, empty 7→ ψ

ψ, I;P1 7→ wp(wp(ψ, P1), I)

ψ, 〈base-instruction〉 7→ ψ′depending on the specific instruction
ψ, assume [φ] 7→ φ⇒ ψ

ψ, assert [φ] 7→ φ ∧ ψ
ψ, if C then P1 else P2 end 7→ C ⇒ wp(ψ, P1) ∧ ¬C ⇒ wp(ψ, P2)

ψ, while C do [φ] P1 done 7→ φ ∧ ∀x.(φ⇒ wp(ψ, P1)) ∧ ∀x.(φ ∧ ¬C ⇒ ψ)

Definition 140. Similarly, we define a strongest postcondition of the formula ψ relatively
to the program P and denote by sp(φ, P ), the formula inductively defined by:

ψ, empty 7→ ψ

ψ, I;P1 7→ sp(sp(ψ, I), P1)

ψ, 〈base-instruction〉 7→ ψ′depending on the specific instruction
ψ, assume [φ] 7→ φ ∧ ψ
ψ, assert [φ] 7→ ψ

ψ, if C then P1 else P2 end 7→ sp(ψ ∧ C,P1) ∨ sp(ψ ∧ ¬C,P2)

ψ, while C do [φ] P1 done 7→ φ ∧ ¬C

Remark 141. The reader can observe that, contrarily to the weakest precondition calculus
of Definition 139, the strongest postcondition calculus of Definition 140 does not contain
the loop verification conditions.
Remark 142. For simplicity reasons, we assumed that C is expressed in the same logic
as the one we use to express the formula within the program (such as loop invariants.)
In practice, it may not be true and, in this case, one should start by translating those
conditions into the logic the formulas are expressed in beforehand.

6.3 A loop invariant generation framework
Given a program, we can now define a verification structure to represent the problem we
tackle.
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Definition 143. Given a program P , we define (Φ,Υ) the verification structure repre-
senting P as follows.

• Φ is the sequence of candidate loop invariants in P , in their order of appearance.

• For any location ` ∈ P such that P |` is of the form assert [φ],

υ`assert : ϕ1, . . . , ϕn 7→ sp(>, P [∗ ←− ϕ1, . . . , ϕn][0:`])⇒ φ

belongs to Υ. It is the verification condition generator ensuring that the assertion
at location ` is verified. Remark that this verification condition generator depends
on all the candidate loop invariant locations of P[0:`].

• For any location ` ∈ P such that P |` is of the form while C do [φ] P ′ done,

υ`init : ϕ1, . . . , ϕn 7→ sp(>, P [∗ ←− ϕ1, . . . , ϕn][0:`])⇒ ϕi

belongs to Υ, where ϕi is such that P [∗ ←− ϕ1, . . . , ϕn]|` is the instruction

while C do [ϕi] P
′∗ done.

It is the verification condition generator ensuring that the candidate loop invariant
of the loop at location ` is verified whenever the loop is entered. Note that this
verification condition generator depends on all the candidate loop invariants of P[0:`]

as well as on the candidate loop invariant of P |`.

• For any location ` ∈ P such that P |` is of the form while C do [φ] P ′ done,

υ`ind : ϕ1, . . . , ϕn 7→ ϕi ⇒ wp(ϕi, rmLoops(P
′∗))

belongs to Υ, where P ′∗ and ϕi are such that P [∗ ←− ϕ1, . . . , ϕn]|` is the instruction

while C do [ϕi] P
′∗ done.

It is the verification condition generator ensuring that the candidate loop invariant
of the loop at location ` propagates. Note that this verification condition generator
depends on all the candidate loop invariants of P ′ as well as on the candidate loop
invariant of P |`.

• Υ does not contain any other verification condition generator.

Definition 144. Given a verification structure (Φ,Υ) representing a program P as in
Definition 143, we define verification update inverters for its verification condition gener-
ators as follows:

• Given the verification condition generator υ`assert of an assertion occurring in the
program at the location `, and given `i the location of a loop it depends on (assuming
this loop is the ith loop of the program), we define the associated verification update
inverter υ`assert

−1|i as follows:

υ`assert
−1|i : I 7→ wp(I, rmLoops(P[`i:`]))
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• Given the initialization verification condition generator υ`init of a loop occurring
in the program at the location `, and given `i the location of a loop it depends
on (assuming this loop is the ith loop of the program), we define the associated
verification update inverter υ`init

−1|i as follows:

υ`init
−1|i : I 7→ wp(I, rmLoops(P[`i:`]))

• Given the propagation verification condition generator υ`ind of a loop occurring
in the program at the location `, and given `i the location of a loop it depends
on (assuming this loop is the ith loop of the program), we define the associated
verification update inverter υ`ind

−1|i as follows:

υ`ind
−1|i : I 7→ I

This gives us a verification structure able to represent a program. We can use the
Ilinva algorithm presented in Chapter 5 to try and compute satisfying loop invariants
for it.

Example 145. Let us consider the Sample Program 6.2. Using the definitions we pre-

Sample Program 6.2: LoopCheck2(y0)

1 let x← −50;
2 let y ← y0;
3 while x < 0 do
4 invariant [ψ] ;
5 x← x+ y;
6 y ← y + 1;

7 assert y ≥ 0;

sented in this section, we would obtain for this program the following verification condition
generators:

• υ2
init : φ 7→ x = −50 ∧ y = y0 ⇒ φ

• υ2
ind : φ 7→ φ⇒ wp(wp(φ, x← x+ y), y ← y + 1)

• υ6
assert : φ 7→ x = −50 ∧ y = y0 ∧ ¬x < 0 ∧ φ⇒ y ≥ 0

Similarly, the associated verification update inverters will be defined as follows:

• υ2
init
−1|2 : I 7→ I

• υ2
ind
−1|2 : I 7→ I

• υ6
assert

−1|2 : I 7→ I

Lemma 146. Consider a verification structure P representing a program in the sense of
Definitions 128, 143 and 144. If P is satisfied then we have both that

67



1. the assertions of the program are verified and

2. all the loop invariants it contains are true when first checked and propagate.

Proof. This is a consequence of the Definition 143. The fact that the verification structure
is satisfied ensures that all its verification conditions are valid. The assertion verification
conditions ensure that the assertions of the program are verified and the other ensure the
validity of the loop invariants.

Corollary 147. Let P be a verification structure representing a program in the sense of
Definitions 128 and 143, to which we associate the verification update inverters as defined
in Definition 144. If Ilinva(P ) terminates and if we have Ilinva(P ) 6= failure, then
all the verification conditions of the program are valid. This means that all the assertions
it contains hold and that all its candidate loop invariants are actual loop invariants.

Proof. This is a direct consequence of Theorems 125, 126 and Lemma 146, applying the
result we obtained for the general algorithm in this particular case.

Even though this algorithm works in theory, it still contains a lot of imprecision for
someone who would like to implement it. In particular, we did not detail how we select
the abducible literals required for using ImpGen-PiD as the abduction algorithm within
Ilinva. Likewise, we did not explain how we can obtain interesting filtering predicates
for abduction from the program. Finally, we will see that additional considerations can
be made regarding the use of ImpGen-PiD. Those issues will be discussed in Section 6.4.
The readers interested in the practical implementation of the system can refer to Chapters
7 and 8. In order to use the Ilinva algorithm to generate loop invariants of programs
in practice, we will delegate the verification condition generation tasks to the program
verification platform Why3 [75, 21]. It performs roughly the tasks let to the verification
condition generator as defined in the present chapter, even though these conditions are
tweaked to handle a larger class of programs and with additional considerations on, e.g.,
the simplification of the verification condition generated. Still, it gives us the guarantee
we expect on the program it handles

6.4 Parametrization of the algorithm
In Chapters 5 and 6, we devised an algorithm using the ImpGen-PiD abduction algo-
rithm to compute loop invariants of programs. In this part, we describe the additional
parametrization required to implement such a system. In particular, we discuss how we
generate abducible literals for the ImpGen-Ilinva abduction algorithm (see Line 2 of
Algorithm 5.3), the order we use to test the solution it returns, and the method we use to
select an unsatisfied verification condition to perform abduction on, and which candidate
loop invariant to strengthen with the solutions.

6.4.1 Selecting verification conditions and candidate loop
invariants

The first nondeterministic part of the Ilinva algorithm we need to discuss is the selection
of the verification condition to strengthen, as well as the candidate loop invariants we
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will strengthen using the solutions of the abduction algorithm (see Lines 5 and 6 of
Algorithm 5.2). As explained in Section 6.2, we decompose the verification conditions
of our program into three subsets: the set Vinit(P ) of verification conditions ensuring
that all the candidate loop invariants hold when the program first enters the loop they
belong to, the set Vind(P ) of verification conditions ensuring that all the candidate loop
invariants propagate, and the set Vassert(P ) of verification conditions ensuring that we
can prove the assertions of the program.

For simplicity reasons, we made the choice to never perform abduction on the ver-
ification conditions of Vinit(P ). We will assume, even though this is not always true,
that the verification structure associated with a program for which the set of verification
conditions related to the loop invariants initializations contains at least one unsatisfied
verification condition is inconsistent. This will permit to define a filtering predicate for the
ImpGen-PiD algorithm that can be used if we do not wish to compute the disjunctions
of the abduction solutions. Indeed, refusing to add a candidate to the current hypothesis
during the execution of the ImpGen-PiD algorithm if the result happens not to satisfy
one the loop initializations verification conditions will allow us to remove exploration
branches we are certain would only produce such candidate loop invariants.

We make the choice of always considering the verification conditions ensuring the
propagation of the candidate loop invariants first. This means that whenever the set
Vind(P ) contains at least one non-valid formula, the verification condition we send to
the abduction algorithm will be in it. We do this in order to ensure that the candidate
invariants we strengthened when trying to prove the program’s assertions are not too
strong to propagate. This prevents the algorithm from exploring strengthening possibil-
ities that would indeed prove other assertions within the program but would never allow
us to obtain a complete proof of the program due to this failure to propagate.

This leaves us with the problem of deciding, within a set Vind(P ) of verification
conditions related to the propagation of a loop invariant, which one we should select. We
decided to consider the verification conditions in the reverse order of the loops in the
program. When we have at least two candidate loop invariants that do not propagate
within the program, we will consider the location of the loops they belong to, and select
the verification condition corresponding the maximum of those locations. Intuitively, this
is the condition that is the closest to the loop we have to prove the propagation of, and
thus the one the modification of which would introduce the least amount of data in the
system.

We now have to select the candidate loop invariant we will try to strengthen with
the strengthenings that the abduction algorithm will return. In the most simple case
(that is, with no nested loops), the candidate loop invariant of a loop will always be
the guide formula associated with the verification condition related to the propagation
of itself. When the loop contains other loops, it is clear that the verification condition
for the propagation of its candidate loop invariants is based on the value of the nested
loops invariants. More work should be done to design relevant heuristics allowing to try
to strengthen the invariants of those nested loops to obtain a propagation proof for the
main loop. In this work however, we will stick to always selecting the candidate loop
invariant of the loop from which the verification conditions was derived.

Concerning the selections of the verification condition for proving the assertions of
program, we consider them in the order they appear in within the program. This means
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that whenever the setVassert(P ) contains more than one unsatisfied verification condition,
we will always select the one derived from the assertion with a minimal location. We now
have to select which candidate loop invariant to strengthen using the solutions of the
abduction algorithm. It is easy to see that the verification condition of an assertion does
not depend on the candidate loop invariants appearing after it within the program. Those
will thus never be considered. This leaves us with the candidate loop invariants preceding
the assertion. We make the choice of trying all these possible strengthening locations in
their reverse order within the program, unless they belong to a loop nested in the path
leading to the assertion. Obviously, if we can show that the verification condition did
not depend on a given candidate loop invariant, we will not try to strengthen it with the
abduction solution of the verification of the assertion.

Example 148. Let us consider the Sample Program 6.3. As this program contains two

Sample Program 6.3: MultiLoopCheck()

1 let x← 0;
2 let y ← 0;
3 let n← 0;
4 while random({>,⊥)} do
5 invariant [?];
6 x← x+ 1;
7 y ← y + 1;

8 while x 6= n do
9 invariant [?];

10 x← x− 1;
11 y ← y − 1;

12 assert x = y;
13 assert y = n;

loops and two assertions (which are, in this case, equivalent), we will have to decide which
ones we consider first. Applying the rules we suggested in the present section, we will
first try to find a strengthening allowing to prove the assertion at Line 12, reinforcing first
the invariant at Line 9, then the one at Line 5 if nothing is found. If we reach a state in
which one of the candidate loop invariants does not propagate, we will immediately try
to strengthen this candidate with on the non-valid verification condition built from this
propagation requirement. If none of the candidates propagate, we will start by reinforcing
the one at Line 9.

6.4.2 Selecting abducible literals

We can now tackle the construction of the abducible literals for the ImpGen-PiD algo-
rithm. This will be done using the following method, of which all steps will be detailed
below. We start by extracting from the program a set of core abducible elements. Then,
for each verification condition forwarded to the abduction algorithm, we will remove
from this initial set of core abducible elements the ones that are unrelated to the current
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verification condition (e.g. those containing variables undefined in the context of the ver-
ification condition). The remaining set will be forwarded to the ImpGen-PiD algorithm
alongside the unsatisfied verification condition.

Using the program, it is clear that we can obtain relevant abducible literals from the
identifiers (variables, functions, etc) it contains. This is what we use to build our set of
core abducible elements. We will consider all the literals built upon the set of symbols
occurring in the program up to the maximal depth of the terms occurring in the program.
We can also allow the use of additional functions or predicates defined by the user to help
the verification of the program. In this case, those will also be used to generate the set
of core abducible elements.

Example 149. Going back to the algorithm of Example 131 (Algorithm 6.1), we see that
it contains four variable identifiers (n,m, p, w), two constant integers (0, 1), three binary
functions (×,+,22). and three binary predicates (≥, <,=). All the functions of the
algorithm are only applied to variables, which is also the case of the two comparison
predicates. The equality predicate will not be applied for two parameter that are results
of the power function. This means that our set of core abducible elements will contain all
the possible comparisons between constants and variable identifiers, as well the equalities
between variables, constants, and in one side results of the application of the power
function.

As such, the set of core abducible elements contains elements expressed within the
framework of the program, that do not relate to any of the verification conditions. Those
cannot be forwarded to the abduction algorithm in this state, which is why we now
present a transformation method to adapt this set when given a verification condition.
Given a verification condition, we first remove from the set of core abducible elements
the elements that are unrelated to the verification condition. Those are the elements
containing variables or functions not appearing in the context of the verification condition,
or undefined at the location of the candidate loop invariant. When this is done, we use
the same method as the one we used for the translation of the verification condition (see
again Definition 143) to obtain the corresponding logical formula of the core abducibles
at the location of the verification condition we consider. This is the set of abducible
literals we will forward to the ImpGen-PiD algorithm.

It is clear that additional work should be done to obtain smaller and more relevant
sets of abducible literals. Indeed, even if we removed all the elements clearly unrelated to
the verification conditions we process, most of the resulting literals are not particularly
relevant for the proof, because they were built using only low-level information and do
not encode any higher-level information on the program. We also refer the reader to
Chapter 9 for the effects this has on the practical efficiency of the algorithm.

6.4.3 Parametrizing the ImpGen-PiD algorithm and the
generation of abduction solutions

Even though it is stated that in Algorithm 5.3 we recover all the solutions from ImpGen-
PiD before using them to strengthen our candidate loop invariants, it is natural to assume
that any implementation of the algorithm will generate these solutions one by one, at the
moment a new candidate is required. Such an implementation will guarantee that the
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only solutions that are generated are the ones that will actually be tested as candidate
loop invariant strengthenings. This suggests that it will be important to generate the
best possible strengthenings in the least amount of time.

The first element to consider to obtain this result is the use of the ImpGen-PiD algo-
rithm. This algorithm explores the hypotheses it can construct from its set of abducible
literals depth first. In particular, this implies that when this set is large, it may spend
a lot of time exploring and trying hypothesis within a branch where all the hypotheses
will end up being satisfiable before trying other possible solutions that may be more rele-
vant. We will see in Chapter 9 that this behaviour can severely degrade the performance
of the system. Moreover, as the Ilinva algorithm already uses a recursive method to
strengthen the same candidate several times if necessary, it appears that we are not nec-
essarily interested in obtaining deep (i.e., containing many literals) solutions, but rather
in obtaining simpler ones, sufficient enough to obtain a proof. These considerations sug-
gest that it may be useful to tweak the ImpGen-PiD algorithm slightly to simulate a
breadth-first search. The method described below is recent work, and it is clear that
more work should be done to devise a more integrated and efficient breadth-first version
of the ImpGen-PiD algorithm.

We proceed using an iterative deepening strategy, that is, by calling the ImpGen-
PiD algorithm multiple time with additional size filtering predicates. Given a maximal
limitation size n, we will call successively the ImpGen-PiD algorithm n times with a
filtering predicate limiting the size of the solutions to the current number of times the
algorithm was called. We will also call the algorithm without those restrictions one last
time, to be certain not to miss any solution. This ensures that we will generate small
solutions first, even though it also implies that we are doing redundant work.

The second thing we have to consider is the behaviour of the UpdateImplicants
method in Algorithm 5.3. The way we decide to use it within this work is to construct
disjunctions of the previously obtained solutions. Assuming that no strengthening lead-
ing to a complete proof of the program was found using the implicants returned by the
ImpGen-PiD algorithm, it is possible to construct weaker implicants, by building dis-
junctions of those first ones. Still, it is clear that the number of such implicants can be
extremely large, even if we limit the number of disjunctions in a given implicant.

6.4.4 Differences with the work of Dillig et al. [57]

The algorithm proposed by Dillig et al. in [57] is similar to ours and also uses abduc-
tion to strengthen candidate invariants so that verification conditions are satisfied. The
algorithms differ by the way the verification conditions and abductive hypotheses are
proceeded. In our approach, the conditions always propagate forward from an invari-
ant to another along execution paths, and we eagerly ensure that all the loop invariants
are inductive. In their work, Dillig et al. allow for a more general selection structure,
which may result in a larger search space, though they also additionally use a strongest
postcondition calculus to instantiate their candidate loop invariants, which helps counter-
balancing this effect. Another difference is that we use a completely different technique
to perform abductive reasoning: the one in [57] is based on model construction and
quantifier elimination for Presburger arithmetic, whereas our approach uses a generic
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algorithm, assuming only the existence of a decision procedure for the underlying theory.
This permits to generate invariants expressed in theories that are out of the scope of [57].

6.4.5 Limitations

After all these considerations, we observe that the Ilinva algorithm used for the gen-
eration of loop invariants of programs still suffers some limitations. The first issue we
notice comes from the construction of the set of abducible literals. As it is extracted
strictly from the elements of the program (or additional user-provided elements). This
means that if the candidate loop invariants can only be expressed using more complex
functions or predicates, or expressed more clearly using those, we will not be able to find
such solutions. Secondly, as mentioned before, the way we handle the loop initialization
verification conditions may prevent us from generating a complete proof of a program if
it can only be obtained by strengthening candidate loop invariants of other loops after-
wards. Thirdly, the tweak we operate for the use of the ImpGen-PiD algorithm makes
it perform some redundant work, notably redundant satisfiability tests, which is notably
costly. We also note that we generate many abduction solutions that can appear as irrel-
evant to a human user. Finally, the algorithm uses successive strengthenings of candidate
invariants to generate the proof that the verification conditions of the system are valid.
This implies that if the program has no unsatisfied verification condition that can be
verified by strengthening one and only one candidate loop invariant, then we will not be
able to generate a solution for proving all its verification condition, even though such a
solution may exist.

We will see in Chapter 9 that those limitations strongly influence the efficiency of the
algorithm. However, we will also see that the fairly simple heuristics we chose still permit
to generate solution for a wide range of programs, although not always in reasonable
time. This suggest that this solution is promising and that additional work should be
initiated to tackle the issues we mentioned.
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Part III

Implementation and evaluation of the
abduction algorithm and of its

application
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Chapter 7

An infrastructure that transcribes the
genericity of the algorithms

In Part I, we designed an algorithm to compute the prime (T ,A)-implicates of a formula
and, in Part II, we used this algorithm to design a generic loop invariant generator. In
order to evaluate and test these two algorithms, we present in this part a C++ framework
implementing both. This system is called Abdulot for abduction modulo theories.
This chapter describes the design, development and basic usage of the system. We will
discuss in Chapter 8 the details related to the implementation of concrete interfaces for
SMT-solvers and program provers, and we will evaluate the framework experimentally
in Chapter 9. For a detailed user manual, the reader is referred to Appendix C.

As described in Chapter 3, we have designed an abduction algorithm that works
modulo theories. It is independent of the theory, as long as we can provide a decision
procedure for testing the satisfiability of formulas in this theory. This genericity being the
main goal of this work, we implemented a system that is also generic. This means that
it does not depend on any specific satisfiability decision algorithm, but rather exposes a
generic interface for formula satisfiability checkers in which we will plug any SMT-solver
that can handle the problems we consider.

Similarly, the strengthening algorithm is not inherently dependent on the tool it uses
to detect strengthening locations and ensure the global verification of the program. This
is why the system will also be generic with respect to this tool, and will communicate
with it via a standardized interface.

7.1 Generic interfaces for SMT-solvers
We start by describing the interface we use to communicate with SMT-solvers in our
system. We recall that we assume an SMT-solver to always return an element of B =
{Sat, Unsat, Unknown}, and possibly a model when it returns Sat. In practice, it is
possible that the SMT-solver, being a technical system, fails more significantly when
trying to compute a formula and ends up returning an error. We will handle those errors
as if they were Unknown results, as it is the only information we can extract from them.
It is also possible for the SMT-solver not to terminate on a given formula. To ensure the
termination of the main algorithm in those cases, it is possible to restrict the computation
time of any SMT-solver query with a timeout. In this case, and if the SMT-solver has not
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returned any answer before the timeout ends, we will also interpret it as the SMT-solver
returning Unknown.

The issue that arises when we allow the SMT-solver to return Unknown is that the
ImpGen-PiD algorithm is not conceived to handle such answers. This justifies the fol-
lowing assumption:

In all the following, we will assume that it is possible to project the answers in B
given by SMT-solvers into {Sat, Unsat}. We will use such projections to change the value
of Unknown results to either Sat or Unsat depending on our needs. The most natural
solution being to interpret Unknown answers as if they were Sat answers. Indeed, the
ImpGen-PiD algorithm searches for implicates by deriving contradictions between the
initial formula and a set of hypotheses it is constructing. If the SMT-solver tasked with
the verification of those contradictions is unable to answer, we cannot ensure that the
hypothesis it tried is a contradiction. In this case, rather that stopping the algorithm, we
will handle it as if it was not a contradiction. It is clear that, in this case, we may miss
actual implicates of the initial formulas. This choice ensures, however, that the algorithm
is correct at the expense of completeness.

Now that the issue of Unknown results has been handled, we can tackle the presentation
of the generic SMT-solver interface we designed in order to make the system independent
on the SMT-solver. If one wants to plug an SMT-solver to our abduction algorithm, in
order to generate implicates in a theory of his or her choice for instance, the only work that
will be required is to write the corresponding wrapper to make the use of the SMT-solver
match the interface. We present this interface in Interface 7.1.

