
- 1 -

DSTM: a framework to operationalize and refine a problem
solving method modelled in terms of tasks and methods

Francky Trichet & Pierre Tchounikine

{Francky.Trichet, Pierre.Tchounikine}@irin.univ-nantes.fr

IRIN, Université de Nantes & Ecole Centrale de Nantes
2, rue de la Houssinière, BP 92208 44322 Nantes cedex 03, France

Abstract

In this paper we present DSTM, a framework that enables the operationalization and the
refinement of problem-solving methods modelled within the Task–Method paradigm. DSTM
proposes an operational kernel, i.e. operational but flexible high-level constructions:
modelling primitives, such as task or method, and manipulation mechanisms, such as select a
method. These constructions can be customized in order to better capture the paper-based
model to be operationalized. This permits the construction of an implemented system that is
an explicit reification of the paper-based model, and, therefore, enables to analyze the model
by means of the analysis of the system. In order to support this analysis, DSTM proposes
tools that allow the knowledge-engineers to inspect the implemented model from different
points of view. This facilitates the conciliation of the initial modelling phase, the model
refinement phase and the operationalization phase that are achieved when constructing a KBS.

Keywords: Problem-solving method; Task–Method paradigm; Paper-based model

1. Introduction
The modern view (David et al., 1993) of the construction of knowledge based systems

(KBS) is a four step process. First, some expert knowledge is informally acquired. Then, this
knowledge is analyzed by the knowledge-engineers in order to construct a conceptual model
of the problem-solving method (PSM) to be used. This model is an abstract implementation-
independent description of the problem-solving process that the system must apply, in terms
of tasks (what is to be achieved) and methods (what means can be used to achieve these
tasks). Top-level tasks are associated with one or several methods (called “decomposition
methods”) that decompose them into subtasks, recursively, until these subtasks are
sufficiently simple to be directly tackled by “execution methods”. Once this “skeletal” was
defined, it could be used to instantiate the model. This phase consists in using the conceptual
model as a guide to acquire the domain expert knowledge (i.e. the knowledge that is necessary
to perform the execution methods) that was not identified in the initial phase. Finally, the
obtained instantiated model is operationalized in order to construct an executable system.

- 2 -

Because the elaboration of the conceptual model is indeed the key-point of this process,
most works focus on this phase, and the operationalization of this model is generally
considered as a simple “technical” phase. Therefore, the modelling phase and the
operationalization phase are completely dissociated. However, when constructing effective
KBSs, paying some attention to the operationalization phase appears more important, as it is
not as outside of the “conceptual work” that it is often argued. Problems missed during the
elaboration of the model often only appear when operationalizing and testing the KBS (see for
instance Linster, 1993 or Vanwelkenhuysen and Rademakers, 1990). Very often, the
operationalization phase puts into evidence problems that can easily be tackled, such as
punctual gaps or contradictions in the domain knowledge that affects how a particular leave-
task is achieved (i.e. problems related to the model instantiation). More worrying, the
operationalization phase can also put into evidence that the PSM itself is ill-defined, i.e. put
into evidence that some tasks or methods, as they are currently defined, do not permit the
problem-solving competence that was expected. Such problems address modelling issues, and
require the knowledge-engineers to analyze and refine the initial paper-based conceptual
model.

Modelling problems must be discovered and tackled before the time consuming phases of
acquiring all the domain knowledge and implementing the complete system. This can be
achieved by operationalizing the elaborated paper-based model with a subset of the domain
knowledge, analyzing if the way the tasks and methods are defined allows emulating the
expected problem-solving behaviour and, if necessary, refining the model. However,
modelling problems must be tackled by knowledge-engineers at a model level, and not at the
implementation level, and, therefore, the operationalization approach must allow the
knowledge-engineers to use the implemented system as a means to evaluate and refine the
PSM model. Current operationalization languages (i.e. languages dedicated to the
operationalization of PSM paper-based models) propose high-level constructions (e.g. Task
and Method modelling primitives and mechanisms to manipulate these primitives) that
facilitate the operationalization phase, but are not satisfactory in order to use the implemented
system as a means to refine the model. First, they impose generic built-in constructions (i.e.
implicitly, a modelling language) that constrain how the PSM can be expressed. When the
knowledge-engineers use domain related notions to describe the model components, the fact
that the operationalization language only proposes “generic” built-in unadaptable notions
introduces a distortion between the paper-based description of the PSM and its operational
description, this distortion limiting the capacity to study the PSM properties through its
operational description. Second, current operationalization languages provide almost no
support to the knowledge-engineers to analyze if the PSM that is being implemented allows
emulating the expected behaviour.

In order to enable using the operationalization phase as a means to evaluate and refine the
PSM, we propose to use operationalization environments based on flexible operational
kernels. An operational kernel proposes predefined but flexible high-level constructions (e.g.
modelling primitives such as Task or Method and manipulation mechanisms such as Select a
Method). It provides more flexibility than an operationalization language because these
constructions (and, therefore, the modelling language they define) can be customized in order
to better capture the paper-based model. This enables the construction of an implemented
system that is an explicit reification of the paper-based model, and, therefore, enables to
analyze the model by means of the analysis of the system. In order to support this analysis, we
propose to construct tools that allow the knowledge-engineers to inspect the implemented
model from different points of view. In summary, we propose to achieve the
operationalization phase with a framework that allows both modelling features (definition of

- 3 -

an adapted modelling language, analysis and refinement of the PSM model) and
operationalizing features (making the model operational). We believe such a framework is
more prone to conciliate the initial modelling phase, the model refinement phase and the
operationalization phase that are achieved when constructing a KBS.

In this paper we present DSTM, the modelling and operationalizing framework we have
constructed to enable the operationalization and the refinement of PSMs modelled within the
Task–Method paradigm. In Section 2 we present an example of a Task–Method paper based
model, why current approaches of the operationalization phase are not satisfactory to
operationalize and refine such a model and the principles that underlie DSTM framework. In
Section 3 we present how DSTM allows operationalizing such a model and what tools are
currently available to help the knowledge-engineers in their analysis of the implemented
system. In Section 4 we discuss the scope of this approach (highlighting it is useful both when
the PSM model is abstracted from rough expert knowledge and when one reuses a predefined
generic model), we compare it to related works and we present the current direction of the
work. We conclude in Section 5.

2. Operationalizing problem-solving methods
2.1. An example: operationalizing and refining Emma PSM

Emma1 (Choquet et al., 1997a, 1997b) is an educational system (under construction) that
aims at training students in the practice of linear programming as a technique to solve
concrete problems (for example economic problems). In order to be able to solve problems
and to analyze students’ resolutions, Emma embodies a KBS. This KBS implements a
problem-solving method whose conceptual model was elaborated with the maths teacher, on
the basis of concrete problem resolutions (thus, the model was constructed by abstraction
from the teacher’s knowledge).

In the first stages of the modelling process, Task and Method notions were used as
informal modelling guides. Analyzing the teacher’s problem-solving and discussing with him
with the objective to identify aspects of the solving that can be dissociated (tasks) and means
that can be used to tackle these different aspects (methods) helps in abstracting from rough
knowledge. The details of how a method is effectively achieved can be tackled later on and do
not interfere with the modelling of the general problem-solving behaviour. In Emma, this led
to the identification of high-level tasks such as “Formalisation of the mathematical situation”,
which are then decomposed into subtasks such as “Variable definition” or “Definition of the
type of objective function”, and methods to achieve these tasks (for instance, the task
“Solution of a linear programming problem” is associated with multiple methods such as
“Method of tables” or “Graphic method”).

