
1

A Model for Flexibly Editing CSCL Scripts

Péricles Sobreira1,2, Pierre Tchounikine1

1LIG – Université Joseph Fourier, Grenoble-France, Pericles.Sobreira@imag.fr, Pierre.Tchounikine@imag.fr

2DCET – Universidade Estadual de Santa Cruz, Ilhéus-Brazil

Abstract:
This article presents a model whose primary concern and design rationale is to offer users (teachers) with basic ICT skills an
intuitive, easy, and flexible way of editing scripts. The proposal is based on relating an end-user representation as a table and a
machine model as a tree. The table-tree model introduces structural expressiveness and semantics that are limited but straightforward
and intuitive. This approach is less expressive and introduces less semantics than approaches based on workflow representations and
complex meta-models. However, it may be enhanced to represent complex features such as by-intention grouping mechanisms,
constraint checking or configuration of enactment frameworks. A usability test suggests that the model/interface is easy to use and
that teachers avail themselves of the flexibility available to model scripts according to their perspectives.

Keywords:

CSCL Scripts, Editing, Flexibility.

1. Introduction
A Computer-Supported Collaborative Learning (CSCL) script is a learning scenario introducing structure and
constraints that guide how a group of distant or co-present students collaborate. CSCL scripts raise a variety of research
issues: elaborating efficient scripts and design-principles (Aronson et al. 1978, Palincsar & Brown 1984, Dillenbourg &
Hong 2008), studying the issues arising from their use by practitioners (Hernández-Leo et al. 2006), studying
advantages and risks such as limiting the occurrence of certain kinds of negative processes (O’Donnell 1999),
improving learning outcomes (Weinberger et al. 2010), constraining collaboration in a way that may inhibit natural peer
interaction (Dillenbourg 2002) or conflicting with students’ internal scripts (Weinberger et al. 2008). One of these
research issues is the operationalization of scripts.

Operationalization of scripts is “the process of going from an abstract and technologically-independent description
of the script to the effective setting the students will be presented with, i.e., the precise description of the tasks, groups,
constraints to be respected, and technological setting to be used” (Tchounikine 2008). Since the ijCSCL announced
“Scripting in CSCL” as a “flash theme” (Stahl & Hesse 2007), various topics related to operationalization have been
addressed in the journal. Such topics include identification of conceptual primitives to model and represent scripts
(Kobbe et al. 2007), review of issues and a general model for operationalization of scripts in technical settings
(Tchounikine 2008), analysis of the mechanics of scripts (Dillenbourg & Hong 2008) and an approach for implementing
a given script in a broad variety of platforms (Wecker et al. 2010).

In this article, we continue this on-going effort to study operationalization issues, focusing on a specific concern:
offering representation means that (1) are sufficiently simple and flexible to allow teachers to edit a script and adapt it
to their view and context, and (2) can be extended to match other needs or implement advanced features such as
representing complex grouping mechanisms, checking constraints or configuring the software students will be offered.
In this work, editing a script is to be understood as adapting the script phases (e.g., breaking an activity into several
activities or changing a role), instantiating the script with the relevant resources and/or setting up parameters such as
group composition. Target users are teachers with basic ICT skills but no particular training in CSCL methodology.

The contribution we propose is an approach based on relating (1) an easy-to-use end-user representation in the form
of a table with (2) a machine model of the script as a tree. The table-tree model introduces structural expressiveness and
semantics that are limited but straightforward and intuitive. The table presentation enables direct manipulations such as

 Sobreira, P. & Tchounikine, P. (2012) A model for flexibly editing CSCL scripts.

 International Journal of Computer Supported Collaborative Learning 7 (4).

2

moving a student from one group to another or splitting an activity (script flexibility). It also makes it possible to
change how the notions provided to represent a script are used, i.e., changing the representation pattern (representation
flexibility). This approach is not meant to replace the mainstream approach consisting in offering a graph-based
representation of scripts based on a meta-model detailing the different conceptual aspects of scripts. Rather, it offers an
alternative featuring simplicity, easiness and flexibility, to be used if and when needed. This basic model offers limited
expressiveness and is permissive, i.e., does not control users’ representations in the same way as a meta-model
approach. However, if this appears to be an issue, it may be overcome by enhancing the basic model with extensions.

This article is organized as follows: Section 2 presents the background of this work, i.e., recalls CSCL script basics
and the considerations we build on. Section 3 presents and illustrates the proposed model, and shows how it may be
enhanced to represent complex mechanisms (e.g., complex grouping mechanisms), check specific constraints or
configure the enactment platform available to students. Section 4 presents the results of a usability test. Section 5
discusses the core characteristics of this approach (relation to the overall operationalization issue, expressiveness and
limitations, permissiveness, rationale for the tree-table representation and interface variants). Finally, Section 6 draws
conclusions and presents perspectives.

2. Background
Research issues related to script operationalization include identifying requested specifications, designing and creating
adequate technology, verifying that this technology matches its specifications, analyzing how it is used in lab and in
common practices, and analyzing the outcomes. The work presented in this article is a software-centered contribution
related to one particular phase of this long-term effort, namely designing and creating adequate technology for a
specific goal (editing scripts). In this section, we briefly recall the rationale and bases for this work, and the perspective
it builds on. These elements will be taken as standpoints and will not be discussed as such (the point is not to present
new theoretical considerations related to why scripts and script flexibility are of interest, but to study how to design and
implement technology in line with this goal). Additional discussions are presented in Section 5.

A CSCL script is a scenario that aims at setting up conditions (guidance and constraints) that may improve the
likelihood that knowledge-generating interactions such as explanations and engaging in argumentation, negotiation,
conflict resolution, or mutual regulation occur (Dillenbourg & Jermann 2007, Kollar et al. 2006). To do so, scripts
structure the setting by defining precise sequences of activities, grouping students by specific criteria, creating roles or
constraining the mode of interaction among peers (Fischer et al. 2007, Kobbe et al. 2007). Typically, a group of
students is given a task. This overall task is then broken down into subtasks, where the outputs of some subtasks are a
resource requested for others: students are given different roles and resources, and these subtasks, dataflow and
division-of-labor are studied to create a context within which students interact. Scripts may be defined and implemented
as in-presence scripts (involving students present in the same classroom), on-line (involving distant students addressing
the proposed tasks and communicating via a computer-based system only), or blended. As quoted in (Wecker et al.
2010), a broad range of studies highlighting how scripts fostered learning activities has been published (e.g., Baker &
Lund 1997; De Wever et al. 2009; Kollar et al. 2007; Rummel & Spada 2005; Schellens et al. 2007; Schoonenboom
2008; Slof et al. 2010; Stegmann et al. 2007; Weinberger et al. 2005; Weinberger et al. 2010).

Concerning students, operationalizing a script requires offering students a technological enactment framework that
will help them to coordinate and successfully perform the script’s tasks. Such a framework typically includes features
such as communication tools, awareness tools or means to share resources and, when needed, specific pieces of
software related to the task at hand. Enactment frameworks may correspond to different realities. Examples are a piece
of software specifically dedicated to a specific script or script-family and implementing part of the script-specific
support and constraints, e.g., the specific systems implementing the Argue-Graph or ConceptGrid scripts (Dillenbourg
& Hong 2008), a complex generic environment whose features can be organized to fit a given script’s needs, e.g., the
CeLS environment (Ronen et al. 2006), a platform providing support on top of diverse Web contents (Wecker et al.
2010), or a basic Learning Management System (LMS) offering general features, e.g., Moodle (Moodle 2012).

Concerning designers and teachers, there is no consensus on a precise life cycle but, when analyzing different
proposals (e.g., Dillenbourg & Tchounikine 2007, Tchounikine 2008, Weinberger et al. 2008, Villasclaras-Fernández et
al. 2009), the following dimensions can be identified. Script design is the identification of the script’s principles, i.e.,
how the learning activities lead to intended learning goals, and important conditions to be respected. Usually, design is
addressed by instructional designers, and scripts described in a general and more or less abstract way featuring their
core mechanisms: see for example scripts introduced in (Kobbe et al., 2007) or patterns in (Hernández-Leo et al. 2010).
Script editing is the pre-session process required to create a script instance adapted to the setting (in some works, script
editing is referred to as “instantiation”). Script editing is contextual and, usually, addressed by teachers. During the
session, while the script unfolds, teachers are also involved in script monitoring and run-time management.

Script editing content is largely dependent on script granularity level. Although a continuum exists, scripts are often
dissociated into micro-scripts and macro-scripts (Dillenbourg & Tchounikine 2007). Micro-scripts are studied at a
psychological level and aim at scaffolding students’ process at the interaction level. Examples are to ask a student to
state a hypothesis and prompt a peer to produce counter-evidence, constrain interactions by prompting turn taking or
imposing an argumentation grammar. The core mechanism is often reified within the enactment framework e.g.,

3

typically, requiring students to use a structured chat or argumentation graphical tool. Such scripts leave little room for
options, and editing is merely limited to the setting of learning domain resources and parameters such as group
composition. Macro-scripts are pedagogy-oriented large-grained scripts, based on indirect constraints generated by the
definition of the sequence of activities or the group characteristics. For instance, the jigsaw macro-script pattern is as
follows: first, participants individually work on a topic; second, students having worked on the same topic meet in
“expert groups” to exchange ideas; finally, “jigsaw groups” are formed by grouping students who each worked on a
different topic in the preceding phase (Hernández-Leo et al. 2010). This general principle, which may be used in very
different settings (e.g., for a two-hour or a two-month session, with four or forty students), leaves room for many
options. At least the script must be instantiated with the learning domain (e.g., if the domain is “energy saving”,
deciding to create groups focusing on “insulation” and others focusing on “heating”, and defining the adequate
resources as on-line documents, wikis or quizzes), and group compositions must be set up. However, for such macro-
scripts, script editing may also involve adapting or increasing script accuracy by taking into account the contextual
aspects revealed by local analysis of issues such as related past or future classroom activities, availability of resources,
constraints related to the given enactment framework students are familiar with, or which is imposed by the setting, or
other dimensions such as time pressure or institutional demands (e.g., the fact that each student must receive an
individual grade). Management of macro-scripts is now often conceptualized as part of the general orchestration of the
teaching setting. Within this perspective, a script is to be seen as only one element of the setting, and the setting is to be
seen as a complex, multilayered and highly constrained ecosystem whose “orchestration” may require some run-time
adaptations (Dillenbourg et al. 2011).