Interface 7.1: SMT-solver Interface Template
1 interface Constraint contains
2 str : void −→ string ;

3 interface Model contains
4 implies : Constraint −→ {>,⊥} ;
5 interface Solver contains
6 getModel : void −→Model (only if the last check call returned Sat);
7 addConstraint : Constraint −→ void ;
8 push : void −→ void ;
9 pop : void −→ void ;

10 check : void −→ B ;

An SMT-solver interface contains a constraint wrapper, which represents the con-
straints that can be added to the set of formulas the SMT-solver should handle. We
require that such constraints can be converted to C++ strings in order to print them
when generating implicates or related results (such as implicants). We also expect the
interface to wrap its models (when they exist) to allow the system to check whether a
given constraint is validated by this model. The actual interface for the SMT-solver con-
tains the usual methods to add constraints to the formula set, push and pop functions to
stack constraints on multiple levels (necessary for solving incremental problems without
recreating a new formula from scratch for each test) and a method to check the satisfi-
ability of the constraints, and recover a model if possible. An additional class (usually

78



called a manager) can also be sent to the solver via the interface if necessary, though this
has not been explicitly expressed in Interface 7.1. Such classes are usually required by
SMT-solver APIs to allocate, construct and manage the formulas.

One may also have to devise a specific problem loader, which will handle the loading
of a problem file and its conversion into constraints in the format handled by the interface
defined above. The generic interface for problem loaders is described in Interface 7.2. It
contains code to load problem files for the solver used and will perform a step-by-step
constraint forwarding. This means that it works by being asked whether it contains at
least one more constraint before being called to return this constraint.

Interface 7.2: SMT-solver Problem Loader Template
1 interface ProblemLoader contains
2 load : (filename : string), (opts : string) −→ void ;
3 hasConstraint : void −→ {>,⊥} ;
4 nextConstraint : void −→ Constraint (only valid if the last access to the

interface was a call to hasConstraint that returned >);

Similarly, one can also devise a specific abducible literal loader. As we presented it in
Chapter 3, the ImpGen-PiD algorithm computes (T ,A)-implicates of a formula, that is,
the T -implicates it can construct from the literals contained in A. This means that, in
the implementation, it is necessary to compute the set A that is fed to to the ImpGen-
PiD algorithm. This is done by adding a component to the system that will recover
information about those abducible literals and will generate constraints (in the sense of
Interface 7.1) corresponding to the actual literals that can be selected to build hypotheses
during the generation of (T ,A)-implicates by the algorithm. The generic interface for
abducible literal generators is described in Interface 7.3. It provides a method to load
abducible literals from a file (technically in any format, even if we provide a specific
one to represent them — see also Section 7.4). It should also provide a method for
automatically generating abducible literals from the problem. Finally, after loading or
generating abducible literals, the interface is able to return the total number of literals
it obtained and to return them in an array. The finite set of abducible literals is then
stored in memory and the literals referred by their index in the corresponding table.
This table will be accessed when we need to use the value of the literals (such as when
performing satisfiability tests). We will additionally assume that the order we should use
on abducible literals is the one induced by their indices in this context. If the literals
have been obtained by loading an input file, this order will correspond to the one they
appeared in within the file. If the literals have been generated from the problem, then
this order will be set by the generators; It is generally induced by the order in which
the literals were found within the problem but can be set differently by modifying the
generator.

The Abdulot framework comes with already implemented interfaces for Alt-Ergo
[39] (via its SMT-lib interface only), CVC4 [7] (via SMT-lib [9] and via its C++ API),
MiniSAT [70] (using its Dimacs [60] format and its C++ API), VeriT [24] (via its
SMT-lib interface) and Z3 [50] (via SMT-lib and via its C++ API). The framework
also provides a generic interface for SMT-lib-compliant [9] solvers, which can be easily
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Interface 7.3: SMT-solver Literal Generator Template
1 interface LiteralGenerator contains
2 load : (filename : string) −→ void ;
3 generate : (generatorId : string) −→ void ;
4 count : void −→ N ;
5 getMapper : void −→ {cid ∈ N 7→ Constraint} ;

parametrized with the executable of the SMT-solver. All of the interfaces provided
are used to generate test executables for the implementation of both the ImpGen-PiD
algorithm and the Ilinva algorithm.

7.2 Implementation of ImpGen-PiD

In this section, we will describe the implementation of the ImpGen-PiD algorithm. This
implementation will be called GPiD and is schematically representing in Figure 7.1. It is
decomposed into three components: a hypothesis engine, with the task of selecting which
abducible literals should be added to the hypothesis constructed to contradict the original
problem, the interface of the SMT-solver, that will be used to test the satisfiability of
the queries and conclude whether any hypothesis it is given is an implicate of the source
problem or not, and an algorithmic engine (called implicate generator in Figure 7.1),
which will manage the other two and handle the global execution of the ImpGen-PiD
algorithm. All those components are packaged in a wrapping interface that is available
within the library and also compiled as executables.

We consider the GPiD implicate generation system as a process taking as input some
problem data, exporting implicates and possibly communicating with external hypoth-
esis checkers. The inputs it requires are a set of logical formulas (compatible with the
theories handled by the SMT-solver it was configured with) and a method to generate
the abducible literals it should work with (see 7.4). We offer two methods to inject those
in the system: one using files as well as a command line interface to tell the executable
in which files these inputs can be found; and another using the C++ API directly. The
input data is then split to send the formula to the implicate generator and the abducible
literals to the hypothesis engine, where they will be ordered according to the order they
were sent in, and then selected (by following the refinements we presented in Chapters 3
and 4) in order to build possible implicates. Similarly, the source problem is forwarded
to the formula manager of the implicate generator to configure the tasks that will be del-
egated to the SMT-solver for finding its implicates. The source formula can also be used
by the implicate generator to implement Definition 63 and prune some of the abducible
literals stored within the hypothesis engine when they are logical consequences of the
conjunction of the input formula and of the current hypothesis.

The ImpGen-PiD algorithm is executed by the implicate manager. It requests the
hypothesis engine to select an abducible literal to add to its current hypothesis, forges
a task with its formula manager and forwards it to the SMT-solver. Depending on the
answer, it can forward a model to the hypothesis engine to prune future abducible candi-
dates, or notify any external tool using it that it has found an implicate. If possible, the
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Figure 7.1: Structure of GPiD within the Abdulot framework
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hypothesis engine will also store this implicate. This will also allow it to prune exploration
branches (see Algorithm 4.1). Similarly, the hypothesis engine can communicate with any
available hypothesis checker, which are external components implementing user-defined
filtering predicates (see Definition 79 and the use of filtering predicates in Algorithm 3.2),
in order to prune abducible candidates those checkers do not accept.

The implicates forwarded by GPiD can be reused for any other purpose when returned
within the Abdulot library. They are simply printed on the terminal when a test
executable is used.

After an implicate has been found (or after we are sure that no more implicate can
be derived by adding more abducible literals to the current hypothesis), the hypothesis
engine will backtrack to the last abducible literal selection it made and pursue the ex-
ploration by adding to the hypothesis an abducible literal not previously tried at this
level.

Finally, the execution can be interrupted by the usual interruption signals. These
signals are not forwarded to the SMT-solver however. This can explain the delay between
the detection of the interruption and the actual termination of the execution.

In the implementation, the wrapping interface can be instantiated through a C++
template GPiDAlgorithm<EngineT, LitGenT, IHandlerT> within the Abdulot library.
Its Engine, the class used to select hypotheses, also contains the reference to the SMT-
solver interface that should be used and its corresponding problem loader. The LitGenT
object allows one to load and generate core abducible literals that will be used by the
engine. It is the object that is plugged as the problem data interface. Finally, the class
IHandlerT will be used to handle the implicates generated during the execution of the al-
gorithm. It is the object that is plugged as the implicate interface. Additional hypothesis
checkers can also be forwarded to the template, to possibly reject some of the hypotheses
the engine will be tempted to make.

7.3 A GPiD hypothesis engine for selecting the
candidates and handling the hypotheses

As explicitly induced by the structure of GPiD, it can be plugged with various hypothesis
engines, possibly implementing some or all of the algorithm refinements presented in
Chapter 3.2. This section provides the description of an implementation providing all the
refinements of Chapter 3.2 except the use of unit clauses. A sample description for the
standard behaviour of this engine is provided in Figure 7.2 .

The engine stores the abducible literal candidates it recovers for the system it is
embedded in as well as the currently selected hypothesis (set of such literals). Following
the commands of the parent object, it will add or remove elements from this currently
selected hypothesis before forwarding the latter when asked to. When it has to add literals
to its hypothesis, it will take into consideration all the elements it has available and apply
the corresponding selections as presented in the theoretical sections. The elements it can
usually count on are the models forwarded through its interface, the known implicates it
stores and any external checker it can access via its wrapping interface. If necessary, it
also usually comes with an internal SMT-solver interface to perform some minimal queries
in order to prune some candidates that may be inconsistent or leading to implicates that
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are already part of the initial problem for instance. The hypothesis engine implemented
in the Abdulot framework uses all these improvements, though they can be optionally
deactivated. The framework also contains a so-called naive hypothesis engine which only
uses minimal information to select abducible literals, and thus may not use any of those.
The latter can be used for development or testing reasons.

7.4 Defining, generating and handling abducible
literals

The hypothesis engine requires an initial set of abducible literals. As such literals are
necessary on all the systems of this thesis, and as their formulation will most probably
depend on the theory of the problem they relate to, we need some sort of generic method
to describe, load and/or generate them. This is what we describe now.

We start by recalling that one can always write a custom abducible literal generator
and plug it within the system. Two generators of this sort are provided within the Ab-
dulot framework: one for propositional logic problems, used by default jointly with the
MiniSAT interface on Dimacs [60] problems, and one prototype for SMT-lib [9] prob-
lems. The first one generates the literals corresponding to all the propositional variables
declared in the problem and their negation. The second generates all the equalities and
disequalities between declared variables of the same sort. If none of those generators are
useable and if the user does not want to provide their own generator, the framework also
contains a generic method to build abducible literals from the problem loader interface
of the SMT-solver. This is done using files we will call abducible files, that will be parsed
and executed to generate source abducible text elements. All the text elements generated
will then be parsed and converted into working abducible literals for the solver via its
problem loader.

It is basically an SMT-lib-oriented file format to define core formula templates and
to unroll them using macros. It is best used for defining abducible literals as SMT-lib
elements but can also be used for any other file format. The commands of an abducible
file are executed sequentially and before abducible literals can be recovered from it. We
give the full grammar of the abducible files in Appendix A and detail the semantics of
the commands below. A practical illustration will be given in Example 150.

• size ⇀ Set the number of literals to load. If auto, it will be computed as the total
number of literals generated.

• rsize ⇀ Set the number of references to load. References are literals that are spe-
cially marked. They can typically be used when handling the implicates generated
if a post-treatment requires such distinction (such as back translating a formula
derived from a program containing both pointers and non-pointers variables).

• abduce/ible ⇀ Define one or more abducible literals.

• ref(erence) ⇀ Define one or more reference literals.

• declare ⇀ Define (non abducible) literals of one or more sorts. For instance, the
command (declare x y as int) defines two literals x and y in the sort int. Such
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( s i z e 4)
( abduce (= a b ) )
( abduce (= a c ) )
( abduce (= b c ) )
( abduce ( d i s t i n c t a b ) )
( abduce ( d i s t i n c t a c ) )
( abduce ( d i s t i n c t b c ) )

↓
A = {a ' b, a ' c, b ' c, a 6' b}

Figure 7.3: A simple abducible file.

literals are temporarily stored in a set indexed by the name of the sort. Multiple
such sets can be created if multiple sorts are declared. The literals in these sets will
not be forwarded as abducible literals.

• extend ⇀ Make all the literals in the given sets abducible literals. Only affects
literals contained in the sets at the moment.

• (declare-)lambda ⇀ Define a macro. When applied, it will create a new literal
by textually replacing its named parameters by their value in its data.

• apply ⇀ Create new literals by applying a function. The function must have been
declared. The parameters follow the order of the definition and are either the name
of a sort, in which case literals will be created by iterating over the elements of
the corresponding set, or of the form (strict <data>), in which case the exact
content of <data> is used. All the literals generated are stored in the target set.
Additional options can be specified such as symmetric for symmetric operations
and nonself for non reflexive operations.

• copy ⇀ Copy the elements in the sources sets into the target sets. This can be
used to factor the computation of some functions. If one wants to apply, e.g., the
usual sum function + to literals referenced as both int and real, it can first copy
all these literals in a new set intOrReal beforehand with the command (copy int
real as intOrReal).

• annotate ⇀ Attach a forwardable annotation to some literals. Such annotations
are forwarded to the problem loader or to the system extracting literals from the
generator, while the names of the sets they were contained in is not. This can be
used the same way reference literals are used to forward more complex information
to the system (such as, e.g., specific conversion rules that were used to generate
them from a program).

Example 150. We give in Figures 7.3 and 7.4 some sample abducible files for abducibles
written as SMT-lib formulas, with the corresponding set of abducible literals that is
built from them. In Figure 7.3, we define a simple abducible set directly by providing six
literals. As we mentioned in the first line that this file contains four abducible literals,
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( s i z e auto )
( d e c l a r e a b c as i n t )
( lambda eq ( l r ) (= l r ) )
( lambda neq ( l r ) ( d i s t i n c t l r ) )
( apply eq ( over i n t i n t ) r e s symmetric )
( apply neq ( over i n t i n t ) r e s symmetric )
( extend r e s )

↓
A = {a ' b, a ' c, b ' c, a 6' b, a 6' c, b 6' c}

Figure 7.4: A more complex abducible file.

only the first four will be generated. In Figure 7.4, we define the same abducible literals
but using the computational commands of the DSL. We start by declaring our three
constants a, b and c as well the macros for equality and disequality. Then we apply these
two predicates over our constants and store the resulting formulas in a set names res.
Finally, we specify that the formulas of res should be considered as abducible literals.
Because this time we did not explicitly set the number of abducible literals to extract,
we will obtain the six literals. Note that if we did note add the symmetric keyword when
applying the predicates, we would have also generated the literals with the constants in
the other order, as well the tautologies a ' a, ..., and the contradictions a 6' a, ...

The Abdulot framework provides an executable to parse and verify such files (called
abdulot-parser). If abducible files are provided to any executable of the framework,
they will have precedence over the generators we presented before. This means that the
abducible literals that will be forwarded to the algorithm will be the one loaded from the
file, and not the one generated by any other mean.

A version of the ImpGen-PiD algorithm re-expressed within this framework is pro-
vided in Algorithm 7.4.

It actually consists in a standardized version of the ImpGen-PiD algorithm where all
the work related to the selection of the hypothesis has been delegated to the associated
engine within the framework.

7.5 Parametrization of the GPiD tool
We finally take a look at the options accepted by the GPiD tool. It is possible to toggle
the use of models, implicate storage and external checker within the hypothesis engine. It
is also possible to toggle additional SMT-solver checks within the engine to prevent the
generation of inconsistent hypotheses. This is deactivated by default for propositional
logic as the only inconsistent hypotheses we could construct would contain both a literal
and its complement and we handle such cases by automatically removing from the set of
abducible literals the complement of any literal added to the hypothesis; links between
literals and there complements are created during the automatic generation of abducible
literals by the system for propositional logic problems. Additional SMT-solver checks
should also be deactivated by the user if the original set of abducible literals does not
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Algorithm 7.4: ImpGen-GPiD (Problem P , Hypothesis Engine E, SMT-
solver S, σ)
1 S.addConstraints(P ) ;
2 while ¬E.complete ∧ ¬(interrupted by the user or system) do
3 let h← E.select() ;
4 S.push() ;
5 S.addConstraint(h) ;
6 if σ(S.check()) = Sat then
7 E.sendModel(S.getModel()) ;

8 else if σ(S.check()) = Unsat then
9 sendImplicate(h) ;

10 else
11 return Error ;

12 S.pop() ;

contain any subset that is unsatisfiable. If it is deactivated in other cases, some of
implicates generated by the GPiD tool may be inconsistent. One can also configure
the engine to skip hypotheses containing more than a fixed, given number of abducible
literals, or to stop after the system has generated a given number of implicates. We
also offer the possibility to add additional SMT-solver checks to prune abducible literals
that are consequences of the current hypothesis. Finally, both global timeouts and local
SMT-solver checks timeouts can be set.

The tool can be tried with the test executables provided through the implemented
solver interfaces described in Chapter 8. Given one of those interfaces solver, a problem
file accepted by the chosen SMT-solver problem.sdt, and a file containing abducible
literals abducibles.abd, the generation of prime implicates can be launched with the
command gpid-solver -i problem.sdt -l abducibles.abd -p. A complete descrip-
tion of the command line options to configure the execution as wanted is provided in
Appendix C.

7.6 Implementation of Ilinva

In this section, we describe the implementation of the problem strengthener presented in
Chapter 5, which we named Ilinva. A graphical description of its structure is provided
in Figure 7.5. It is also presented as a generic system that will be instantiated with an
interface for a program prover, that is, a system that generates the verification condition
and manage the guide formula for a class of verification structures. The implementation
of the interface for program verification and loop invariant generation will be described
in Chapter 8.

We present the Ilinva tool within its interface, which takes as an input a problem we
know how to convert into a verification structure and that can be solved by a given tool.
The interface also accepts additional information for the generation of the strengthenings
invariants (such as a core set of abducible elements linked to the problem at hand). We
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Figure 7.5: Structure of Ilinva within the Abdulot framework
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will expect as a result a modified problem for which the tool is able to produce a complete
proof.

When sent to the Ilinva tool, the problem will be forwarded to the problem handler,
which handles the task of constructing the associated verification structure and will com-
municate with the core tool to generate the verification conditions and check the status
of the strengthened problems. Regarding the verification structure, exactly which part of
the work is done by the tool itself and which part is done by the interface is left unspeci-
fied. We will assume that the problem handler as a whole acts as a checker for verification
structures and implements an interface that handles the technical details required to do
so. All the operations on verification conditions, complete proofs and strengthenings will
be done under the command of the main component of the system which is the invariant
generator — this last component basically runs the Ilinva algorithm.

We know recall how the algorithm is implemented within the framework. The invari-
ant generator will, depending on the data sent to the Ilinva system, ask the problem
handler to select a strengthenable part of the problem (couple verification condition –
guide formula, see Lines 5 and 6 of Algorithm 5.2). It will then construct an abduction
problem, which essentially means constructing a set of abducible literals and a config-
uration for the GPiD tool, and request the abduction system to produce solutions for
it (implicates we will convert to implicants). It would naturally be possible to plug an-
other abduction procedure into the system instead of GPiD, but this functionality is not
explicitly provided, which means that a user would have to change the code initializing
GPiD instances within Ilinva to do so. While GPiD computes the implicates of the
problem it was sent, the invariant generator will recover them, sort them in the order
they are returned, possibly prune some or construct others from the first ones (typically
disjunction of the implicants it recovered) — this is what happens during the enhance-
ment part on the figure — and then select with which one it should use to strengthen the
guide formula it was provided by the problem handler. From this point, it can ask the
handler to recheck the problem, conclude if it succeeded or pursue the computation by
trying to satisfy other verification conditions, backtrack, etc. Note that the construction
of GPiD instances and their consequent computation of abduction solutions are done in
parallel of the main system. This means that while a GPiD instance is generating ab-
duction solutions for a given problem part, the invariant generator can try the solutions
it receives at the same time, and even possibly explore subtrees of strengthenings if the
assignment of one of those strengthenings was deemed useful by the problem handler.

Finally, we emphasize that additional checkers, representing additional information of
the expected solution related to the prover used or the problem at hand can be used by
GPiD, provided they are made available by the problem handler and possibly configured
by the invariant generator. This is typically what we will use to remove candidates that
do not satisfy loop initialization verification conditions.

Inside the Abdulot library, this strengthening system is available as a C++ tem-
plate IlinvaAlgorithm<EngineT<ProblemHandler, Interface> >, which will be in-
stantiated by the problem handler we use and by the SMT-solver interface that should be
used by GPiD. One again, the Ilinva system is made available through a test-executable
which will depend on the problem handler it uses. Details on the problem handlers we
built are exposed in Chapter 8.

In order to make the system independent on the problem handler we use, we specify in
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Interface 7.5 the interface formalism we will consider for problem handler. Any problem
prover that can be enclosed into such a structure is accepted by the system.

Interface 7.5: SMT-solver Problem Handler Template
1 interface ProblemProof contains
2 valid : void −→ b ∈ {>,⊥};
3 interface ProblemHandler contains
4 proof : void −→ ProblemProof ;
5 selectStrengthenablePart : void −→ guide formula/verification condition;
6 strengthen : GuideFormula : ϕ, Strengthening : φ −→ void;
7 release : void −→ void;

According to this, we rewrite in Algorithm 7.6 the Ilinva algorithm enclosed within
the invariant generator component of the technical framework of the Ilinva tool. We
store in a stack the sequence of verification conditions that we are currently computing
strengthenings for. This stack also serves as a means to derecursify the initial algorithm.
Non-valid verification conditions are selected for the current state of the problem at Line
6 and we detect Line 7 if it is possible to strengthen the selected verification condition (see
Section 6.4). If this is the case, we create at Lines 18 and 19 a new parallel execution of
GPiD for this verification condition and remember this choice Line 20. The strenghtening
of the candidate loop invariant with the first implicant is performed on the following line.
If it was not the case, we have either explored all the possibilities and failed to solve
our input problem (Line 8), or we need to backtrack to explore other possible implicants
(Line 16) or verification conditions (Lines 13-14).

The Abdulot framework provides a problem handler for generating loop invariants
on Why3 programs. The details of this implementation are described in Chapter 8. The
corresponding executable is ilinva-why3-wrapped, which is already plugged to all the
SMT-solver interfaces that were available for GPiD on the system the framework was
build on. A complete list of options that can be used to configure the Ilinva tool is
available in Appendix C, as well as a more complete user manual. For a minimal usage,
if one wants to generate loop invariants of a given Why3 program program.mlw, using
the solver solver for solving abduction problems with GPiD, and with a core set of
abducible elements abducibles.abd, one can use the command ilinva-why3-wrapped
-i program.mlw -g solver -a abducibles.abd.
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Algorithm 7.6: Ilinva (Problem P , Problem Handler H, GPiD-Constructor
C)
1 AbductionDataGenerator.configure(P ) ;
2 let Stack ← 〈〉 ;
3 while ¬(interrupted by the user or system) do
4 if H.proof().valid() then
5 break ;

6 let ϕ, vc← H.selectStrengthenablePart() ;
7 if ϕ, vc = error then
8 if Stack = 〈〉 then
9 break ;

10 else
11 H.release() ;
12 if ¬Stack.top().hasImplicant() then
13 Stack.top().stop() ;
14 Stack.pop() ;

15 else
16 H.strengthen(Stack.top().ϕ, Stack.top().getImplicant()) ;

17 continue ;

18 let G← C.new(AbductionDataGenerator.generate(ϕ, vc)) ;
19 G.start() ;
20 Stack.push(G) ;
21 H.strengthen(Stack.top().ϕ, Stack.top().getImplicant()) ;
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Chapter 8

Concrete interfaces for concrete
problems

In Chapter 7, we presented the framework for a generic implementation of the prime
implicate generation Algorithm ImpGen-PiD (see Chapter 3) into the GPiD tool and of
the precondition strengthener Algorithm Ilinva (see Chapters 5) into the Ilinva tool.
We showed that its generic design allowed us to plug it with interfaces of any SMT-
solvers and program verifiers. In this chapter, we will describe how we designed concrete
interfaces in order to generate actual tools that can be used to solve real problems. The
resulting tools will also be used in Chapter 9 to evaluate and discuss the efficiency of
these algorithms.

