
– DRAFT –

HLCM: a first experiment on parallel data mining with Haskell

Alexandre Termier Benjamin Négrevergne
LIG, Grenoble University

Alexandre.Termier@imag.fr
Benjamin.Negrevergne@imag.fr

Simon Marlow Satnam Singh
Microsoft Research, Cambridge

simonmar@microsoft.com
satnams@microsoft.com

Abstract
We present a parallel implementation in Haskell of the most ef-
ficient closed frequent itemset mining algorithm called LCM. We
show that Haskell allows us to conveniently express the complex
code of the LCM algorithm. We also present a thorough experi-
mental study about the influence of run time system parameters on
the parallel performance of our implementation.

Categories and Subject Descriptors H.2.8 [Information Sys-
tems/Database applications]: Data mining

General Terms Data mining, parallelism

Keywords Closed frequent pattern mining, parallel program, per-
formance evaluation

1. Introduction
Frequent pattern mining is a major component of data mining
consisting of the discovery of patterns occurring more than a given
number of times in a data-set. This research originated with the
analysis of market-basket data [1], and has been extended to the
analysis of sequential [10], tree [2] and graph data [5]. Typical
application domains include corporate data analysis, log analysis,
chemistry or bioinformatics among many others. Frequent pattern
mining is a highly computationally intensive task which attracts
research to discover new and more efficient algorithms, or novel
ways to improve existing algorithms.

With the advent of multicore computers, we could expect that
pattern mining algorithm research quickly shifts to parallel algo-
rithm, in order to exploit the power of these computers. However
except some pioneering works [3], this is not yet the case. We
propose two reasons to explain this situation. First, the computa-
tions in pattern mining algorithms are very irregular and unpre-
dictable, making it difficult to design an efficient parallelization
strategy. Second, pattern mining algorithms implementations are
usually large and complex C programs with many specific opti-
mizations, both high and low level. Understanding and modifying
these programs is a time consuming process. Even if a good par-
allization strategy is applied, performance is not guaranteed, as as-
sumptions from the sequential era such as “store intermediate data
in memory to avoid redundant computations” that lead the design
of these programs can give subpar parallel performance. [12] for

[Copyright notice will appear here once ’preprint’ option is removed.]

example shown a 4-time run time improvement when focusing on
reducing memory footprint and avoiding dynamic data structures
in order to alleviate bandwidth pressure.

Functional languages allow us to write higher level code and
these languages exhibit good properties for parallel programming.
One of the most promising languages for parallel applications is
Haskell, whose design heavily emphasises ease of program devel-
opment and efficient parallelism [13].

In this paper, we describe how to use Haskell as a prototyping
language for parallel frequent pattern mining algorithms. We show
that it allows us to write concise and readable code, while being
between 6 and 50 times slower than C++. This simplies the exper-
imentation on different parallelism stategies and algorithmic ideas,
while being fast enough to analyze real-world datasets.

Our contributions are the following:

• We implemented LCM [14], the state-of-the-art algorithm for
mining closed frequent itemsets, in Haskell. For the rest of
this paper, this implementation will be refered to as HLCM
1. Our implementation is limited to 500 lines compared to the
3500 lines of the parallel C++ implementation [8], and is the
first implementation to make readily understandable the most
advanced features of the algorithm. The LCM algorithm and
our Haskell implementation are described in Section 2.

• We parallelized our Haskell implementation with Haskell semi-
explicit parallelism (i.e. parMap-like constructs). In Section 3,
we present the parallel performance of HLCM, an through a
detailed experimental study we show the influence of the RTS
parameters on performance. We show that a correct parameter-
ing is necessary for parallel programs, leading at best to a 5
times speedup over default parameters.

• We also compare HLCM with the C++ implementation of
LCM, and show that HLCM with correct RTS parameters takes
better advantage of parallelism than this implementation.