When the analysis becomes precise enough, the tasks and methods characteristics that
must be denoted and how these characteristics will be used to select the pertinent tasks and
methods during resolution must be defined. Different modelling aspects that were domain
related (i.e. specific to Emma domain and Emma context of use) appeared when the domain
tasks and methods were defined more precisely. As a simple, but intuitive example, in Emma,
the pertinence of a task is considered from two different points of view: the mathematical
point of view and the taught-method point of view. An action can be mathematically possible,
but not pertinent to the taught-method (for instance because teachers want the students to

1 Because it will permit us to present examples from the different ideas presented in this paper, we will use
Emma PSM model as an illustration in the remaining of this paper. However, it should be noted that the scope of
our work is not limited to modeling problem-solving in educational systems.

- 4 -

consider some other aspects before) or can be in accordance with the taught-method (i.e. point
at a pertinent objective), but mathematically impossible. The objective of this modelling
phase is, therefore, not only to identify all the tasks and methods. It also aims at the
identification of the notions that are important to describe the PSM, i.e. the identification of
an adapted modelling language. Identifying such an adapted modelling language is very
important as it defines guidelines for interviewing the experts and acquiring the rest of the
expertise (what information must be acquired for every task and every method is known).
When this process is stabilized, an incomplete “skeletal” paper-based model is obtained. How
tasks and methods should be denoted (i.e. the modelling language) and the major (if not all)
tasks and methods (i.e. the PSM structure) are identified. Instantiating this model consists in
defining the remaining tasks and methods (if any) and the domain knowledge, in a process
guided by the skeletal model. Operationalizing this model consists in representing the tasks
and methods in the operational framework (i.e. translating the paper-based description of the
tasks and methods into the operational version of the modelling primitives, in order to obtain
the Task–Method knowledge-base), implementing the selection mechanisms (that will
manipulate the Task–Method knowledge-base) and the execution methods (manipulation of
the domain knowledge).

2.2. Operationalization languages and their drawbacks
An operationalization language is a language that enables making a conceptual model

operational. Examples of operationalization languages are Omos (Linster, 1993), Model-K
(Karbach and Voss, 1993), Karl (Fensel, 1995), Aide (Greboval and Kassel, 1992), Task
(Talon and Pierret-Golbreich, 1996), Lisa (Jacob-Delouis and Krivine, 1995), MML,
(Guerrero-Rojo, 1995) or Expect (Gil and Paris, 1996). The ancestors of operationalization
languages are the expert-systems shells (e.g. Emycin), which proposed low-level formalisms
such as production rules. An intrinsic limitation of using low-level formalisms is that the
organization of knowledge that is defined while modelling is lost in the implementation. All
recent works agree on the fact that it is necessary to use higher-level languages, that allow
preserving a structural correspondence principle between the model and its implementation
[i.e. to every component of the model corresponds an explicit component in the
implementation (Reinders et al., 1991)]. The respect of this principle is known as facilitating
the maintenance and the evolution of the KBS, “knowledge level” reflective control (Reinders
and Bredeweg, 1992) and the construction of explanations to the end-user (Greboval and
Kassel, 1994), i.e. using the operational system as a means to achieve model-based activities.

An operationalization language proposes a set of modelling primitives and inference
mechanisms that can manipulate knowledge represented as instances of these primitives. A
certain number of languages propose primitives that correspond to that of their underlying
methodology. For instance, languages such as Omos, Model-K or Karl propose structures that
correspond to the primitives that are used in the Kads methodology (Wielinga et al., 1992).
Some other languages propose constructions proposed as “epistemological primitives”.
Typically, most languages (e.g. Aide, Task or MML) propose Task and Method primitives,
that allow representing control knowledge in a way that denotes Newell’s rationality principle
(Newel, 1982). A set of selection mechanisms allow a simple hierarchical control (predefined
decomposition of tasks in sub-tasks) and/or an opportunistic behaviour (selection at run time,
according to the problem-solving context, of the more pertinent task to consider, and, then, of
the more pertinent method to achieve it). Associated to these Task and Method primitives, a
lower-level representation language is used to describe the domain knowledge and the
inferences that can be achieved on this knowledge. Domain tasks and methods are defined by
filling the slots proposed by the modelling primitives with knowledge related to the domain
and/or to the problem currently under study.

- 5 -

Problem 1: current operationalization languages impose their modelling point-of-view.

Current operationalization languages impose a predefined modelling language, the one
that underlies their hard-encoded operational constructions. For instance, current Task–
Method languages impose a particular definition of a Task (i.e. what notions are to be denoted
when describing a Task or, from a technical point of view, what are the slots to be filled, e.g.
objective, preconditions or resources), and impose a particular definition of how tasks of the
knowledge-base are selected at runtime (i.e. what are the criteria that are considered when
selecting a task or, from a technical point of view, what slots are considered and what is the
“formula” that defines if the task is to be selected). Adopting particular definitions facilitates
the implementation of the language, whose mechanisms can be hard-encoded. However, from
a modelling point of view, the consequence is that if the paper-based model does not
smoothly fit into the proposed modelling language, it must be translated into these structures,
and the correspondence model/implementation is lost. For instance, in Emma model, the
pertinence of selecting a task is denoted by two different notions (mathematical point of view
and taught-method point of view). Such a dissociation greatly clarifies the analysis of the
rough knowledge that is obtained from the teacher. Existing Task–Method languages only
propose a “generic” preconditions slot. Emma two criteria could be compiled in this single
slot. This would not affect the problem-solving behaviour of the system. Nevertheless, this
would introduce a distortion between the model and the implementation that would heavily2
limit how the system can be used for model-based activities. In particular, if the problem-
solving behaviour is not satisfactory, interpreting this behaviour at the model level will be
made more difficult. Mixing different modelling notions will also limit the explanations that
can be provided to the end-used (and, in the case of an educational system such as Emma, the
teaching capacities would also be affected).

Problem 2: operationalization languages propose no help for refining the PSM model.

In most operationalization languages, the only support that is provided in order to help the
knowledge-engineers to validate (and eventually refine) the model is limited to what derives
from the fact the PSM can be run: tracing facilities and/or asking why or why not questions
(van Heijst et al., 1997). There is no attempt to provide the knowledge-engineers with more
synthetic information, that could help them in discovering ill-defined parts of the model. For
instance, in a non trivial model such as Emma, a task can be achieved by several methods, and
achieving a task with one or another method can have some influence on the rest of the
solving (the methods can produce different results, and, therefore, influence the selection of
the following tasks and/or methods). Keeping aware of this influence is not trivial, it requires
the knowledge-engineers to keep in mind a synthetic understanding of how complex objects
interact one with another. However, because they consider the operationalization phase as
being essentially a coding phase, current operationalization languages do not aim at
supporting the knowledge-engineers in this task. Expect and Omos propose some help to
acquire domain knowledge (analysis of what domain knowledge is missing in the system), but
not to analyze the overall problem-solving competence modelled in the system.

Problem 1 is not to be considered if the modelling of the PSM is made according to the
modelling primitives proposed by the target operationalization language. Our opinion is that
proposing guidelines (e.g. Task and Method notions) to the knowledge-engineers in order to
help them structuring rough knowledge is useful, but imposing unadaptable structures is too

2 Of course, such a single (and simple) distortion would remain tractable, enough to allow a second one and so
on, until the knowledge-base is no longer understandable by anyone.

- 6 -

constraining. In other terms, we think the precise definitions of what is a Task and what is a
Method, that defines what modelling notions are to be considered, must be defined according
to the expertise to model and the context of use of the KBS, and the operationalization
language must follow, and not the contrary.