We will start by presenting how we plug widely used SAT-solvers and SMT-solvers
into the SMT-solver interface framework we presented. We will build such interfaces
for MiniSAT [70], CVC4 [7] and Z3 [50]. Moreover, we will design a generic SMT-
solver interface that can work with any SMT-solver that exposes an SMT-lib interface
[9]. Then, we will see how we can plug the Why3 [21, 74] verification platform into
an interface to use it within Ilinva and generate loop invariants for programs it can
handle. This chapter will be concluded by an explanation on how the corresponding tool
are compiled in the Abdulot library and on how one can write additional interfaces for
other solvers or provers.

8.1 SAT-solver and SMT-solver interfaces
The main guideline we considered when designing interfaces for solvers was to reuse as
much as possible the elements they provide. Those include their parsers, formula internal
representations and formula printers.

8.1.1 An interface for MiniSAT

MiniSAT is an open-source SAT-solver the design of which is intended to be minimal
while still providing very good performance. It handles propositional clauses (disjunction
of literals) expressed in the Dimacs format [60].
Example 151. Let us consider the set of propositional clauses we introduced in Example
52: Φ = {p∨¬q∨r, q∨¬r∨¬s,¬p∨¬q∨s} over the four propositional variables p, q, r, s.
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c Dimacs
p cn f 4 3
1 3 −2 0
2 −4 −3 0
4 −2 −1 0

Figure 8.1: Dimacs representation of the set of clauses {p∨¬q∨r, q∨¬r∨¬s,¬p∨¬q∨s}

Figure 8.1 gives the Dimacs representation of this set of clauses, where p is represented
by the integer 1, q by 2, r by 3 and s by 4.

As MiniSAT is open-source and provides a C++ API, we have access to this content
and can write an interface plugged directly within the solver, and bypass its external
interface reading Dimacs data on the command line. We will still use the Dimacs
parser of MiniSAT but by sending data directly to it. If we use the interface framework
that was presented as Interface 7.1, we plug the representation of the clausal constraints
defined in the MiniSAT API to the Constraint interface and use the clause printer of
the solver to convert them into printable strings. The incremental interface for the solver
(see Section 1.3) is not implemented directly within the MiniSAT API, as it was not
made explicitly available in the version we used. It is simulated using an external stack
of literals that is forwarded as a set of assumptions during each satisfiability check call.

For these reasons, the problems that will be handled by GPiD when instantiated
with the MiniSAT interface must be presented in the Dimacs format. The given file
will be parsed exactly as it would have been by MiniSAT. GPiD will then generate
all the prime implicates of the set of clauses it is given from an initial set of abducible.
As computing prime implicates in propositional logic is fairly standard, we implemented
a generic abducible generator that constructs from a given Dimacs file all the usual
propositional literals we can extract from it. This generator extracts all the propositional
variables declared in the file and generates all the corresponding positive and negative
literals. If the user wants to reduce the number of abducible literals (which can typically
happen when the set of clauses has to be obtained by the Tseitin transformation [139] of
an initial formula), he or she will have to use an abduction file in the format presented
in Section 7.4.

When MiniSAT answers that a given problem is Sat, the assignment of the variables
it used to satisfy all the clauses can be recovered and used as a model. This model is
always total, which means that all the propositional variables of the problem are assigned
a boolean value. The structure of the API sadly ensures that whenever a new satisfiability
check call is made by the solver, this model will stop being available (as it will be modified
by the solver to compute the result of the new formula it was given). This means that
if we want to keep these models, we have to store them ourselves. This storage is thus
mandatory if we want to check which abducible literals are entailed by the models directly
within the exploration loop, as described at Line 9 of Algorithm 3.2. To prevent this
additional storage requirement, we can configure the GPiD implementation to instead
remove all the candidates implied by the model at the moment we recover it from the
satisfiability test. With this method, the model is only used once, when it is still valid,
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and can be broken by the MiniSAT solver afterwards while being sure that no additional
invalid access to it will be made.

8.1.2 Interfaces for the C++ API of CVC4 and Z3

In order to solve problems formalized in more expressive theories, it is clear that we need
interfaces to SMT-solvers. CVC4 and Z3 are both widely used, handle a wide range of
theories and offer a C++ API from which we can construct an efficient interface for our
framework. Similarly to what we did for the MiniSAT interface, we reused as much as
possible from the solvers’ available code. This ensures that, as both solvers can handle
multiple file formats, the problems we can handle will also be expressible in these formats.
The API of CVC4 provides parsers for SMT-lib, TPTP [168], and its own CVC4 script
file format. Likewise, Z3 provides parsers for files written in SMT-lib or TPTP. This
means that when using the interfaces we built on these solvers, the user can inform the
Abdulot tool it is using of the format their problem is in ans forward the problem as
it is. It is important to note however that the parser we select to load the problem file
is also the one we will use to parse the abducible literals. In the current version of the
Abdulot framework, the problem and the adbucibles must be expressed in the same
format.

The fact that we use the formula framework of the SMT-solvers’ API means that we
recover the context manager they provide, that is, the class they use to allocate, construct
and manage formulas. This also means that all the internal work they can do to process
formulas forwarded to them via those methods will also be active. It is also from this
context manager that we obtain the formula printers of the solvers to return the solutions
we generate, usually expressed in the SMT-lib format.

Incremental functions are already implemented in both SMT-solvers and used by
our tools. Contrarily to the MiniSAT interface, we do not need to simulate it with an
additional stack packaged in the interface. Also, both SMT-solvers provide classes to
represent models that we can use to prune our candidate hypotheses. It is interesting
to note however that they also both provide a specific method to check whether a given
formula is satisfied by the model they currently contain (i.e., the model of the last formula
they processed, if the formula was found satisfiable). Similarly to what we did in the
MiniSAT interface, we can use these methods to prune the candidate hypotheses once
only which avoids the need to store the models in memory.

We provide for both solvers simple generation rules that generate either all the equali-
ties and disequalities between the constants of the problem, or all the inequalities between
those constants. For any other use of abducible literals, the user has to provide an ab-
ducible file.

It is important to take into account the fact that SMT-solver APIs tend to evolve
rather frequently alongside the tool they belong to. This means, in particular, that the
interfaces built on them can be broken in future versions. The exact versions of the
SMT-solvers handled by the interfaces are provided in the documentation of the tool.
Overcoming this development instability is the purpose of the standard, more stable
interfaces presented in the next section.
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8.1.3 A generic interface for SMT-lib-compliant SMT-solvers

In order to obtain a stable interface for SMT-solvers, and in order to be able to easily
plug our framework into many such solvers, we have implemented a generic interface for
SMT-solvers providing an SMT-lib command-line interface. The principle of this inter-
face is to load input files and abducible files in the SMT-lib format and to represent the
corresponding formulas as strings of characters. It can then implement simple formula
constructors (conjunction, disjunction and negation) to permit the creation of satisfiabil-
ity queries for abduction hypotheses and finally invoke a compatible SMT-solver program
by sending to it the adapted problem (rewritten in the SMT-lib format) within a file. It
is clear that some definitions of the problem files the interface handles are dependent on
the solver that should be used to solve them. This is typically the case when notifying
the theory in which the problem is expressed or when using quantified formulas. The
purpose of this generic interface is not to provide a type of universal representation of
any problem that could permit it to be sent to any SMT-solver. Rather, it uses a stan-
dard representation for satisfiability modulo theories problems that can allow the user to
plug the correct solver to the Abdulot framework for a given problem easily.

In order to handle such problems, we implemented a simple Lisp parser in the Ab-
dulot system. Given an SMT-lib problem file, it will return the associated abstract
syntax tree from which we can extract the SMT-lib commands of the file as well as their
arguments. The configuration commands as well the constants and function declarations
are recovered and stored in memory. They will be added to the header of any file later
constructed by the interface. The assert commands containing the facts that the problem
contains are then stored as strings and can be negated when necessary. Similarly, the
abducible literals obtained from an abducible file will be stored as strings and added to
the assertions of the problems we construct when necessary.

The interface then performs as expected: the incremental structure is implemented
internally using a stack and, when a satisfiability test is queried, the interface constructs
an SMT-lib problem file (juxtaposing the configurations and declarations of the initial
problem file, the assertions of the initial problem file and any additional facts added
through the incremental interface) and sends it to the executable of the SMT-solver it
was configured with. It then recovers the result from the SMT-solver to answer the query.
It is standard for SMT-solvers to additionally output a model of the formula that they
computed, when this formula was found satisfiable. Technically, it could be possible to
parse such models and use them within our framework. However, it appears that the
format of those models is less standard than the SMT-lib file format. Moreover, as
no model verification algorithm on SMT-lib formulas represented by character strings
was implemented in the interface, we would require an additional call to the SMT-solver
executable to check whether or not a given formula is satisfied by those recovered models.
For those reasons, the recovery and usage of these models is not available in the current
version and has been left for future work. When asked for a model of a given formula
previously found satisfiable by the SMT-solver, the interface will act as if no such model
was available.

Instantiations of this standard interface are available in the Abdulot framework for
Alt-Ergo [39], CVC4, VeriT [24] and Z3. If a user wants to plug another SMT-
solver into the Abdulot framework, they can copy the configuration file of one of those
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instances and replace the executable of the chosen solver with one of its own.

8.2 A Why3 interface for Ilinva

In this section, we will present the implementation of a problem handler interface for
the Ilinva algorithm and a tool using the Why3 platform to generate loop invariants of
programs.

8.2.1 Presenting the Why3 platform

Why3 [21, 74, 75] is a widely-used platform for deductive program verification. It is
written in OCaml and uses an internal logic formula representation (in the form of the
Why language) as well an internal ml-oriented language (WhyML) to define programs
and express logical properties on them. From these two representations, Why3 is able to
generate verification conditions that can be sent to SMT-solvers to ensure the correctness
of the property they express. The main advantages of the Why3 platform is that we can
express a very large set of programs and properties in it, and that it can be plugged into
most of the SMT-solvers and theorem provers available. These features are extremely
useful in our context as we also aim to build a generic system that can plugged to many
SMT-solvers to handle various theories.

The use of the Why3 platform also permits to avoid implementing a front-end for
a program language, which would have otherwise been necessary to evaluate programs
and their loop invariants. Moreover, we can delegate to Why3 the back-end verification
condition generators that construct from a program they are given the verification condi-
tions necessary to prove its property. Why3 provides back-ends for all the SMT-solvers
it can work with. Moreover, there exists a variety of tools [46, 74] that allow one to au-
tomatically translate classes of programs written in well-known programming languages
into a format that Why3 can handle.

Why3 is thus a deductive program verification platform able to perform most of the
operations required by the Ilinva algorithm on verification structures (see Definition
112). It is a very good system to build an Ilinva interface upon as it will perform most
of the work by itself. The following paragraph of this section details how we build the
elements we have to implement to do that: wrappers to obtain an efficient communication
between the Why3 tool and the Abdulot framework.

We emphasize that the purpose of the implementation of this interface is to study the
feasability of the generation of loop invariants through abduction in many theories more
than to obtain a tool as efficient as possible to do so. It is also intended to be inserted
in the generic framework of the Ilinva algorithm. If one wants to implement an efficient
system to compute the loop invariants of programs using the Ilinva algorithm, a better
choice would be to extract directly the instantiated version of the Ilinva algorithm for
the generation of program loop invariants and to implement this algorithm directly inside
a deductive program verification system such as Why3 (see e.g. [20]).
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8.2.2 Recovering and using the verification conditions
generated by Why3

We will now describe the structure of the Ilinva interface we built to plug Why3 into our
tool. The primary goal of this interface is to be able to represent the WhyML program,
to modify its invariants and to communicate with Why3 in order to check whether a
proof can be obtained and/or to obtain verification conditions for a particular property
expected from the program. For these reasons, we designed a component that (loosely)
parses the WhyML program it is given, extracts the loops and the associated invariants,
and then constructs a structure linking these candidate invariants to the location they
appear at within the program. From this structure, the component is able to export a
WhyML program that would correspond to the one it was previously given where all the
invariants are replaced by the candidates the structure contains. This exported WhyML
program can then be returned outside of the interface (a functionality that will be used
when we have obtained a proof to return a result) or forwarded to the Why3 platform
to check the status of the program decorated with the current candidate invariants.

In the latter case, the interface will recover the verification conditions that Why3
generates for the program it was given, as well as the result it obtained out of the com-
putation (that is, whether the generated formulas were found to be valid or not). It
will then associate each verification condition to the loop invariant location it depends on
(see Section 6.4) and generate relevant couples of loop invariant locations and verification
conditions that it forwards to the main algorithm. In practice, we generate all possible
couples of this type and try them one after the other: if the selection of one couple does
not permit to generate a solution to the problem, we will backtrack until this selection
was made and try the next couple. When the main system obtains a strengthening from
abduction for a given couple, it will send this strengthening to our Why3 interface that
will use it to strengthen the designated candidate loop invariants. Similarly, when back-
tracking, the main algorithm will delegate the task of relaxing previously strengthened
invariants to the interface.

8.2.3 Configuring GPiD and its SMT-solver interfaces

As we use GPiD to compute the abduction solutions of the system, we detail in this
section the configuration we forward to it from the Ilinva tool. We mentioned in Chapter
7 that the GPiD implementation is generic (with respect to the SMT-solver). However,
when using it in practice, we need to decide which SMT-solver to use. As mentioned
in Section 8.2.1, the Why3 platform already uses SMT-solvers to decide whether the
verification conditions it generates are valid or not. As we recover those verification
conditions, it is natural to use the SMT-solver that Why3 targeted when it generated
them. For this reason, we will ask the user to choose which SMT-solver Why3 should
use to prove the program and use the same SMT-solver within GPiD. It is clear that
one of the major advantages of the Why3 platform lies in the fact that one can use a
distinct prover for any given verification condition, as it is very possible that, within a
problem, some verification conditions will be found more easily by one particular prover.
This suggests that some work should be carried out on trying to check the verification
conditions with the various SMT-solvers available in Why3 or even to do the same for
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the computation of the abduction solutions. However, as the use of such a functionality
would greatly increase the number of satisfiability tests without further refinements, it
has not been implemented.

Also, as we explained in Section 6.4, we decided not to try to strengthen candidate loop
invariants when verification conditions related to the initial conditions of the loop are not
valid. In particular, when we do not allow the invariant generator to produce disjunctions
of implicants, this means that we can, instead of removing such possible strengthenings
after they have been generated, use a filtering predicate within GPiD to prevent their
generation directly. When the algorithm will construct its hypotheses, it will check, before
adding any literal, that these literals necessarily hold when the loop is entered (see also
Section 3.2). This verification will be done by the Why3 interface, to which the GPiD
wrapped execution will forward its candidate hypotheses for verification before pursuing
its computation. This technique cannot be used if disjunctive loop invariants are allowed,
since, in this case, such implicants (those invalidating the loop initialisation verification
condition) generated by GPiD may still be used in a disjunction that could, as it will be
less restrictive implicant, satisfy the corresponding verification condition.

8.2.4 Abducible literals for the strengthening of WhyML
programs loops

We now present some practical details on how we can generate and handle abducible
literals for WhyML programs. As we explained in Chapter 6.4, a natural way to obtain
relevant abducible literals on programs is to consider the symbols they contain (program
variables, program functions) and to generate the literals we can obtain from those. In
order to do that, the Ilinva implementation contains a set of tools that are able to
(loosely) parse WhyML programs, extract such symbols and generate the corresponding
abducible literals expressed in the abducible format handled by our system. This initial
set of abducible literals will be used by the algorithm as its core set of abducible liter-
als. When tackling a particular abduction problem however, we do not need all those
abducible literals to be considered. The Why3 interface will be tasked with the removal
from this initial set of the literals that are not related to the current verification condition.
Those include the ones that contain symbols that either are undefined at the location of
the condition or that do not appear in it. This updated set will be the one forwarded to
GPiD to perform abduction on the verification condition.

The translation that is required to adapt abducible literals to a specific verification
condition (and backward, to translate the solutions it returns into a correctly expressed
loop invariant strengthening), as it can differ depending on the type of verification condi-
tion at hand (see again Section 6.3), should also be done by the interface. As it happens
deeply within the GPiD system however, we cannot expect it to be executed this trans-
parently in the implementation. In order to obtain the result, the interface will wrap
alongside the loop invariant condition/verification condition couple a conversion toolbox
that will perform this translation. The GPiD tool will handle the abducible literal it
was provided blindly. However, whenever it exports a problem for its SMT-solver, the
practical construction of problem will not use the abducible literal itself but the result of
its conversion by this toolbox. Similarly, the implicates it generates will transit by this
conversion toolbox to be translated before being returned. This allows us to perform the
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l e t main ( ) : un i t
d i v e r g e s

= l e t t = r e f 0 in
whi l e ! t < 10 do

inva r i an t { t rue }
t := ! t + 1

done ;
a s s e r t { ! t = 10 }

Figure 8.2: Simple WhyML loop

necessary adaptation of the abducible literals for the problem without explicitly defining
a distinct behaviour within the GPiD tool.

We also remark that, in addition to the the minimal translation required by the Ilinva
Algorithm presented in Chapters 5 and 6, additional technical conversions are necessary
and will be performed by the same toolbox. This is typically the case for WhyML pro-
gram variables that are WhyML references. Indeed, such a distinction is usually omitted
within the verification conditions but is mandatory for the program to be contextually
valid. By using the reference keyword on variables within the abducible file we gener-
ate from WhyML programs, the conversion toolbox will be able to detect whether a
given variable should be written as a reference or not and perform the translation of the
implicates accordingly.

Example 152. Let us consider the sample WhyML program presented in Figure 8.2. A
satisfying loop invariant to prove the assertion of this program would be, e.g., t ≤ 10.
However, as t is represented in the program by a reference variable t, this invariant
should be written in WhyML as { !t <= 10 }. As the verification condition generated
by Why3 makes no distinction between reference and non-reference variables, we will
need to define t as a reference variable within our abducible file.

Now let us unroll a complete execution for this sample program. First, we need to
obtain the set of abducible literals we will use for the computation of abduction solutions.
This program contains only one variable (t) and two integer constants: 0 and 10 (we do
not consider the incrementation). The predicates contained in the program are the usual
equality for integers = and the inequality contained in the loop condition <. From this
information, we can generate an abducible file applying the generation rules we described
in this chapter. This result is exposed in Figure 8.3 The files will generate 18 abducible
literals that will be used by GPiD to generate implicates.

We can now send the files of Figures 8.2 and 8.3 to the Ilinva tool, select an SMT-
solver for the computation, e.g. CVC4, and try to generate conjunctive invariants
for our WhyML program (command line: ilinva-why3-wrapped -i tenten.mlw -a
tenten.abd -g ccvc4 -H "solver:cvc4" -c). The tool will then forward the program
to Why3, which in turn will answer that the assertion it contains cannot be proved and
return the associated verification condition (see Appendix B). This condition can be used
directly for the abduction in GPiD. Moreover, as this example program is very simple,
all the abducible literals will be kept for the execution. Ilinva will thus call GPiD with
this verification condition and recover implicants of the formula expressed in SMT-lib
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( s i z e auto )

( lambda eq ( l r ) (= l r ) )
( lambda neq ( l r ) ( d i s t i n c t l r ) )
( lambda l e ( l r ) (<= l r ) )
( lambda l t ( l r ) (< l r ) )

( d e c l a r e t as i n t )
( d e c l a r e 0 10 as i n t )
( r e f e r e n c e t )

( apply eq ( over i n t i n t ) bf symmetric )
( apply neq ( over i n t i n t ) bf symmetric )
( apply l e ( over i n t i n t ) bf non s e l f )
( apply l t ( over i n t i n t ) bf non s e l f )

( extend bf )

Figure 8.3: Abducible file for the WhyML program of Figure 8.2

l e t main ( ) : un i t
d i v e r g e s

= l e t t = r e f 0 in
whi l e ! t < 10 do

inva r i an t { ! t <= 10 }
t := ! t + 1

done ;
a s s e r t { ! t = 10 }

Figure 8.4: Simple WhyML loop with a valid loop invariant

such as (< t 10) and (<= t 10). The conversion toolbox will be able to translate these
implicants back to syntactically valid WhyML conditions: !t < 10 and !t <= 10 (note
the reintroduction of the derefencing operator !, induced by the content of the abducible
file and required because t is a reference variable).

As the first implicant does not propagate (and cannot be strengthened to propagate),
the tool will backtrack and try with the second implicant generated by GPiD, which
happens to be a valid loop invariant for problem. Ilinva will thus return the updated
WhyML program (Figure 8.4).
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8.3 Documentation, compilation structure and
distribution of the implementation

8.3.1 Dummy interfaces for documentation

Two additional interfaces (called documentation interfaces) are available in the Abdulot
framework. They are named Tisi interfaces and do not implement any real satisfiabil-
ity solving algorithm or any precondition verification algorithm. Instead, they serve as
generation proxies for a documentation presenting the exact technical requirement of an
interface. If a user wants to implement an interface, either for an SMT-solver or for
problem prover, they can refer to the documentation generated for these two interfaces
to obtain the exact definitions, classes and functions prototypes, preconditions and ex-
pected behaviours in order to design it. Additional method descriptions are provided in
the documentation to help this design process.

8.3.2 A note on the compilation framework

The compilation of interfaces is included within the compilation structure of the Ab-
dulot framework. The compilation scripts start by generating the additional libraries
required by the framework to work, then compile the algorithms and standard tools in
the Abdulot library. Once this first step is done, it will detect the SMT-solvers avail-
able in the system and generate additional libraries containing the compiled interfaces
for those SMT-solvers. The same process is applied to the problem handler interfaces
used by Ilinva. We point out that the case of the MiniSAT interface is particular as
the compilation scripts will automatically download, patch and compile a correct version
of the solver to generate an interface that can be plugged in the Abdulot framework.
This additional step is required to let us create an access to some of the functionalities of
MiniSAT that are not available in its usual public API (most notably to compute statis-
tics). All the other solvers must have been previously installed on the system by the user
(as well as their API if one wants to use the interfaces built upon them). Finally, after
all the interfaces have been compiled into libraries, the compilation scripts will compile
tool executables for both GPiD and Ilinva using all the interfaces available. These tool
instances are the one that be used by the user on actual problem files. They are also the
ones we will use in Chapter 9 to evaluate the algorithms developed in this thesis.

8.3.3 Distribution

This concludes the presentation of the implementation of a generic infrastructure imple-
menting the ImpGen-PiD algorithm presented in Chapter 3.2 and the Ilinva algorithm
presented in Chapter 5, as well as their instantiations to compute prime implicates modulo
theories and to generate loop invariants for programs. The complete Abdulot frame-
work (which includes all the required libraries, algorithm and the interfaces presented in
this chapter) is available under a three-clause BSD license on GitHub [160]. The version
in use at the time of this thesis was composed of 16000 lines of code, among which 1500
concern to the compilation structure, 1500 to the implementation of the ImpGen-PiD
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algorithm, 600 to the implementation of the Ilinva algorithm, 3500 to the SMT-solvers
interfaces and 3500 to the Why3 interface.
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Chapter 9

Experimental evaluation of GPiD and
Ilinva

In Chapters 7 and 8, we presented an implementation of the prime implicate generation
algorithm we devised in Part I and of the loop invariant generator we devised in Part II.
In the current chapter, we are going to use this implementation in order to perform an
experimental evaluation of those methods. We will take a particular interest in showing
that the methods devised are indeed generic and that they can solve problems expressed
in many different theories, even though, when competing with other tools specifically
designed for some particular theory, they do not always perform as efficiently. We will
also take some time to discuss which lines of research we think should be explored to
improve the prime implicate generator in regard of the application we used it for, namely,
loop invariant generation.