2. HLCM: itemset mining in Haskell
2.1 Problem settings
We start with a few definitions in order to state the closed frequent
itemset mining problem.

Let I = {i0, ..., in} be the set of items. Any subset I ⊆
I is called an itemset. Input data is a set of transactions T =
{t0, ..., tm}, where the transactions ti, i ∈ [0..m] are itemsets.
An itemset I occurs in a transaction tk iff I ⊆ tk. The set of
occurrences of I , also called tidlist of I , is the set tidlist(I) =
{k | k ∈ [0..m], I ⊆ tk}. The support of an itemset I is defined
by support(I) = |tidlist(I)|. Lets consider a frequency threshold

1 Our implementation will soon be available on Hackage as the hlcm pack-
age.

Submission to the Haskell Symposium 2010 1 2010/6/14

ε ∈ [0..n]. An itemset I is frequent iff support(i) ≥ ε. Let F be
the set of all frequent itemsets.

We give an example transaction database below:

Transaction id Transaction items
t1 [1,2,3,4,5,6]
t2 [2,3,5]
t3 [2,5]
t4 [1,2,4,5,6]
t5 [2,4]
t6 [1,4,6]
t7 [3,4,6]

With ε = 3, the frequent itemsets are:

Frequent itemset Support tidlist
[4] 5 [t1, t4, t5, t6, t7]
[2] 5 [t1, t2, t3, t4, t5]
[6] 4 [t1, t4, t6, t7]
[5] 4 [t1, t2, t3, t4]
[4, 6] 4 [t1, t4, t6, t7]
[2, 5] 4 [t1, t2, t3, t4]
[3] 3 [t1, t2, t7]
[2, 4] 3 [t1, t4, t5]
[1, 4] 3 [t1, t4, t6]
[1, 6] 3 [t1, t4, t6]
[1, 4, 6] 3 [t1, t4, t6]

As you can see, the frequent itemsets usually contains a lot of re-
dundant informations: for example, knowing that [1, 6] is frequent
with tidlist [t1, t4, t6] does not add any new information when one
knows that [1, 4, 6] is frequent with the same tidlist. Closed fre-
quent itemsets get rid of this redundancy without losing informa-
tion. A frequent itemset I ∈ F is closed if there exists no frequent
itemset I ′ ∈ F such that I ⊂ I ′ and tidlist(I) = tidlist(I ′).
Intuitively, closed frequent itemsets are the biggest itemsets (w.r.t.
set inclusion) for a given tidlist. Let C be the set of closed frequent
itemsets. In our previous example, the closed frequent itemsets are:

Closed frequent itemset Support tidlist
[4] 5 [t1, t4, t5, t6, t7]
[2] 5 [t1, t2, t3, t4, t5]
[4, 6] 4 [t1, t4, t6, t7]
[2, 5] 4 [t1, t2, t3, t4]
[3] 3 [t1, t2, t7]
[2, 4] 3 [t1, t4, t5]
[1, 4, 6] 3 [t1, t4, t6]

The problem of closed frequent itemset mining is thus, given a
set of transactions T and a frequency threshold ε, to discover all
the closed frequent itemsets of T .

2.2 The LCM algorithm
Many algorithms capable of solving the problem of mining closed
frequent itemsets have been proposed, e.g. [6, 9, 15]. The FIMI’04
competition [4] crowned LCM [14] as the most efficient of these
algorithms.

LCM efficiency mainly comes from a theoretical progress:
LCM authors showed that it is possible to build a covering tree of
all the closed frequent itemests, and that the edges of this tree can
be determined efficiently during execution. The other algorithms
[6, 9, 15] have to maintain a memory of all the closed frequent
itemsets found, and when a new “potential” closed frequent item-
set arrives they have to verify that it is not invalidated by an already
found closed frequent itemset, or that it does not invalidates some
already found closed frequent itemsets in the memory. With LCM
there is no more need for this memory: the closed frequent itemsets
can be outputted as soon as they are found. Thanks to this result,
the complexity of LCM is linear in the number of closed frequent
itemset to find, hence its name: Linear time Closed itemset Miner.