Problem 2 is not to be considered if one supposes the paper-based model as definitely
correct. Our opinion is that although the general organization of the PSM must be defined
before any implementation work, necessary refinements of (parts of) the PSM often appear
when confronting the paper-based model with what knowledge can be acquired from experts
(i.e. when instantiating the model) and how concrete problems can be solved (i.e. when
testing the system). Therefore, it is worthwhile to adopt an implementation approach that will
facilitate these refinements. For this purpose, we propose to operationalize the incomplete
“skeletal” paper-based model, with a strict adherence to the model in the implementation, and
to use this operationalization process as a means to analyze, refine (if necessary) and
instantiate the model.

3. The DSTM framework
DSTM allows tackling problem 1 by proposing an operational kernel, i.e. customizable

operational structures for the Task and Method modelling primitives and their selection
mechanisms. The default structures can be directly used; in such a case, the operational kernel
is used as yet another Task–Method operationalization language. If the default structures do
not allow a satisfactory representation of some specificities of the paper-based model, they
can be modified. DSTM thus allows the construction of an operational system that respects a
strict structural correspondence with the model (the system reifies the model).

DSTM allows tackling problem 2 by enabling the construction of tools that can analyze
the implemented system (and, therefore, the model it reifies). This is made possible by the
fact that the operational version of the knowledge-base (the tasks, methods and domain
knowledge) and the manipulation mechanisms are represented explicitly, and not compiled as
blackboxes. At present, two main types of tools have been constructed. The first type is
concerned with checking if the Task–Method knowledge-base respects some constraints. Two
types of constraints can be checked. First, constraints defined, explicitly, with a graphical
Entity-Relationship language (e.g. “each task must be associated with at least one method”).
Second, the constraints that are defined, implicitly, by the selection mechanisms (i.e. detecting
that one of the selection mechanism uses the slot Si of the Method modelling primitive as a
criteria and, therefore, defining a method without valuating the slot Si can be problematic).
The second type of tools is concerned with presenting to the knowledge-engineers a synthetic
view of how, given the current selection mechanisms, the tasks and methods of the
knowledge-base can interact, i.e. presenting a synthetic view of the problem-solving
competence that is modelled in the implemented system. A common characteristic of these
tools is that they are metatools in the sense introduced in (Eriksson and Musen, 1993): they
are based on a reflective analysis of the implemented systern. Therefore, when the operational
kernel is modified, these tools adapt themselves, and can be used without further
programming work. Moreover, this “meta” approach will allow us to develop our framework
by integrating new tools without modifying the rest of the framework.

Section 3.1 presents how DSTM operational kernel can be used to operationalize a model,
and Section 3.2 presents what help can be provided by current DSTM tools. The model that is
used as an illustration is Emma. The different figures are snapshots from the current tentative
graphical interface.

- 7 -

3.1. Operationalizing a Task–Method model with DSTM
DSTM operational kernel is structured in four layers. The top level (level 1) is a general

control3 of high-level actions such as Select a Method. These high-level actions (level 2) are
based on abstract notions such as the applicable Method notion; an abstract notion (level 3)
denotes a possible state of a Task or a Method during resolution. The final level (level 4) is
the description of the Task and Method modelling primitives. The kernel proposes a default
definition of the modelling primitives, that induces default definitions for the abstract notions
and the high-level actions [these definitions are inspired from related works, in particular
(Jacob-Delouis and Krivine, 1995)]. If these definitions do not allow denoting the paper-based
model in a satisfactory way, the modelling primitives, the abstract notions, the high-level
actions and the general control can be adapted. This is made possible by the fact that the
definitions that are adopted for these different items are explicitly denoted in the source-code,
and can easily be modified. The implementation respects a limited-interaction principle, in
order to limit the propagation of the modifications, if any.

As said before, operationalizing a PSM model also requires modelling the basic domain
knowledge (level 0). For this purpose, DSTM framework proposes a relational language and
an Entity-Association language. Presenting these languages in details is outside the scope of
this paper (see Trichet, 1997) for such a presentation), and we will just mention how Emma
domain knowledge was modelled with the relational language. We then present, successively,
the modelling primitives, the abstract notions, the high-level actions and the control levels
(the default definitions and how they were adapted according to Emma model).

The domain knowledge

The Yearl (Trichet, 1997) relational language allows representing domain knowledge by
defining types of facts, each of these types being associated with a set of possible values. A
domain fact is represented as a couple (object, value). For instance, in Emma, three different
types of facts were dissociated. Concrete domain facts, that denote information on the
solution, e.g. (there is) “one explicit constraint” or “number variables=2”, can be true or false.
Abstract domain facts, that denote information on the solving state that is related to
mathematical notions, e.g. (it is an) “optimization problem with constraints” or (it is a) “linear
programming problem”, can be impossible, unlikely, possible, likely or certain. Strategic
facts, that denote information on the solving state that is related to the taught-method, e.g.
(the) “problem type”, can be defined or undefined. Facts can be connected using relations
such as is-a-particular-case, is-a-possible-value, are-exclusive-values, imply or are-
equivalent. What is obtained is a graph such as the one presented in Fig. 1. Every relation is
associated with the inference mechanisms that correspond to its semantics. While problem-
solving, the concrete facts values are identified, and the inference mechanisms are activated in
order to propagate the values.

3 We will focus here on the control that allows a dynamic selection of tasks and methods, i.e. a context where at
a state of the resolution different tasks can be considered and one of these is selected, at runtime, according to
the current context and then, one of the different methods that exist for this task is selected, here again at
runtime. This is the more general context, cases such as static hierarchical decomposition of tasks or existence of
a single method for a task are variations.

- 8 -

Figure 1. The domain graph for the Emma system (extract).

The modelling primitives

DSTM predefined primitives are Task and Method. In the default definitions, a Task is
defined (cf. Fig. 2) by its results and the context in which it can be achieved. If known,
methods that can achieve it can be associated. A Method (cf. Fig. 3) is defined by the results it
produces, the context in which it can be fired and the knowledge required for its achievement.
If known, the description of when it is particularly relevant can be added. A method can
directly carry out a task or split a task into subtasks.

Figure 2. Description of a Task.

Figure 3. Description of a Method.

- 9 -

For Emma, the default definition of a Task is not satisfactory. First, as said before, the
pertinence of a task is defined by taking into account aspects related to mathematical
constraints and aspects related to the taught problem-solving method. Second, it is not
possible to define what the expected results of a task are, but only an abstract characterization
of what the state of the resolution is once the task is successfully achieved (Post-Conditions,
in terms of strategic facts). Third, some interpretation knowledge must be attached to every
task. Interpretation knowledge corresponds to a set of relations of the domain graph that
should be inspected in order to interpret at an abstract level the results of a task, once it is
achieved. For pedagogical reasons, one dissociates necessary interpretations (interpretations
that must be considered when the task is achieved) and possible interpretations
(interpretations that can be considered when the task is achieved). Finally, some tasks (in
particular the highest-level tasks) are decomposed into subtasks but, at the moment this
decomposition is achieved, one cannot yet define what these tasks effectively are. For
instance, at the first step of a resolution, the task “Deal with an exercise” is decomposed into
“Analyze the problem”, “Formalize the problem”, “Solve the problem” and “Examine the
results”. However, when this decomposition is achieved at runtime, one cannot yet know if
“Formalize the problem” corresponds to the task “Formalize an optimization problem” or to
the task “Formalize a statistic problem”, as this depends on the results of the task “Analyze
the problem”.

In order to use operational structures that correspond to the paper-based modelling
structures, the default definitions of the modelling primitives that are proposed by the kernel
were adapted. The Task definition4 was adapted by modifying some slots and adding some
others: Input-Context is changed into Activation-Context, that denotes the pertinence from the
point of view of mathematical constraints, and Preconditions, that denotes the pertinence
from the point of view of the taught problem-solving method; two new slots, Necessary-
Interpretations and Possible-Interpretations, are added. In order to respect the teacher’s
vocabulary, a task was renamed an Activity (we will use Task and Activity as synonyms).
Two specializations of the Activity primitive were defined, the Prototype-Activity primitive
(activities that are planned but cannot yet be made explicit, and therefore do not have
associated methods) and the Concrete-Activity primitive (effective activities, that can be
associated with methods; while resolution, when a prototype-activity is selected, the concrete-
activity to be used to “instantiate” it is defined according to the context).