9.1 Experimental infrastructure

All experiments presented in this chapter have been performed on a computer powered
by a dual-core Intel i5-4250U processor running at 1.3 GHz and running macOS version
10.14.3. The computer possessed 4 GB of DDR3 RAM running 1.6 GHz and a SSD Hard
Drive. The version of Abdulot framework used for the experiments in this Chapter is
0.7.11, compiled with Clang (Apple version 10.0.1-0.46.4). The SMT-solvers used are
CVC4 (a prerelease of version 1.7), Z3 (version 4.7.1) and Alt-Ergo (version 2.3.0).
The version of the MiniSAT SAT-solver we used is a patched compilation of version
2.2.0. Finally, the version of the Why3 platform we used is 1.2.0. The exact version
of the systems and tools we compare ourselves to will be mentioned when such tools
are introduced within the chapter. Most of the raw results were processed using either
Python or ToEv scripts available in the public repository of the Abdulot tool before
being presented here. Such scripts were used mostly to compute statistical values on the
results, recheck the obtain results to ensure that they are correct and draw the graph
included in this work. The benchmarks and set of examples we used are described in detail
when introduced within the chapter. They mostly consist of known examples obtained
from standard repositories and of crafted examples used for testing and analysing specific
properties of the algorithms we study.
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9.2 Evaluating the ImpGen-PiD algorithm in
propositional logic

We start by evaluating our prime implicate generator in propositional logic, where it
is reasonable to try and to generate all the prime implicates of a given set of clauses,
and where we can compare the efficiency of our approach with other state-of-the-art
alternatives. In order to evaluate the ImpGen-PiD algorithm in this context, we im-
plemented in the Abdulot framework the model minimization (see also Chapter 11)
and unit propagation unfolding we presented in 3.4. This was done by partly merging
the main algorithmic component with its MiniSAT interface. We compared the result-
ing implementation with two state-of-the-art prime implicate generator for propositional
logic: ZRes [163] and primer [141]. We will look at whether or not these algorithms
are able to generate all the implicates of a given benchmark or some implicates of a given
benchmark. Moreover, we will discuss the results we can obtain by reducing the size of
the set of abducible literals and what is says on the behaviour of the algorithm. We will
also discuss the use of the filtering predicate within GPiD to generate implicate of small
size more efficiently than with the other tools.

9.2.1 Benchmarks

We first present the benchmarks we used for prime implicate generation in propositional
logic.

• uf20: Set of 1000 uniform random satisfiable almost unsatisfiable problems (few
models). 20 variables and 91 clauses (4.3 clause-to-variable ratio, i.e. 4.3 times
more clauses than variables) with clauses of length 3. Benchmark available on the
SAT-lib [93, 94]

• mid20-8: Set of 1000 uniform random satisfiable problems. 20 variables, 91 clauses
with clauses of length 8.

• high20-18: Set of 1000 uniform random satisfiable problems. 20 variables, 91
clauses with clauses of length 18.

• small: Set of 298 uniform random problems with 7 variables and 21 clauses of
length 3.

• hcp: 5 problems with 100 variables and two problems with 250 variables rendered
almost unsatisfiable from a first-hand uniform random generation with a 4.3 clause-
to-variable ratio. Clauses of length 3.

• rider: Uniform random problems with a 4.3 clause-to-variable ratio and clauses of
length 3. 20 problems for each number of variables between 20 and 300.

These benchmarks have been chosen to evaluate the various properties GPiD is sup-
posed to possess. Typically, the fact that as expected, it performs best on almost un-
satisfiable problems (with a small number of models). Apart from the uf20 benchmark,
all the benchmarks were generated manually. For all the experiments of this section, the
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implicit set of abducible literals we consider contains all the propositional literals that
are contained in the problem handled.

9.2.2 Evaluating GPiD alone

To evaluate the general performance of GPiD in propositional logic, we started by study-
ing how well it performs on the benchmarks we chose. On the uf20, high20-18 and small
benchmarks, the tool was able to generate all the prime implicates of any example within
ten seconds. For the problems contained in mid20-8 however, there are no examples for
which it was able to generate all the prime implicates under a minute. We then used
the hcp benchmark to evaluate how the tool performs on almost unsatisfiable problems.
The five examples with a hundred variables were solved (in the sense that we generate all
of their prime implicates) under ten seconds by GPiD. One of the problems containing
250 variables was also solved under ten seconds, however, the time to solve the other one
exceeded fifteen minutes.

We continued with the evaluation of GPiD by studying the performance of the algo-
rithm when we reduce the number of abducible literals of the problem we send it. We did
this on the rider benchmark by randomly selecting a set of abducible literals among the
literals of every problem. The average evaluation time of the problems for every given
number of variable has been represented on Figure 9.1, where GPiD[x]p is the evaluation
of the GPiD algorithm with x percent of abducible literals. It shows that as expected,
the lower the number of abducible literals, the faster the algorithm performs. A profiling
of some of the examples with a large number of variable showed that most computation
time was spent within the satisfiability tests performed by MiniSAT and during unit
propagation. As those are parts of a state of the art SAT-solver implementation, this is
a limitation of the GPiD algorithm that is hard to overcome.

9.2.3 Comparison with ZRes and primer

The last part of the evaluation consisted in comparing the results of GPiD to those
obtained by other state-of-the-art prime implicate generators in propositional logic. We
compared with implementations of algorithms introduced in Chapter 2: ZRes [163] and
primer [141].

On Figure 9.2, we represent the comparison of the execution time with ZRes (left)
and primer (right) on the small (top) and uf20 (bottom) benchmarks. We observe that
we are generally faster than ZRes and a little slower than primer on these benchmarks.
Moreover, while ZRes and primer appear to be uniform on these benchmarks (all the
problems are solved in almost the same time), we can see that GPiD is not on the uf20.
Indeed, some of the examples take much more time to solve than the others (the ones
with more implicates). This result scales on almost unsatisfiable problems, which means
that when we solve such problems fast enough, we solve them faster than ZRes and a
little slower than primer. However, the larger the number of variables, the larger the
number of problems with a small number of implicates for which we fail to answer in
a reasonable time. This is also shown on the hcp benchmark: for the six problems for
which we answer under ten seconds, we compute the prime implicates between one to two
seconds slower than primer; for the other one, while primer gives an answer in almost
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Figure 9.1: Execution of the GPiD algorithm as a function of the number of variables
in almost unsatisfiable problems with various abducible ratios.

the same time, we do not. For this particular example we fail to solve, primer finds 374
implicates. On the other example with 250 variables we solved, there are 255 implicates.
We emphasize that ZRes did not give an answer in a reasonable time for these examples.

The experiments on less constrained problems (with more implicates) show that we
are not as fast as the two other implementations. On the high-20-18 benchmark, while
both ZRes and primer compute the set of prime implicates under ten seconds for all
the problems, we are above this time on forty percent of them. Moreover, there are no
examples where we appear to be faster than any of the two. The mid-20-8 benchmark
provides another interesting information: on this benchmark, ZRes is the only algorithm
that answers under ten seconds (both primer and GPiD taking more time, primer still
being the fastest of these two). It is thus possible that such problems are harder to solve
with decomposition-based algorithms. In a more general way, even if slower, the results
we have in computation time over the various benchmarks are closer to the ones primer
gives.

9.2.4 Summary

While not performing as fast as primer, it appears that GPiD falls in the range of
the state-of-the-art for solving highly constrained prime implicates generation problems
(with a small number of models). Indeed, experiments have shown that on such problems,
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Figure 9.2: Comparison of GPiD with ZRes and primer on the uf20 (bottom) and
small benchmarks

we solve problems between two to ten times faster than ZRes and slightly slower than
primer. When the number of variables increases however, it appears that the GPiD
algorithm takes more time than the other algorithms for solving a problem. Analyses
on these examples show that they have more prime implicates than the ones we solved,
which tends to demonstrate that the GPiD efficiency heavily depends on the number of
prime implicates. This makes it hard for GPiD to compete with the other algorithms on
examples with a large number of implicates, which is not necessarily the case for, e.g.,
ZRes. However, those are not the examples we are interested in solving.

Even though GPiD does not prove fast enough on general problems, it is still almost
as fast as primer on highly constrained problems, even with large number of variables, as
long as the number of prime implicates remains low. GPiD also offers the possibility to
control the literals we need in the implicates. This is a distinctive advantage compared to
other algorithms, especially when working on problems converted from actual programs.
It also reflects that the flexibility we gain on the form of both problems and solutions can
have a negative impact on the efficiency of the implicate generation.
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9.3 Evaluating the ImpGen-PiD algorithm in the
general context

We now tackle the direct evaluation of the ImpGen-PiD Algorithm via the GPiD tool in
the general context (modulo any given theory for which an implementation of a decision
procedure for testing satisfiability is available). In this case, it is not reasonable to try to
generate all the implicates of a given formula (as they can be particularly numerous, even
for simple problems), the goal of this section is restricted to the evaluation of whether
the system is able to generate some implicates for a wide range of problems and, if so,
how many (and/or how fast) it can generate them. As a secondary experiment, we will
also evaluate how this implementation compares to another prime implicate generator in
the theory it handles.

In order to obtain a large range of logical problems in various theories, we built our
benchmarks from problem extracted from the SMT-lib [9, 8] library. We considered
the theories of quantifier-free uninterpreted functions (which are contained within the
QF_UF folder of the SMT-lib library) and of quantifier-free linear integer arithmetic
with uninterpreted functions (which belong to the QF_UFLIA folder). From those sets,
only the satisfiable examples have been kept for analysis. As it is induced by the im-
plementation, the sets of abducible literals are part of the problem input. We generated
them by considering all ground equalities and disequalities with a maximal depth pro-
vided by the user; all the experiments were conducted using a maximal depth of 1 and
the average number of abducible literals is around 13397 (min. 1741, max. 17 · 106). For
the experiments, we chose not to apply unit propagation simplifications to the considered
sets of clauses. The reason for this decision is that efficiently performing such simplifi-
cations can be difficult and strongly depends on the theory. We also define fix(, , ) (see
Definition 63) as the complementation on literals and P (see Definition 79) as either >
or a predicate ensuring Card(M) ≤ n to generate T -implicates of size at most n. In all
the experiments, the prime implicates filter (SubMin(), see Definition 43) was not active,
so that T -implicates can be generated on the fly. This implicitly means that, when an
T -implicate is generated and returned at the same time, there is no guarantee that no
more general T -implicate will be generated at a later time. It is guaranteed, however,
that no more general T -implicate have already been generated. Finally, we recovered the
models from the SMT-solvers in order to further prune the set of abducible literals (see
Definition 72 and Proposition 73).

Tables 9.1 and 9.2 show the number of examples for which the GPiD tool generates at
least one T -implicate for a given timespan, for the QF_UF and QF_UFLIA benchmarks
respectively. The results show that our tool is quite efficient, since it fails to generate any
T -implicate within 35 seconds for only 2% (resp. 1%) of the QF_UF (resp. QF_UFLIA)
benchmarks. Figure 9.3 additionally shows the proportion of the QF_UFLIA set for
which GPiD generates an implicate in less than 15 seconds, depending on the maximal
size constraint. For the QF_UF benchmark, the proportion decreases from 97% for a
maximal size constraint of 1 to 95% when there are no size restrictions. We also point
out that for 57% of the QF_UF benchmark, we are actually able to generate all the
T -implicates of size 1 in less than 15 seconds.

We ran additional experiments to compare this approach with a previous one based
on a superposition-based approach [68, 69] and implemented in the cSP tool (see also
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Size/Time [0, 0.5[ [0.5, 1[ [1, 1.5[ [1.5, 2[ [2, 5[ [5, 10[ [10, 35[ None
1 2235 75 28 16 33 32 61 69
2 2236 81 27 16 30 23 67 69
3 2236 79 27 16 34 23 65 69
4 2230 84 23 18 33 24 68 69
5 2231 79 27 12 36 22 73 69
6 2234 73 29 15 30 24 75 69
7 2231 81 23 15 33 22 75 69
8 2233 78 23 16 33 21 76 69

Table 9.1: Number of problems for which at least one T -implicate of a given maximal
size can be generated in a given amount of time (in seconds), for the QF_UF SMTLib
benchmark (2549 examples).

Size/Time [0, 0.5[ [0.5, 1[ [1, 1.5[ [1.5, 2[ [2, 5[ [5, 10[ [10, 35[ None
1 120 23 46 76 100 6 25 4
2 120 23 6 0 0 0 247 4
3 120 23 6 0 96 4 147 4
4 120 23 6 0 0 0 247 4
5 120 23 6 0 0 0 247 4
6 120 22 7 0 0 0 247 4
7 121 22 6 0 0 0 247 4
8 116 24 6 3 0 0 247 4

Table 9.2: Number of problems for which at least one T -implicate of a given maximal size
can be generated in a given amount of time (in seconds), for the QF_UFLIA SMTLib
benchmark (400 examples).

Chapter 2). As far as we are aware, cSP is the only other available tool for implicate
generation in the theory of equality with uninterpreted function symbols. Previous ex-
periments (see, e.g., [68, 69]) showed that cSP is already more efficient than approaches
based on a reduction to propositional logic for generating implicates of ground equational
formulas. This is why we did not run comparisons against tools for propositional impli-
cate generation. We chose to compare the tools by focusing on their ability to generate
at least one T -implicate of a given size. Indeed, generating all (prime) T -implicates
is unfeasible within a reasonable amount of time except for very simple formulas, and
comparing the raw number of T -implicates generated is not relevant because some of
these may actually be redundant with respect to non-generated ones. We believe that, in
practice, being able to efficiently compute a small number of T -implicates for a complex
problem is more useful than computing huge sets of T -implicates but only for simple
formulas. This is typically the case when we use this algorithm for the generation of loop
invariants within the Ilinva Algorithm, where we want to obtain a relevant strengthening
as fast as possible, not a huge set of uninteresting strengthenings leading to dead-ends.
The following experiments are only based on the previously used benchmarks that can be
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GPiD generates at least one implicate under 15 seconds.
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Figure 9.4: Number of examples from the QF_UF benchmark set for which GPiD (on the
left, darker color) and cSP (on the right, lighter color) generate at least one T -implicate
within a given time (a) and generate at least one implicate of a given maximal size under
15 seconds (b)

solved by both prototypes. As cSP is not capable of handling integer arithmetics, this
only includes the examples of the QF_UF benchmark.

We represented on Figure 9.4 the number of examples for which both tools can gen-
erate at least one T -implicate with a given maximal size constraint for various timeouts
(a) and generate at least one T -implicate within a given time limit for various maximal
size constraints (b). Figure 9.4 shows that GPiD is able to generate at least one T -
implicate for more examples than cSP. It is able to generate at least one T -implicate
for more than twice the number of examples cSP handles when the time limit is low,
though this gap tends to be reduced the more time we allow. Moreover, if we limit the
size of the T -implicates we generate (which can be done internally by both prototypes),
the experiments show that GPiD is still able to generate at least one T -implicate for
more examples than cSP. Here also, the difference between the two prototypes tends to
be reduced when we allow for larger T -implicates. This result was to be expected since
DPLL(T )-based approaches are more efficient than engines using the superposition cal-
culus for testing the satisfiability of quantifier-free formulas with a large combinatorial
structure. Furthermore, the superposition engine used in the previous approach had to

112



Examples Sources Theories
Ox [57, 85] LIA
534 [114, 22, 172] Array, NLIA

509, H04, H05 [114, 22, 172] NLIA
BM [157] LIA

Scmp, Dmd [157] (N)LIA, Float
listx Crafted List
arrayx Crafted Array
expox Crafted NLIA
square Crafted NLIA
realx Crafted LRA
B00 Crafted NLIA
DIVx Crafted NLIA

Table 9.3: Benchmark sources and content for the experimental evaluation of the Ilinva
prototype.

be specifically tuned for implicate generation, and thus is already less efficient than state-
of-the-art systems such as Vampire, E or Spass. This is part of the advantage of having
a generic algorithm using decision procedures as black boxes.

9.4 Evaluating the loop invariant generator Ilinva

We now consider the evaluation of the Ilinva tool for generating loop invariants for
WhyML programs. In order to evaluate both the efficiency and the genericity of the
approach, we devised a benchmark set containing both examples expressed in theories
that are usually considered by such tools (such as linear arithmetic) and examples that
are extracted or crafted in more expressive theories, such as those for which SMT-solvers
show difficulties to decide the satisfiability. We collected our benchmarks from several
sources [57, 85, 157, 114, 22, 172] corresponding to those considerations. We also added
examples corresponding to standard algorithms for division and exponentiation (involving
lists, arrays, and nonlinear arithmetic). A detailed view of each benchmark source and
of the theories it uses is given in Table 9.3.

Some of these benchmarks have been translated by hand from C or Java into WhyML
when they were not already expressed in the language. In all the experiments, the initial
invariant associated with each loop was >. We configured the Ilinva and GPiD tools
with Z3 for the benchmarks containing real arithmetic, with Alt-Ergo for lists and
arrays and with CVC4 in all the other cases. All those examples, as not easily recoverable
from their sources (due to the WhyML translation that was performed), are distributed
with the source of the Ilinva tool.
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9.4.1 Results of the generation

We ran Ilinva on each example, first without disjunctive invariants then with disjunctions
of size 2. The results are reported in Tables 9.4 and 9.5. For each example, we report
whether our tool was able to generate invariants allowing Why3 to check the soundness
of all program assertions before the timeout. If this is the case, we also report the time
Ilinva took to do so (columns T(C) when generating conjunctions only and T(D) when
generating implicants containing disjunctions). We also report the number of candidate
invariants that have been tried (columns C(D) and C(D)) and the number of abducible
literals that were sent to the GPiD algorithm (column Abd). Note that the number of
candidate invariants does not correspond to the number of satisfiability queries that are
made by the system: those made by GPiD to generate these candidates are not taken
into account. The timeout is set to 20 min. For some of the examples that represent
key crafted examples expressed in more difficult theories, we allowed the algorithm to run
longer. We report those cases by putting the results between parentheses. Light gray cells
indicate that the program terminates before the timeout without returning any solution,
and dark gray cells indicate that the timeout was reached. Empty cells mean that the
tool could not generate any candidate invariant. The last column of both tables report
the time Why3 takes to prove all the assertions of an example when correct invariants
are provided.

An essential point concerns the handling of local solver timeouts. Indeed, most calls
to the SMT-solver in the abductive reasoning procedure will involve satisfiable formulas,
and the solvers usually take a lot of time to terminate on such formulas (or in the worst
case will not terminate at all if the theory is not decidable, e.g., for problems involving
first-order axioms). We thus need to set a timeout after which a call will be considered
as satisfiable (see Section 7.1). Obviously, we neither want this timeout to be too high
as it can significantly increase computation time, nor too low, since it could make us
miss solutions. We decided to set this timeout to 1 second, independently of the solver
used, after measuring the computation time of the Why3 verification conditions already
satisfied (for which the solver returns Unsat) across all benchmarks. We worked under the
assumption that the computation time required to prove the other verification conditions
when possible would be roughly similar.

9.5 Discussing the results of the evaluation of Ilinva

As can be observed, Ilinva is able to generate solutions for a wide range of theories,
although the execution time is usually high. The number of invariant candidates is
relatively high, which has a major impact on the efficiency and scalability of the approach.

When applied to examples involving arithmetic invariants, the program is rather slow,
compared to the approach based on minimization and quantifier elimination [57]. This is
not surprising, since it is very unlikely that a purely generic approach based on a model-
based tree exploration algorithm involving many calls to an SMT-solver can possibly
compete with a more specific procedure exploiting particular properties of the considered
theory. We also wish to emphasize that the fact that our framework is based on an exter-
nal program verification system (which itself calls external solvers) involves a significant
overcost compared to a more integrated approach: for instance, for the Oxy examples
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Abd T(C) C(C) T(D) C(D) Why3
O01 36 9.68 7 11.89 10 0.26
O02 536 3′18.9 66 1126 0.45
O04 108 50.47 32 2′31.4 156 0.26
O05 266 1′9.07 5 1′3.2 5 0.31
O06 390 6′13.6 56 18′5.1 552 0.72
O07 594 1′50.1 13 15′40.6 355 0.38
O08 210 2′35.5 61 9′35.8 528 0.42
O09 390 0 0 0.56
O10 90 1′39.54 65 12′56.9 0 0.35
O11 180 2′17.7 63 942 0.26
O12 782 0 0 0.53
O13 296 2′4.5 0 1621 0.30
O14 270 0 0 0.34
O15 36 32.53 21 888 0.27
O16 60 12.54 8 29.72 32 0.26
O17 36 40.88 26 2′42.5 134 0.33
O18 38 58.49 38 6′53.3 0 0.30
O19 60 1′59.5 111 1620 0.31
O20 546 380 870 0.49
O21 90 0.76 0 0.76 0 0.38
O22 270 2′10.1 20 2′11.9 20 0.48
O23 36 4.6 5 4.7 5 0.28
O25 60 1′23.4 20 2′38.4 44 0.39
O26 396 6′23.2 21 7′13.9 66 0.83
O28 2′3.9 137 16′22.8 1331 0.31
O29 61776 0 0 0.65
O30 36 31.43 26 41.66 45 0.26
O31 67050 0 0 0.49
O32 40 0.865 0 0.833 0 0.50
O33 90 1′11.3 12 1′19.9 21 0.45
O34 6768 0.798 0 0.79 0 0.44
O35 18 18.42 25 2′7.9 200 0.26
O36 61778 0 0 1.09
O37 36 0.752 0 0.769 0 0.34
O38 630 444 3′54.4 0 0.48
O39 546 1581 1840 0.40
O40 272 0 0 0.84
O41 0 0 0.37
O42 271 1′50.4 25 605 1.12
O43 60 4.27 2 3.67 2 0.29
O44 22.481 13 5′7.8 290 0.35
O45 0 0 1.50
O46 513 813 0.61

Table 9.4: Experimental Results of the Ilinva tool (Part 1).

(taken from [57, 85]), the time used by Why3 to check the verification conditions once
the correct invariants have been generated is often greater than the total time reported
in [57] for computing the invariants and checking all properties. Of course, our choice
also has clear advantages in terms of genericity, generality and evolvability.

When applied to theories that are harder for SMT-solvers, the algorithm can still
generate satisfying invariants. However, due to the high number of candidates it tries,
combined with the heavy time cost of a verification (which can be several seconds), it
may take some time to do so.