Design/editing and micro/macro dichotomies open up perspectives for different views with respect to what may be
considered as legitimate variations of scripts. One perspective is to consider that a script defined by instructional
designers and positively evaluated in research should not be adapted by teachers any more than is needed to instantiate
it with the learning domain and to deal with situations in which it cannot be straightforwardly implemented (e.g., if
class size is not a multiple of intended group size). Another perspective, that we will refer to as the open perspective to
script editing, is that teachers, as those in charge of reflecting on and managing the classroom (the students, the overall
activities, the institutional context, etc.) and script enactment, may engage in substantial adaptations, before and during
the session (orchestration perspective). With respect to micro-scripts, the former perspective is required. With respect to
macro-scripts, the question is more open, if only because these scripts are more general constructions and thus require
more instantiation work. The open perspective covers a continuum ranging from limiting adaptations within the script’s
intrinsic constraints (i.e., its design rationale principles (Dillenbourg & Tchounikine 2007)) to unrestricted adaptations.

Another aspect of the fact that teachers may be allowed to engage in extended edition of scripts is teachers’
appropriation. Adaptability to teachers’ settings and perspectives are important characteristics for appropriation and
usage (Williams et al. 2004). This aspect, however, is dependent on many other dimensions, including teachers’ skills
and institutional dimensions: in some settings/countries, instructional designers define scripts while teachers, at the
most, instantiate and set up the script. In other places, teachers may have a more active role, including the design of
variants or even new scripts. More generally, the fact that a learning design language makes it difficult for teachers to
easily adapt a scenario has been identified as a possible issue for adoption (Neumann et al. 2010).

In this work, we consider macro-scripts and the open perspective to script editing. As suggested in (Dillenbourg &
Tchounikine, 2007), we consider script editing as a teacher’s task that consists in taking local decisions: this ranges
from the general specification to the precise instantiation of specific aspects related to the field under consideration,
specific goals, individual student skills or profiles, time constraints, space, available technology, pre- and post-
activities, or institutional dimensions. Moreover, we give specific importance to the fact that teachers are empowered in
viewing and representing the script according to their perspective.

Script editing, as considered here, is an elaboration experience rather than a straightforward process. While tuning
the script support/constraint aspects, different registers may be used: the precise task students will be given, how this
task is broken down into subtasks, the way the outputs of some subtasks become a resource for others, the way students
are grouped (taking into account general principles and students’ effective characteristics), how roles are emphasized or
faded, etc. Although the structure and some decisions are imposed by the script rationale (e.g., creating jigsaw groups)
and other decisions may be imposed by the setting, a variety of options may be envisaged and sketched while the
editing process, considering the different options and refining decisions, until a satisfactory structure has been obtained.

Script editing is a specific concern related to the more general topic of script representation (Miao et al. 2005,
Botturi et al. 2006, Harrer & Hoppe 2008). Considering representation tools and editing in particular, two general
features of interest may be highlighted. A first feature is to offer users relevant means to reflect on the script. Different
users may have different needs and requirements. While instructional designers may require means to specify scripts or
index them in repositories, teachers are more interested in how to adapt and efficiently deliver scripts in real classrooms
(Weinberger et al. 2008). A second feature is to configure (or partially configure) the enactment framework, i.e., from
the representation of the script as defined within the teacher-oriented editor, configure the constructions denoting the
groups and resources (etc.) in a target platform such as Moodle (Moodle 2012), LAMS (LAMS 2012), CeLS (Ronen et
al. 2006) or CoFFEE (Belgiorno et al. 2008). If the script editor is interoperated with the enactment framework and can
retrieve data related to script unfolding, this feature may also be used to allow teachers to adapt the script and/or
enactment framework at run-time, in relation with overall orchestration of the setting.

4

3. The T2 model

3.1. Overview
The T2 model is an intentionally simple model designed to facilitate editing and adaptation of macro-scripts within an
open perspective to script editing. Its main goal is to (1) provide a base for creating editors offering intuitive and easy-
to-use means to edit the script while (2) keeping open the possibility to enhance the editor with advanced means or
mechanisms if/when considered useful. The prototypical use-case considered here is that of a teacher with basic ICT
skills and no particular CSCL methodology training, taking into account an already designed script such as those
presented in Figure 2 (Section 4) and, while editing it (i.e., defining the precise activities, resources or groups), adapting
it to his/ her view and context.

The research goal is to explore a perspective significantly different from the mainstream approach. With respect to
macro-script representation, the mainstream approach is to define a conceptual meta-model of a script (e.g., the meta-
model presented in (Miao et al., 2005)) and to develop a language/editor implementing this meta-model expressiveness
and semantics, i.e., requiring that users comply with the model constraints. Most of these languages/editors adopt a
graph-based approach (Botturi & Todd 2007), which neatly captures scripts dynamics (dataflow and/or workflow) and
allows a straightforward link with workflow engines (Harrer et al. 2007). Not misunderstanding the interest of this
approach, in terms of expressiveness and conceptual support in particular, our work explores an alternative building on
different premises. First, we take as an entry point of the work and main design decision offering a language/editor
based on a table, as a basic and very common structuring device. Second, we consider basing the model semantics on
the table structure (i.e., the column/row structure) rather than on a proper meta-model (we will refer to this as a
structural semantic). We manage these specifications by placing the interface (the table) in relation with a machine-
readable model as a tree. This principle makes it possible to address editing of the script via natively-simple
manipulations (mouse-manipulations of a table structure and content, as in office suites), instead of elaborating a rich
and complex language hypothetically rendered easy to use by basic users via user-friendly interfaces and training.

This structural approach is highly flexible, of a somewhat limited expressiveness, and permissive. The basic model
does not directly allow representation of complex mechanisms and implements an unrestricted perspective to script
editing. However, it can be enhanced by introducing more expressiveness and support/constraints on top of the
structural features. Introducing such extensions is to be thought of as a way to benefit from the model native simplicity
and flexibility advantages while enhancing it or overcoming some of its specificities if/when they appear as limitations
(using extensions to obtain an equivalent to current state-of-the-art language building on graph representations and a
powerful meta-model is of little interest as a meta-model approach is much more straightforward).

The model presentation is structured as follows: introduction of the Table/Tree structure (§3.2), presentation of the
basic semantics (§3.3), the flexibility offered (§3.4), the model constraints (§3.5), how machine representation is
managed (§3.6), then, finally, presentation of how the model may be enhanced to extend expressiveness (§3.7) and
semantics (§3.8), and how it allows an enactment framework to be configured (§3.9). Illustrations are taken from the
usability test (presented in Section 4). Further discussions are proposed in Section 5.

3.2. The Table / Tree structure
The T2 model proposes considering a CSCL script as (1) a table composed of columns and rows (which can be broken
down into sub-rows) if it is addressed via its user-oriented visualization, and (2) an n-ary tree composed of levels and
branches if it is addressed as a formal structure. The model is named T2 to denote this double Table and Tree structure.
From a Computer Science perspective, the table and the tree respect a structural correspondence, i.e., one element of the
tree corresponds to one element of the table interface and vice versa.

Tables are two-entry structures. We have defined the column as the entry denoting conceptual notions: each
column corresponds to a notion (rows thus have a homogeneous column structure). In our current work, we reuse the
notions proposed in (Kobbe et al. 2007): activities (what must be done), participants (individuals), groups, roles and
resources (virtual or physical objects used, modified or produced by the participants). The rationale for using this
framework is that it has been elaborated as a consensus by scientists from several fields (educational, cognitive and
computer sciences) as a result of their experiences in specifying CSCL scripts, has proven it can model a variety of
macro-scripts of different types, and is fairly intuitive (as confirmed by our usability test). If we take the example of an
interoperation with an enactment framework such as Moodle, resources may be an instruction page, a file, a quiz, a
chat/forum, a wiki or an URL to a Web-resource. With respect to the original framework, we add the option of tagging
resource labels to identify whether they are offered (-in) or produced (-out) by students.

Figure 1 presents (1) the general interface of a standalone editor (named ediT2) that we have developed to analyze
whether teachers were at ease with the model, and (2) the corresponding machine representation as a tree. In the editor,
the zone to the left is an ad hoc feature used to create the items (activities, groups, participants, resources and roles) that
will be referred to in the script1. Let us consider the two first rows. The teacher has first represented a “Read the general
text” activity, to be carried out by each of the four students (e1, e2, e3 and e4), where “General text” is the available

1
 If such an editor is used when integrated with a LMS, some of these items may be downloaded from the LMS database.

5

resource. The second activity, “Identify techniques”, involves two groups (G1 and G2) with different participants (e1
and e2, e3 and e4, respectively) and different resources. In the tree representation, a fictional root is defined. Its children
are the elements corresponding to the first column in the table, i.e., the four activities “Read the general text”, “Identify
techniques”, “Crossing groups” and “Regrouping”. “Read the general text” has a linear structure (branching factor = 1).
“Identify techniques” has two children, G1 and G2 (branching factor = 2). In this case, none of the cells corresponding
to the participants and resources are broken down any further, and the role notion is not used.