We give in Algorithm 1 the pseudo-code of the LCM algorithm.
Note that this pseudo-code is different from the pseudo-code given
by the original authors of LCM in [14]. The algorithm that we give
here follows exactly the algorithm of the C code of the original
authors, which implements a more efficient traversal of the search
space than shown in the papers.

Algorithm 1 LCM
Input: Pattern P , Database DB, Item limit, Threshold ε
Output: All the closed frequent patterns of DB that contain P

and that contain no bigger item than limit.
1: CDB = project and reduce DB w.r.t. P and limit
2: Compute frequencies of items in CDB
3: CP = 100% frequent items in CDB
4: if max(CP) = limit then
5: P ′ = P ∪ CP
6: Cand = frequent items of CDB that are not in CP
7: Output P ′

8: for all e ∈ Cand, e ≤ limit do
9: LCM(P ′, CDB, e, ε)

10: end for
11: end if

The main function described in Algorithm 1 is called as de-
scribed in Algorithm 2.

Algorithm 2 LCMmain
Input: Database DB, set of items I, Threshold ε
Output: All the closed frequent patterns of DB

1: Reorder items in DB by descending order of frequency
2: for all e ∈ I, support(e) ≥ ε do
3: LCM(⊥, DB, e, ε)
4: end for

The LCM algorithm is a tree-recursive algorithm, whose recur-
sion structure is based on a DFS exploration of the search tree of
closed frequent itemsets. Each node of the tree (i.e. each recursive
call) corresponds to a closed frequent itemset of the solution or to
an empty leaf with no solution. It is assumed that the items have
been relabeled in descending order of frequency: item 0 is the most
frequent, item 1 is the second most frequent and so on (line 1 in
Algorithm 2).

In each iteration (Algorithm 1), the algorithm receives a closed
frequent itemset P which is the solution of its caller, and an item
limit with which P must be extended. No item bigger than limit
are allowed in the output.

The database DB received in input is a projection of the original
database restricted to the transactions containing P . It is further
reduce to eliminate infrequent items and items bigger than limit
that are not 100 % frequent. Once these items are removed, there
may be duplicate transactions, which are merged into a single
transaction with a weight indicating how many original transactions
it represents. The resulting database CDB is called a conditional
database. Reducing the databases is a very important optimization,
as the search tree tend to have a very large branching factor but a
rather low depth. This leads to a “bottom-wide” tree with a lot of
leaves. Reduced databases allow to speed-up the computations in
these leaves, which speeds up considerabily the algorithm.

The actual computation is done in line 2: the conditional
database is scanned in order to compute the frequency of each
item. All the items that appear in each transaction are stored in
CP : these are the item of CDB that always co-occur with the
items of P , so they are the extension of P we are looking for. If
max(CP) > limit, then the closed frequent itemset P ∪CP does

Submission to the Haskell Symposium 2010 2 2010/6/14

not belong to this branch of computation and the current iteration
ends. Else, we output the solution which is P ∪CP , and we iterate
recursively with the new pattern P ∪ CP . The items used as limit
are all the frequent items that are not in CP : they are not in the cur-
rent closed frequent itemset, but can lead to more specific closed
frequent itemsets (itemsets bigger than P ∪ CP whose supporting
tidlist is included in the tidlist of P ∪ CP).

2.3 HLCM: LCM in Haskell
We wanted to implement an efficient closed frequent itemset miner
in Haskell, so LCM was a natural choice. Moreover, the incre-
mental behavior of the algorithm is well adapted to the laziness
of Haskell: writing

take N (hlcm ...)
will only compute the N first closed frequent itemsets of the search
tree, without requesting any more computations. This would not
have been possible with other algorithms such as [6, 9, 15], which
would have had to compute all the closed frequent itemsets first and
then return the first N .