The number of abducible literals also has a strong impact on the efficiency of the
process, leading to timeouts when the considered program contains many variables or
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Abd T(C) C(C) T(D) C(D) Why3
509 130 (1h50′) (95) 0 0.66
534 172k 8 0 0.62
H04 120 2′54.8 223 1383 0.31
H05 1260 0 0 0.37

list0 60 6′30.4 77 1722 0.40
list1 20 40.82 3 3′26.2 385 0.47
list2 720 40 0 0.40
list3 126 3′35.1 11 930 0.44
list4 816 18 0
list5 468 22 0 0.44
array0 0 0 0.72
array1 0 0 0.50
array2 0 0 0.50
array3 0 0 0.82
expo0 171 (6h36′) (9) 0 0.40
expo1 2130 0 0
square 705 62 148
real0 965 81 213 0.55
real1 965 73 115 0.55
real2 240 9 2 0.40
realO0 36 4′9.6 25 5′32.18 40 0.47
realS 66 1′5.3 5 1′0.1 5 0.33
real3 17460 0 0
BM 1260 3′15.2 74 33 3.35

Scmp 0 0 0.83
Dmd 42 6 0 1′44.9
B00 639k 0 0 0.76
DIV0 560 3′58 35 534 0.83
DIV1 310 14.6 19 14.6 19 0.44
DIVE 42250 0 0

Table 9.5: Experimental Results of the Ilinva tool (Part 2).

function/predicate symbols. It can be observed that the abduction depth is rather low
in all examples (1 or 2).

Our prototype has some technical limitations that have a significant impact on the
time cost of the execution. For instance, we use SMT-lib files for communication between
GPiD and CVC4 or Z3, instead of using the available APIs. We went back to this
solution, which is clearly not optimal for performance, because we experienced many
problems coping with the numerous changes in the specifications when updating the
solvers to always use the latest versions. The fact that Why3 is taken as a black box
also yields some time consumption, first in the (backward and forward) translations (e.g.,
to associate program variables to their logical counterparts), but also in the verification
tasks, which have to be rechecked from the beginning each time an invariant is updated.
Our aim was not to devise an efficient system, but rather to assess the feasibility and
usefulness of this approach.

This finally gives us some additional information on the behaviour of the GPiD tool.
When we used it within the Ilinva tool, it was shown to be the main bottleneck of
the system. This is due to both the cost of the numerous calls to the SMT-solvers and
the size of the search tree of the abduction procedure, especially for hard theories (e.g.,
non-linear arithmetic) for which most calls with satisfiable formulas were stopped by the
local timeout of Ilinva. This suggests that the focus we took on reducing the search
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space in Chapter 3.2 was important, and that more work should be invested in reducing
this set further. It may even interesting to relax the completeness of the algorithm if we
can produce “good” implicates by trying less hypotheses.

Still these experiments show that both systems are already of practical use to solve
generic problems where no specific or more adapted solutions is known, or even more
classical problems in the case of GPiD, even though it does not compete extensively
against state-of-the-art tools aimed at solving a specific class of problems.
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Part IV

A model minimization algorithm for
performing abduction in separation

logic
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Chapter 10

Multi-level implicant minimization by
formula component-based
generalization

In this part, we present the bases of another approach to generate implicants of a formula.
The idea we investigate is based on model construction. Once a model of the considered
formula has been found, we try to deduce a first implicant from it. In some cases, this
implicant can be obtained by considering the conjunction of all the abducible literals
that are true in the model. It can be viewed as an abstract description of a class of
interpretations satisfying the considered formula. If it is possible to obtain this implicant,
the proposed approach will then refine it to produce a new implicant as general as possible.
This refinement can be done by either removing hypotheses from the initial implicant or
replacing them by weaker ones. When no such operation allows to obtain a formula that
remains an implicant of the initial problem, we conclude that we have obtained the best
implicant we could get from this method.

In order to compute this refinement of the initial implicant, we present in this part an
algorithm to minimize the model-obtained implicants when they can be expressed as a
conjunction of smaller, base logical formulas for which we assume basic weakening rules
are given. We then perform a weakening on each component by trying to replace it by a
more general formula and backtracking if this replacement prevents the new conjunction
from remaining an implicant of the considered formula. The method we present is an
extension of [26], where the authors present an algorithm to efficiently minimize models
of propositional logic formulas. In this context, minimizing a formula is equivalent to
minimizing the set of literals that are true in the model. The approach of [26] uses
the divide-and-conquer principle to perform this minimization. It is also proven that
their approach performs a number satisfiability checks in both O((l′ − 1) + l′ log( l

l′
)) and

Ω(l′ + l′ log( l−l
′

l′
)) where l is the size of the initial model and l′ is the size of the minimal

model returned by their algorithm. In our context, we can review this propositional logic
approach as follows. The method of [26] first constructs a formula from a propositional
model by considering the conjunction of all the literals that are satisfied by the model.
To obtain a more general implicant, the weakening that is performed consists in removing
some of the literals of the formula. Indeed, this gives a formula that is more general than
the previous one and thus, if it keeps the initial problem as a logical consequence, gives a
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more general implicant (from which we can immediately deduce a smaller, partial model)
of the problem. In other theories however, the weakening of the literals of a formula is
not that simple. For instance, a literal can be a logical consequence of another (such as
x ' 1 |= x ≤ 1 in linear arithmetic). The framework we devise can be applied to other
logics and provides a finer control on the components of the model we try to minimize
(finer than just deciding between keeping or discarding a literal, as it is done in [26]).

We will start by presenting the framework for this algorithm, based on the same
divide-and-conquer paradigm, and then detail instantiations to minimize implicants in
propositional logic and separation logic (a well-known logic for reasoning on programs
[151]). We will also introduce a simple algorithm to perform abduction on separation
logic formulas based on this minimization algorithm. In Chapter 11, we will present and
evaluate an implementation of this method and discuss the observed behaviour.

10.1 A framework for representing implicants

We assume given a class of logical formulas S.
In all the following, we are going to consider what we call the generalization of logical

formulas according to a generalization relation. For this reason, we will assume the
existence of a predefined generalization relation→g on the formulas of S (saying that φ2

is more general than φ1 when φ1 →g φ2).

Assumption 153. We assume that →g is well-founded. This property permits to pre-
vent the possibility to generate some infinite generalization sequence leading to the non-
termination of our algorithm.

Assumption 154. We assume that→g is functional ( i.e. ∀φ1.∀φ2.∀φ3.φ1 →g φ2∧φ1 →g

φ3 ⇒ φ2 = φ3). This property permits to obtain a deterministic generalization relation,
which in turns reduces the search space of exploration-based algorithms.

We will generalize the components of an initial formula that can be expressed as a
conjunction of formulas of S using this generalization relation.

As our goal is to represent a formula by a set of generalizable components, we first
define a way to represent these components and the state they are in (whether they
have been generalized or not). To apply the algorithm, we will need a way to keep a
memory of the states the components are in, of how many times they were generalized
and of their previous states. This information will permit to backtrack the generalization
that were made if the resulting formula is not an implicant for the problem anymore. In
order to represent these generalizable components, we will thus use sequences of formulas.
These sequences will track the consecutive generalizations of the source component while
keeping in memory all the previous generalization steps.

Definition 155. We consider non-empty finite sequences of formulas of S that we call
S-sequences. Such sequences are of the form 〈φ1, φ2, . . . , φn〉 where ∀i ∈ J1, nK, φi is a
formula of S.

For an S-sequence s = 〈φ1, φ2, . . . , φn〉, we will call base(s)
def
= φ1 the base formula of

s and active(s)
def
= φn the active formula of s.
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Definition 156. For s = 〈φ1, . . . , φn〉 and t = 〈ψ1, . . . , ψm〉 two (possibly empty) S-
sequences, we define the concatenation of s and t as s+ t = 〈φ1, . . . , φn, ψ1, . . . , ψm〉.

Example 157. Let us consider the following S-sequences: s = 〈x ' y, x ≤ y,>〉 and
t = 〈t ' r〉. We have active(s) = >, base(t) = active(t) = t ' r and base(s) = x ' y.
Moreover, t+ s = 〈t ' r, x ' y, x ≤ y,>〉.

Definition 158. We say that an S-sequence 〈φ1, φ2, . . . , φn〉 is a generalization sequence
if ∀i ∈ J1, nJ, φi →g φi+1.

Intuitively, when representing a generalizable component, the base formula of a gen-
eralization sequence is the initial description of the component and the active formula
is its current description. The main algorithm starts with a representation of a formula
containing only generalization sequences of one element. It updates these sequences so
that, at the end of its execution, we are able to construct a minimal model by taking the
active formulas of all the generalization sequences that it built.

Definition 159. Given two generalization sequences s1 and s2, we say that s1 is a prefix
of s2 if there exists a generalization sequence s3 such that s1 = s2 + s3. Similarly, we
will say that s2 is a suffix of s1 if there exists a generalization sequence s3 such that
s3 = s1 + s2.

We will additionally say that a generalization sequence s1 is a strict prefix (resp. strict
suffix ) of a generalization sequence s2 if it a prefix (resp. suffix) of it and if s1 6= s2.

Definition 160. We define <g the well-founded order induced by →g on generalization
sequences as follows: for two generalization sequences s1, s2, we write that s1 <g s2 if s2

is a strict prefix of s1.

This implies that s1 and s2 start with the same elements but φ1 contains more gen-
eralizations and therefore admits an active formula more general than the active formula
of φ2.

Remark 161. Notice that because →g is functional, for any two generalization sequences
s1, s2 such that base(s1) = base(s2), we have necessarily that either s1 is a prefix of s2

or s2 a prefix of s1.

In order to simplify the recovery of initial components and the association of various
possible generalizations of the same initial formula, we define the following notations:

Definition 162. Given a set of S-sequences W , we will define the set of base formulas
base(W )

def
= {base(s) | s ∈ W} and, given a formula φ ∈ base(W ), we will denote by

base−[φ](W ) an arbitrary element of W with a base equal to φ and verifying ∀s ∈
W,base(s) = φ⇒ |s| ≥ |base−[φ](W )|.

Remark 163. Note that base−[]() is a partial function. Note also that, if the set of S-
sequences W was obtained from an initial set of S-sequences of size one by appending to
them any given number of their successive generalizations by→g, then for any formula φ
that is the base of one of the sequences of W , base−[φ](W ) exists and is unique (because
→g is functional).
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Definition 164. In order to define the way we construct the main formula from its
components, we assume, in the following, the existence of a representation function S
from a set of S-sequences to formulas of S.

An example of such a function can be the conjunction of the active formulas of the
set.

Definition 165. We say that a representation function S is monotonous for a general-
ization relation→g if for any two sets of S-sequencesW andW ′ such thatW ′ is obtained
by replacing an element 〈φ1, . . . , φn〉 ofW by an S-sequence s = 〈φ1, . . . , φn, ψ〉 such that
φn →g ψ, we have that S(W ′) |= S(W ).

Example 166. Let us consider the generalization relation →g such that for any φ ∈
S, φ →g >. Let us also consider the representation function S∧ : {s1, . . . , sn} 7→∧
i∈J1,nK active(si). Now let us consider a set of S-sequences W = {s1, . . . , sn}. For

any i ∈ J1, nK,
∧
j∈J1,nK active(sj) |=

∧
j∈J1,nK\{i} active(sj) ∧ >. This ensures that S∧ is

monotonous for →g.
Note also that S∧ is monotonous when →g is such that φ |= ψ every time φ→g ψ.

In all the following, we will always assume that our representation functions are
monotonous for the generalization relations we consider.

We now discuss the way we will regroup the base formulas to obtain a coherent
representation of an implicant.

Definition 167. Let W be a finite set of generalization sequences. We say that W is a
representation set if it verifies all the following :

1. Card(W ) = Card(base(W )) (no two elements in W have the same base.)

2. S(W ) is satisfiable.

This is meant to ensure both that the generalized formula will be satisfiable and that
every generalization sequence inW will be unambiguously related to a unique component
of the original formula.

Example 168. For instance {〈x ' y,>〉, 〈r ' t,>〉} is a valid representation set while
{〈x ' y,>〉, 〈x ' y, x ≤ y〉} is not, because its two generalization sequences have the
same base.

We also need to define additional properties to ensure that the representation set we
modify is and remains the representation of an implicant of the original formula.

Definition 169. Let W be a representation set. We say that S(W ) is the formula
represented by W . We also use the notations M |= W or W1 |= W2 when we mean
M |= S(W ) or S(W1) |= S(W2).

Definition 170. We say that a representation set W is an implicant representation set
for a formula φ if W |= φ.

Finally, we present a notation for representing the fact that we recover the first im-
plicant representation set from our source formula.
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Definition 171. We assume the existence of a possibly partial function Iextract that,
given a satisfiable formula φ, will return an implicant representation set for φ. We call
such a function an implicant extractor.

Example 172. In propositional logic, an intuitive example of implicant extractor would
be the following. Given a finite set of propositional literals L from which we construct
propositional formulas, for any satisfiable formula φ constructed on L, Iextract would
first compute a modelM |= φ and return {〈l〉 | l ∈ L ∧M |= l}.

10.2 A framework for generalizing implicants
In this part, we present the generalization formalism used to replace components of
implicants by more general ones.

Notation 173. In what follows, we will denote by →g
+ the transitive closure of →g over

the formulas of S. We also consider the usual associated notation →g
∗.

The main idea with this order is to define possible generalization sequences for com-
ponents. We then try to apply these predefined generalization steps to the components
we have at hand.

Definition 174. We consider a partial function Gen mapping any pair (W, s) where W
is a representation set and s ∈ W to a set of sequences defined as follows:

1. For any pair (W, s) in the domain of Gen, W |= Gen(W, s).

2. For any pair (W, s) in the domain of Gen, Gen(W, s) = (W \ {s}) ∪ {s′} where
s′ <g s.

We call this function an atomic generalization function.

This function is defined as partial in order to make a distinction between active
components we are allowed to generalize and the ones we are not allowed to generalize
(typically because it would break the implicant property of the result). This function can
be viewed as an extension of the generalization order to generalize representation sets.

Proposition 175. For (W, s) ∈ Dom(Gen), Gen(W, s) is a representation set.

Proof. Let us consider (W, s) ∈ Dom(Gen).

1. BecauseW is a representation set, and because the construction does not, by defini-
tion, add any new base in the returned set, we cannot introduce a duplicate base in
the set. Thus we have Card(Gen(W, s)) = Card(base(Gen(W, s)))). Moreover,
if s′ <g s, then base(s′) = base(s). Therefore, Gen(W, s) contains the same set of
bases as W .

2. S(W ) is satisfiable because W is a representation set. Moreover, we have that
S(W ) |= S(Gen(W, s)) by definition of Gen. This means that S(Gen(W, s)) admits
at least one model (the same model as W ). S(Gen(W, s)) is therefore satisfiable.

Thus Gen(W, s) is indeed another S-representation set.
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Definition 176. LetW1 andW2 be two representation sets. We say thatW2 is a general-
ization ofW1 according to an atomic generalization function Gen (and noteW2 �Gen W1)
if either W2 = W1 or ∃WI a representation set and s ∈ WI such that W2 = Gen(WI , s)
and WI �Gen W1.

We say that W2 is a strict generalization of W1 according to an atomic generalization
function Gen (and note W2 ≺Gen W1) if it is a generalization of W1 and distinct from
W1.

Proposition 177. Let us consider an atomic generalization function Gen and the relation
�Gen on representation sets as described in Definition 176.

1. �Gen is an order.

2. ≺Gen is well-founded.

Proof. By definition, if W1 ≺Gen W2, then the set {|s| | s ∈ W1} is strictly lower than
{|s| | s ∈ W2} according to the multiset extension of the reverse ordering on natural num-
ber. This entails that ≺ is well-founded. Note also that as ≺ is well-founded, it is
necessarily antisymmetric.

Definition 178. Let Gen be an atomic generalization function and let W be a represen-
tation set. We say that W is generalizable according to Gen if there exists s ∈ W such
that (W, s) ∈ Dom(Gen). We say that s ∈ W is generalizable in W according to Gen if
(W, s) ∈ Dom(Gen).

The algorithm we will use to minimize implicants will perform a decomposition of
the initial representation set into smaller, more general ones. In order to reconstruct the
correct representation of the complete implicant from these sets, we need to recover the
generalization sequence they contain and keep only those for which the active formula is
the least general for a given base. Indeed, when we generalize the active formulas of a
given representation set, it is possible that the resulting formulas do not entail the one
we are constructing an implicant for. This means that at least one component has been
generalized more than possible and that this generalization must be undone. We thus
need to backtrack this generalization to obtain once more an implicant representation set
using the active formulas that were kept in the other sets. This is the purpose of the
following definition.

Definition 179. LetW1 andW2 two representation sets. We define themerging operation
W1 ⊗W2

def
=
{
base−[φ](W1 ∪W2)

∣∣ φ ∈ base(W1 ∪W2)
}
.

Using this operator, we can recover previous states of the generalization from one
representation set used to test a new generalization and one keeping components in a
representation known to provide an implicant of the initial formula.

Example 180. Taking for instance W1 = {〈p1 ∧ p2〉, 〈p3 ∧ p4, p3〉} and W2 = {〈p1 ∧
p2, p2〉, 〈p3 ∧ p4〉}, we will obtain W1 ⊗W2 = {〈p1 ∧ p2〉, 〈p3 ∧ p4〉}. The context would
typically be that we tried to generalize p1 ∧ p2 by p2 in one part and p3 ∧ p4 by p3 in
the other but then discovered that it would have broken the properties we needed thus
wanted to backtrack to the previous result. The advantage of the merging operator being
that it allows us to backtrack all breaking generalizations even if made separately.
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Proposition 181. If W1 and W2 are two representation sets, then W1 ⊗W2 is also a
representation set.

Proof. Reusing the two points of Definition 167. The fact that Card(W1 ⊗ W2) =
Card(base(W1 ⊗W2)) is ensured by construction. The said construction also ensures
that W1⊗W2 ⊂ W1 ∪W2, which proves that S(W1⊗W2) is satisfiable as the parameters
are both representation sets.

Proposition 182. As we have a deterministic way to compute the base−[]() function for
representation sets, the merging operator is associative and commutative.

Proof.

• Commutativity is trivial when applying the properties of the set union operation.

• Associativity uses the same properties after noting that for a representation set W
and a formula φ, we have base(base−[φ](W )) = φ.

Thus, base(
{
base−[φ](W )

∣∣ φ ∈ base(W )
}

) = base(W ) and for two representa-
tion sets W1 and W2, base(W1 ∪W2) = base(W1) ∪ base(W2). This permits to
ensure that base−[φ](W1 ∪W2) = base−[φ](base−[φ](W1) ∪W2) as we look for the
minimal sequences on the same set of bases.

It is now possible to tackle the construction of our implicant minimization algorithm.
In propositional logic, the usual algorithm that is used to minimize an initial implicant
built from the conjunction of all the literals satisfied by an initial model consists in
splitting these literals into two parts. For each part, the algorithm tries to minimize the
set of propositional literals by removing some of them while assuming that all the literals
of the other part are present in the model. Of course, only the literals that do not break
the implicant property of the whole formula are removed. To perform this simplification,
it recursively calls itself. This first step gives the algorithm a minimal implicant for the
first part, assuming the second. It can then minimize the second part while assuming
that the literals of the first are present in the final conjunction. Once the two parts have
been minimized under the support the other, the algorithm is able to return a minimal
implicant of the initial formula.

What we present below is an adaptation of this algorithm that permits to handle more
complex cases where the weakening of a literal does not consist in its removal. Moreover,
we also extend the algorithm to be able to decompose the initial set in more than two
parts, hence the following definition.

Definition 183. Let W be a representation set. We say that {W1,W2, . . . ,Wn} is a
generalization partition of W if all the following are verified:

1.
⊗

i∈J1,nKWi = W .

2. For any Wi, i ∈ J1, nK, Wi ≺Gen W .

3. For any Wi,Wj, i, j ∈ J1, nK, i 6= j, si ∈ W1 ∧ sj ∈ Wj ⇒ base(si) 6= base(sj).
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Example 184. Let us consider the generalization function that transforms equality be-
tween terms into lower inequality and lower inequality to >. This means that, for any
two terms t1, t2, we have t1 ' t2 →g t1 ≤ t2 →g >.

Now let us consider the constants a, b, c, d, e, f, g, h and the representation set

W = {〈a ' b〉, 〈c ' d〉, 〈e ' f〉, 〈g ' h〉}.

The set {{〈a ' b, a ≤ b〉, 〈c ' d, c ≤ d〉, 〈e ' f〉, 〈g ' h〉}, {〈a ' b〉, 〈c ' d〉, 〈e ' f, e ≤
f〉, 〈g ' h, g ≤ h〉}} is a generalization partition of W as well as the set {{〈a ' b, a ≤
b,>〉, 〈c ' d〉, 〈e ' f〉, 〈g ' h〉}, {〈a ' b〉, 〈c ' d, c ≤ d〉, 〈e ' f, e ≤ f〉, 〈g ' h, g ≤ h〉}}.

The set {{〈a ' b, a ≤ b,>〉, 〈c ' d〉, 〈e ' f〉, 〈g ' h〉}, {〈a ' b, a ≤ b〉, 〈c ' d, c ≤
d〉, 〈e ' f, e ≤ f〉, 〈g ' h, g ≤ h〉}} however is not a generalization partition ofW . Indeed
{〈a ' b, a ≤ b,>〉, 〈c ' d〉, 〈e ' f〉, 〈g ' h〉} ⊗ {〈a ' b, a ≤ b〉, 〈c ' d, c ≤ d〉, 〈e ' f, e ≤
f〉, 〈g ' h, g ≤ h〉} = {〈a ' b, a ≤ b〉, 〈c ' d〉, 〈e ' f〉, 〈g ' h〉} which is distinct from
W .

After decomposing representation sets into smaller parts, we also need to remove from
the considered parts of the partition any element that would be replaced when merging
it back with the remaining parts of the partition. This cleaning process is the purpose of
the following procedure.

Definition 185. Considering two representation sets W1 and W2, we define the clean-
representation set of W1 according to W2 as the set

Clean[W2](W1)
def
= {s ∈ W1 | ∀t ∈ W2,base(t) = base(s)⇒ t <g s}

.

Proposition 186. For any two representation sets W1,W2, we have

W1 ⊗W2 = Clean[W2](W1)⊗W2

.

Proof. As W1 and W2 are representation sets and →g is functional, we have that ∀s, t ∈
W1 ∪W2,base(s) = base(t) ∧ |s| = |t| ⇒ s = t.

Let s ∈ W1 ⊗W2. By construction, we know that s is at least in one of the two sets
W1 and W2. We also have that ∀t ∈ W1 ∪ W2,base(t) = base(s) ⇒ t ≤g s because
t = base−[base(s)](W1 ⊗W2). Adding the premise of the property, this means that
∀t ∈ W1 ∪W2,base(t) = base(s)⇒ t ≤g s.

• If s ∈ W2 and s /∈ Clean[W2](W1)⊗W2, then by definition this entails that either
Clean[W2](W1) or W2 contains a sequence s′ such that s <g s

′. Necessarily s′ is
contained in W1 ∪W2, which contradicts the previous property. This ensures that
s ∈ Clean[W2](W1)⊗W2.

• If s /∈ W2, then necessarily s ∈ W1. As no sequence distinct from s but with the
same base in W1 ∪W2 is smaller than s, this gives us that s ∈ Clean[W2](W1) and
then s ∈ Clean[W2](W1)⊗W2.
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Now let s ∈ Clean[W2](W1)⊗W2. By construction, s ∈ W1∪W2. The same reasoning
on the sequences lengths allows us to deduce that s is the smallest element with its base
in W1 ∪W2, thus that it will be kept when constructing W1 ∪W2.