Concrete tasks and methods are defined by filling the description slots with a list of
couples (fact, value) from the domain graph. The description of the Task and Method
modelling primitives (and other primitives, if any) can be completed, explicitly, with an
indication of what domain knowledge types can be used to fill the slots. For instance, in
Emma, the Post-Conditions of an activity are supposed to be a set of Strategic facts (cf. Fig.
4). Checking if the knowledge-base modelling primitives instances respect their associated
syntactical constraints helps in maintaining the description of the knowledge-base
components at the same degree of abstraction.

4 The DSTM default definition of a Method has also been modified in order to match Emma model. It should be
noted that DSTM also allows the construction of additional modeling primitives if it appears necessary. For
instance, in Emma, a Process primitive is used. It denotes concrete domain manipulations that are beneath the
level that is to be made explicit.

- 10 -

Figure 4. The Concrete-Activity primitive.

Fig. 4 presents how a modelling primitive can be defined or adapted from an existing one
and Fig. 5 presents an instance.

Figure 5. An instance of the Concrete-Activity primitive.

The abstract notions

The abstract notions can be viewed as a high-level implementation-independent
vocabulary that bridges the gap between an abstract description of the system selection
mechanisms in terms of high-level actions (the control) and the modelling primitives (task and
method). From an implementation point of view, an abstract notion is reified by an
operational code that denotes its semantics. The abstract notions proposed by DSTM kernel
are:

- applicable Task (a task that can possibly be achieved);

- achieved Task (a task that was achieved by a method and whose objective is
attained), unsuccessfully considered Task (a task for which all the possible
methods were considered and none of them allowed it to be achieved) and pending

- 11 -

Task (a task for which none of the methods considered so far allow it to be
achieved, but not yet considered methods still exist);

- candidate Method (a method that can achieve a task);

- applicable Method (a method that can be fired);

- favorable Method (a method that is particularly relevant).

The default definitions that were retained for the abstract notions are based on the default
definitions that were retained for the modelling primitives. For instance, the definition
adopted for the abstract notion candidate Method is: “a method Mi is a candidate Method for
the achievement of a task Ti if and only if Mi has explicitly been defined as achieving Ti or if
Mi produces the results that are expected for Ti“. An abstract notion is defined by a logical
connector (and, or, not) over a set of sub-operations. Sub-operations can be expressed as the
application of predefined primitives (e.g. check-domain-knowledge5, that allows testing
values of facts in the domain graph during resolution, belongs to or subset) over the
different slots of the modelling primitives. For instance, the definition “a task Ti is an
applicable Task if its input context is satisfied” is represented by an operation whose body is
“check-domain-knowledge INPUT-CONTEXT task”. According to the modifications that
were made at the modelling primitive level, the default definitions of the abstract notions can
be adapted and/or some others can be created. In order not to complexify the definition of an
abstract notion, one can first define support notions, i.e. intermediate notions, and then use
these support notions to express the abstract notion. If necessary, new abstract notions can be
defined in a similar way to the support notions.

For Emma, the applicable Task abstract notion must be modified into the applicable
activity abstract notion, whose definition is: “an activity Ai is an applicable Activity if it
satisfies the mathematical constraints (modelled by the slots Activation Context and
Resources) and the constraints related to the taught-method (modelled by the slot
Preconditions). First, two support notions6 were defined, verify mathematical constraints
activity and verify taught-method constraints activity. Then, the applicable Task abstract
notion was modified by changing its logical connector and its sub-operations. An applicable
Activity is finally defined: verify-mathematical-constraints Activity-i AND verify-
taught-method-constraints Activity-i. New abstract notions have also been
introduced, such as possible instantiation Activity7.

Fig. 6 presents how the default definition of an abstract notion can be modified (support
notions and new abstract notions can be defined in a similar way). The interface hides the
syntax of the operational language in which the different notions are represented, allowing
their description at a level where one manipulates modelling notions (e.g. the slots of the
modelling primitives or set primitives).

5 A set of primitives such as check-domain-knowledge permits the connection of DSTM to the language
used to model the domain. From DSTM point of view, using a particular domain representation language only
requires the construction of the adapted connection primitives.
6 The interest of defining a support notion can be to simplify the description of an abstract notion and/or to reify
a pertinent aspect of the modeling (as abstract notions do). In the present case, these support notions were
introduced because they correspond to modeling notions.
7 The definition “a concrete-activity Ai is a possible instantiation Activity for a prototype-activity Aj if Ai has the
same objective as Aj and Aj post-conditions are a subset of Ai post-conditions” is coded: equal OBJECTIVE
Activity-i OBJECTIVE Activity-j AND subset POST-CONDITIONS Activity-j POST-
CONDITIONS Activity-i.

- 12 -

Figure 6. Modifying the applicable Task basic definition into applicable Activity.

The high-level actions

A high-level action corresponds to a selection mechanism based on a criteria that is
denoted by an abstract notion. The high-level actions proposed by DSTM kernel are:

- Select an applicable Task: selects a task that can be achieved from a set of not yet
achieved tasks. This action is based on the applicable Task abstract notion.

- Identify candidate Methods: identifies the methods that can achieve a task. This action
is based on the candidate Method notion.

- Identify applicable Methods: identifies the methods that can be used from a set of
methods. This action is based on the applicable Method notion.

- Select a Method: selects a method from a set of methods. This action is based on the
favorable Method notion.

- Evaluate the state of a Task: evaluates the state of a task after the activation of a
method. This action is based on the achieved Task, unsuccessfully considered Task
and pending Task abstract notions.

All the high-level actions have the same structure, their differences only stand in their
signature and the abstract notions they manipulate8. According to what modifications were
made on the abstract notions, detailed adaptations of some of the high-level actions and/or
definition of new high-level actions are necessary. In Emma, the DSTM high-level actions
that are reused (such as Select an applicable Task) only require modifying the abstract notion

8 A high-level action is defined by constructions such as match set1 set2 criteria, where the primitive match
constructs set2 by selecting the items from set1 that respect criteria and criteria is an abstract notion.

- 13 -

that is referred to (replacement of the default abstract notion applicable Task by the Emma
abstract notion applicable Activity). This is a direct advantage of the limited-interaction
principle. For new actions such as Identify possible Concrete Activities, the high-level actions
directly proposed by the kernel can be used as patterns. These adaptations can be achieved
through a similar interface to that of the abstract notions.

The control level

Different types of control (e.g. static decomposition of tasks or dynamic selection of tasks
and methods) can be defined over these high-level actions. As an example, dynamic selection
of tasks and methods, which is the default control9 in DSTM, is defined as a simple iteration
over the high-level actions listed previously. In the case of a static decomposition of tasks, the
abstract notion applicable Task must be defined in order not to denote a matching of a task
with the current problem-solving context, but a simple access in a stack. In Emma, the default
control algorithm was modified in order to manage the new high-level actions (cf. Fig. 7).

Figure 7. The control algorithm for Emma.

Summary

DSTM proposes different levels of flexibility: the modelling primitives, the abstract
notions, the high-level actions and the control algorithm. Although some modifications imply
others, the adopted limited-interaction principle allows limiting the propagation of
modifications to what is necessary from a modelling point of view (there are no side-effects
due to implementation features). A graphical interface facilitates these different modifications
and allows the process to be managed at a model level (therefore, by knowledge-engineers).
The overall construction of an operational KBS using DSTM can be summarized as presented
in Fig. 8.