Haskell also make very easy to parallelize the LCM algorithms
with strategies. The for all in Algorithms 1 and 2 can easily be im-
plemented by a map in Haskell. Replacing this map by a parMap (a
parallel implementation of map) immediately parallelizes the pro-
gram. We will see in Section 3 the effectiveness of this paralleliza-
tion.

The most delicate part in implementing LCM in Haskell was
to handle efficiently the conditional databases. These structures
support many accesses and are rewritten at each iteration, so they
are the key for good performances. In the original C implementa-
tion of T. Uno, he initially allocates a large memory chunk, and
then manages himself this memory. The new conditional databases
are not really created, instead he cleverly reuses parts of the “par-
ent database”, knowing which parts will be reused and which will
not. This is possible because this implementation is purely sequen-
tial, but for parallel implementations the new conditional databases
must be allocated for real. This is what did [8] in their parallel
C++ implementation (PLCM), with a 2-4x performance hit with
one thread when compared to the original C implementation. For
HLCM, our first experiments with arrays did not gave satisfactory
results. The projection/reduction step involves a lot of fiddling with
the indexes of the array, for operations such as transaction sorting,
transaction elimination, item elimination. We found ourselves writ-
ing array code in Haskell with unsafe operation which was much
more difficult to write than C array code, with a poor execution
speed. This was clearly not our goal.

We thus completely rewrote the database data structure as a lex-
icographic tree with strict values in the nodes. This structure has
the advantage to perform automatically two of the most impor-
tant database reduction operations: sorting transactions and elim-
inating duplicate transactions. In facts, it can be interesting to note
that the original C implementation performs the transaction sorting
with a radix sort, whose computation structure is a lexicographic
tree. Using a lexicographic tree for transactions databases is thus
a natural choice: we encode the data in HLCM by following the
computation structure of the original C implementation. We saw a
big improvemenent in code readability and in our comprehension
of the algorithm. We also saw an important performance improve-
ment w.r.t. our array based solution, further enhanced by adding
strictness annotation in the lexicographic tree data structure.

Parallelization: As said above, we parallelized HLCM by us-
ing the Control.Strategies module. We wanted to see if it was
possible to get improve the algorithm execution time on multicore
processors, with minimal modifications in the code. We thus lim-
ited the map to replace the map implementing the for all of line 8
with either a parMap or a parBuffer. In both cases we had to use

the rdeepseq strategy2, rwhnf always gave us a near sequential
behavior with only one thread working.

As reported in other parallel experimentations in Haskell [13],
creating too many sparks can in some cases be detrimental to
performance. We thus put a threshold on the depth of iterations
where new sparks are created. For deeper iterations, the program
reverts to a standard map in order to keep some control on the spark
granularity.

3. Experiments
In this section, we investigate the performance of HLCM. We
measure its execution time for different number of cores, and the
speedup that could be reached by parallel execution. We also com-
pare HLCM to the parallel C++ implementation of LCM named
PLCM, and to the sequential C implemention of LCM named
LCM2.5.

We use well known benchmarking databases for frequent item-
set mining3. These databases can be divided into sparse databases
with a small average number of items per transactions, and dense
databases with many items per transaction. Sparse databases are
represented in our experiments by retail and T40I10D100K, and
dense databases are represented by connect and accidents.

3.1 Exploring parallel RTS behavior
We implemented HLCM and compiled it with a HEAD ver-
sion of GHC (ghc-6.13.20100525). We used the recommended
options for good parallel performance: ghc -O2 -threaded
-feager-blackholing. Our test machine is a dual Intel Xeon-
5520 (Gainestown) at 2.26 GHz with 24 GB of RAM and 8 cores.