This completes the set equality proof.

We now describe our algorithm to minimize an initial representation set. The al-
gorithm is presented in Algorithm 10.1 and depends on a given atomic generalization
function.

The main idea of Algorithm 10.1 for generalizing formulas goes as follows: first we
ensure that we are not already considering a minimal set of formulas. If it is not the
case, we try various possible generalizations we suspect could preserve the property of
the original set. If no such generalization actually works, we decompose our set in a
generalization partition and try to generalize each independently, assuming elements of
other parts are fixed. An additional representation set Sup is kept to store the maximal
generalization level allowed for each component.

Algorithm 10.1: MinimalPart(ψ,Gen,W, Sup)

1 let W = Clean[Sup](W );
2 if there exist no W ′ ≺Gen W then
3 return W ;
4 else if we can detect that there are no more general hypotheses W ′ ≺Gen W such

that W ′ ⊗ Sup |= ψ then
5 return W ;
6 else if W = {s} then
7 if Gen(W, s)⊗ Sup |= ψ then
8 return MinimalPart(ψ,Gen,Gen(W, s), Sup) ;
9 else

10 return W ;
11 end
12 foreach WH in an arbitrary set of hypotheses such that WH ≺Gen W do
13 if WH ⊗ Sup |= ψ then
14 return MinimalPart(ψ,Gen,WH , Sup) ;
15 end
16 end
17 let W1, . . . ,Wn be a generalization-partition of W ;
18 foreach Wi, i ∈ J1, nK do
19 let Wi = MinimalPart(ψ,Gen,Wi, Sup⊗

⊗
j∈J1,nK,j 6=iWj) ;

20 end
21 return

⊗
i∈J1,nKWi ;

Lemma 187. Let ψ ∈ S and Gen be an atomic generalization function. Let W and Sup
be two representation sets such that W ⊗ Sup |= ψ. The two following properties hold.

1. W ′ ⊗ Sup′ |= ψ for any recursive call MinimalPart(ψ,Gen,W ′, Sup′) made by
the call MinimalPart(ψ,Gen,W, Sup).
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2. If MinimalPart(ψ,Gen,W, Sup) terminates, then

MinimalPart(ψ,Gen,W, Sup)⊗ Sup |= ψ

.

Proof. First, we notice that the first and second parameters of MinimalPart do not
change in any recursive call, which justifies the fact that we keep the notations ψ and
Gen within this proof.

We are going to prove the two points simultaneously by induction on the number of
recursive calls, as a pre (1) and post (2) condition.

(2) holds if we are in one of the following base cases of the algorithm. If we return at
line 3, 5 or 10, we are actually returning Clean[Sup](W ) whereW is the entry parameter
of the algorithm. Proposition 186 gives us that Clean[Sup](W )⊗Sup = W ⊗Sup. This
allows us to conclude that (2) holds using our initial hypothesis.

For all the other cases, let us assume as an induction hypothesis (*) that (2) holds for
any recursive call MinimalPart(ψ,Gen,W ′, Sup′) verifying (1) : W ′ ⊗ Sup′ |= ψ.

If we happen to return from line 8 or line 14, (1) is ensured by the tests preceding
these invocations (line 7 and line 13 respectively). Applying the induction hypothesis
(*), we can conclude that (1) holds for these two cases.

This leaves us with the partition case. Let W1, . . . ,Wn be our initial generalization
partition of W . As ⊗ is associative and commutative (Proposition 182), we have that
W1 ⊗ (Sup ⊗

⊗
j∈J2,nK,j 6=1Wj) = Sup ⊗

⊗
i∈J1,nKWi = W ⊗ Sup. This implies (1) as a

consequence of our initial hypothesis and Proposition 186.
Applying our induction hypothesis (*), we deduce thatW1⊗(Sup⊗

⊗
j∈J2,nK,j 6=1 Wj) |=

ψ. We reapply the same process for every part of the generalization partition, replacing
each time W in the reasoning by

⊗
i∈J1,nKWi for which the implicant property has been

obtained in the previous step. This allows to conclude that, at the end of the partitioning
loop, we have Sup⊗

⊗
i∈J1,nKWi |= ψ, which proves point (2) for the return at line 21.

This completes the proof of the initial lemma by induction.

Lemma 188. For any formula ψ, atomic generalization function Gen, representation
sets W,Sup, such that W ⊗ Sup |= ψ, MinimalPart(ψ,Gen,W, Sup) terminates.

Proof. Termination comes from the well-founded order used by →g. We prove that any
recursive call made to MinimalPart uses as its representation set a strict generalization
of the previous parameters. Because ≺Gen is well-founded, this ensures that we can only
make a finite number of recursive calls before falling in a base case.

This is trivial for the recursive call at line 8 as Gen(W, s) ≺Gen W for any represen-
tation set W and any s ∈ W by construction.

For the recursive call of line 14, this property is ensured by construction as a restriction
on the block hypothesis allowed to be tried (see the condition in the loop line 12).

Finally, for the recursive call at line 19, this property is ensured by the Definition
(183) of the generalization partition.

Lemma 189. Let ψ ∈ S, Gen be an atomic generalization function and let W,Sup be
two representation sets such that W ⊗ Sup |= ψ.
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We note WR = MinimalPart(ψ,Gen,W, Sup) (which exists by Lemma 188). There
exists no WH ≺Gen WR such that both Clean[Sup](WH) 6= Clean[Sup](WR) and WH ⊗
Sup |= ψ.

Proof. We proceed by induction on the structure of Algorithm 10.1. The result is im-
mediate for the base cases at Lines 3, 5 and 10. It is also immediate by the induction
hypothesis for the tail-recursive calls at Lines 8 and 14.

For the last case, the induction hypothesis ensures that, for any i ∈ J1, nK, we
have at the end of Line 19 that there exist no WHi

≺Gen Wi such that WHi
⊗ Sup ⊗⊗

j∈J1,nK,j 6=iWj |= ψ. Now let us assume that there exists WH1→i
≺Gen

⊗
j∈J1,iKWj such

that WH1→i
⊗ Sup ⊗

⊗
j∈J1,nK,j 6=iWj |= ψ. Then there exists a generalization sequence

in s ∈ WH1→i
that could replace base−[base(s)](

⊗
j∈J1,iKWj) in

⊗
j∈J1,iKWj and still

produce an implicant representation set when merged with Sup.
If base−[base(s)](

⊗
j∈J1,iKWj) <g base−[base(s)](Sup⊗

⊗
j∈J1,nK,j 6=iWj) then we

have Clean[WH1→i
](Sup⊗

⊗
j∈J1,nK,j 6=iWj) = Clean[Wi](Sup⊗

⊗
j∈J1,nK,j 6=iWj). Oth-

erwise either base−[base(s)](
⊗

j∈J1,iKWj) ∈ Wi, in which case we have by induction
that Clean[WH1→i

](Sup⊗
⊗

j∈J1,nK,j 6=iWj) = Clean[Wi](Sup⊗
⊗

j∈J1,nK,j 6=iWj), or that
base−[base(s)](

⊗
j∈J1,iKWj) ∈ Wk∈J1,iJ, in which case we have the same result from the

induction in the previous step.

We finally describe with the following result how the MinimalPart algorithm can
be used to find a general implicant of a given formula.

Proposition 190. Let ψ ∈ S andM |= ψ. Let Gen be an atomic generalization function
and Iextract a implicant extractor. Finally, let

W = MinimalPart(ψ,Gen, Iextract(ψ,M), ∅).

We have all the following:

1. W |= ψ

2. For any strict generalization WH ≺Gen W , WH 6|= ψ.

Proof. These are immediate from Lemmas 187 and 189, whose application conditions are
met by the result of the extractor (see Definition 171).

10.3 Instantiating the algorithm

10.3.1 Minimizing propositional logic models

We start by giving an instantiation of the framework of Section 10.1 that makes it equiv-
alent to the algorithm of [26].

Definition 191. In this section, we consider the class of propositional logic formulas.
We give an inductive definition of a propositional logic formula φ:

φ : > | ⊥ | v | ¬ψ1 | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

where v is a boolean constant and both ψ1 and ψ1 are propositional logic formulas.
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Definition 192. Let φ be satisfiable propositional logic formula and M a model of φ.
We consider the following implicant extractor: prex(φ)

def
=
⋃

JlKM=>{〈l〉}.

Definition 193. We consider the generalization relation →g on propositional logic for-
mula that is such that for any propositional literal l, we have l →g >, and such that no
other formulas are in relation.

The generalization using this order on the formulas returned by prex (that only con-
tains literals) will thus consist in replacing a given literal from the model by >, which is
equivalent to removing it in the representation of the formula. If we only consider gen-
eralization partitions of size two, then Algorithm 10.1 will basically consist in randomly
separating the literals of the model in two parts and trying to minimize these parts in-
dependently. This instance produces the algorithm that is described in [26] and of which
this work is a nontrivial extension. This is moreover, the algorithm we use to minimize
propositional logic models in Section 3.4.

10.3.2 Minimizing separation logic implicants

In this section, we describe an instantiation of the minimization algorithm to separation
logic. Most real-life programs handle more or less complex data structures that are
represented in a memory such as memory tables or linked lists. When one wants to
express some information on a program in order to prove properties on them, it is natural
to look for a way to work with this memory. This requires practical representations and
methods to express properties over such memories. Many solutions have been developed
in order to tackle this issue. Separation logic [151] is one of them.

Definition 194. We give an inductive definition of a separation logic formula P ∈ S:

P : φ | E 7→ (v1, . . . , vn) | ⊥ | P1 ∧ P2 | P1 ⇒ P2 | emp | P1 ∗ P2 | P1 −∗ P2

where φ is an equality or disequality between variables, E, v1, . . . , vn are variables, n ≥ 1
and P1, P2 are separation logic formulas.

In separation logic, we can naturally express properties over separated memory blocks.
Conceptually, the logic describes a mapping of variables to memory locations. On top of
that, it also defines two new logical operators. One is the separating conjunction, denoted
by P ∗ Q for two properties P and Q, and represents the fact that the properties are
verified on two separate parts of the memory. The second is the separating implication,
denoted by P −∗Q, which represents the fact that the memory obtained by any extension
using a block verifying P will always verify Q. Intuitively, this second operator is meant
to express how one adds elements in memory. When we want to verify properties in a
program, as we did in Chapter 6, and if we want to express properties on the shape of
the memory handled by this program, it can be useful to do so in separation logic. It
can then be interesting the discard the previously introduced abduction problem and to
consider instead the problem of bi-abduction, which will be presented in Section 10.4.

132



We will thus consider in this part that S is the set of separation logic formulas. We
also define:

S : {s1, . . . , sn} 7→
∧

{si | ∃v1,v2.base(si)∈{v1=v2,v1 6=v2}}

active(si)

∧ ∗∃v1,v2.base(si)∈{v1 7→v2}active(si)

∧∃i∈J1,nK.active(si)=emp emp

Definition 195. We call a tuple (D, s, h) an interpretation for separation logic when D
is a countable set, s is a total function mapping variables to elements of D and h is a
partial function from D to Dn.

Definition 196. Let (D, s, h) be an interpretation for separation logic.
Given a variable v in the domain of s, we call evaluation of v in (D, s, h) the value

JvK(D,s,h) = s(v).
Given φ an equality (resp. disequality) between two variables v1 and v2 of s, we call

evaluation of φ in (D, s, h) the boolean value JφK(D,s,h) such that JφK(D,s,h) = > if and
only if s(v1) = s(v2) (resp. s(v1) 6= s(v2)).

Definition 197. Let D be a countable set and h1, h2 be two partial functions from D to
Dn. We say that h1 and h2 are disjoint (and write h1#h2) if Dom(h1) ∩Dom(h2) = ∅.

Definition 198. Let D be a countable set and h1, h2 be two disjoint functions of elements
of D to tuple of elements of D. We define the disjoint union of h1 and h2 and denote by
h1 ∗ h2 the function from D to Dn such that we have all the following:

• Dom(h1 ∗ h2) = Dom(h1) ∪Dom(h2).

• ∀v ∈ Dom(h1). h1 ∗ h2(v) = h1(v).

• ∀v ∈ Dom(h2). h1 ∗ h2(v) = h2(v).

Definition 199. Let P be a separation logic formula. Let (D, s, h) be an interpretation
for separation logic. We define the satisfaction relation between interpretations and
formulas as follows: we say that (D, s, h) is a model of P and write (D, s, h) |= P if one
of the following holds:

(D, s, h) |=φ iff JφKs = >
(D, s, h) |=E 7→ v1, . . . , vn iff {JEKs} = Dom(h) and h(JEKs) = Jψ1Ks, . . . , JψnKs
(D, s, h) |=⊥ never
(D, s, h) |=P1 ∧ P2 iff (D, s, h) |= P1 and (D, s, h) |= P2

(D, s, h) |=P1 ⇒ P2 iff (D, s, h) |= P2 when (D, s, h) |= P1

(D, s, h) |=emp iff Dom(h) = ∅
(D, s, h) |=P1 ∗ P2 iff ∃h0, h1. h0#h1, h0 ∗ h1 = h,

(D, s, h0) |= P1 and (D, s, h1) |= P2

(D, s, h) |=P1 −∗ P2 iff ∀h′. if h′#h and (D, s, h′) |= P1 then (D, s, h ∗ h′) |= P2
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Definition 200. We say that a separation logic formula P is satisfiable if there exists
(D, s, h) such that (D, s, h) is a model of P .

Definition 201. Let (D, s, h) an interpretation for separation logic. For any x ∈
Dom(h), we call equivalence class of x in (D, s, h) the set

E(D,s,h)(x) = {v variable | s(v) = x} .

For any x ∈ Dom(h) such that E(D,s,h)(x) 6= ∅, we call representation of x in (D, s, h)

and denote by ̂E(D,s,h)(x) an arbitrary element of E(D,s,h)(x).

Definition 202. Let P be a (satisfiable) separation logic formula and (D, s, h) |= P . We
consider the implicant extractor slex defined as follows:

slex(P )
def
=

⋃
v1,v2∈Dom(s)

v1 6=v2
s(v1)=s(v2)

{〈v1 = v2〉}

∪
⋃

v1,v2∈Dom(s)
s(v1)6=s(v2)

{〈v1 6= v2〉}

∪
⋃

x0∈Dom(h),h(x0)=x1,...,xn
E(D,s,h)(x0)6=∅

∀i∈J1,nK.E(D,s,h)(xi)6=∅

{〈 ̂E(D,s,h)(x0) 7→ ̂E(D,s,h)(x1), . . . , ̂E(D,s,h)(xn)〉}

∪if Dom(h)=∅ {〈emp〉}

We justify this definition by the following proposition.

Proposition 203. If P is a satisfiable separation logic formula, the result of slex(P ) is
a representation set.

Proof. The single base is ensured by the fact that we return a set of sequences of length
1, and the satisfiability of active elements is trivial by construction.

slex(P ) is consistent: (D, s, h) the model of P used to construct the representation
set is also a model of S(slex(P )).

It is not certain, however, that slex(P ) entails P . Indeed, the formalism we use
to represent the models by formulas does not include much information that appears
in the model such as the exact domain of h. It could be possible to extend slex by
inserting components extracting this information from the model but in order to keep
the presentation simple, this has not been done. Instead, we will check if slex(P ) entails
P before proceeding with its minimization and fail if this is not the case.

Definition 204. We present here the generalization relation→g we define on separation
logic formulas:

1. ¬emp→g >.

2. emp→g >.
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3. If v0, v2, . . . , vn are variables, v0 7→ (v1, . . . , vn)→g ¬emp.

4. If v1 and v2 are variables, v1 = v2 →g >.

5. If v1 and v2 are variables, v1 6= v2 →g >.

6. Other elements are not in relation.

Justification. We first notice that any formula added in the first representation set by
our extractor slex is indeed generalizable with this generalization relation. Second, the
associated order is well founded (any generalizable formula can be reduced to one of the
base cases).

To obtain the associated atomic generalization function Gen, we still need to define
its domain.

Definition 205. Let W be a representation set and s ∈ W . (W, s) ∈ Dom(Gen) if and
only if at least one of the following is verified:

• active(s) ∈ {emp,¬emp}.

• ∃v1, v2 variables such that active(s) ∈ {v1 = v2, v1 6= v2}.

• ∃v1, v2, . . . , vn variables such that active(s) ∈ {v1 7→ v2, . . . , vn}.

We can then apply the framework of Section 10.1 to minimize separation logic impli-
cants.

10.4 Applying this algorithm as a subservient tool for
bi-abduction in separation logic

Definition 206. Given a separation logic formula P that we call problem constraint and
a separation logic formula Q that we call conclusion such that P 6|= Q, the bi-abduction
problem consists in constructing missing hypotheses F (also called the antiframe) and/or
missing conclusions G (also called the frame) such that P ∗ F |= Q ∗G.

Those will represent the missing preconditions in memory (antiframe) to ensure the
conclusion holds as well as information on parts of the memory unaffected by it (frame). In
the context of program verification, antiframes are usually used to express the necessary
conditions on the initial state of the memory and the frames are used to infer which
memory cells are left unchanged by the program. In this work, we will only develop the
computation of antiframes, that is, the computation of missing hypotheses F such that
P ∗ F |= Q. Intuitively, the idea we explore is to generalize an intuitive solution of this
problem.

Proposition 207. Given two separation logic formulas P,Q, the formula F = P −∗Q ∧
¬(P −∗ ⊥) satisfies P ∗ F |= Q.
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Remark 208. Note that the formula P −∗ Q is actually the most general solution to the
bi-abduction problem. However, it is possible that a model of this formula would prove
unusable by stating that any extension verifying P would contradict itself. To prevent
this cases to occur, we add the restriction ¬(P −∗⊥) to the solution we consider in order
to filter such models.

Unfortunately, such a solution is not in a form that makes it easily usable. Indeed,
practical tools based on separation logic rarely handle the separating implication, and
tend to work with a subclass of separation logic formulas called symbolic heaps [32, 13, 61],
which intuitively represent the exact mappings of memory cells. It is also interesting to
note that the formula P−∗Q is not explicit regarding the actual shape the memory should
have. Indeed, the formula describes the memory indirectly by stating a property some
of its extensions must verify, and not the memory itself. For these reasons, we need to
refine this solution to obtain a formula that can be handled by such tools. To do that, we
choose to obtain the formula from model of this solution, then refine this formula further
in order to construct another solution with a more practical form. The first step of this
method, obtaining an initial model of the most general solution, can be done using a
solver for separation logic. CVC4 provides one such solver. From this model, we can use
the Algorithm presented in Sections 10.1 and 10.3.2 to obtain a more general solution.
This process is summarized in Algorithm 10.2.

Algorithm 10.2: SL-Abduce(P,Q)

1 if P |= Q then
2 return ;

3 let (D, s, h) be a model of F = P −∗Q ∧ ¬(P −∗ ⊥) ;
4 return MinimalPart(F,Gen, slex(F, ((D, s, h))), ∅) ;

Theorem 209. Given two separation logic formulas P,Q such that P 6|= Q, the formula
F = SL-Abduce(P,Q) satisfies P ∗ F |= Q.

Proof. This is a direct consequence of Propositions 207 and 190.

We will present in Chapter 11 an evaluation of the algorithm to see when this effect
occurs and whether or not it remains possible to solve even simple abduction problems
with this method.
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Chapter 11

A simple implementation and
evaluation of the minimization
algorithm and of its use for abduction
in separation logic

This chapter presents an implementation and an experimental evaluation of the implicant
minimization algorithm and of the separation logic abduction algorithm we developed in
Chapter 10. As we will see, the efficiency of the separation logic checkers and the com-
plexity of the formulas we generate make it difficult for the general bi-abduction algorithm
to work efficiently. This lack of efficiency makes it difficult to evaluate the minimization
algorithm itself directly from its instantiation in separation logic. In order to evaluate
the minimization algorithm itself, before considering its practical use in separation logic,
we will define an alternative instantiation, the only purpose of which is the evaluation of
the algorithm.

11.1 A instantiation for evaluating the minimization
algorithm

As the MinimalPart algorithm is defined for minimizing implicants independently of the
concrete definition of the interpretations of the formulas, it is clear that the computation
cost of a minimization execution heavily depends on the definition used. In particular, the
complexity of the operation verifying if the current generalization still entails the original
formula impacts on the efficiency the instantiated algorithm. In order to evaluate the
efficiency of MinimalPart independently of this external cost, we devise an instantiation
for which this verification can be done easily.

Example 210. Consider a sequence of stacks of tokens, such as the one represented on
Figure 11.1. Now assume that, for some reason, we want to reproduce this sequence but
that the only information we can access is whether all the stacks of our representation
contain less tokens than their counterpart in the source sequence.

To solve this problem, we may use the MinimalPart algorithm. Intuitively, we can
first represent each stack by a formula of which the successive generalization represent
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1 2 3 4

Figure 11.1: A sequence of stacks of tokens

1 2 3 4 1 2 3 4

(a) (b)

1 2 3 4 1 2 3 4

(c) (d)

1 2 3 4 1 2 3 4

(e) (f)

Figure 11.2: Generalization for sequences of stacks of tokens

the various possible number of tokens a stack can contain. Second, we can view our
information access by the verification that our sequence is an “implicant” of the source
sequence, in the sense of Definition 170.

In this context, we can apply our minimization algorithm for, e.g., a partition of
size two. Let us take the example of Figure 11.1 as a source sequence and execute the
algorithm (see also Figure 11.2).

Assuming the partitions we consider always split the set of stacks we consider in two,
as all the stacks of the source contain at least one token, the algorithm will proceed
and generalize our representation by adding these tokens (a). The second time, the
generalization will not be accepted because our third stack would then contain more
tokens that the one in the source (b). The algorithm will thus split the stacks, fix our
third and fourth stacks and minimize the other two in this context. It will then manage
to generalize both stacks once more by adding one token, then it will fail again as the
second stack in the source contains only two tokens (c). By splitting the set of stacks
it works on again, it will obtain sets of one stack and thus generalize them as much as
possible. First by adding a new token to the first stack (d), then by noticing than no
more tokens can be added, neither in the first nor in the second one. By backtracing
until its first split, the algorithm will now have to obtain the stacks it is looking for in the
right of the sequence. As the two first sequences have already been obtained, it will fix
them and work on the other part (e). Because it is not possible to generalize the whole
set, the algorithm will also split the stacks at this moment. It will then try to minimize
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the third one, which is not possible, and finish by minimizing the last stack as much as
possible (f). Finally, the algorithm will backtrack its splits and reconstruct the sequence
of stacks of tokens that was proposed in Figure 11.1.

We will use this simple application to evaluate our implicant minimization algorithm.
Therefore, we provide below the formal definition of the related instantiation.

Definition 211. Given a finite sequence of symbols Y and a depth limit n ∈ N, we call
token-stack formula all the elements of the following set:{∧

y∈Y

yky

∣∣∣∣∣ ∀y ∈ Y.ky ∈ J0, nK

}

Similarly to what we did in propositional logic, we will use S : {si | i ∈ J1,mK} 7→∧
i∈J1,mK active(si).

Example 212. Given a sequence of symbols Y = 〈1, 2, 3, 4〉, the example of Figure 11.1
could be represented by the token-stack formula 13 ∧ 22 ∧ 31 ∧ 42.