A script represented with the ediT2 editor Machine
representation as

a tree

Figure 1. A script as a table (within the ediT2) and as a tree2

We will call script-structure the ordered list of notions used as columns (e.g., in Figure 1, Activity-Group-
Participant-Resource), pivotal notion the notion used as the first column (Activity), script-component a row, referring to
it by its pivotal notion (e.g., the “Read the general text” script-component), and items the specific values attached to the
cells or, within the tree perspective, to the nodes (e.g., participant “e1”).

Representing and editing a script is a double-dimension process. One dimension is related to the definition of the
script-structure, i.e., the model that rules the script-components description. At this level, the pivotal notion defines a
modeling commitment (e.g., in Figure 1, a script is modeled as a set of Activities). The second dimension is related to
the script-components, i.e., creating and manipulating rows and items. Table 1 summarizes basic actions to
represent/edit a script.

Table 1. Basic actions to represent/edit a script

 Example Table perspective Tree perspective

Representing/editing
the script-structure

Deciding that a script will have
an Activity-Group-Participant-
Role-Resource structure

Creating and ordering the
columns of the table

Defining the structure of a
branch

Representing/editing
the script-components

Creating the “Read the general
text” script-component

Creating a row Creating a branch

Associating “e1” with group
“G1”

Associating items with a cell Associating items with a node

Associating “G1” and “G2”
with Activity “Identify
techniques”

Creating sub-rows (or
merging cells of existing
rows) and then associating
items with the cells

Creating a sub-branch or
unifying sub-branches and
associating items with the nodes

3.3. Basic semantics

Natively, the column headings are just type labels. An activity column states that the values that can be placed in this
column are edited as the type activity (i.e., in the ediT2 interface, are defined as activities in the activity box which is to
the left of the interface) A script is a list of script-components, where a script-component is a homogeneous

2
 In this Figure, we have re-written the representation created by one of the teachers who participated in system tests for the jigsaw

script presented in Figure 2, and translated the items (names of activities, etc.) to English. One may notice that for the “Regrouping”
activity (last row) the teacher tagged the “Answers” resource as “.in” whereas it is likely to be, rather, an “.out” resource.

6

juxtaposition of instances of notions (in our case: activities, participants, etc.). The notion’ semantics is only carried out
by the label and its intuitive meaning (and, thus, possibly related to the user’s perspective, which may be idiosyncratic
and/or related to professional training or context of practice). How an activity relates to groups or roles is only natively
represented by a generic is-associated-with relationship denoted by the row structure (structural semantics).

Table 2 presents a basic interpretation of the generic is-associated-with relationship. As an example, within this
interpretation, the “Identify techniques” script-component represented in Table 1 may be read as follows: the activity
“Identify techniques” is achieved by groups G1 and G2; G1 is composed of e1 and e2; these participants are presented
with the resource “Insulation text” and are to produce the resource “Insulation list”; G2 is composed of e3 and e4; these
participants are presented with the resource “Heather text” and are to produce the resource "Heather list".

Table 2. A basic interpretation of the is-associated-with generic relationship
 Activity Group Participant Role Resource

Activity
The activity is
achieved by
group(s) …

The activity is
achieved by

participant(s) …

The activity is
achieved by playing

the role(s) …

The input/output
resource(s) of the activity

is (are) …

Group
The group is to

consider the
activity(ies) …

The group is

composed of the
participant(s) …

The group is to play
the role(s) …

The group is presented
with / is to produce the

resource(s) ...

Participant
The participant(s) is
(are) to consider the

activity(ies) …

The
participant(s)
will pair as
group(s) …

The participant(s) is
(are) to play the role

(s) …

The participant(s) is (are)
presented with / is (are) to
produce the resource(s)

…

Role
The role involves
considering the
activity(ies) …

The role will
be played by
the group(s)

…

The role will be
played by the

participant(s) …

The role is to be played
using the input

resource(s) / producing
the output resource(s) …

Resource

The activity(ies) to be
considered in relation
to the resource(s) is

(are) …

The group(s)
working with
this (these)

resource(s) is
(are) …

The participant(s)
working with this
(these) resource(s)

is (are) …

The role(s) to be
played with this

(these) resource(s)
is (are)…

This structural approach is significantly different from explicitly representing relationships such as is-achieved-by
or is-performed-by, and associated constraints, using a proper meta-model defining a script (see for instance (Miao et al.
2005)). From a meta-modeling perspective, the implicit T2 meta-model is basic: a list of notions Ni, where Ni is related
to Ni+1 by a 1..* relationship and, in our case, i ∈ [1.5], and Ni assumes values in {“activity, “group”, “participant”,
“role”, “resource”}. Such a perspective, however, does not capture much of the work’s rationale. Another way to phrase
it, more in line with the approach, is to state that a table is an easy-to-use way of offering end-users (limited) meta-
modeling means, in this case selecting the notions they want to use and ordering them as they prefer.

3.4. Flexibility offered
The original flexibility feature introduced by the approach, which we refer to as representation flexibility, consists of
the possibility of determining the script-structure, i.e., which notions are used and in what order. This allows for
addressing scripts conceptualized in very different ways. A prototypical script-structure is Activity-Group-Participant-
Resource: a script is addressed as a set of activities to be carried out by a group (or groups) composed of participants,
where each participant is associated with resources. This pattern has many variants: specifying roles for participants and
associating roles with specific resources (e.g., Activity-Group-Participant-Role-Resource), associating resources with
activities (e.g., Activity-Resource-Group-Participant), etc. Other very different examples are: Group-Role (a script is
addressed as a set of groups and the roles to be played by these groups) or Resource-Group-Activity (a script is
addressed as a set of resources which will be used by different groups to conduct different activities).

For a given script modeled within T2, different types of editing actions can thus be discerned:

1. Editing a script-component (e.g., adding a participant to a group). In terms of the model, such changes only
affect the items attached to a cell/node. They do not affect the tree structure.

2. Editing the script-component list (e.g., adding/removing a script-component or swapping script-components).
In terms of the model, such changes affect the number of tree branches or their ordering.

3. Editing the internal structure of a script-component (e.g., defining new roles within an activity by splitting a
cell). In terms of the model, such changes affect the number of branches representing a script-component (the
arity of this branch as a sub-tree), and their associated items.

4. Editing the script-structure (representation flexibility, e.g., using a new notion, removing an existing notion
or changing the order of the notions). In terms of the model, such changes affect the structure of the branches.

7

Referring to the ediT2 interface, the different editing actions correspond to the manipulation possibilities
conventionally offered by a table:

1. Dragging and dropping an item from one cell to another (e.g., moving a participant from one group to
another).

2. Adding, removing or displacing a row (e.g., where Activity is the pivotal notion, adding a new activity or
swapping two activities). A Script-component is created by clicking on the “Insert a new row” button (Figure
1) and dragging and dropping items into its cells. Each row is associated with arrows to move them up or
down and a bin icon. Several facilities (e.g., duplicate a complex row, with or without its items) are proposed.

3. Splitting a cell into several cells (e.g., splitting an activity into two activities or associating an activity with
several groups) or merging cells (e.g., regrouping individual participants initially spread into different
groups). Merges and split features are available when right-clicking on the relevant cell(s).

4. Adding, removing or displacing a column (e.g., changing from an Activity-Group-Participant-Resource
perspective to a Role-Participant-Resource perspective). Deciding to use a given notion (i.e., creating a
column) requires ticking the relevant box in the left part of the interface. This creates the relevant column in
the table (e.g., the “Activity” column). Each column is associated with a left and right arrow moving the
column (the column is moved as a whole, i.e., for all already existing rows, which is the application of the
script-component homogeneity principle).

It should be pointed out that the model allows changing the script-structure while the script is being edited, i.e.,
while the table is already filled. If the script-components all respect a 1-1 relationship (i.e., a table made up of full-rows,
with no split cells), the order of notions denotes the way the script is conceptually addressed (e.g., as a set of activities
or as a set of roles), but the fact that columns are displaced does not further change the script semantics as the 1-1
relationships remain identical. In direct contrast, if the script presents 1-n with n > 1 relationships, a change of
perspective resulting in column displacement may deeply affect the tree structure (see Section 3.6).

Within our open perspective to script editing, we consider representation flexibility as an important feature
allowing teachers to adopt the perspective they prefer. Options to the basic model are to offer even more flexibility and
allow end-users to define their own notions or, on the contrary, limit manipulation possibilities (see Section 3.8).

3.5. Constraints
To avoid ambiguous constructions, the constraint introduced by the T2 model is that a script-component must comply
with a 1-n with a n ≥1 relationship (or, in other words, a script is a tree and not a graph: a cell has only one parent).
Table 3 illustrates the rationale for this constraint. Given the fact that participants P1 and P2 will engage in activity A1
with the same resource R1 (representation of the left side of the Table), the resource cells could be merged
(representation of the right side). However, this would lead to an ambiguous construction with respect to roles (e.g., it is
unclear whether P1 or P2 are to play roles RL1, RL2 and RL3). This constraint keeps the table equivalent to a tree and
thus interpretable within the adopted structural semantic3.