9 An algorithm is a simple way to model a control over the high-level actions. Although it is sufficient for most
of the cases, it nevertheless has a certain number of shortcomings. In particular, the same control is used for all
the tasks and methods and during all the solving. As a consequence, aspects such as: “some tasks must be
absolutely solved at once and when they are considered one should try all possible methods; some tasks should
be reconsidered and put back into the list of not yet achieved tasks if the selected method fails” cannot be
modeled explicitly. Another consequence is that a high-level action is always performed in the same way. It is
not possible, for example, to adapt the way a method is selected according to the considered task and/or to a
particular context. In order to remedy these shortcomings, the algorithmic control can be replaced by an explicit
scheduler, modeled as a specific KBS. We have described such an approach in (Istenes et al., 1996).

- 14 -

Figure 8. Constructing a KBS from DSTM kernel.

3.2. Refining the model with DSTM tools
The flexibility provided by DSTM enables the construction of an operational system that

respects a structural correspondence with the paper-based model. A direct advantage is that
the system problem-solving trace can be presented at the model level. The system can present
what tasks and methods it selects and why, using the adopted modelling language. For
instance, in Emma, the system can justify the fact it has not selected a particular activity by
indicating that this activity is acceptable from a mathematical point of view, but not pertinent
from the taught-method point of view. Proposing an explicit trace is a very ancient claim of
KBS. We believe the flexibility provided by DSTM kernel, that allows constructing a system
based on an adapted modelling language rather then on a “generic” modelling language, is
more prone to allow the system to propose an understandable problem-solving trace than
classical operationalization languages.

Although the fact that the system respects a structural correspondence with the model is a
condition sine qua non to its use as a means to refine the model, it is not sufficient. The
knowledge-engineers must be supported in their analysis of the model by tools that analyze
the system from different points of views. In order to allow the construction of such tools, the
different DSTM notions (modelling primitives, abstract notions, high-level action and control)
are not translated into a low-level implementation language, but represented explicitly, using
a dedicated reflective language. Therefore, the operational system can be analyzed by tools
implemented as reflective modules and, as the system reifies the model, these tools can
propose relevant information on the model.

We present here below examples of such tools.

Checking constraints

Analyzing if the model respects some constraints is a verification activity: it aims at
identifying “structural errors or errors of form in the system”, i.e. answering the question “am
I building the product right?’ [Boehm, cited in Juristo, 1997].

Explicit constraints on the modelling primitives

DSTM framework allows the definition of integrity constraints that the modelling
primitives’ instances must respect. Such constraints are defined by way of binary relationships

- 15 -

between the modelling primitives. Defining these relationships consists in defining what role
the notions of the model involved in the relationship play and the maximal and minimal
cardinalities. For instance, in Emma model (cf. Fig. 9), the Instantiation relationship can be
used to state that a Prototype-Activity must be instantiable by at least a Concrete-Activity
(minimal cardinality on the Is-instantiated-by role) and that a Concrete-Activity can
instantiate at most one Prototype-Activity (maximal cardinality on the Instantiates role). Once
these constraints are defined, the Task–Method knowledge-base can be parsed in order to put
into evidence violations of quantitative constraints such as “the prototype-activity Ai cannot be
instantiated by any concrete-activity” or, using the Achievement relationship (cf. Fig. 9), “the
method Mj is not defined as achieving any concrete-activity’.

Figure 9. Two integrity constraints on the Emma model.

The set of relationships that can be used to define the constraints to be checked is not
predefined, but corresponds to the abstract and support notions that have been defined. From
an implementation point of view, the operations that are used to check the constraints are
automatically constructed, using the operations that operationalize the abstract or support
notions as patterns. Therefore, this tool allows checking constraints related to the studied PSM
model notions, i.e. to the adapted DSTM (it is not limited to the constraints that correspond to
the defaults definitions).

Implicit constraints defined on the modelling primitives by the selection mechanisms

Some of the constraints that the Task and Method modelling primitives (and, then, their
instances) must respect are due to the selection mechanisms that manipulate them. For certain
mechanisms, the slots that are manipulated must be filled, an empty slot leading to an
execution error. For some others, manipulating an empty slot can lead to an erratic behaviour

- 16 -

of the system. For instance, an empty Resources slot can lead a method Mi to be unduly
considered as firable.

In a “perfect world” context, the knowledge-engineers are well aware of these constraints.
They can define them explicitly, when constructing the paper-based model, and (using DSTM
editor) impose syntactical constraints on the modelling primitives (as shown previously).
However, in a “real world” context, some of these constraints can be missed. Moreover,
incoherence can appear if a modelling primitive (and, then, its instances) or an abstract or
support notion (and, then, the selection mechanisms) is modified.

In order to check the implicit constraints that are defined by the selection mechanisms, we
have developed analysis tools that can define what operations manipulate a given slot and
how they manipulate it. Here again, the analysis is relative to the adopted modelling language
(what definition was adopted for the modelling primitives and the selection mechanisms). For
instance, let us suppose that, while refining the model, the knowledge-engineers decide to
modify a support notion SNi, that will now take into consideration the information denoted by
the slot Sj (Sj being a slot originally defined for some other purpose). The reflective analysis
of the selection mechanisms will calculate what new constraints exist and, for example,
highlight that a particular method has no domain knowledge associated to its Sj slot, which
can be problematic because the high-level action that performs the selection of methods uses
the abstract notion applicable Method as a selection criteria, applicable Method uses the
support notion SNi, and SNi checks if the domain knowledge associated to the Sj slot is
verified.

It is interesting to notice that what is calculated here is the “role” (Reynaud et al., 1997)
played by some particular knowledge on the way the problem-solving is processed10. This
analysis essentially aims at detecting errors in the description of some of the tasks or methods
of the, knowledge-base, typically problems raised by missing knowledge. Nevertheless, such
a focus can also highlight problems related to how the mechanisms are defined. For instance,
a problem detected for an instance that finally appears as correctly defined can highlight a
problem in a selection mechanism (an abstract notion, a support notion). In such a case, what
is highlighted is a modelling problem.

Analyzing the implemented problem-solving competence

An intrinsic difficulty of constructing a Task–Method model is that the problem-solving
behaviour of the system is defined by the interactions of the different tasks and methods of the
knowledge-base. Defining a new task (resp. method), modifying characteristics of some
already existing tasks or modifying one of the abstract notions used in the selection
mechanisms can influence the overall system behaviour. Keeping a synthetic understanding of
how tasks and methods can interact can become overly complex. Information provided by a
solving trace (i.e. what task is considered, why this task is an applicable Task, what method is
used, why it is a favorable Method, etc.) allows analyzing a particular solving, but is not
sufficient to enable an analysis of all the possible interactions that can appear, i.e. of the
problem-solving competence that is effectively implemented.

10 In an operational architecture dedicated to a particular PSM, the knowledge roles that are to be played in the
PSM are known and the architecture can embed a knowledge acquisition tools based on these roles [Salt is a
good example (Marcus and McDermott, 1989)]. In DSTM, how knowledge is manipulated can be changed and a
tool that exploits how knowledge is used must, therefore, be based on an analysis of the manipulation
mechanisms. A similar technique is used in Expect (Gil and Paris, 1996) to guide domain knowledge acquisition.

- 17 -

In order to help the knowledge-engineers to keep a synthetic understanding of the
implemented problem-solving competence, they must be presented with information that
corresponds to different axes of analysis, e.g. “Analyze how the achievement of the tasks
preceding a task Ti influences the achievement of Ti“ or “Analyze how the achievement of the
task Ti influences the achievement of the following tasks”. Analyzing the Task–Method
knowledge-base from these different points of view helps studying if the model allows the
expected problem-solving behaviour. It is a validation activity, that aims at answering the
question “am I building the right product?” (Boehm, cited in Juristo, 1997).