Definition 213. Given a sequence of symbols Y, a depth limit n ∈ N and a token-stack
formula, we define an interpretation of the symbols as a sequence I of natural integers
indexed by the symbols of Y.

Definition 214. Given a sequence of symbols Y = 〈y1, . . . , yk〉, a token-stack formula f
and an interpretation of the symbols I = 〈n1, . . . , nk〉, we define JfKI the evaluation of f
in I inductively as follows:

• J>KI = >

• Jyki ∧ f′KI = k ≤ ni ∧ Jf′KI.

Definition 215. Given an interpretation of the symbols I and a token-stack formula f,
we say that I is a model of f if JfKI = >.

We say that a token-stack formula f is satisfiable if it admits a model.
Given two set-symbols-formulas f1 and f2, we say that f2 is a logical consequence of f1

if all the models of f1 are also models of f2.

Example 216. Consider again the token-stack formula 13 ∧ 22 ∧ 31 ∧ 42 representing the
example of Figure 11.1. The sequence 〈2, 2, 1, 1〉 is a model of this formula while the
sequence 〈3, 2, 1, 3〉 is not. Thus, we can write 12 ∧ 22 ∧ 31 ∧ 41 |= 13 ∧ 22 ∧ 31 ∧ 42 and
13 ∧ 22 ∧ 31 ∧ 43 6|= 13 ∧ 22 ∧ 31 ∧ 42.

Proposition 217. Let f be a token-stack formula. The sequence 〈0 | y ∈ Y〉 is a model
of f.

Definition 218. Let f be a token-stack formula and I a model of f. We consider the
implicant extractor syex defined as follows:

syex(f)
def
=
⋃
nyi∈I

{〈ynyi
i 〉}
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Proposition 219. If f is a satisfiable token-stack formula, the result of syex(f) is a
representation set.

Proof. The unicity of the base is ensured by the definition of the interpretation and the
satisfiability of the active elements is trivial.

Definition 220. We now define the generalization relation →g we use token-stack for-
mulas: yk1 →g y

k2 if and only if k1 < k2.

Definition 221. We define the domain of the associated atomic generalization function
Gen: (W, s) ∈ Dom(Gen) if and only if active(s) is a token-stack formula of the form yk

and such that k < n where n is the depth limit.

Proposition 222. Let f be a token-stack formula. S(MinimalPart(f, Gen, syex(f, 〈0 |
y ∈ Y〉), ∅)) = f.

This instantiation offers two major advantages for an experimental evaluation: first,
it is easy to verify if a formula is a logical consequence of another (this can be checked
with a number of integer comparisons linear in the size of the formula), second, it is easy
to verify if the implementation works correctly by returning a minimal implicant of the
initial formula, thanks to Proposition 222.

11.2 Implementation of the minimization algorithm
We now present an implementation of our implicant minimization algorithm. The Min-
imalPart algorithm has been implemented within the Abdulot framework [160], in
an additional library called minpart. The implementation is generic in the two following
senses. First, it can be plugged with any heuristic algorithm to generate the partitions
on which the MinimalPart algorithm performs the recursive minimization. Two simple
such heuristics implementations are also included in the library. Second, as presented in
the theoretical approach, it is independent of the problem context, that is, the class of
formulas we minimize and the associated generalization function and representation set
extractors.

11.2.1 Implementing representation sets

We start by presenting the implementation of representation sets. We decided to imple-
ment the representation sets as vectors of integers, representing the number of times the
generalization rules has been applied to the subformulas they contain. Given an initial
satisfiable formula and a model for it provided at the beginning of the execution, we can
deduce the number of elements its representation set will contain. Hence, this initial
formula will be represented by a vector containing as many zeros as it has sequences of
formulas. During an execution, all the representation sets for this problem will be vectors
of the same size, allowing the integer at a given index in the vector to always represent
the same generalization sequence, independently of the concrete representation set that
is considered. In practice, all the representation sets generated for this execution will rep-
resent the same generalization sequence in different states. Every time a generalization
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sequence is generalized, the value of the corresponding index within the corresponding
vector will be increased by one. The actual formula this represents will then be com-
puted from the initial formula and the number of times the generalization relation has
to be applied by a Context component handling the concrete formulas considered and
implementing the generalization rules (see Section 11.2.2).

In order to maintain some consistency between all the representation sets that will
be used and required by the MinimalPart algorithm, we have implemented a represen-
tation set engine component. This component is designed to allocate the integer vectors
when required, to perform the operations that can be computed directly on this struc-
ture (such as merging two representation sets) and forward any context-related operation
to the Context component it will include. The current implementation allocates a new
vector every time a new representation is needed. Note that, as various sequence in-
dices may represent distinct generalization structures, the maximal depth of the vector
representation of representation sets may differ from index to index. The fact that all
the representation set-related operations are performed within the engine allows to pre-
vent the framework to transfer integer vectors between its components. This is done by
generating an identifier for each vector representation. This identifier will be the only
representation transferred outside of this engine component and manipulated by the main
algorithm.

Within the implementation, this engine is thus implemented as a C++ template
GSetEngine<Context> which can be instantiated for any given Context component. It
exposes methods to perform all the generalization-set related operations and only exter-
nalize the vectors it contains by their indices.

11.2.2 Context Interfaces

The minpart framework uses a Context component that will be tasked to perform all
the operations that depend on the instantiation of the MinimalPart algorithm. These
operations are the application of the generalization relation, the verification that a rep-
resentation set is an implicant of the initial formula and that it is consistent, and an
information access to the initial model that was initially minimized (returning data such
as the size of the corresponding representation set). This context component has to be
provided by the user of the minpart framework to apply the minimization algorithm in
the instantiation they wish to solve. It will then be given information on the implicant
to minimize (such as the formula it should be an implicant of) at the beginning of the
execution of the MinimalPart algorithm. The interface that such a component must
have is presented in Interface 11.1.

The Abdulot framework contains two instantiations of this component that are
presented below.

Token-stack formulas

The implementation for the token-stack formulas is done internally by comparing the
indices of generalizations of the symbols contained within a given formula. At the begin-
ning of an execution, it is presented the generalization depth and the number of symbols
that are considered and implements the verification rules as they are presented in Section
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Interface 11.1: Generalization Context Interface Template
1 interface Context contains
2 Context : φ −→
3 getHypothesisSize : void −→ size ;
4 isLastGeneralization : vector<int>, index −→ {>,⊥} ;
5 isGeneralizable : vector<int>, index −→ {>,⊥} ;
6 isValidHypothesis : vector<int> −→ {>,⊥} ;
7 isConsistentHypothesis : vector<int> −→ {>,⊥} ;
8 print : vector<int> −→ void ;

11.1. Similarly, the generalization of a subformula will be performed by increasing its
index until it reaches the maximal depth allowed.

Propositional logic

The implementation for propositional logic has been intertwined with the C++ library of
MiniSAT [70]. The components takes a propositional formula expressed in the Dimacs
format [60]. It starts by calling MiniSAT on this formula to obtain the first model and
stores the resulting MiniSAT C++ instance in memory. Then, the component has to
check whether a given subset of literals of the model it returns remains a model of the
initial formula. Thanks to an instrumentation of the source code of MiniSAT, this can
be performed without negating the input formula and querying a new satisfiability test.
Indeed, the MiniSAT C++ instance stores enough information to deduce which clauses
(if any) may stop being validated when a given literal is removed from the model. We
therefore use this information to test if our representation sets are still models of the
initial formula.

Separation logic

The implementation of the separation logic Context component has been implemented
using the satisfiability procedure of CVC4 [150]. Similarly to what we did in Chapter
8, we intertwined the component with the C++ library of the SMT-solver. The compo-
nent thus builds the logical formulas corresponding to the entailment checks and forward
them to CVC4 to obtain the result. In order to build the formula corresponding to the
representation set it is given, the component will have to know which generalization rule
to apply for a given subformula. This is done using the initial formula that it is provided
at the beginning of the execution. Indeed, this initial implicant and its corresponding
representation set contain enough information for the Context to know which rule should
be applied to each formula and which new formula should be obtained from them. Given
the number of generalizations for a given index within the representation set, the compo-
nent will take the formula corresponding to the given index within the initial implicant
and apply the correct generalization rule accordingly, as many times as the number of
generalizations instructs. This permits to obtain the corresponding active formula for the
current representation set, and thus the formula to check the modelling and consistency
properties for.
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11.2.3 Generating partitions

Another major component of the minpart framework targets the generation of partitions
and generalization blocks. As the actual method to generate such partitions was left open
in Chapter 10, we decided to implement a generic component that can be instantiated
with various generation methods. The external behaviour of the component is fairly
simple: given the identifier of a representation set, it will generate and return a partition
of this set, querying the representation set engine to know which subformulas can be
generalized and which ones cannot. Similarly, the partition generator will be tasked to
produced the generalization blocks we try before looping on the representation sets of the
partition, which may or may not be equivalent.

Within the minpart framework, we implemented an instantiation of the partition
generator. Our generator simply splits the vectors in a given n parts of the same size and
generates a partition of size n corresponding to the generalization of all the formulas of
each part. This decomposition in n parts can be done in the order of the vector indices,
randomized at the beginning of the execution or randomized every time a new partition
is requested. For each generalized component within the set of a partition, the atomic
generalization function is applied a given k number of times.

11.2.4 Structure of the implementation

We finally describe the complete implementation model of the minpart framework, which
is represented in Figure 11.3. It is available as a library and can be tried from two example
executables for token-stack formulas and separation logic formulas.

Given an input consisting in an initial logical formula accompanied by its representa-
tion set representation, the framework forwards the formula to the context component to
allow it to handle the modelling verification tests for it and instantiate an integer vector
for its representation. The index of this vector is then sent to the minimization algorithm
and will be used as the initial set within the minimization algorithm. The minimization
component then executes the MinimalPart algorithm, requesting the partition genera-
tor for partitions and the representation set engine for cleaning, merging, and verifying
representation sets. Depending on the results of the modelling tests, the minimization
component will update its representation sets and support as detailed in the Minimal-
Part algorithm. Once a minimal set has been obtained, it will return it. The user
(or the executable) should then apply the Context component one last time to get the
corresponding logical formula.

11.2.5 Distribution

The whole minpart library, as well as two executables: one for set-symbols literals and
one for separation logic, are publicly available within the Abdulot framework [160].
In order to use the separation logic context furnished, one should first install the C++
library of the CVC4 SMT-solver.
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Figure 11.3: Structure of minpart within the Abdulot framework
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11.3 Testing the model minimization algorithm
We now present an experimental evaluation of the MinimalPart algorithm through
this implementation framework. The experimental infrastructure is the same as the one
presented in Chapter 9. In this first section, we evaluate the minimization algorithm using
its token-stack formulas instantiation. As measuring an execution time is of no interest
in this context, we will rather count the number of modelling tests that are made, as this
is expected to be the most costly operation within the framework.

Throughout the section, the examples for which we look for a minimal model are
randomly generated using the following process: we start by defining a set of symbols (of
which we will abstract the content and give the size) and a depth limit, then we generate
a formula containing all the provided symbols with a random generalization depth taken
between zero and the depth limit. In all the examples, it has always been verified that the
minimal model returned by the experiment was indeed equal to the randomly generated
problem.

11.3.1 Shape of the problem

In Figure 11.4, we present the evolution of the number of satisfiability tests required to
solve the minimization problem as a function of the size of the initial formula (as in the
size of the initial representation set) when the depth limit is 10, the size of the partition 2
and the depth of atomic generalization function application 1. In Figure 11.5, we present
the same value as a function of the depth limit when the size of the input formula is 100,
the size of the partition 2 and the depth of atomic generalization function application
1. For all inputs, the experiments has been run on a 100 random problems of which the
distribution is drawn. Note also that the partitions were generated using the most simple
heuristic: separating the set into the given number of equally sized generalized sets. The
theoretical mean number of satisfiability tests required by the naive method to solve the
same problem with the given inputs is also represented in the figures, in the form of blue
crosses. This naive method is recalled in Algorithm 11.2.

Algorithm 11.2: Minimize(f,Y)

1 let I← 〈0i | yi ∈ Y〉;
2 foreach yi ∈ Y do
3 while I |= f do
4 Increase the interger at index i in I;

5 return I;

Proposition 223. Given a set of symbols of size s and a depth limit d, the mean number
of satisfiability tests made by Algorithm 11.2 on the related token-stack formulas is s(1 +
d
2
).

The results show that the MinimalPart algorithm is more efficient whenever the
number of possible generalizations for a component is high. It also shows that the num-
ber of satisfiability tests it requires increases less than the ones of the naive algorithm
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Figure 11.4: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas of a given size, for a depth limit of 10 and partitions of size
2 and of depth 1.
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Figure 11.5: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas of a given depth limit, for a number of symbols of 100 and
partitions of size 2 and of depth 1.
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Figure 11.6: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas of a given depth limit, for a number of symbols of 100 and
partitions of size 2 and of depth 1 for various probability distributions.

when the size of the problem increases. Note that the fact that the MinimalPart algo-
rithm invokes more satisfiability tests than the naive algorithm on uniformly randomized
problems when the number of possible generalizations is low is expected. Indeed, when
only few components can be generalized, the satisfiability queries trying to generalize
many components at once will mostly fail, forcing the algorithm to fallback to base cases
which corresponds to the satisfiability tests made by the naive algorithm. As it has al-
ready queried the satisfiability tests for these global generalization strategies, this will
result in more tests in general. Figure 11.6 shows the distributions for a set of symbols
of size 100 as a function of the maximal depth but for different generalization depth
probabilities. It shows that our algorithm is also interesting when the components of a
representation set have a good chance to be generalizable. Indeed, the higher this prob-
ability is, the more likely it is for the naive algorithm to perform much more redundant
tests.
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Figure 11.7: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas with a given partition size, for a number of symbols of 100,
a depth limit of 5 and partitions of depth 1.

11.3.2 Partitions

We now study various heuristics for the generalization partitions we can use to minimize
token-stack formulas.

In Figure 11.7 (resp. Figure 11.8), we present the distribution of the number of
satisfiability tests required to minimize 100 token-stack formulas as a function of the size
of the partition, for a set of symbols of size 100, a depth limit of 5 (resp. 10) and a
generalization depth of 1 in the partitions.

We observe that in both cases, the number of satisfiability tests that is required to
minimize random problems increases with the number of partitions. Once again, this can
be explained by the fact that increasing the number of partitions increases the number
of satisfiability tests that have to be made in the recursive calls of the MinimalPart
algorithm. This also degrades the general performance of the algorithm as this can lead
to redundant satisfiability queries when generalizing the many parts a partitions under
the support of the others.

Figure 11.9 presents the influence of the generalization depth applied on the represen-
tation sets of the partition. Again, we draw the distribution of the number of satisfiability
tests required to minimize 100 random token-stack formulas built on 100 symbols with
a depth limit of 10. The size of the partition is reset to 2 and the result is expressed as
a function of the number of times the atomic generalization function is applied to each
element the generalized representation set.

This shows that it can be interesting to generalize the components of the sets of a
partition more than once to help the algorithm converge faster to a given solution. It
also shows that, as expected, if the depth of this systematic generalization is too high,
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Figure 11.8: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas with a given partition size, for a number of symbols of 100,
a depth limit of 10 and partitions of depth 1.
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Figure 11.9: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas with a given partition depth, for a number of symbols of
100, a depth limit of 10 and partitions of size 2.
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Figure 11.10: Distribution of the number of satisfiability tests required to minimize 100
random token-stack formulas with or without randomizing the partitions, for a number
of symbols of 100, a depth limit of 10 and partitions of size 2 and depth 1.

then the general performance will decrease as most of the satisfiability tests for these
parts will fail (because we are past the maximal generalization possible for at least one
component), and the algorithm will end up querying many unuseful tests before falling
back into its base case and generalizing all the components independently.

Finally, Figure 11.10 shows the effect of choosing random sets of generalization se-
quences each time a new partition is needed. It shows the distribution of the number
of satisfiability tests required to minimize 100 random token-stack formulas of size 50,
with a depth limit of 10 and partitions of size 2 generalizing each of their components
once. The distribution id drawn for both the case of random partitions and partition
structure set at the beginning of the execution. Note that the number of satisfiability
tests is presented in a logarithmic scale for this figure.

This clearly shows that randomizing the structure of the partitions each time is inef-
ficient.

11.4 Testing the minimization of separation-logic
formulas

We now apply our minimization algorithm in the context of separation logic. We start
by trying the minimization algorithm on randomly generated simple separation logic
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formulas. Such formulas are generated using Algorithm 11.3 where V denotes a set of
variables and p a depth probability, and by only keeping the generated formulas that are
satisfiable and for which Iextract returns an implicant. We use CVC4 to obtain an
initial model for them and minimize the corresponding representation set.

Algorithm 11.3: RandomSLFormula(V , p)

1 if random() < p then
2 let ◦ ←− randomChoice({∧,⇒, ∗});
3 else
4 let ◦ ←− randomChoice({φ, 7→, emp,⊥});
5 if ◦ ∈ {∧,⇒, ∗} then
6 return RandomSLFormula(V , p) ◦RandomSLFormula(V , p);

7 else if ◦ = φ then
8 let ◦e ←− randomChoice({=, 6=});
9 let vl ←− randomChoice(V);

10 let vr ←− randomChoice(V \ {vl});
11 return vl ◦e vr;
12 else if ◦ =7→ then
13 let v0 ←− randomChoice(V);
14 let v1, . . . , vn ←− randomChoices(V);
15 return v0 7→ v1, . . . , vn;

16 else if ◦ ∈ {emp,⊥} then
17 return ◦;

We now present the distribution of the number of satisfiability tests that are required
to solve 78400 such randomly generated separation logic formulas with a number of
variables ranging from 2 to 50 a depth probability ranging from 0.5 to 0.65. Note that
following the results of the previous section, we decided to generate the structure of the
partitions at the beginning of the execution only and that we used partitions of size
2 generalizing their components once. The mean minimization time required on these
problems is at 2 seconds. The number of satisfiability tests is detailed as a function of the
number of variables in Figure 11.11 and as a function of the depth probability in Figure
11.12 where the three hardest problems have been discarded (which required more than
1000 satisfiability tests). All the distribution subsets of these graphs are evenly sized.

The influence of the number of variables in the problem is expected as it results
in larger generalization sets generated by Iextract. It is interesting to remark that,
considering the number of possible generalizations this instantiation offers (either one
or two), the number of satisfiability tests required is significantly below the results we
obtained for uniformly random problems. This is a consequence of the fact that most of
the components can be generalized in the implicant we obtained, which in turn reduces
the number of satisfiability required tests to ensure that representation sets with few
generalized components still represent an implicant. This is turns permits to obtain the
final result from less base-case generalizations, resulting in less satisfiability tests. It is
important, however, to understand that part of this effect results from the simplification

151



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of variables

0

25

50

75

100

125

150

175

200

225

Sa
tis

fia
bi

lit
y 

te
st

s

Figure 11.11: Distribution of the number of satisfiability tests required to minimize impli-
cants of 78400 randomly generated separation logic formulas as a function of the number
of variables in the random generation.
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Figure 11.12: Distribution of the number of satisfiability tests required to minimize im-
plicants of 78400 randomly generated separation logic formulas as a function of the prob-
ability depth in the random generation.
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of the redundant equalities and disequalities between variables that are present in the
initial implicant.

It is also interesting to notice that the depth probability of the random generalization
seemingly has no influence on the number of satisfiability tests that are performed. This
is due to the fact that it neither impacts the size of the representation set nor the maximal
generalization depth. It has, however, an influence on the complexity of the formulas and
thus on the time necessary to compute the satisfiability tests.

11.5 Wrapping the minpart for performing abduction

Finally, we evaluated an implementation of Algorithm 10.2 for computing abduction re-
sults in separation logic. We implemented this algorithm as an executable wrapper of the
separation logic formula minimizer used in the previous section. In order to do perform
its evaluation, we generated some random separation logic abduction problems using
Algorithm 11.3 and we constructed formulas of the form RandomSLFormula(V , p) −∗
RandomSLFormula(V , p). We checked that the obtained formula were indeed satisfi-
able and that the formula returned by Iextract was an actual implicant before trying
to minimize them. We generated 23900 such formulas, again with a depth probabil-
ity ranging from 0.5 to 0.65 and a number of variables between 2 and 25. For 9600 of
these problems, the algorithm was able to produce a minimal implicant in less than two
minutes. The distribution of the corresponding examples is presented on Figure 11.13.
Most of these problems correspond to formulas with only a small number of constraints,
which results in easier satisfiability tests for the SMT-solver. Only few harder problems
(those requiring more satisfiability tests) were solved by the system, contrarily to what
we could observe on formulas not containing any separating implication. This shows that
the impact of the computation cost of the satisfiability tests in this context prevents the
algorithm to generate solution on problems that have more than a very limited number
of constraints. This effect reduces the interest of the implicant minimization strategy to
solve the bi-abduction problem by minimizing an initial implicant of the most general
solution of the problem, as the practical computation cost of the required satisfiability
tests appears to be too heavy.

11.6 Conclusion

Experiments show the practical use of the MinimalPart on large representation sets,
when the generalization function can produce many successive generalizations and on
problems where the number of generalized components in the result is important. The
experiments have additionally shown that out of these classes of problems, the satisfi-
ability tests required by the decomposition become an overcost compared to the naive
algorithm. The evaluation of its instantiation in separation logic has shown that it is
able to generate minimal implicants of separation logic formulas from the models that
are returned by CVC4 in a reasonable time, as long these formulas do not include any
quantification or separating implication. This last result compromises the direct appli-
cation of the method for solving abduction problems as proposed by the SL-Abduce
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Figure 11.13: Distribution of the number of satisfiability tests required to minimize impli-
cants of 9600 randomly generated separation logic formulas with separating implications
as a function of the number of variables in the random generation.

algorithm. It could still be interesting to try or develop other satisfiability checkers for
separation logic, aimed specifically at solving these types of formulas, instead of CVC4.
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Conclusion

In the present work, we devised a theory-independent algorithm for abductive reasoning
via implicate generation, over a set of user-defined abducible literals. This algorithm
works by successively trying possible conjunctions of abducible literals until it can derive
a contradiction with its input formula. It additionally uses an order on the literals
and models of the formulas it works with to reduce as much as possible the number
of conjunctions it has to try. These latter methods are mandatory to obtain an efficient
algorithm. After presenting general definitions in Chapter 1, we proposed in Chapter 2 an
overview of related prime implicate generation methods and of loop invariant generation.
We then formally defined the proposed abduction method in Chapter 3 and showed that
it is sound and complete. This means that it generates and returns the set of prime
implicates of any given formula (up to redundancy). We then proposed in Chapter 4 an
efficient structure for representing, storing and reusing the implicates computed by our
algorithm.

In Part II, we applied this algorithm to program verification. We started by defin-
ing in Chapter 5 a generic framework for applying abductive reasoning in the context of
program verification, inspired by the work of Dillig et al. [57]. Starting from an abstract
representation of the structure of a program containing formulas to prove (assertions)
and formulas that can be modified to obtain these proofs (such as candidate loop invari-
ants), the algorithm uses external verification conditions generators to produce logical
problems ensuring the validity of the assertions. Then it uses abduction, typically the
prime implicated generator we devised in Part I, to infer interesting updates of the mod-
ifiable formulas of the program that should lead to a complete proof. This framework
was instantiated in Chapter 6 to be applied to the generation of property-directed loop
invariants of programs.