Table 3. Rationale for the 1-n with n ≥1 relationship
interpretable construction ambiguous construction (it is no longer a tree)

Activity Participant Resource Role Activity Participant Resource Role

A1

P1 Rl RL1

 A1

P1

Rl

RL1

RL2

P2 Rl
RL2

P2
RL3 RL3

It should be noticed that this constraint applies to the structure of the script-components. It does not mean that items
should be referred to in the script only once. Let us consider the case of a script using two resources, a quiz Q1 and a
wiki W1 (taking Moodle as the deployment platform). Q1 and W1 may be referred to in different rows. For instance, a
first row may state that a first pair of participants P1 and P2 will be offered Q1 and W1, and a second row state that a
second pair P3 and P4 will be offered the same resources Q1 and W1. In such a case, all four students will be offered
Q1 (individual quiz), P1 and P2 will be able to collaborate via a first instance of wiki W1, and P3 and P4 will be able to
collaborate via a different second instance of W1 (in other words: P1 and P2 will not access to P3 and P4 interactions,
and vice versa). If the four participants’ cells are merged, then the four of them will be involved in the same wiki.

From the point of view of the model, the fact that cells are not associated with any value is not an issue
(independently from the fact that it is meaningful or not). For instance, an individual phase may be represented by
creating a row mentioning the activity, the participant and the resource, where the group column is kept blank. During
our usability test, several teachers straightforwardly defined such representations, although we had not made this

3
 Of course, interface subtleties could be imagined to locally overcome this constraint, but this is of little interest and would contradict the simplicity

principle. See further discussions in Section 5.4.

8

explicit during the editor presentation. An example of meaningless construction would be a collective activity not
indicating who the participants are.

3.6. Management of the model and users’ actions
Since the approach does not offer the semantic advantages provided by a specific meta-model, it may be considered that
the T2 model and its flexibility features can be obtained by using a basic table editor as in office suites. The interest of
the model and a specific implementation, however, is to offer services related to tree representation (editing facilities,
unambiguous constructions, and possibility of enhancing basic model expressiveness and semantics).

 From an end-user perspective, the advantage of the table structure is to avoid complex syntactical constructions,
the constraints of which must be understood and properly used: the table structurally denotes the semantics. From a
machine perspective, the advantage is similar. Natively, script manipulations correspond to manipulations of branches
and nodes. They are interpreted with respect to the tree structure, and reported in the tree representation (or inhibited if
inconsistent with the model). This corresponds to basic algorithms on tree data-structures, where these algorithms are
uniform (splitting an activity or a group both correspond to the same internal manipulations).

A certain number of algorithms are trivial. Managing (attaching, removing or moving) values associated with nodes
is basic. Adding, removing or displacing rows corresponds to manipulations of the list of branches. Adding or removing
a column corresponds to the creation or destruction of the corresponding segment in all the tree’s branches.

Splitting/merging cells (creation/merges of sub-branches) and displacing a column both require propagating the
modifications via tree manipulation algorithms to maintain the representation coherent with the model. Table 4 presents
two cases of propagation actions. It may be noticed that, when propagating changes in the tree structure, the sub-rows
and items may be managed in different ways. For instance, when splitting the {P1, P2, P3, P4} Participant cell into two
(Table 4, row 1), the resulting Participant cells may be reinitialized to blank, associated to the participant(s) preexisting
to the manipulation or spread over the two new cells. This may be configured and, anyway, the result may be easily
adapted by further merge/split or drag-and-drop actions.

Table 4. Examples of manipulations of script representations and propagations

Script representation Manipulation Script representation modified (when applied)

Activity Participant Role Resource

A1

P1 RL1 R1

P1 P2 P3 P4
RL1
RL2

R2

R3

R4

R5

Split the cell containing
{P1,P2,P3,P4} Participants

in two

Activity Participant Role Resource

A1

P1 RL1 R1

P1 P2 P3 P4
RL1
RL2

R2

R3

R4

R5

Activity Participant Role

A1

P1 RL1

P2
RL2

RL3

Displacement of the Role
notion towards the left

(or of the Participant notion
towards the right)

Activity Role Participant

A1

RL1 P1

RL2 P2

RL3 P2

3.7. Enhancing expressiveness
We shall now examine how the model basic expressiveness may be enhanced. For this purpose, we will refer to Kobbe
and his colleagues’ framework, which highlights three important mechanisms. Group formation specifies how groups of
participants are constructed. Task distribution specifies how components (e.g., activities, roles or resources) must be
distributed among participants or groups. Finally, sequencing specifies how the script’s phases or tasks will be
distributed over time. This can correspond to a simple linear ordering (phases or tasks are to be taken one after the other
as listed in the script) or to complex dynamic structure such as traversion, rotation or fading.

Group formation and task distribution

Within the basic T2 model, group formation and task distribution are represented by extension, i.e., listing the items
associated with nodes (see preceding examples). While this may be sufficient in many cases, it may be an issue in
others. First, if the script involves many students, creating these lists may become time consuming and/or over complex.
For instance, creating groups for a jigsaw script requires mixing students from different focus groups, and scripts such
as the reciprocal teaching script (Palincsar & Brown 1984) require the rotation of roles among students during
unfolding. Managing these mechanisms for 4 or 6 students is easy, but may become intractable for 20 or 200 students.
Second, listing the items associated with a node does not allow specifications as an abstract principle (e.g., “G3 is made
up by mixing G1 and G2 students”) or a dynamic principle (e.g., “G2 is made up of the five students who finished

9

activity A1 first”). Such a dynamic and possibly run-time management of groups may be processed by the teacher if he/
she controls the enactment scheduling, dragging-and-dropping a student from one group to another “by hand”.
However, when considering large groups or automated run-time management, representation by extension is an issue.

Overcoming the “by-intension description” limitation does not need to modify the bases of the T2 model but, rather,
its implementation. If considering the ediT2 implementation, it must be enhanced by associating nodes with algebraic
constructions and introducing configuration interfaces in the groups (etc.) definition boxes. For instance, the
Universanté script (Dillenbourg & Jerman 2007) requires, in some places, to refer to groups studying similar clinical
cases and, in others, to groups made up of students from the same/different countries. Representing such scripts may be
addressed by representing the necessary information in the participant data-structure (e.g., country) and modify the
group definition box to allow defining a group as the intersection, union or crossing of other groups. Implementing the
corresponding algebraic constructions is standard engineering work. This would allow representing dynamic
mechanisms such as “a country-theme set is made up of students such that the ‘from a same country’ and the ‘worked at
a same theme’ conditions hold”.

As a way to show how the T2 model allows by-intension descriptions and configurations, we have developed an
extension of the ediT2 editor to implement one of the different options for grouping students and distributing resources
in the case of the jigsaw script pattern. The configuration is defined by (1) the list of students, (2) the list of topics (e.g.,
two topics: “insulation” and “heating”), (3) the list of resources tagged with their related topic (i.e., an indication which
documentary resources address “insulation” and which address “heating”), and (4) a set of parameters. These
parameters include (i) the required number of students per group (which indirectly defines the number of groups), and
how to manage odd cases, and (ii) the way resources should be distributed. As examples of options for managing group
odd cases: creating extended groups or an additional small group. As examples of options for distributing resources:
provide all participants with all resources related to their topic or spread resources over the participants. Given the set
configuration, a specific algorithm generates a tree matching the constraints (different solutions may be available): it
first associates expert groups with topics (e.g., for 5 groups and 2 topics, 3 of them will work with one topic, and the
other 2 with the other one) and, then, from the expert groups, (1) distributes the resources to the participants for the
initial phase and (2) creates the jigsaw groups. If the configuration accepts no solution, the algorithm raises the
impossibility and the reason(s) for this.

If we take the case of 22 students, a target number of 4 students per group and the option of extended groups, a
solution is a tree with 78 nodes (a table with 32 sub-rows). Indeed, such a description would be difficult to manage by-
hand. However, once the tree is automatically generated, the table representation can be used to manage slight
modifications (e.g., move a student from one group to another) before or during the session. In this case, a variety of
options are open such as allowing the teacher to apply any changes or checking whether the changes applied are
contrary to the jigsaw intrinsic constraints via control rules (see next Section).

It may also be noticed that, if the editor is interoperated with an enactment framework and can retrieve data related
to the script enactment, associating formulas to nodes allows dynamic grouping. For instance, if the enactment
framework allows retrieving which participants have completed an activity and their productions, using formulas allow
definitions such as “G1 is made up of students whose answers to the quiz Q1 were correct”.

Sequencing

An intrinsic limitation of the ediT2 model is the representation of complex sequencing. Tables allow representing
sequences. Representation of complex sequencing mechanisms (e.g., parallelism or loops) and, more generally, intuitive
representation of the dynamic dimensions of scripts require languages building on graph models and graphical
interfaces (Botturi & Todd 2007).

If used for reflecting on the script only (i.e., human interpretation) and considering simple cases, the lack of
sequencing expressiveness is not necessarily an issue. For instance, in the jigsaw script presented in Figure 1, the fact
that the jigsaw activity takes place after the focus activity is implicit but obvious (they are in sequence, and the
resources produced in the context of the latter are inputs for the former). Similarly, the fact that the focus groups (and,
later on, the jigsaw groups) may work in parallel is again implicit but rather intuitive. This, however, would not work
for a complex scheduling as, for example, in the script presented in (Roschelle et al. 2009), which involves conditions
and repetitions. While it is possible to find more or less explicit and neat ways to represent repetitions or rotations, this
is more difficult for conditions.

The model may be enhanced by developing an additional mini-language to represent sequencing mechanisms and
attaching these constructions to the different script-components. However, this goes against the approach rationale of
exploiting the intuitiveness of table structures, and, also, would remain limited.

Another way to enhance the model, more in line with the overall approach, is to acknowledge that tables are rather
pertinent to capture static descriptions, graphs are rather pertinent to capture dynamic dimensions, and both can be used
when needed. Viewed in this way, enhancing the approach to represent complex scheduling mechanisms consists in
connecting the T2 representation with a graph representation allowing capturing dynamic dimensions.