Such analyses are in general too complex to be made “by hand”, as they do not just
consist in picking-up information in the system (the considered task must be analyzed from
the point of view of its interactions with other tasks, via the different possible methods).
Therefore, we have constructed automated modules that analyze the Task–Method
knowledge-base according to these analysis axes. We call these modules “explanation
modules dedicated to the knowledge-engineers” (Trichet and Tchounikine, 1997b) to denote
that what we want is to explain some consequences of the current description of the model,
i.e. how the domain tasks and methods interact given the current selection mechanisms.

Here again, given the fact that the DSTM notions can be adapted, the construction of these
explanations must be based on a reflective analysis of the implemented system (the modelling
primitives, their instances and the selection mechanisms). Another difficulty is that how to
achieve the analysis depends on some key-parameters that correspond to modelling decisions.
For instance, when analyzing how a task can be achieved, one must take into consideration
the fact that a task can be associated with multiple methods or with only one method, or that
methods associated with a same task can have different influences on the rest of solving (i.e.
side effects) or not.

In order to deal with this complexity, the construction of these explanations was modelled
as a particular problem-solving task. General explanatory tasks (e.g. “Analyze how the
achievement of the tasks preceding a task Ti influences the achievement of Ti“) have been
decomposed into subtasks (e.g. “Analyze in what case the preceding tasks can conduct Ti not
to be achieved” and “Analyzing the influence of preceding tasks on the selection of a method
for Ti“). An explanatory-task is defined by its underlying explanation objective and the
context in which it is relevant to be studied. This context is related to the different modelling
actions that were performed by the knowledge-engineers within the DSTM framework. A
modelling action can be concerned with the customization of the kernel (e.g. “modification of
an abstract notion”, “modification of a modelling primative”) or the refinement of the current
Task–Method knowledge-base (e.g. “definition of a new method”, “modification of an
existing task”, etc.). An explanatory-task is associated with a set of explanatory-methods. An
explanatory-method describes a way to reach an explanation objective according to the
adopted modelling decisions. It can be a decomposition method (i.e. specify how a task is
divided into sub-tasks according to the modelling decisions) or an operational method (i.e.
identify the requested information and/or produce texts). This was modelled and implemented
with DSTM.

Fig. 10 presents an episode of what is produced by the module “Analyze how the
achievement of tasks preceding Ti influences the selection of a method for Ti“ in the context
of one of Emma’s tasks. It should be noticed that the objective is not an automated correction:
what is retrieved is not errors but information, its interpretation as an error is the knowledge-
engineers’ responsibility. For instance, retracing a mistake identified because the context in
which a particular method can be selected is considered as erroneous by the knowledge-
engineers can lead to identifying a problem in the description of a particular domain task or

- 18 -

method (a mistake in the filling of a slot) or a problem in the definition of an abstract notion
(e.g. that the definition of what is an applicable Method is not satisfactory).

Figure 10. Information produced by an explanation module (episode).

The mechanisms that are used to operationalize the execution explanatory-methods reuse
the ones that operationalize abstract notions and/or are constructed automatically from them.
Therefore, from an implementation point of view, the explanation tool is not affected when
the kernel is modified. Keeping the construction of the explanations coherent with the current
model only requires the description of the modelling decisions that are used as criteria by the
methods. A central advantage of considering the construction of explanations as a particular
problem-solving task and to model and implement it with DSTM is the flexibility it allows. In
fact, we use the general approach advocated in this paper (and DSTM capabilities) to
incrementally refine our modelling of the construction of explanations, introducing in the
description of the explanatory tasks and methods new dimensions that aim at modelling
“explanation strategies”, i.e. strategies that define what explanation objective should be
considered and how. The considered dimensions are the specificities of the model (general
modelling decisions and lower-level considerations) and the interactions already achieved
with the knowledge-engineers, using explanatory principles inspired from works related to
explanations for the end-user (McCoy et al., 1991).

4. Discussion
4.1. Methodological background and scope of the approach

DSTM framework was constructed within the Mapcar project (Tchounikine, 1997a),
whose general objective is to allow a constructive approach of expert knowledge modelling.
When constructing a KBS, keeping close to human experts’ problem-solving is generally not
necessary. Therefore, as modelling by abstraction is time consuming, most knowledge-
acquisition methodologies [Kads (Wielinga et al., 1992), GT (Chandrasekaran and Johnson,
1993), Components of expertise (Steels, 1990), Protégé (Puerta et al., 1992)] advocate reusing
(and eventually combining pieces of) predefined rational generic PSMs. However, some
contexts require the construction of a KBS whose problem-solving behaviour is close to a
particular human expert’ problem-solving behaviour, i.e. respects the relevant specificities of
human expertise. This is the case when constructing a KBS used in an educational system
(Emma is a good example). In such a case, the most rational model from a problem-solving
point of view is not necessarily the most suitable: the KBS must solve problems as (or in a
way that is coherent with how) teachers do when they interact with their students, that takes
into account the specificities of how domain expertise should be taught, the pedagogical
objectives and the pedagogical style (see Tchounikine, 1997b for further discussion).
However, keeping close to how experts solve problems can also appear necessary to preserve

- 19 -

the “know-how” of a firm, or to construct a conceptual model that remains meaningful for the
experts from the firm and facilitates their interactions with the KBS (see Tchounikine et al.,
1998 for a report on a realworld application in this context of “Corporate Knowledge”). In
such cases, elaborating the conceptual model of the PSM by abstraction from domain experts’
knowledge helps in taking into account the idiosyncratic aspects of the expertise that should
be modelled in the KBS. In order to help the experts (or teachers) to construct the PSM they
would like to explicit and transmit, the Mapcar approach suggests a negotiation of the model
between the experts (or teachers) and the knowledge-engineers. A prototype reifying the
model serves as an unambiguous basis for this negotiation (a comprehensive presentation of
the Mapcar approach can be found in Tchounikine, 1997a). DSTM flexibility and DSTM
tools allow the putting into practice of this approach, that was used to construct Emma.

However, the interest of DSTM framework is not limited to the elaboration of a PSM
conceptual model by abstraction from experts’ behaviour. As an operational framework, it can
be used to operationalize any PSM modelled in terms of Tasks and Methods and, therefore,
predefined generic PSMs [for instance, PSMs proposed by the CommonKads Library for
expertise modelling (Breuker and Van de Velde, 1994)]. In such a context, DSTM will not be
used to elaborate the model, but to refine it. Although reusing predefined PSMs is an
appealing approach, a lot of practical problems appear when such models are applied to the
real world, that require the refinement of the PSM (Speel and Aben, 1996). Moreover, as
highlighted in (Cottam and Shadbolt, 1996), many of the generic PSMs that are proposed in
libraries are system derived, i.e., model the rational problem-solving performed by existing
systems. As a consequence, “their efficacy for human expert acquisition is debatable, and they
may enforce an unsuitable system architecture upon the domain” (Cottam and Shadbolt,
1996). We believe DSTM flexibility can be used as a means to customize generic PSMs in
order to match realworld constraints and/or better correspond to domain experts’ competence
and, then, facilitate the acquisition of expert knowledge (its capacity to adapt the modelling
language being particularly useful for such cases).

Finally, DSTM can be used as a kernel to generate specialized operationalization
languages. As an example, it was used to create ZTM, an operationalization language
dedicated to models constructed following the Macao methodology (Aussenac-Gilles and
Matta, 1994). Here again, the flexibility of the framework was exploited to modify the
modelling primitives and the selection mechanisms according the modelling choices adopted
in Macao (Beaubeau et al., 1996).