The baseline performance for HLCM, using parMap as strategy
and 8 cores (+RTS -N8), is given below. In this experiment, sparks
are created for all depthes of the search tree.

retail T40I10D100K connect accidents
ε = 50 ε = 3000 ε = 15000 ε = 95000

Time (s) 18.2s 19.5s 231.5s 79.2s
Speedup 3.3 3.1 2.6 2.5

There is a speedup for all the datasets, which is encouraging.
However, on a machine with 8 cores one would expect speedups
better than 3. Note that the loading of data is sequential in HLCM,
but the support threshold ε has been chosen low enough for loading
time to be small w.r.t. computation time.

We now study the influence of RTS parameters and parallel
strategies on performance.

Heap size: Data mining programs such as HLCM take as input
datasets of moderate size (hundreds of MB at most). However
the exploration of these datasets will lead to the construction of
a large number of intermediary structures in memory, especially
when several threads explore different branches of the search tree
in parallel. Allocating more memory in the heap with the +RTS -H
option reduces GC time, which could improve run time. We report
in Figure 1 the speedup over the baseline obtained when giving
more heap size to HLCM with +RTS -H. All other parameters
remain unchanged.

For the dense datasets, which are very complex and lead to
many closed frequent itemsets, giving more heap allow impressive
speedups: execution on connect gets 5 times faster than baseline
! The sparse dataset T40I10D100K, which is of moderate com-
plexity, is unaffected by heap size. However, the retail dataset sees
a catastrophic degrade in performance with more heap size. For
this dataset, reducing the heap size to 200M is the only way to get
slighly better results than the baseline. This dataset differs from

2 rnf with the old version of Control.Strategies
3 Available at http://fimi.cs.helsinki.fi/data/

Submission to the Haskell Symposium 2010 3 2010/6/14

T40I10D100K in that it is a very sparse dataset, with very few
closed frequent itemsets. The needed memory is thus much lower
than for processing the other datasets. Figure 2 shows the percent-
age of time spent doing GC in the above experiment.

For the retail dataset only, GC percentage skyrockets with more
heap size. The most probable reason is that retail’s data requires
little memory and with the correct settings stays most of the time in
cache. Increasing the heap size has a detrimental effect on locality,
which is most important on datasets like retail which can have a
very good locality.

We also investigate the heap size influence w.r.t. the number
of threads. Figure 3 shows for the accidents dataset the speedup
versus the baseline run for executions with 1, 2, 4 and 8 threads.
The “baseline” is the run without any RTS parameter other than -N
for each of these number of threads.

For 1 thread, as soon as there is 1G of memory the best run
time is reached. Then the more the threads, the more the heap
size needed to reach the best level of performance. It is especially
interesting to note that the more the threads, the more the heap size

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

S
pe

ed
up

 v
s

ba
se

lin
e

Heap size in M (-HxM)

T40I10D100K
retail

connect
accidents

Figure 1. Speedup vs baseline w.r.t. heap size

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

%
G

C

Heap size in M (-HxM)

T40I10D100K
retail

connect
accidents

Figure 2. % GC w.r.t. heap size

has an impact on performance. For 2 threads, with the best heap
size the speedup w.r.t. default setting is 2.6. But for 4 threads it
reaches a speedup of 3, and for 8 threads the speedup peaks at 3.4.

It is such of uttermost importance to fine tune the heap size for
parallel Haskell programs, with the +RTS -H option. The best heap
sizes for each dataset are reported below, in the case of 8 threads:

retail T40I10D100K connect accidents
Best -H -H200M -H5G -H10G -H10G
Time (s) 17s 15.5s 42.7s 23.4s

GC load balancing: The GHC RTS allows to control the
amount of load balancing done by the parallel GC, with the
-qb[gen] option. -qb desactivates totally GC load balancing,
while -qb1 allows load balancing for generation 1 and -qb0 allows
load balancing for generations 0 and 1 (in the case of 2 generations,
which is the default). These parameters can have an influence on
execution on runtime, as shown in [7]. We did new experiments,
where the baseline is now the execution with 8 cores and the best
heap settings.