As a proof of concept, we have designed and implemented a piece of code that, focusing on the Activity-Group-
Participant-Resource script-structure, transforms a T2 script into a statechart skeleton. The basic principle is to map the
script notions (activities, etc.) onto the workflow concepts (we used the classical workflow engine Drools Flow as a

10

target (Drools 2012)). Given a script represented as a T2 table, a specific piece of code generates a Drools Flow
representation, i.e., a list of workflow components not yet connected to each other. This file can then be opened with the
workflow editor, which offers specific constructions to connect the components as required and represent complex
sequencing such as conditions, loops or iterations through split/join and for-each connectors.

The advantage of such an interoperation is to offer both (1) a specific editor providing easy and flexible
representation of some aspects of the scripts and (2) another specific tool for representing and implementing complex
sequencing (the Drools Flow interface is specifically designed to support the representation of such mechanisms, which
can be defined via mouse manipulations). Within an engineering perspective, using a variety of languages may also be
considered as a way to elaborate and prototype with some tools and specify with others.

3.8. Enhancing semantics
We shall now see how the model semantics may be enhanced.

We have mentioned that, basically, the model introduces a table structure. However, this table is not manipulated
free of any constraint. Each manipulation is interpreted with respect to the tree representation, and accepted or not
according to the constraints defined (basically, the tree constraint). This implementation approach allows enhancing the
structural semantics by adding an analysis of the users’ actions with respect to other constraints. Technically, this may
be implemented by implementing constraints as control rules, and firing these rules when end-users act on the table.

Control rules may be used to limit model flexibility. For instance, a control rule may be used to impose a particular
-or part of a particular- script-structure, relationships between notions (e.g., regulate the way Roles may be related to
Groups or Participants) or relationships between items (e.g., preclude groups made up of a single participant or other
odd constructions). Control rules may also be used to implement specific intrinsic constraints as defined by Dillenbourg
& Tchounikine (2007), i.e., semantics related to the script rationale. For instance, if specifically considering jigsaw
scripts, a control rule may be defined to check that “participants of the jigsaw groups have been in different expert
groups”. From a technical point of view, implementing such rules is made easy by the fact that they operate on trees, a
type of algorithmic for which lambda-calculus based languages are particularly suited and efficient.

It should be noticed that, here, we only describe how the limitations of the basic semantics introduced by the table
structure may be overcome, as a way to offer teachers some additional conceptual support if/when this is considered.
However, regarding the issue of supporting teachers as such, many other aspects may be considered, e.g., offering T2
skeletons of classical scripts (with, possibly, control rules related to their intrinsic constraints) or a repository of
elements that may be used to describe activities or roles such as “synthesize” or “discuss” (with, possibly, control rules
to check whether their use is coherent); and, of course, methodological hints.

3.9. Configuring an enactment framework

We shall finally see how the T2 model can be used to configure an enactment framework.

One approach is to implement specific pieces of code addressing the following two aspects. First, initialize the
ediT2 “resources box” with the labels of the resources previously defined in (for instance) Moodle, which then allows to
use ediT2 to represent/edit the script, dragging and dropping these resource labels in the table. Second, interpret the
different script-components and generate the relevant data in the Moodle database.

Another approach is to use an architecture such as Glue!PS, which allows mapping a learning design onto different
frameworks (Prieto et al. 2011). Using this architecture only requires creating an adapter ediT2 notions / Glue!PS
notions. On the enactment framework side, Glue!PS already proposes an adapter to Moodle. Using Glue!PS, a jigsaw
script as presented in the preceding sections will be converted in a set of Moodle activities, offering the different
resources (documents, quizzes or wikis) to the students according to the activities and groups. A central advantage is
that Glue!PS allows mappings on different other frameworks (e.g., LAMS), with different modalities.

4. Validation of ease of table-tree representation and perceived flexibility

In this Section we consider the validation criterion: is the model/system easy to use by teachers?4

4.1. Usability test
We tested the prototypical case we had defined, namely a teacher considering an existing script (those presented in
Figure 2) and editing it. The panel included five primary or secondary school teachers. We also involved one learning-
scenario modeling specialist (an instructional designer) and one modeling specialist (a computer science university
professor) as a way to get some possibly different input.

4
 Technical frameworks are to be measured with respect to their design rationale and specifications, i.e., in this case, ease of use. They are not to be

analyzed in terms of the quality of the produced scripts or learning outcomes, since representations or operationalization frameworks may be used to
implement a broad variety of collaboration scripts, including ineffective or detrimental ones (Wecker et al. 2010).

11

Script#1: a reciprocal teaching script, adapted from (Palincsar & Brown 1984)

The setting involves three or four students who are going to work on a section of text (e.g., a chapter). First, the teacher introduces different reading
strategies: questioning, clarifying, summarizing and predicting. The students are required to read the text. Afterwards, one of them, acting as a
teacher, lists a certain number of questions to be considered. The students discuss these questions and possibly raise others. Afterwards, the student in
the teacher’s role proposes an abstract; the group discusses it and modifies it until agreeing on it. Finally, the students make some predictions as to
what will happen in the subsequent stages of the text. [The scenario then continues with another section text and another student acting as the teacher]

Script#2: a jigsaw script, instantiated on an energy saving topic

The scenario involves a group of four students. At the end of the process, they must produce a common document answering a set of questions. The
four students are first given a common text introducing general principles related to energy saving. Then, two of the students are given a text focusing
on insulation, and must produce a text listing a variety of possible techniques. The two other students are given a text focusing on heating and, yet
again, must produce a text listing a variety of possible techniques. The students are then put into pairs composed of one student that worked on
heating and another who worked on insulation. They are given the document listing the insulation techniques and another document listing a set of
questions, and together must write a document answering these questions. Similarly, the two other students are given the document listing the heating
techniques and the same set of questions, and together must write a document answering these questions. Finally, the four students are grouped. They
must compare their two lists of answers and prepare a final team answer.

Figure 2. The scripts used for the usability test

The protocol is summarized in Table 5. The study was conducted to analyze trends reflecting the editor’s (and
underlying model’s) usability and, more precisely, whether teachers succeeded in using the editor to model the script
the way they wanted. The editor was introduced within its basic implementation and free of any methodological
training. We did not consider if the different representations produced by the different teachers were or were not
semantically equivalent to each other (or to the canonical patterns) as this is not one of the goals of the basic
model/editor. We introduced two scenarios to limit the intrinsic bias that consists in introducing a computer-based tool
and, within the same session, analyzing how users use it. Similarly, in the questionnaire, we introduced questions on the
script and the notions (activity, role, etc.) to make sure teachers dissociated the editor usability (which is what we were
interested in) from their personal perspectives or potential difficulties with the notion of script, the two scripts used as
case studies and/or the notions available (however, none of the teachers had difficulties with any of these issues).

Table 5. The protocol

Phase Content

Phase 1 The teacher was presented with a demonstration of ediT2 (basic model/interface).

Phase 2

The teacher was presented with the narrative of a first script (the reciprocal teaching script as presented in Figure 2)
and asked to create a representation with the editor. The teachers were prompted as follows: “You plan to implement
the following script in your classroom. Use the editor provided to create the synthetic representation you find most
suited to plan the different steps and, while the script unfolds, annotate the plan, if necessary, to monitor what is
happening or adapt the script”.

Phase 3
A first questionnaire and debriefing were conducted to collect the teacher’s first impressions, and respond to any
questions related to the editor. It determined whether users were at ease with the editor features and opened up a first
general discussion. Sample question: “What problems did you experience, if any?”

Phase 4
The teacher was presented with the narrative of a second script (the jigsaw script as presented in Figure 2) and asked
to create a representation with the editor (prompted as in Phase 2).

Phase 5

The teacher was presented with two events related to his/her jigsaw script representation and asked to explain how
he/she would react and adapt the script representation. The first event involves one student stating that he/she does not
want to work with his/her assigned partner in one of the pairs defined by the teacher. The second event involves one
student finishing long before the others, while working in parallel.

Phase 6

The user was presented with a final questionnaire presenting four parts. First, questions on the teachers’ perspective on
scripts in general, and on the notions provided by the editor to represent scripts (sample question: “I have difficulties
thinking with the notions provided”). Second, questions on the editor. Third, questions on the way teachers engaged in
the process and used the system (sample questions: “I found that the capacity to adapt the representation […] allowed
me to reflect on the script, to refine my vision”; “When I represented the first script, I got right into it and adapted
things little by little”). Finally, teachers were asked to highlight any comments or suggestions (open discussion).

The answers to the questions confirm that the editor and underlying model are intuitive and easy to use. All five
teachers agreed or strongly agreed that they found the tool easy to use for the second script (four of them agreed or
strongly agreed about the first script) and felt that, if they had to use the tool for a third time, it would be easy. All
teachers managed the technical dimension of the interface (i.e., using drag and drop, split or merge features) almost
immediately. None of them reported conceptual difficulties. When required, overcoming the 1-n relationship constraint
by duplicating items was mentioned neither as a conceptual nor as a manipulation issue.

 As contextual information, Table 6 presents the different script-structures defined and used by the teachers. The
teachers represented the scripts as sequences of phases, where these phases, however, are conceptually addressed in
different ways (see the variety of script-structures). Different conclusions may be drawn from this diversity according to
matters of concern and the perspective on legitimate variations of scripts. Within the open perspective to script editing
we consider, such diversity shows that the editor allows different modeling perspectives and that teachers avail
themselves of the flexibility provided. If considering that instructional languages and editors should lead (support,

12

constrain) teachers to adopt a particular modeling perspective, such diversity shows that the basic model must be
accompanied by methodological training and/or enhanced with control rules (or that another system, natively
considering these goals, should be used).