4.2. Comparison with related works
Some of the methodologies that advocate reusing predefined PSM conciliate the

modelling and the operationalizing phases by proposing predefined PSM skeletals and
corresponding operational architectures. Such constructions can correspond to high-level
well-known PSMs such as “heuristic classification” or “cover-and-differentiate” (the
prototypical examples are the architectures constructed in the context of the RLM
methodology, e.g. Salt (Marcus and McDermott, 1989) for the “propose-and-revise” PSM) or
lower-level building blocks [GT (Chandrasekaran and Johnson, 1993), Protégé-II (Studer et
al., 1996)]. With such built-in architectures, the operationalization phase is skipped or limited
to a configuring problem. However, with such an approach, the PSM cannot be customized if
some domain specificities (or context of use) require some aspects of the generic model to be
adapted. Protégé-II aims at enabling some flexibility by proposing building blocks (called
“mechanisms”) rather than a complete builtin architecture. However, the customization
capacities remain limited by the proposed building-blocks. Our claim is not that predefined
architectures or predefined set of “mechanisms” should not be used, but that such predefined

- 20 -

constructions impose modelling constraints that can be to constraining. We see our approach
as an alternative (or an additional level of flexibility to approaches such as Protégé-II) for
such cases. Because they propose representation structures rather than PSMs’ components,
operationalization languages provide more flexibility. Some languages, such as Omos or
Model-K, allow refining a Kads generic PSM while operationalizing it. Linster in particular
has a similar claim to ours, and advocates “operationalization by continuous refinement”
(Linster, 1993). Nevertheless, in Omos or Model-K, modifying the modelling primitives or
how they are manipulated is not possible. In other words, the PSM model can be refined, but
not the modelling language which is used to express it. As argued before, this unduly
constrains the knowledge-engineers to use a predefined “generic” modelling language or leads
to an implementation that does not respect a strict structural correspondence with the model
(the model is compiled using syntactical tricks). Although modifying the modelling structures
can appear somewhat time-consuming, it is in fact a good investment. When a satisfactory
modelling language is defined, it greatly simplifies the acquisition of the domain expertise,
because this expertise gently slips into slots that correspond to meaningful notions for both
the knowledge-engineers and the domain experts. With DSTM, adapting the modelling
structures only requires modifying identified parts of the kernel and can be done without low-
level implementation problems, it is sufficiently easy to allow “prototyping” both the
modelling language and the problem-solving model (we have presented the final Emma
model, but several versions were tested)

4.3. Implementation
DSTM is implemented on top of Zola, a reflective language dedicated to the

operationalization of conceptual models (Istenes and Tchounikine, 1996; Istenes, 1997).
Modelling primitives are defined as Zola knowledge-types, concrete objects (e.g. domain
tasks and methods) being defined as instances of these knowledge-types. The operations that
reify the abstract notions, the support notions if any and the high-level actions are defined as
Zola operations. For this purpose, Zola provides a set of primitives (e.g. Match, Belongs-to
or Subset) that avoid spending time and getting confused with low-level implementation
details. Details on the implementation can be found in (Trichet and Tchounikine, 1997a).

Zola reflective capacities are used to implement the analysis tools as meta-modules, i.e.
modules that inspect the Zola implementation of the items to be analyzed. For instance, the
analysis of the constraints implicitly defined by the selection mechanisms is achieved by
analyzing the operations that operationalize the high-level actions and the abstract notions.
The operations that check the integrity constraints defined with the graphical interface are
dynamically created by other operations, that duplicate and modify the operations that
operationalize the abstract notion underlying the relationship used to express the constraint.
Compared with approaches that embed built-in tools, this “meta” approach has two central
advantages. First, when the kernel is modified, the tools stay coherent. Second, new tools can
be developed without modifying the kernel implementation.

At present, Zola is implemented in Lisp. An “industrial” version is under development
using the Java language (Istenes et al., 1998), which will make available a Java version of
DSTM.

4.4. Current direction of the work
DSTM kernel was tested in the context of different applications and we consider it as

stabilized. In contrast, we do not consider the set of tools presently provided by DSTM
framework as sufficient and we intend to extend it. Our “meta” approach permits developing
new tools without modifying the rest of the system. This allows the evolution of the

- 21 -

framework by constructing new “generic” tools such as the ones we have presented here, but
also allows the construction of application-specific tools [examples of such tools constructed
for Emma are presented in Choquet et al. (1997b), the interest of such tools was also
demonstrated in Tchounikine et al. (1998)]. More generally, our objective is to make DSTM
evolve towards an integrated framework. An ongoing work is the construction of an advisor
system assisting the knowledge-engineers in their use of DSTM. The objective is to consider
what actions were achieved (e.g. “Modification of the characteristics of the Task modelling
primitive”, “Definition of a new abstract notion” or “Definition of a new method in the
knowledge base”) and to advise a particular action to be achieved or the use of a specific tool.
First, the advisor system confronts the actions that were achieved with a set of rules that
models how-to-use DSTM principles, e.g. “if an abstract notion Ai is removed and Ai is used
as a selection criteria in a high-level action Hj, then advise the modification of the high-level
action Hj“. This first step aims at listing the different actions that have to be done to obtain a
coherent operational system. Second, the advisor system confronts the modelling actions with
the available DSTM tools. As an example, checking the cardinalities applied to the roles of a
relationship Ri will be recommended when the abstract notion underlying the roles of Ri
and/or the entities of Ri were modified.

5. Conclusions
The work we have presented in this paper is based on the assumption (correlated by

personal and reported in the literature feedback of real world experiences) that the general
structure of a PSM can (and must) be defined “on paper”, but that new problems (or new
points of view on theoretically already tackled problems) appear when instantiating the model
and implementing the system. Therefore, in addition to the flexibility features and the
verification and validation facilities that can be used on paper-based models, the
operationalization phase must allow and facilitate tackling these problems at the model level
(and not by implementation patches). This requires two different types of functionalities.
First, it is necessary to allow the knowledge-engineers to use the modelling language they
think is the best adapted, and to use an operationalization language that corresponds to the
adopted modelling language. Second, it is necessary to help the knowledge-engineers to
master the complexity of the knowledge-base (in a Task–Method model, how tasks and
methods can interact). We believe that constructing operationalization frameworks based on
such ideas will help bridging the gap that exists between satisfactory paper-based models and
satisfactory operational KBSs. The construction of the DSTM framework is an attempt to
allow such an approach. It is based on a kernel that offers predefined but adaptable modelling
and operationalizing structures and verification and validation tools defined as metatools.

6. References
Aussenac-Gilles, N. and Matta, N., 1994. Making the method of problem solving explicit with
Macao. International Journal on Human–Computer Studies 40, pp. 193–219.

Beaubeau, D., Aussenac-Gilles, N. & Tchounikine, P. (1996). Mona au pays des rôles:
opérationalisation de modèles conceptuels Mona en Zola. Research Report IRIT/962311,
Institut de Recherche en Informatique de Toulouse (in French).

Breuker, J., & Van de Velde, W. (1994). CommonKADS library for expertise modelling. IOS
Press, Ohmsha.

Chandrasekaran, B., & Johnson, T. (1993). Generic tasks and task structures: history, critique
and new directions. In J. David, J. Krivine, & R. Simmons (Eds.), Second generation expert
systems (pp. 232–272). Berlin: Springer.

- 22 -

Choquet, C., Tchounikine, P., & Trichet, F. (1997a). La modé1isation de la méthode de
résolution de problème dans le système Emma. In Actes des Journées Francophones EIAO de
Cachan (pp. 263–275). Paris: Hermès.