In Chapter 7, we investigated the issues related to the implementation of the methods
introduced in the previous parts. We presented a generic structure that permits to obtain
in practice both the abstraction of the theory in the prime implicate generator of Part
I and the abstraction of the programs and verification conditions of the loop invariant
generator of Part II. For the first abstraction, we designed generic SMT-solvers interface
wrappers to plug the main system to any available satisfiability decision procedure. For
the second one, we designed a program representation wrapper allowing the system to be
plugged to any concrete program representation and associated verification tools. The
issues related to the implementation of such interfaces were discussed in Chapter 8: we
presented the design of SMT-solver interfaces based on both library API and SMT-
lib command-line interfaces for the widely used SMT-solvers CVC4, Z3, Alt-Ergo,
VeriT, as well as a detailed program representation interface based on Why3 for an
easy use in our program verification framework. We concluded Part III by performing an
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experimental evaluation of both systems, on which additional discussion will be presented
below.

Finally, Part IV was focused on our work on an algorithm for minimizing sets of
variables with many possible values, which was inspired by a dichotomic propositional
formula model minimizer [26]. This algorithm was formally defined in Chapter 10. We
also provided an algorithm using this method to perform some sort abductive reasoning
on separation logic formulas (relying on its separating conjunction instead of the usual
boolean conjunction). These two algorithms were implemented and briefly evaluated in
Chapter 11 where we found that the model minimizer was of practical interest but that its
use in abduction for separation logic was relying on operators for which currently available
separation logic satisfiability checkers are unfortunately unable to perform efficiently.

In summary, the main achievement of this work is the design of a prime implicate
generation algorithm which is generic both in theory (through an abstraction of theory-
related operations by satisfiability tests) and in practice (through the use of SMT-solvers
interfaces) and its application to generate loop invariants of programs, even in non usu-
ally targeted theories. Experiments showed that this approach was able to compete
with state-of-the-art propositional logic prime implicate generators for classes of highly
constrained formulas and managed to generate more implicates than state-of-the-art ap-
proaches modulo theories under a given time. By combining this work with the Why3
platform to generate loop invariants, we additionally obtained a system able to check
properties of WhyML programs and to automatically infer loop invariants for them.
Practical results showed that, in its current state, the system is able to generate loop
invariants of programs both on usual numerical domain and on more complex theories.
It was typically able to generate loop invariants proving the result of exponentiation al-
gorithms, list algorithms and floating point data handling algorithms. As practical work
on abducible literals, solution guiding and information reuse are mostly inexistent in the
current prototype, we consider these results very encouraging.

Future work

These results allowed us to extract three main point that have to be investigated to
develop more efficient abduction procedures and facilitate their usage for solving practical
problems. First, it is clear that the costly operations in our prime implicate generator
are the satisfiability tests. Improving the efficiency of the satisfiability tests themselves
stays clearly out of the scope of the project, though it is clear that by entirely delegating
them to external SMT-solvers, we can always benefit from the improvements these tools
receive. Reducing this cost within the ImpGen-PiD algorithm could be done by reducing
the number of satisfiability tests we require. Methods should be investigated to cut more
exploration branches from which we could be hinted that no relevant implicate will be
derived. Obtaining more intelligence from the models we recover from satisfiability tests,
such as the literals that appear on many models for instance, or deriving consequences
beforehand from the information we already have, are possible solutions for this problem.
This could be used to define a more relevant order, maybe built dynamically, that could
help the algorithm build a search tree finding minimal implicates sooner. Depending
on the application we target the implicate generation for, it could also be interesting to
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investigate changes to the algorithm that would permit to cut more exploration branches
at the expense of completeness, if such cuts can lead to the generation an implicate
relevant to the problem faster. As a very simple illustration, counting the number of
occurrences of a symbol in the source problem, or more generally, building some sort of
correlation table exhibiting which symbols are tightly intertwined to the problem and
which are less, could help us build heuristics in favour of their corresponding literals.

Second, as we previously mentioned, the use we made of abducible literals for the
application to loop invariant generation was mostly blind and contained many system-
atic literals that would immediately appear as irrelevant to any human user. It is thus
clear that work should be done to devise more interesting and knowledgable methods to
generate and use abducible literals. This includes pruning literals, for instance from con-
textual information extracted from the program, or obtained for larger knowledge bases
on program invariants. It could also be interesting, in a more distant perspective, to
develop methods generating higher-level literals that could permit to generate solutions
for problems requiring higher level properties than the one directly present within the
program. Merging such a literal generator with a method to extract interesting predicates
that can represent relevant properties of a program could thus also permit to generate
invariants for more complex programs. Other than that, it will also be important to look
for techniques, heuristics or learning procedures, to order the abducible literals more ef-
ficiently such that those we expect to lead to the generation of a relevant solution are
tried first. Within the loop invariant generation algorithm, this ordering should also be
different for each call to GPiD, as we try to strengthen possibly very different abduction
problems with them.

Third, it is clear that within its application to loop invariant generation, many redun-
dant computations are performed (on similar abduction problems, between the verifica-
tion condition checks performed within the program prover and those within the prime
implicate generator, etc.) and could thus be reduced. Possible ways to reduce redun-
dant computations include methods to reuse information obtained from the verification
conditions checks performed by the program prover to guide the exploration within the
ImpGen-PiD algorithm. It should also be possible to extract from the program some
additional properties that could be forwarded to the prime implicate generation and used
there to cut exploration branches or, as previously suggested, reorder abducible literals.
This could then be used to hint GPiD not to generate implicates that appear relevant
in the current problem but that we can detect cannot produce a solution in the broader
context. The need for such information retrieval from the programs additionally suggests
that a better integration between the static analyser and the abductive reasoning tool
would be beneficial.

Additionally, it would be interesting to refine the loop invariant generation algorithm
in order to intertwine it better with its abductive component. This could typically ease
the implementation of our second and third points, as the two algorithms follow a similar
structure and could probably share parts of their execution (e.g. for a program with only
one loop invariant, GPiD could be adapted to the loop invariant construction directly,
confounding its satisfiability tests with the ones made by the program checker). This could
also help switch between SMT-solvers within the GPiD algorithm, and taking advantage
of this functionality present in Why3 to be able to derive implicates more automatically,
without the need to previously select the most adapted tool for the problem at hand.
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It could also be interesting to tweak our method to integrate it in a semi-automatic
infrastructure where it could communicate with a user, sending them information on the
failure of the tasks to help them tweak the inputs to solve the problem. Finally, it is
clear that the higher the expressivity of the properties we want to derive, the more we
need methods to deduce contextual information to reduce the search space. In the long
run, such methods will be necessary to increase further the scope of the program we can
verify.
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Appendix A

Grammar of the abducible file format
used by the Abdulot framework

〈file〉 ::= 〈command〉*

〈command〉 ::= 〈sizecommand〉
| 〈abducecommand〉
| 〈refcommand〉
| 〈extendcommand〉
| 〈declarecommand〉
| 〈lambdacommand〉
| 〈applycommand〉
| 〈copycommand〉
| 〈annotatecommand〉

〈sizecommand〉 ::= ‘(’ 〈sizekw〉 (‘auto’ | INT) ‘)’

〈sizekw〉 ::= ‘size’
| ‘rsize’

〈abducecommand〉 ::= ‘(’ 〈abducekw〉 〈data〉+ ‘)’

〈abducekw〉 ::= ‘abduce’
| ‘abducible’

〈refcommand〉 ::= ‘(’ 〈refkw〉 〈data〉+ ‘)’

〈refkw〉 ::= ‘reference’
| ‘ref’

〈extendcommand〉 ::= ‘(’ 〈extendkw〉 〈annot〉+ ‘)’

〈extendkw〉 ::= ‘extend’

〈declarecommand〉 ::= ‘(’ 〈declarekw〉 〈data〉+ 〈askw〉 〈annot〉+ ‘)’

159



〈declarekw〉 ::= ‘declare’

〈askw〉 ::= ‘as’

〈lambdacommand〉 ::= ‘(’ 〈lambdakw〉 〈annot〉 ‘(’ (〈annot〉)* ‘)’ 〈data〉 ‘)’

〈lambdakw〉 ::= ‘lambda’
| ‘declare-lambda’

〈applycommand〉 ::= ‘(’ 〈applykw〉 〈annot〉 ‘(’ 〈overkw〉 (〈data〉 | 〈strictkw〉 〈data〉)* ‘)’
〈annot〉 〈annot〉*‘)’

〈applykw〉 ::= ‘apply’

〈overkw〉 ::= ‘over’

〈strictkw〉 ::= ‘strict’

〈copycommand〉 ::= ‘(’ 〈copykw〉 〈annot〉+ 〈askw〉 〈annot〉+ ‘)’

〈copykw〉 ::= ‘copy’

〈annotatecommand〉 ::= ‘(’ 〈annotatekw〉 〈annot〉 〈data〉+ ‘)’

〈annotatekw〉 ::= ‘annotate’

〈annot〉 ::= any alphanumeric identifier.

〈data〉 ::= any unspaced text (or any text embedded in parentheses).
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Appendix B

Why3 verification condition used as an
abduction problem in Example 152

; ; ; generated by SMT−LIB2 d r i v e r
; ; ; SMT−LIB2 d r i v e r : b i t−vectors , common part
; ; ; SMT−LIB2 : i n t e g e r a r i thmet i c
( dec la re−s o r t uni 0)

( dec la re−s o r t ty 0)

( dec la re−fun s o r t ( ty uni ) Bool )

( dec la re−fun wi tnes s ( ty ) uni )

; ; w i tness_sort
( a s s e r t ( f o r a l l ( ( a ty ) ) ( s o r t a ( wi tnes s a ) ) ) )

( dec la re−fun i n t ( ) ty )

( dec la re−fun r e a l ( ) ty )

( dec la re−fun bool ( ) ty )

( dec la re−fun match_bool ( ty Bool uni uni ) uni )

; ; match_bool_sort
( a s s e r t
( f o r a l l ( ( a ty ) )
( f o r a l l ( ( x Bool ) ( x1 uni ) ( x2 uni ) ) ( s o r t a (match_bool a x x1 x2 ) ) ) ) )

; ; match_bool_True
( a s s e r t
( f o r a l l ( ( a ty ) )
( f o r a l l ( ( z uni ) ( z1 uni ) ) (=> ( s o r t a z ) (= (match_bool a t rue z z1 ) z ) ) ) ) )

; ; match_bool_False
( a s s e r t
( f o r a l l ( ( a ty ) )
( f o r a l l ( ( z uni ) ( z1 uni ) )
(=> ( s o r t a z1 ) (= (match_bool a f a l s e z z1 ) z1 ) ) ) ) )
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( dec la re−fun index_bool ( Bool ) Int )

; ; index_bool_True
( a s s e r t (= ( index_bool t rue ) 0 ) )

; ; index_bool_False
( a s s e r t (= ( index_bool f a l s e ) 1 ) )

; ; boo l_invers ion
( a s s e r t ( f o r a l l ( ( u Bool ) ) ( or (= u true ) (= u f a l s e ) ) ) )

( dec la re−s o r t tup le0 0)

( dec la re−fun tup le01 ( ) ty )

( dec la re−fun Tuple0 ( ) tup le0 )

; ; tup l e0_inver s i on
( a s s e r t ( f o r a l l ( ( u tup le0 ) ) (= u Tuple0 ) ) )

; ; CompatOrderMult
( a s s e r t
( f o r a l l ( ( x Int ) ( y Int ) ( z Int ) )
(=> (<= x y) (=> (<= 0 z ) (<= (∗ x z ) (∗ y z ) ) ) ) ) )

( dec la re−fun r e f ( ty ) ty )

( dec la re−fun mk_ref ( ty uni ) uni )

; ; mk re f_so r t
( a s s e r t ( f o r a l l ( ( a ty ) ) ( f o r a l l ( ( x uni ) ) ( s o r t ( r e f a ) (mk_ref a x ) ) ) ) )

( dec la re−fun content s ( ty uni ) uni )

; ; contents_sort
( a s s e r t ( f o r a l l ( ( a ty ) ) ( f o r a l l ( ( x uni ) ) ( s o r t a ( contents a x ) ) ) ) )

; ; contents_def
( a s s e r t
( f o r a l l ( ( a ty ) )
( f o r a l l ( ( u uni ) ) (=> ( s o r t a u) (= ( content s a (mk_ref a u ) ) u ) ) ) ) )

; ; r e f_ inve r s i on
( a s s e r t
( f o r a l l ( ( a ty ) )
( f o r a l l ( ( u uni ) ) (=> ( s o r t ( r e f a ) u) (= u (mk_ref a ( contents a u ) ) ) ) ) ) )

( dec la re−fun t ( ) Int )

; ; H
( a s s e r t ( not (< t 10 ) ) )

( a s s e r t
; ; VC_main
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; ; F i l e " tenten / . . / tenten .mlw" , l i n e 5 , cha ra c t e r s 5−9
( not (= t 10 ) ) )
( check−sa t )
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Appendix C

User manual for the implementation

C.1 Distribution
The Abdulot framework contains the implementation of all the algorithms that are
presented in this thesis, as well as the additional libraries, tools and interfaces necessary
to compile it and plug it to SMT-solvers and to the Why3 platform. It is publicly avail-
able on GitHub (https://github.com/sellamiy/GPiD-Framework) under the BSD 3cl
licence. This appendix describes all the information necessary to compile it and make it
run on some minimal examples.

C.2 Structure of the repository
We detail in this section the content of the directories the sources of the Abdulot
framework contain.

C.2.1 Directories

• cmake/include : Local CMake sources to help in the global compilation structure.

• cmake/modules : Additional CMake sources to detect and configure external tools
such as SMT-solvers.

• cmake/patches : MiniSAT patches necessary for building the MiniSAT solver
interface.

• framework : Sources of the structures and algorithms of the geneiric prime implicate
generator and loop invariant generator.

• iphandle : Sources of the program abstraction interfaces.

• iphandle/why3-wrapped : Sources of the Why3 interface.

• lib/antlr4 : CMake sources for recovering and compiling ANTLR [136].

• lib/cxxopts : CMake sources for recovering and compiling CxxOpts (https:
//github.com/jarro2783/cxxopts).
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• lib/lcdot : Graph library, used for drawing execution search trees.

• lib/lisptp : Lisp parser, used in particular to parse SMT-lib and abducible files.

• lib/minpart : Implementation of the MinimalPart algorithm and of its associ-
ated structures.

• lib/smtlib2tools : Set of tools for handling SMT-lib problems.

• lib/snlog : Logging library.

• lib/starray : Static emptyable arrays library (see also [161]).

• lib/stdutils : Miscellaneous C++ 11 utilities.

• lib/ugly : Miscellaneous algorithms.

• lib/why3cpp : Set of tools for handling Why3 calls and WhyML programs.

• mpcontext : Sources of context components for the minpart algorithm.

• mpcontext/prop-minisat : Sources of propositional minpart context.

• mpcontext/sl-cvc4 : Sources of separation logic minpart context.

• solvers : Sources of the solver interfaces.

• test : Some tests.

• tools : Sources of the example executables used for the evaluation.

• utils : Miscellaneous scripts, used in particular to configure the solver interfaces
during the compilation.

C.2.2 Compiling

The compilation is performed via CMake. The configuration accepts the following op-
tions:

• BUILD_TESTS (default ON) : Build the executables performing tests on the algorithms
of the framework.

• INSTRUMENTATION (default OFF) : Build the framework with instrumentation in-
structions that allow to draw the exploration graphs of the algorithms and permit
to verify the intermediate results of the computation. Can also significantly reduce
the execution speed.

• BUILD_GPID (default ON) : Build the prime implicate generator executables.

• BUILD_ILINVA (default ON) : Build the loop invariant generator executables. the
use of the option BUILD_GPID=ON is mandatory when if BUILD_ILINVA is set.
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• BUILD_MINPART (default ON) : Build the contextualized implicant minimizer based
on minpart.

• SKIP_SOLVER_INTERFACE (list of interfaces) : Allows one to skip the compilation
and generation of a given solver interface (as well as of the corresponding exe-
cutables). For instance, to skip the generation of the Z3 interface, one can add
the configuration option –SKIP_SOLVER_INTERFACE=z3. Note that when an SMT-
solver is not present in the system, the generation of the corresponding interfaces
is automatically skipped.

• SKIP_ILINVA_HANDLER (list of interfaces) : Identical to the previous option but for
the program representation interfaces of the loop invariant generator.

• SKIP_MINPART_CONTEXT (list of interfaces) : Identical to the previous option but
for the minpart context components.

All the libraries of the framework are built in the lib directory of the build directory.
Similarly, all the executables are built in the bin directory of the build directory.

C.2.3 Configuring Why3

The Ilinva test executable of the Abdulot uses the Why3 platform to generate and
check the verification conditions of programs. This requires that the Why3 platform
is installed and correctly configured before starting the compilation of the tool. Why3
can be installed via the OCaml package manager OPAM. Before compiling its Ilinva
interface, it is also mandatory to make sure that Why3 can use at least one SMT-solver
on the system and that it has been configured for it (by running Why3 config once).

C.2.4 Executables

The sample executables that are generated by the compilation of the while framework
are listed below. Their correspondence to the algorithms presented in this thesis are also
mentioned.

• abdulot-parser : Executable to parse and check abducible files.

• gpid-lcvc4 : GPiD algorithm plugged to the C++ library version of CVC4.

• gpid-ccvc4 : GPiD algorithm plugged to the SMT-lib interface of CVC4.

• gpid-verit : GPiD algorithm plugged to the SMT-lib interface of VeriT.

• gpid-lz3 : GPiD algorithm plugged to the C++ library version of Z3.

• gpid-cz3 : GPiD algorithm plugged to the SMT-lib interface of Z3.

• gpid-saltergo : GPiD algorithm plugged to the SMT-lib interface of Alt-Ergo.

• gpid-minisatp : GPiD algorithm plugged to the C++ library of MiniSAT.

• gpid-tisi : Compilation artifact; do not use.
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• gpid : GPiD algorithm plugged to all the available interfaces. The interface to use
has to be selected through a command-line option.

• smt2abduce : Script wrapping to help the generation of abducible literals.

• ilinva-why3-wrapped : Ilinva algorithm plugged to Why3.

• smtlib2-tools : Miscellaneous fun command line utilities to use on SMT-lib files.

• why3-tools : Miscellaneous fun but hard to use command line helpers to use on
WhyML files.

• minpart-lits : minpart algorithm instantiation used to minimize a random token-
set-formula.

• minpart-prop-minisat : minpart algorithm instantiation used to minimize propo-
sitional models.

• minpart-sl-cvc4 : minpart algorithm instantiation used to minimize separation
logic formulas.

• abdulot-select : High-level framework wrapper to use to encapsulate calls to any
of the executables of the Abdulot framework. May also be configured by CMake
to encapsulate a single Abdulot executable. May be a Bash script or a Python3
script depending on the system and on the configuration.

C.3 Running simple examples

We present in this section simple command-line examples to use the executables of the
framework to perform some very simple, non-configured, tasks.

C.3.1 Generate propositional logic implicates

To generate the implicates of a propositional logic formula (assuming it is in the Di-
macs format and can be parsed by MiniSAT), one can use the gpid-minisatp tool.
Assuming the Dimacs problem is called problem.dimacs, one can run gpid-minisatp
-i problem.dimacs –autogen-abducibles all -P to generate all the prime implicates
of the problem and print them on the terminal.

C.3.2 Generate the implicates of an SMT-lib file

Given an SMT-lib problem problem.smt2 and a corresponding set of abducible literals
problem.abd, one can run, e.g., gpid-lcvc4 -i problem.smt2 -l problem.abd -P to
generate all the prime problem.abd-implicates of the problem.
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C.3.3 Generate the loop invariants of a WhyML program

Given a WhyML program prog.mlw and a set of core abducible literals extracted from it
prog.abd, one can run, e.g., ilinva-why3-wrapped -i prog.mlw -a prog.abd -g cz3
-H "solver:z3" -c –smt-time-limit=1 to try to generate satisfying loop invariants for
the program of prog.mlw.
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JtKI,Iv , 5
⊥, 4
fix(, , ), 30
Lits(), 8
S-sequence, 122

active formula, 122
base formula, 122
concatenation, 123

prex, 132
slex, 134
syex, 139
σ, 3
AI [l], 34
A[l], 34
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T -equivalence, 10
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clear(, ), 48
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incremental, 13
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⊥, 45
del, 47
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S(), 45
empty leaf, 45

abducible, 11
abducible literal, see abducible
arity, 3
atom, 4

boolean sort, 3

clause, 8
ρM(l), 42
⊥, 8

HA(Φ,M), 43
UT ,Φ,M , 35
UT ,M [U ](Φ), 35
empty clause, 8
unit clause, 8

clean representation, 128
complement, 4

φ, 4
constant, 3
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decision procedure, 12

entailement, 7
|=T , 7
||=, 9
||=T , 9
strong entailement, 9

entailment, 7
|=, 7
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SubMin(), 10
entailment minimal equivalent, 10

evaluation, 5
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formula, 5
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conjunctive normal form, 39

function, 3
parameter, 3
return type, 3
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Gen, 125
atomic generalization function, 125
functional, 122
generalization relation, 122
well-founded, 122

generalization partition, 127
generalization sequence, 123

order, 123
prefix, 123
suffix, 123

guide formula, 56
Guide(), 56

implicant, 9
A-implicant, 11
(T ,A)-implicant, 11
prime implicant, 9

implicate, 9
IT ,A(Φ), 11
I(), 29
I∗(), 29
I∗T ,A(Φ), 11
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UpdateImplicatesLocal(Φ,M,A,Π),
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A-implicate, 11
(T ,A)-implicate, 11
local implicates, 29
prime implicate, 9

interpretation, 5
partial, 6
total, 6
variables, 5

literal, 4
A-reason, 41
Φ-compatible, 34

logical consequence, see entailment
loop invariant, 62
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model, 6, 7
|=, 6
minimal, 40

predicate
filtering predicate, 37

program, 61
P |`, 64
locs(), 63
rmLoops(P ), 63
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assertion, 61
assumption, 61
instruction at location, 64
location, 63
loop, 61
strongest postcondition, 65
subprogram, 64
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representation function, 124
monotonous, 124

representation set, 124
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Iextract, 125
formula, 124
generalization, 126
implicant, 124
implicant extractor, 125
merge, 126
strict generalization, 126

satisfiability, 6, 7, 12
separation logic, 132

antiframe, 135
biabduction, 135
conclusion, 135
disjoint heap, 133
disjoint union, 133
evaluation, 133
formula, 132
frame, 135
interpretation, 133
model, 133
problem constraint, 135
satisfiability, 134

signature, 3
sort, 3

tautology, 7
term, 3
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theory, 7
T , 7

token-stack formula, 139
depth limit, 139
evaluation, 139
interpretation, 139
model, 139

type, 3

unit propagation, 40
U∗(Φ), 40

variable, 3
verification condition, 57

Vassert(P ), 64
Vind(P ), 64
Vinit(P ), 65
assertion condition, 64
loop precondition, 65
propagation condition, 64

verification condition generator, 56
pending(P ), 57
VCGen(), 56
parameter dependency, 58

verification structure, 56
P −→ fails, 58
∼, 57
P [∗ ←− ], 57
P [←− ], 57
inconsistent, 58
program, 66, 67
satisfied, 56
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strict update, 58
update, 58
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