Table 6. The script-structures adopted by the teachers

 Script#1 Script#2
teacher#1 Group-Role–Participant–Resource-Activity Group-Participant-Activity-Resource
teacher#2 Participant-Group-Activity- Resource-Role Participant-Activity-Resource-Role
teacher#3 Group-Activity-Participant-Resource-Role Participant-Group-Resource-Activity
teacher#4 Activity-Group-Participant-Resource-Role Activity-Group-Participant-Resource
teacher#5 Activity-Participant-Resource-Role Activity-Participant-Resource-Role

Within our perspective, we consider as very positive the fact that all teachers mentioned their high appreciation that
the provided editor was easy to use and customizable. This allowed them to keep to their usual practices while
improving on them (instead of imposing another way of working). Several teachers suggested extensions such as an
additional column to mention activity length or personal notes concerning how the script unfolded for adaptation in
future sessions, i.e., suggestions to customize the editor according to their personal perspective and practices. This again
suggests the interest of flexibility for appropriation. As an anecdote, during modeling, one teacher attempted to merge
two cells when it was not possible given the 1-n constraint. She realized (after a few seconds) she could easily and
neatly obtain a representation equivalent to the one she wanted by changing the column order. However, she explicitly
decided not to do so, preferring to keep two separate cells with duplicate values, stating that “she preferred viewing the
script this way” (i.e., with this script-structure). This suggests it is important for teachers to be able to keep to their
precise view (and the corresponding script-structure).

It should be noticed that the fact teachers used different script-structures does not imply that their representations
are semantically different (different representations may be semantically equivalent). A study into why teachers adopt
one or another modeling perspective is most certainly an interesting topic for future research.

Although no general conclusion can be drawn given the limited number of participants, the difference between the
input originating from teachers (our target users) and the two modeling specialists is worthy of note. Unsurprisingly, the
computer scientist raised the issue that such a modeling tool did not support the modeler by imposing precise rules. She
was not at ease with the fact that she could represent the scripts in different ways. Interestingly, the instructional
designer found the tool easy to use for the first script and less so for the second (neither agrees nor disagrees). The
debriefing discussion revealed that this answer pointed to difficulties with the model’s expressiveness (she wanted to
represent the jigsaw scheduling in a more explicit way than the basic model allows). If confirmed by further
experiments, this substantiates the importance of developing and offering different representation languages and tools
related to different users, matters of concern and objectives.

4.2. Analysis of the technical skills required to use the editor with respect to teachers’ ICT skills
Another more general way to phrase the usability question is to consider the technical skills required to use the model as
implemented by the editor, and analyze them with respect to teachers’ ICT skills.

The technical skills required to use the editor are those of a table editor in a word processing office tool:
add/remove rows or columns, split or merge cells, displace an element, and copy/paste. All these actions correspond to
mouse manipulations (left-click, right-click, drag-and-drop).

According to a recent report on international experiences with educational technology in countries with high-
performing education systems (Bakia et al. 2011), teachers’ ICT skills are assessed in a few countries only, and there is
a lack of general data. However, this report highlights that most countries consider the development of standards for
teachers’ ICT skills as a national priority. Online professional development for pre- and in-service teachers is available
in almost half of participating countries, and many countries provide formal online or blended courses to either build
teachers’ capacity to integrate ICT or for more general teacher training, so as to make ICT skills an element of teacher
licensing requirements. In one investigation into ICT knowledge and skill levels among Western Australian government
school teachers (Trimmer 2006), word processing was part of the basic suite of ICT applications used by more than
95% of teachers. The ICT skill item map, constructed from the analysis of teachers’ skills, led to a three-score division:
skill scores between 0 and 39.9 (22% of teachers who typically have basic skills such as word processing and Internet),
scores between 39.9 and 60.6 (53% of teachers with more advanced skills), over 60.6 (25% of teachers with even more
advanced skills). The “creating tables” skill is in the middle of stage 1.

These elements suggest that a model/editor requiring the technical skills of an office table-editor will, in all
likelihood, be usable by a large set of teachers. In our study, all five teachers had limited or good text editor knowledge.

It should be noticed that advocating the interest of using tables does not mean that graph-based representations are
necessarily an issue. Graph representations may also be considered as intuitive. However, utilization of a workflow-like
editor is not a basic ICT skill, and requires some training. More generally, work related to IMS-LD highlighted that
using representations inspired from data or process modeling such as XML-like trees or process charts, which are not
widespread amongst teachers, may be an issue for adoption (Neumann et al. 2010).

13

5. Discussion
Languages and editors are tradeoffs, design decisions relating to matters of concern, targeted users and/or expected
utilizations. The approach presented in this article is not proposed to replace more classical graph-based and more
semantically-supporting approaches but as an alternative, featuring simplicity and flexibility, to be used if and when
pertinent, or in addition. In this Section, we discuss its main characteristics.

5.1. Relation to the overall operationalization issue
The top matter of concern of the approach we propose is the editing phase. Although goals are very different, this is a
positioning similar to a language such as IMS-LD (IMS-LD 2012) or Collage (Hernández-Leo et al. 2006): the model is
primarily studied to offer a certain number of features considered of importance for allowing teachers to work on the
script (conceptualize, represent, edit). This option is different from building the model on-the-top of a computable
representation (e.g., workflow or Petri-nets) or a particular enactment framework specification.

From a general perspective, the rationale for adopting this approach is derived from the following analysis. Without
misunderstanding the interest of implementing CSCL settings via specific operationalization languages or platforms,
this is far from being the most common approach in basic practices, and may not be the pattern that will be generalized.
Currently, the spread of ICT technologies allows easy implementation of CSCL settings as mash-ups of off-the-shelf
tools (e.g., freely downloadable and interoperable communication tools or resource-sharing tools) or local adaptations
of generic platforms such as LMS, thus enabling users to mobilize technologies according to their perspectives and
contexts (Tchounikine 2011). Some works propose to describe scripts with respect to the generic functionalities of Web
platforms, as a strategy to allow them to be run within different enactment frameworks (Wecker et al. 2010). We have
mentioned the Glue!PS approach, which uses a pivotal data model to deploy learning designs expressed in several
design languages to different enactment frameworks (Prieto et al. 2011). The orchestration perspective (Dillenbourg et
al. 2011) emphasizes the fact that, besides the technical infrastructure, efforts should focus on how to empower teachers
in setting up and maintaining the learning setting. It thus makes sense to explore means to (1) support teachers in
reflecting on the script and adapting it to their context, their perspective and practices (thus likely to facilitate
appropriation), and (2) can be interoperated with complementary representations means and enactment frameworks.

5.2. Expressiveness and limitations
Just like any other model, T2 captures some dimensions and not others. As it is a fairly general model, its limits relate to
the level of detail of the representation rather than to the scripts that can be represented. To test the model we collected
25 macro-scripts from the literature. All of them could be represented. Nevertheless, what was captured was the
dimension of the script made explicit by the T2 model, i.e., by a perspective on scripts as a set of components (typically,
phases). This corresponded to the core principle of some scripts, but missed that of scripts based on complex scheduling
(e.g., based on loops or complex rotations) or enactment frameworks reifying specific constraints.

An important difference with other representation propositions such as Miao et al. (2005) or Kobbe et al. (2007) is
that the T2 model does not introduce a conceptual proposition: its goal is not to present new concepts or yet another
conceptual perspective on script. The goal is of a pragmatic nature (allowing easy editing and adaptation by teachers
within an open perspective to legitimate variations), and the entry point is the exploration of an idea (using tables as
simple and intuitive interfaces, similar to what teachers use via office suites, and structural semantics). Model
expressiveness limitations are related to this design rationale.

We have already mentioned the three implications of the model which may be considered as limitations when
comparing an editor such as ediT2 with other works. First, there is a very basic representation of the dynamic dimension
of scripts. In Section 3.7 we showed how a table and a graph-based representation may be combined to solve this if it
appears to be an issue5 (when considering modeling languages, it is standard practice to offer different representations
capturing static and dynamic dimensions). Second and third, there is an absence of notion-to-notion specific
relationships as classically described via a meta-model, and a basic semantics carried out by the label expressiveness
and the table/tree structure. In Section 3.8 we explained how semantics may be enhanced by control rules in order to
address such issues if/when needed.

The rationale for the T2 model is to enlarge the diversity of means that teachers may be offered and select according
to perspectives or contexts, and not to mimic already existing languages via different means. As mentioned earlier, it
makes little sense to use this approach if the aspects mentioned above are considered intrinsic issues: offering powerful
expressiveness and precise semantics via a meta-model is standard computer science technique, can be more easily and
straightforwardly implemented, and ensures that the meta-model is respected. Representing semantics by control rules
is more flexible but raises the difficulty of defining a consistent and complete set of rules. Similarly, attaching complex
constructions to cells/nodes for representing (for instance) complex groupings is technically standard engineering work,

5
 As a matter of fact, when analyzing these 25 scripts collected from the literature, we noticed that complex mechanism scheduling was not that

frequent and, in most cases, could easily be implemented by duplicating a limited number of rows or items. This is in line with the conclusions of
Haake and his colleague who developed a language (based on Petri nets) allowing management of complex mechanisms, but noticed that in many
cases simple sequences are sufficient (Haake & Pfister 2007).

14

but may lead to a drift from the simple design rationale. However, expressing complex by-intention mechanisms may
more often be an instructional designer’s concern than a teacher’s concern.