The results are reported below. For each parameter, we report
the average run time on 5 executions, and the difference with the
best heap baseline.

retail T40I10D100K connect accidents
-qb 17.4s (+2.4%) 16.5s (+6.4%) 44.2s (+3.5%) 23.4s (0%)
-qb0 17.3s (+1.8%) 14.5s (-6.6%) 44.1s (+3.3%) 23.9s (+2%)
-qb1 17.5s (+3%) 15.6s (0%) 43.3s (+1.4%) 23.5s (+0.5%)

Here this option does not offer a significant difference, except
for the T40I10D100K dataset. In most cases, the best setting is -qb
(no load balancing) or -qb1 (load balancing restricted to genera-
tion 1). This is consistant with the tree-recursive nature of HLCM:
too much load balancing can move subtrees on a processor dif-
ferent from their root, leading to numerous cache misses when the
databases have to be reloaded on the new processor. This is however
the opposite for T40I10D100K and retail, which prefers the full
load balancing offered by -qb0. This could mean that the search
tree for these sparse datasets is largely unbalanced, and that the
cache miss price of load balancing is compensated by keeping all
processors busy.

The best GC load balancing parameters and new times for each
datasets are summed up below:

 1

 1.5

 2

 2.5

 3

 3.5

 0 5000 10000 15000 20000 25000

S
pe

ed
up

 v
s

ba
se

lin
e

Heap size in M

-N1
-N2
-N4
-N8

Figure 3. Impact of heap size w.r.t. nb of threads, accidents dataset

Submission to the Haskell Symposium 2010 4 2010/6/14

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

 v
s

ba
se

lin
e

Cut depth

retail
T40I10D100K

connect
accidents
Baseline

Figure 4. Speedup vs baseline w.r.t. depth for switching to sequential

retail T40I10D100K connect accidents
-qb -qb0 -qb0 -qb1 -qb

Time (s) 17.3s 14.5s 43.3s 23.4s

Controlling granularity via depth: The deeper the iteration
in the search tree, the simpler the computations. The computations
can become so simple and so numerous that the overheads of spark
creation for each of them outweight their benefit. As shown in
Section 2, we have a threshold that prevents the creation of sparks
for iteration below a certain depth. The speedup vs baseline w.r.t.
depth for preventing spark creation is shown in Figure 4.

For the dense datasets connect and accidents, creating more
sparks is beneficial until depth 3-4, without negative impact for
higher depthes. These datasets are complex and have many closed
frequent itemsets, so there is always enough work to keep the
sparks busy. For the sparse datasets however depth of spark creation
seem to have a much weaker influence.

parMap vs parBuffer: Next is the choice of strategy in
Control.Strategies. The two strategies of choice are parMap
rdeepseq and parBuffer N rdeepseq. The difference is that
parMap eagerly sparks every elements in the argument list, while
parBuffer N only sparks ahead N elements. We vary in Figure 5
the parameter for parBuffer in Algorithm 2, and report the speedup
between parBuffer N and the baseline which used parMap. We
chose Algorithm 2 because it is at this point that the biggest branch-
ing factor exists, and that parBuffer is more likely to have effect.
For Algorithm 1 we took a more conservative approach, using
parBuffer 2 rdeepseq.

It appears clearly that when correctly parametered, parBuffer
can improve performances over parMap. Dense dataset tend to
prefer relatively few spark creations ahead (4 for accidents, 8 for
connect), while sparse dataset prefer many spark creations ahead
(more than 16). This is consistant with the previous observation on
depth threshold: there is less work in branches of the search tree
for sparse datasets, so sparking many branches allows to reduce a
too fine granularity. Oppositely, there is a lot of work in branches
of the search tree for dense datasets, so fewer of these branches can
be sparked together.