Choquet, C., Tchounikine, P., & Trichet, F. (1997b). Training strategies and knowledge
acquisition: using the same reflective tools for different purposes. In 8th International
Portuguese Conference on Artificial Intelligence (EPIA’97), number 1323 in Lectures Notes
in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) (pp. 119–129).
Coimbra, Portugal: Springer.

Cottam, H., & Shadbolt, N. (1996). Knowledge acquisition for search and rescue. In
Knowledge Acquisition for Knowledge-Based Systems Workshop (Banff’96). Banff, Canada.

David, J., Krivine, J., & Simmons, R. (1993). Second generation expert systems. New York:
Springer.

Eriksson, H. and Musen, M., 1993. Metatools for knowledge acquisition. IEEE Software 10 3,
pp. 23–29.

Fensel, D. (1995). The knowledge acquisition and representation language KARL. Boston:
Kluwer.

Gil, Y., & Paris, C. (1996). Towards method-independent knowledge acquisition. Knowledge
Acquisition, 6(2).

Greboval, C., & Kassel, G. (1992). An approach to operationalize conceptual models: the
shell AIDE. In European Knowledge Acquisition Workshop: Current Developments in
Knowledge Acquisition (EKAW’92) (pp. 37–54). Berlin: Springer.

Greboval, C., & Kassel, G. (1994). The production of explanations seen as a design task: a
case study. In European Conference on Artificial Intelligence (ECAI94) (pp. 351–355).

Guerrero-Rojo, V. (1995). MML, a modelling language with dynamic selection of methods.
In Knowledge Acquisition for Knowledge-Based Systems Workshop (Banff’95). Banff,
Canada.

Istenes, I. (1997). ZoLa: un langage réflexif pour représenter et opérationaliser des modèles
conceptuels. Thèse de doctorat, Institut de Recherche en Informatique de Nantes, Université
de Nantes (in French).

Istenes, I. and Tchounikine, P., 1996. Zola: a language to operationalise conceptual models of
reasoning. Journal of Computing and Information 2 1, pp. 689–706.

Istenes, I., Tchounikine, P., & Trichet, F. (1996). Dynamic selection of tasks and methods m a
knowledge level reflective activity. In A. Ramsay (Ed.), Artificial Intelligence: Methodology,
Systems, Applications (AIMSA’96), number 35 in Frontiers in Artificial Intelligence and
Applications (pp. 168–177). Sozopol, Bulgaria: IOS Press.

Istenes, Z., Trichet, F., Camilleri, G., & Fortes, A. (1998). Modelling knowledge structures
and patterns: capturing world subsets through language structured subsets. Research Report
IRIT/98-0611, Institut de Recherche en Informatique de Toulouse.

Jacob-Delouis, I. and Krivine, J., 1995. LISA: un langage réflexif pour opérationaliser les
modèles d’expertise. Intelligence Artificielle (In French) 9(1), pp. 53–88.

Juristo, N. (1997). A common framework for conventional and knowledge based software
validation and verification. In 9th International Conference on Software Engineering and
Knowledge Engineering (SEKE97) (pp. 287–294). Madrid, Spain.

- 23 -

Karbach, W., & Voss, A. (1993). Model-K for prototyping and strategic reasoning at the
knowledge level. In J. David, J. Krivine, & R. Simmons (Eds.), Second generation expert
systems (pp. 721–745). Berlin: Springer.

Linster, M., 1993. Closing the gap between modelling to make sense and modelling to
implement systems. International Journal of Intelligent Systems 8, pp. 209–230.

Marcus, S. and McDermott, J., 1989. SALT: a knowledge acquisition language for propose-
and-revise systems. Artificial Intelligence 39(1), p. 137.

McCoy, K., Moore, J., Suthers, D., & Swartout, B. (1991). AAA1-91 Workshop on
Comparative Analysis of Explanantion Planning Architectures.

Newel, A., 1982. The knowledge level. Artificial Intelligence 18, pp. 87–127.

Puerta, A., Egar, J, Tu, S. and Musen, M., 1992. A multiple-method knowledge-acquisition
shell for the automatic generation of knowledge-acquisition tools. Knowledge Acquisition 4,
pp. 171–196.

Reinders, M., & Bredeweg, B. (1992). Strategic reasoning as a reflective task. In International
Workshop on Reflection and MetaLevel Architecture. Tamacity, Tokyo.

Reinders, M., Vinkhuyzen, E., Voss, A., Akkermans, H., Balder, J., BartschSporl, B.,
Bredeweg, B., Drouven, U., van Harmelen, F., Karbach, W., Karsen, Z., Schreiber, G. and
Wielinga, B., 1991. A conceptual modelling framework for knowledge-level reflection. AI
Communications 4 23, pp. 74–87.

Reynaud, C., Aussenac-Gilles, N., Tchounikine, P., & Trichet, F. (1997). The notion of role in
conceptual modeling. In R. Benjamins and E. Plaza (Eds.), 10th European Workshop on
Knowledge Acquisition, Modeling and Management (EKAW’97), number 1319 in Lectures
Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) (pp. 221–
236). Sant Feliu de Guixols, Spain: Springer.

Speel, P., & Aben, M. (1996). Applying a Library of Problem Solving Methods on a RealLife
Task. In Knowledge Acquisition for Knowledge-Based Systems Workshop (Banff’96). Banff,
Canada.

Steels, L., 1990. Components of expertise. AI Magazine 11 2, pp. 29–49.

Studer, R., Eriksson, H., Gennari, J., Tu, S., Fensel, D., & Musen, M. (1996). Ontologies and
the configuration of problem-solving methods. In Workshop on Knowledge Acquisition for
Knowledge Based Systems (Banff’96). Banff, Canada.

Talon, X., & Pierret-Golbreich, C. (1996). TASK: a framework for the different steps of a
KBS construction. In Workshop on Knowledge Engineering and Modelling Language
(KEML’96). Paris, France.

Tchounikine, P., 1997. Mapcar: a framework to support the elaboration of the conceptual
model of a knowledge based system. International Journal of Intelligent Systems 12 6, pp.
441–468.

Tchounikine, P., 1997. Modelling problem-solving for an educational system. Intelligent
Tutoring Media 7 34, pp. 83–96.

Tchounikine, P., Choquet, C., & Istenes, Z. (1998). Elaborating the problem-solving model of
a fault diagnosis expert system by knowledge level prototyping. Expert Systems with
Applications, 14(23).

- 24 -

Trichet, F. (1997). Trois outils d’aide à la construction d’un Système à Base de Connaissances
en Zola. Research Report IRIN163, Institut de Recherche en Informatique de Nantes (in
French).

Trichet, F., & Tchounikine, P. (1997a). Reusing a flexible task–method framework to
prototype a knowledge based system. In 9th International Conference on Software
Engineering and Knowledge Engineering (SEKE’97) (pp. 192–199). Madrid, Spain.

Trichet, F., & Tchounikine, P. (1997b). Structured explanations as a support to model
problem-solving in a Task–Method paradigm. In G. Grahne (Ed.), Sixth Scandinavian
Conference on Artificial Intelligence (SCAI’97), number 40 in Frontiers in Artificial
Intelligence and Applications (pp. 131–142). Amsterdam, Holland: IOS Press.

van Heijst, G., Schreiber, A. and Wielinga, B., 1997. Using explicit ontologies in KBS
development. International Journal of Human Computer Studies 42 23, pp. 183–292.

Vanwelkenhuysen, J., & Rademakers, P. (1990). Mapping a Knowledge Level analysis onto a
computational framework. In European Conference on Artificial Intelligence (ECAI’90) (pp.
661–666).

Wielinga, B., Schreiber, A. and Breuker, A., 1992. KADS: a modelling approach to
knowledge engineering. Knowledge Acquisition 4, pp. 92–116.