We have mentioned that, from a meta-modeling perspective, the table structure may be seen as an easy-to-use way
to offer end-users (very limited) meta-modeling means. From a computer science perspective, the flexibility offered by
the T2 model could be addressed by proper meta-modeling techniques. For instance, the T2 implicit meta-model could
be made explicit and represented within the system (i.e., turning the editor into a generic but instantiated editor). This
would allow users not only to define the notions that can be used themselves but, also, to define notion-to-notion
relationships, thus offering flexibility and (more) expressiveness and/or semantics. This meta-modeling work could be
addressed partly by an instructional designer (or other modeling specialist), in the context of a project or a particular
institutional setting for example, and partly by teachers, at run time. This type of model-driven engineering technique is
pretty standard and has already been used for instructional languages (see for example Nodenot et al. 2008). Continuing
in this direction, users could be presented with several representation means simultaneously modeling the script from
different perspectives (see Lonchamp 2006 for example). However, these directions have already been explored. The
work presented in this article explores another perspective, building on different premises.

As a matter of fact, the usability test suggests that the limitations recapped here were not to be perceived as such by
the target users (to be confirmed by further experiments). Indeed, if the editor is considered from an instructional
designer or a modeling specialist point of view, the implication of the ediT2 design rationale may be considered a
serious issue that could disorient the user and render difficult some tasks. However, none of the tested teachers
expressed such an opinion. In direct contrast, they all raised the interest of the system as a way to improve their
practice. As mentioned in a recent article analyzing LD usage, with respect to scenario representation means, issues
such as intrinsic complexity of languages, their appropriateness to “basic” settings, user training, user willingness, and
institutional dimensions are difficult to disentangle (Derntl et al. 2011). Our argument here is not that teachers should
be offered poor conceptual means (or that their skills should be underestimated), but that the consideration of effective
practices and (lack of) training possibilities is also an important aspect. Offering simple though somewhat limited
means is of core importance. This must naturally be considered within the perspective of offering teachers (and
instructional designers) a variety of means.

5.3. Permissiveness
In Section 2, we introduced the notion of legitimate variations of scripts, and indicated it may be addressed with
different perspectives. In fact, perspectives may be radically conflicting. We have already mentioned that any general
language allows ineffective or even detrimental scripts to be represented (Wecker et al. 2010). However, if script
edition is considered as a phase following on from script design, it could then be said that representation means should
support or even oblige teachers to keep to the exact script or, at the least, close to it. The work presented in this article
does not natively implement such a constraint: it empowers teachers to edit the script as they want. Natively, the T2
model is fully permissive. Given (let’s say) a representation of a canonical jigsaw script, it allows the user to change
any element. The result may be totally different from a jigsaw script.

If our approach does not consider “constraining” edition according to the canonical script as being a first class
objective, it is not incoherent with introducing such control/support. We indeed agree that it makes sense to support
teachers in using and ensuring coherence with scripts the efficiency of which has been demonstrated by research
evidence. The notion of intrinsic/extrinsic constraints is an interesting basis from which to address this issue. However,
we believe this must be addressed within a pragmatic approach, balancing the “conformity to the canonical script”
concern and other concerns such as adequacy to teachers’ effective contexts and professional practices (conditions,
training, etc.) or appropriation aspects. Moreover, the way the technology may be used to support/oblige teachers to
keep close to a canonical script cannot be addressed separately from methodological training. With respect to these
issues, the fact that this approach allows tuning the editor constraints may be used to investigate different balances.

5.4. Management of the table-tree representation and interface variants
Strictly imposing the 1-n with n ≥ 1 relationship as implemented in ediT2 is a straightforward design decision that
avoids ambiguous constructions while keeping the interface simple. Other options are possible. Many constructions,
though not respecting this constraint and formally corresponding to graphs, are unambiguous. Some syntactical sugar
could also be used to let users specify specific intentions. An interface could thus be offered that does not strictly
impose this constraint but, rather, allows cells to have different antecedents as long as the construction is interpretable
(keeping the machine representation as a tree to benefit from tree manipulation algorithms6). We have opted to keep the
representation orthogonal and simple because we do not see this constraint as an important issue. Representing a script
within the T2 model does not require and does not suggest representing graphs: the model introduces a perspective on
scripts as sets of components, and graphs only appear as a way to factor values. Representing this aspect via
duplications is not incoherent with this model general perspective and requires little work as they can easily be managed

6
 Such graphs, if any, denote the fact that branches have common values, and can be deployed as trees via automated duplications. This is not to be

confused with using a graph modeling to represent cycles as in a workflow representation.

15

by copy-paste and drag and drop manipulations. Viewing scripts as graphs in the full sense (i.e., to denote cyclic
aspects) is a different goal, and requires different means.

More generally, in ediT2 implementation, we have kept to the model basic principles. Other options are possible.
For instance, though not implementing a full-fledged meta-model approach, additional flexibility may be provided by
offering the possibility to add additional columns (e.g., a “time span” column or a “personal commentary” column, as
suggested by some teachers during the usability test). Another example is to allow recursive use of the notions
available, e.g., decomposing activities into sub-activities. As a last example, the editor may be extended to represent
information related to run-time management, e.g., the fact that an activity can be launched although some of the
students are still engaged in another preceding activity or should be postponed, or the fact that an activity may be
skipped or not under certain circumstances. Different interface decisions may also be made. For instance, in our
implementation, splitting a cell corresponds to the creation of sub-rows (horizontal split). Vertical split could be
considered as a way of adding a column at the point where the cell is split. Our design decision is that since columns
denote the script’s structuring notions and that the decision to use a new notion affects the entire table7, insertion of a
column is not proposed at a local level (when considering a cell) but at a global level (when considering the table).
Columns are inserted to the right of the table and can then be moved to the left.

The interest of the proposed model and editor is that they are simple. Many smart ideas could be added. However,
adding extensions out of any precise context is basic engineering work that could lead to complex and labyrinthine
interfaces. Although computer scientists often tend to allow all possibilities at the cost of complexity, our opinion is that
this is not necessarily very positive for the effective use of software in education. We rather advocate that if, in a given
context (e.g., an institution or a project), the current editor principles appear pertinent but the present implementation
presents hindering limitations, the latter should be adapted according to this context’s specificities.

6. Conclusions and perspectives
The work presented in this article is a contribution to the on-going effort of the CSCL community to study script
operationalization. It focuses on the editing issue and explores an alternative to graph-based representations, featuring
simplicity and flexibility. The model is based on a straightforward visualization as a table, which allows adaptations in
the form of direct manipulations. The basic expressiveness and semantics present some limitations but may be
enhanced. The usability test suggests that the model/interface is easy to use and that teachers avail themselves of the
flexibility available to model scripts according to their perspective.

This work raises a certain number of research questions, which we will phrase in a general way as possible
perspectives for research by the CSCL community studying script operationalization.

A first set of research questions relates to how, why, and to what extent teachers use flexibility features, and in
particular representation flexibility, in both lab and basic professional contexts. When teachers use this flexibility, it
should be determined whether this has an impact on their appropriation of the means available (e.g., the editor available
or predefined script patterns), their effective use of scripts in basic practices, and the “quality” of the represented scripts
with respect to (1) the scripts’ intrinsic principles (see notion of legitimate variation) and (2) the effective setting. The
analysis of the quality of the produced scripts will also be a context to further investigate if the editor presents any
hidden difficulty and, in such a case, what support may be offered.

A second set of research questions relates to the balance between flexibility and support, and the extent to which it
may be advantageous to enhance the basic model in a given context (e.g., a project or a group of teachers), or at some
point in the modeling process. A related issue is to study the implementation and interest of intrinsic and extrinsic
constraints as defined in (Dillenbourg & Tchounikine 2007).

A third set of questions relates to the use of such a script representation to support a teacher-centered orchestration
of the setting. In particular, one perspective is to study how a table representation may be enhanced to denote some
aspects of script unfolding and be used as a monitoring device.

Finally, on a more technological note, there are research questions related to interoperation on T2 based editors with
other representational languages and technological frameworks.

7. References
Aronson, E., Blaney, N., Sikes, J., Stephan, G., & Snapp, M. (1978). The Jigsaw Classroom. Beverly Hills, CA: Sage Publication.

Baker, M. & Lund, K. (1997). Promoting reflective interactions in a CSCL environment. Journal of Computer Assisted Learning,
13(3), 175–193.

Bakia, M., Murphy, R., Anderson, K. & Trinidad, G.E., (2011). International Experiences With Technology in Education: Final
Report. U.S. Department of Education, Office of Educational Technology. Washington, D.C.

Belgiorno, F., Chiara, R.D., Manno, I. & Scarano, V. (2008). A Flexible and Tailorable Architecture for Scripts in F2F
Collaboration. In Proceedings of the 3rd European Conference on Technology Enhanced Learning: Times of Convergence:

7
 Creating a column limited to some of the rows is not in the model’s scope as it does not comply with the homogeneity principle and the interface

principle.

16

Technologies Across Learning Contexts. Springer-Verlag Berlin, pp. 401-412.

Botturi, L. & Todd, S. (2007). Handbook of Visual Languages for Instructional Design: Theory and Practices. Information Science
Reference, Hershey, IGI Publishing Hershey.

Botturi, L., Derntl, M., Boot, E. & Figl, K. (2006). A Classification Framework for Educational Modeling Languages in Instructional
Design. In Proceedings of 6th IEEE International Conference on Advanced Learning Technologies, pp. 1216-1220.

Derntl, M., Neumann, S., Griffiths D. & Oberhuemer, P. (2011). The conceptual structure of IMS Learning Design does not impede
its use for authoring. IEEE Transactions on Learning Technologies (preprint). http://dx.doi.org/10.1109/TLT.2011.25

De Wever, B., Van Keer, H., Schellens, T., & Valcke, M. (2009). Structuring asynchronous discussion groups: The impact of role
assignment and self-assessment on students’ levels of knowledge construction through social negotiation. Journal of Computer
Assisted Learning, 25, 177–188.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A.
Kirschner (Ed.), pp.61-91.