The results with the previously found RTS parameters and the
best parBuffer parameters values are reported below, along with
their improvement over the previous best times. The improvement
is especially important for sparse datasets.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
up

 v
s

ba
se

lin
e

parBuffer param (parBuffer X rdeepseq)

retail
T40I10D100K

connect
accidents
Baseline

Figure 5. Speedup vs baseline w.r.t. parBuffer parameter

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 128
 256

 512
 1024

 2048
 4096

 8192

S
pe

ed
up

 v
s

ba
se

lin
e

Allocation area size in K (-AxK)

accidents
connect

T40I10D100K
retail

Baseline

Figure 6. Speedup vs baseline w.r.t. allocation area size

retail T40I10D100K connect accidents
parBuffer N 64 16 8 4

Time (s) 13.9s (-19.5%) 10.5s (-27%) 41s (-5%) 23.1s (-1%)

Allocation area: We have found a good set of parameters, both
inside our program with parBuffer and cut depth, and for the RTS.
To conclude our parameter space exploration, we investigate one
last RTS parameter, the GC allocation area (+RTS -A). This param-
eter directly influences the cache usage behavior of the algorithm,
so it might give interesting results for a data-intensive program such
as HLCM. Figure 6 shows the impact of varying the allocation area
size. All the other parameters are set to give the best results as found
before. We also added the -F4 parameter in the RTS for this exper-
iment, in order to reduce the number of garbage collections, which
can be usefull for small values of -A.

Too small allocation area sizes such as 128K is detrimental to
all datasets: they fill up too fast, and time is lost when their contents
is moved to old generation. Accidents, the densest dataset, which
perform a lot of work on large and complex search trees, give its

Submission to the Haskell Symposium 2010 5 2010/6/14

best performance with mid-sized allocation area, around 2M. On
the processors of the test machine, the L3 has 8M, with 4 cores on
a single die. So 2M corresponds well to the share of one thread.
There must be little data sharing between the threads, so bigger
allocation area sizes induce too much competition on the cache on
worse performances. However for the sparse datasets, which have
simpler search trees, it seems that there is more data sharing, and
large allocation area of 8M give excellent results.

The best results are reported below:

retail T40I10D100K connect accidents
-A 8M 2M 8M 2M

t (s) 11.7s (-15%) 9.6s (-9%) 40.8s (-0.5%) 22.6s (-2%)

Last, we also run HLCM with one thread and best RTS param-
eters for heap, in order to give final parallel speedups for 8 threads:

retail T40I10D100K connect accidents
HLCM -N1 59.2s 46.6s 259.5s 91.3s

Final speedup 5 4.8 6.3 4

Even if the single thread run time with better parameters im-
proved, the parallel run time improved even more, leading to much
better speedups. Our worse speedup is now 4, and for the complex
connect dataset we hit 6.3, which is an excellent result on a 8-core
computer.

Discussion: These experiments and the improve in execution
time that we got show that correctly setting the RTS parameters for
the GC is mandatory for parallel performance. It is interesting to
note the different behavior of dense and sparse datasets. Traditional
C/C++ implementations have difficulties to be efficient for both.
The advantage of Haskell is that we can give different RTS settings
for each type of dataset, and easily get performance improvements.

Determining the correct RTS parameters need a lot of experi-
ments due to the size of the parameter space. However, it is a task
than could be done automatically, for example with a genetic algo-
rithm [11]. This is not the case for C/C++ parallel programs.

3.2 Comparison with existing implementations
To conclude these experiments, we compare the run time of HLCM
with the original C implementation of T. Uno (sequential) [14], and
with the parallel C++ implementation PLCM [8]. Note that as we
stated in Section 2, the sequential C implementation can avoid a lot
of database allocations because it does not have to care for parallel
execution. Its run times are given for reference only, however for
fairness we only compare HLCM with PLCM. Both have the same
allocation policy.

retail T40I10D100K connect accidents
lcm2.5 (1t) 0.4s 1.2s 2.4s 6s
plcm (1t) 1.7s 2.2s 5.1s 8s
plcm (8t) 0.7s 1.1s 1.4s 3.4s

HLCM/plcm (1t) 35 21.4 50.3 11.4
HLCM/plcm (8t) 15.4 9 29 6.6

These results show that even if HLCM still has a long way to
go before beating the C++ implementation, it can achieve compet-
itive results, especially for parallel execution. The HLCM/PLCM
run time ratio can be as low as 6.6 for the accidents dataset. This
is promising, and the ease of writing and parallelizing HLCM is
without comparison with PLCM, which is a long and complex
C++ code with hand written efficient data structures for itemsets
based on arrays, and a hand written work sharing mechanism im-
plemented with PThreads.

4. Conclusion
We presented HLCM, an efficient Haskell implementation of the
LCM algorithm for mining closed frequent itemsets. Through de-
tailed experiments, we showed the importance of using RTS pa-
rameters to control the heap size and about the need to influence
garbage collection frequency in order to get good parallel perfor-
mance. Our experiments also showed that even if our program
could not beat a C++ implementation, it could stay in a 6x-30x
slower range for parallel execution, which is enough to use it for
analyzing real world datasets.

As a perspective, we would like to extend our work on HLCM to
other pattern mining algorithms dedicated to more complex struc-
tures such as sequences, trees or graphs. We also plan to continue
improving HLCM in order to provide it as a new benchmark for the
nofib test suite. We think that this program is a good example of a
real world parallel application, and depending on the dataset it can
exercise different aspects of the parallel RTS of Haskell. Another
interesting perspective would be to develop a run-time auto-tuning
system that could monitor the behaviour of the heap and dynami-
cally decide between reducing number of garbage collections and
preserving a good locality.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules. In Proceedings of the 20th VLDB Conference, pages 487–499,
1994.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and
S. Arikawa. Efficient substructure discovery from large semi-
structured data. In SDM, 2002.

[3] G. Buehrer, S. Parthasarathy, and Y.-K. Chen. Adaptive parallel graph
mining for cmp architectures. In ICDM, pages 97–106, 2006.

[4] B. Goethals. Fimi repository website. http://fimi.cs.helsinki.
fi/, 2003-2004.

[5] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm
for mining frequent substructures from graph data. In PKDD, pages
13–23, 2000.

[6] C. Lucchese, S. Orlando, and R. Perego. Dci closed: A fast and
memory efficient algorithm to mine frequent closed itemsets. In FIMI,
2004.

[7] S. Marlow, S. L. P. Jones, and S. Singh. Runtime support for multicore
haskell. In ICFP, pages 65–78, 2009.

[8] B. Négrevergne, J.-F. Méhaut, A. Termier, and T. Uno. Découverte
d’itemsets fréquents fermés sur architecture multicoeurs. In EGC,
pages 465–470, 2010.

[9] N. Pasquier, Yves, Y. Bastide, R. Taouil, and L. Lakhal. Efficient
mining of association rules using closed itemset lattices. Information
Systems, 24:25–46, 1999.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. Prefixspan: Mining sequential patterns by prefix-projected
growth. In ICDE, pages 215–224, 2001.

[11] D. Stewart. Evolving faster haskell programs (now with
llvm!), 2010. http://donsbot.wordpress.com/2010/03/01/
evolving-faster-haskell-programs-now-with-llvm/.

[12] S. Tatikonda and S. Parthasarathy. Mining tree-structured data on
multicore systems. PVLDB, 2(1):694–705, 2009.

[13] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.
Algorithm + Strategy = Parallelism. Journal of Functional Program-
ming, 8(1):23–60, Jan. 1998.

[14] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining
algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

[15] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed
itemset mining. In SDM, 2002.

Submission to the Haskell Symposium 2010 6 2010/6/14