Dillenbourg, P., Dimitriadis, Y., Nussbaum, M., Prieto, L.P., Asensio, J.I., Sharples, M., Fischer, F., Kollar, I., Tchounikine, P.,
Roschelle, J., Looi, C.K., Diaz, A., Hämäläinen, R., De Wever, B., Perrotta, C., Evans, M.A., Chan, T.W. & Balaam, M. (2011).
Classroom Orchestration (submitted; extended version of Deliverable D1.5 of the European Network for Excellence Stellar).

Dillenbourg, P. & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported
Collaborative Learning, Springer 3 (1), 5-23.

Dillenbourg, P. & Jermann, P. (2007). Designing Integrative Scripts. F. Fischer, I. Kollar, H. Mandl & J. M. Haake (Eds.).
Computer-Supported Collaborative Learning Series, Springer, pp.275-301.

Dillenbourg, P. & Tchounikine, P. (2007). Flexibility in macro-scripts for CSCL. Journal of Computer Assisted Learning, 23(1), 1-
13.

Drools. The Business Logic integration Platform (www.jboss.org/drools), visited in 08/2012.

Fischer, F., Kollar, I., Haake, J.M. & Mandl, H. (2007). Perspectives on collaboration scripts. In F. Fischer, I. Kollar, H. Mandl & J.
M. Haake (Eds.), Scripting computer-supported communication of knowledge – cognitive, computational, and educational
perspectives, New York: Springer, pp. 1-10.

Haake, J.M. & Pfister, H.-R. (2007). Flexible scripting in Net-Based Learning Groups. F. Fischer, I. Kollar, H. Mandl & J. M. Haake
(Eds.). Computer-Supported Collaborative Learning Series, Springer, pp.155-175.

Harrer, A. & Hoppe, H. U. (2008). Visual Modeling of Collaborative Learning Processes – Uses, Desired Properties and
Approaches. In L. Botturi & S. Todd (Eds.). Handbook of Visual Languages for Instructional Design: Theory and Practices,
Information Science Reference, Hershey, pp. 281-298.

Harrer, A., Malzahn, N. & Hoppe, H.U. (2007). Graphical Modeling and Simulation of Learning Designs. In T. Hirashima, H. U.
Hoppe and S. S. Young (Eds.). Supporting Learning Flow through Integrative Technologies. Amsterdam, IOS Press, pp. 291-294.

Hernández-Leo, D., Asensio-Pérez, J.I., Dimitriadis, Y., Villasclaras-Fernández, E.D. (2010). Generating CSCL Scripts: From a
Conceptual Model of Pattern Languages to the Design a real situation (Appendix). In: Goodyear, P., Retalis, S. (Eds) Technology
Enhanced Learning, Design Patterns and Pattern Languages, SensePublishers.

Hernández-Leo, D., Villasclaras-Fernández, E.D., Asensio-Pérez, J.I., Dimitriadis, Y., Jorrín-Abellán, I.M., Ruiz-Requies, I. &
Rubia-Avi, B. (2006). COLLAGE: A collaborative Learning Design editor based on patterns. Journal of Educational Technology
and Society, 9(1), 58-71.

IMS-LD. IMS Learning Design (http://www.imsglobal.org/learningdesign), visited 08/2012.

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., Häkkinen, P. & Fischer, F. (2007). Specifying Computer-
Supported Collaboration Scripts. International Journal of Computer-Supported Collaborative Learning, 2(2-3), 211-224.

Kollar, I., Fischer, F., & Slotta, J.D. (2007). Internal and external scripts in computer-supported collaborative inquiry learning.
Learning and Instruction, 17(6), 708–721.

Kollar, I., Fischer, F. & Hesse, F.W. (2006). Computer-supported cooperation scripts – a conceptual analysis. Educational
Psychology Review, 18(2), 159-185.

LAMS. LAMS: Learning Activity Management System (http://www.lamsfoundation.org/), visited in 08/2012.

Lonchamp, J. (2006) Supporting synchronous collaborative learning: A generic, multi-dimensional model. International Journal of
Computer-Supported Collaborative Learning 1(2), 247-276.

Miao, Y., Hoeksema, K., Hoppe, H.U. & Harrer, A. (2005). CSCL Scripts: Modelling Features and Potential Use. International
Conference on Computer Supported Collaborative Learning, Taipei, Taiwan, pp. 423-432.

Moodle. Open-source community-based tools for learning (www.moodle.org), visited in 08/2012.

Neumann, S., Klebl, M., Griffiths, D., Hernández-Leo, D., de la Fuente Valentín, L., Hummel, H., Brouns, F., Derntl, M., &
Oberhuemer, P. (2010). Report of the Results of an IMS Learning Design Expert Workshop. International Journal of Emerging
Technologies In Learning (IJET), 5(1), 58-72.

Nodenot, T., Caron, P-A., Le Pallec, X., Laforcade P. (2008). Applying Model Driven Engineering Techniques and Tools to the
Planets Game Learning Scenario. Journal of Interactive Media in Education (http://jime.open.ac.uk), Special Issue: Comparing
Educational Modelling Languages on the “Planet Game” Case Study.

O’Donnell, A.M. (1999). Structuring dyadic interaction through scripted cooperation. In A. M. O’Donnell & A. King, eds,
Cognitive perspectives on peer learning, pp. 179-196. Mahwah, NJ: Erlbaum.

Palincsar, A., & Brown, A. (1984) Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities.
Cognition and Instruction (1), 117-175.

17

Prieto, L.P., Asensio-Pérez, J.I., Dimitriadis, Y.A., Gómez-Sánchez, E. & Muñoz-Cristóbal, J.A. (2011). GLUE!-PS: A Multi-
language Architecture and Data Model to Deploy TEL Designs to Multiple Learning Environments. European Conference on
Technology Enhanced Learning, pp. 285-298.

Ronen, M., Kohen-Vacs, D. & Raz-Fogel, N. (2006). Adopt & Adapt: Structuring, Sharing and Reusing Asynchronous Collaborative
Pedagogy. International Conference of the Learning Sciences, pp. 599-605.

Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum M. & Claro, S. (2009). Scaffolding group explanation and
feedback with handheld technology: impact on students’ mathematics learning. Education Tech Research Dev, Springer, 58(4), pp.
399-419.

Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem solving in
computer-mediated settings. The Journal of the Learning Sciences, 14 (2), 201–241.

Schellens, T., Van Keer, H., De Wever, B., & Valcke, M. (2007). Scripting by assigning roles: Does it improve knowledge
construction in asynchronous discussion groups? International Journal of Computer-Supported Collaborative Learning, 2(2–3), 225–
246.

Schoonenboom, J. (2008). The effect of a script and an interface in grounding discussions. International Journal of Computer-
Supported Collaborative Learning, 3(3), 327–341.

Slof, B., Erkens, G., Kirschner, P. A., Jaspers, J.G. M., & Janssen, J. (2010). Guiding students’ online complex learning-task
behavior through representational scripting. Computers in Human Behavior, 26 (5), 927–939.

Stahl, G., & Hesse, F. (2007). Welcome to the future: ijCSCL volume 2. International Journal of Computer-Supported Collaborative
Learning, 2(1), 1–5.

Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative knowledge construction with computer-supported
collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(4), 421–447.

Tchounikine, P. (2011). Computer Science and Educational Software Design – A Resource for Multidisciplinary Work in Technology
Enhanced Learning. Springer. DOI 10.1007/978-3-642-20003-8_6

Tchounikine, P. (2008). Operationalizing macro-scripts in CSCL technological settings. International Journal of Computer-
Supported Collaborative Learning, Springer, 3(2), 193-33.

Trimmer, K. (2006). Teacher ICT Skills: Evaluation of the Information and Communication Technology Knowledge and Skill Levels
of Western Australian Government School Teachers. Autralian Evaluation Society International Conference, Darwin, Australia.
(retrieved from http://www.aes.asn.au, April 2012).

Villasclaras-Fernández, E. D., Hernández-Gonzalo, J. A., Hernández-Leo, D., Asensio-Pérez, J. I., Dimitriadis, Y., Martínez-Monés,
A. (2009). InstanceCollage: a tool for the particularization of collaborative IMS-LD scripts. Educational Technology &Society, 12
(3), 56–70.
Wecker, C., Stegmann, K., Bernstein, F., Huber, M.J., Kalus, G., Kollar, I., Rathmayer, S. & Fischer, F. (2010) S-COL: A
Copernican turn for the development of flexibly reusable collaboration scripts. International Journal of Computer-Supported
Collaborative Learning, Springer New York, 5, 321-343.

Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer-supported collaborative learning.
Instructional Science, 33(1), 1–30.

Weinberger, A., Kollar, I., Dimitriadis, Y., Mäkitalo-Siegl, K., & Fischer, F. (2008). Computer-supported collaboration scripts:
Theory and practice of scripting CSCL. In N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, S. Barnes & L. Montandon (Eds.),
Technology-Enhanced Learning. Principles and Products: Berlin:Springer, 155-174.

Weinberger, A., Stegmann, K., & Fischer, F. (2010). Learning to argue online: Scripted groups surpass individuals (unscripted
groups do not). Computers in Human Behavior, 26, 506–515.

Williams, D.L., Boone, R., & Kingsley, K.V. (2004). Teacher beliefs about educational software: A Delphi study. Journal of
Research on Technology in Education, 36(3), 213-229.

