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Abstract In this paper, we present ParaMiner which is a generic and par-
allel algorithm for closed pattern mining.

ParaMiner is built on the principles of pattern enumeration in strongly
accessible set systems. Its efficiency is due to a novel dataset reduction tech-
nique (that we call EL-reduction), combined with novel technique for perform-
ing dataset reduction in a parallel execution on a multi-core architecture.

We illustrate ParaMiner’s genericity by using this algorithm to solve
three different pattern mining problems: the frequent itemset mining prob-
lem, the mining frequent connected relational graphs problem and the mining
gradual itemsets problem.

In this paper, we prove the soundness and the completeness of ParaMiner.
Furthermore, our experiments show that despite being a generic algorithm,
ParaMiner can compete with specialized state of the art algorithms designed
for the pattern mining problems mentioned above. Besides, for the particular
problem of gradual itemset mining, ParaMiner outperforms the state of the
art algorithm by two orders of magnitude.

Keywords Data mining · closed pattern mining · parallel pattern mining ·
multi-core architectures

B. Negrevergne
LIG laboratory, University of Grenoble, France
E-mail: Benjamin.Negrevergne@imag.fr

A. Termier
E-mail: Alexandre.Termier@imag.fr

M.-C. Rousset
E-mail: Marie-Christine.Rousset@imag.fr

J.-F. Méhaut
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1 Introduction

Pattern mining is one of the major areas of data mining. Its goal is to extract
patterns hidden in large volumes of data, usually by counting their number
of occurrences. Since the pioneering work by Agrawal and Srikant (1994) for
mining itemsets in transactional data, pattern mining has been extended to
numerous tasks such as mining sequences, trees and graphs. Pattern mining
has many industrial and scientific applications in varied domains such as web
usage mining, bioinformatics or drug design.

Pattern mining is a costly task due to two main reasons: the size of the
search space and the inherent cost required to access large datasets. In order
to achieve practical efficiency, many dedicated algorithms have been designed.
These algorithms exploit the specificities of the pattern mining problem at
hand to reduce the number of candidate patterns generated (first problem)
and also to reduce the number of accesses to the dataset (second problem). In
this paper we name the problem exploring the search space of all candidate
patterns (first problem) the pattern enumeration problem and problem of re-
ducing the number of accesses to the dataset to test the candidate patterns
(second problem) the pattern testing problem.

Due to its relative simplicity, most algorithmic advances were achieved
on the seminal problem of mining frequent itemsets. Pattern enumeration was
first improved by Pasquier et al (1999) by focusing on closed frequent itemsets,
and then by providing a tree based enumeration over the search space of closed
frequent patterns with the LCM algorithm by Uno et al (2003). Pattern testing
was greatly improved by introducing the concept of dataset reduction with the
FP-Growth algorithm from Han et al (2000). This algorithm performs a tree
based enumeration of the frequent itemsets, and creates for each node of that
tree a reduced dataset (called conditional database in the original paper) that
is tailored to compute only the itemsets of the corresponding enumeration
subtree. This technique was improved in the LCM2 algorithm by Uno et al
(2004), that won the title of most efficient closed frequent itemset miner at
the FIMI’04 workshop (Goethals (2004)), and still is the reference algorithm
for efficiency of mining.

Despite their huge performance impact, most of these improvements do not
transfer easily to other pattern mining problems. The difficulty of adapting
state of the art pattern mining techniques to new pattern mining problems
slows down pattern mining research. The challenge is thus to design generic
pattern mining algorithms while providing state of the art efficiency.

Regarding genericity Arimura and Uno (2009), and Boley et al (2010) have
recently proposed to study the problem of closed pattern enumeration as the
problem of enumerating sets in a set system. The definition of a pattern relies
on a simple predicate called selection criterion and their theoretical frame-
work can capture a broad range of pattern mining problems such as frequent
itemsets, connected relational graphs, rigid sequences and others, with strong
complexity guarantees (output-polynomial in time, polynomial in space). How-
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ever they do not address the pattern testing problem, which prevents their
contribution to be turned into a practically efficient algorithm.

Our goal is to bridge the gap between generic but practically intractable
pattern mining algorithms, and dedicated algorithms that are efficient only
for a given problem. We present the ParaMiner algorithm that both covers
a broad class of pattern mining problems, and achieves practical efficiency
thanks to a novel dataset reduction technique and to harnessing multi-core
architectures through parallelism. This result will allow pattern mining prac-
titioners to mine new types of datasets and new patterns with little effort.
ParaMiner is available as an open source software on authors’ web page.

The originality and efficiency of ParaMiner comes from two main contri-
butions:

– The first contribution is a novel and generic dataset reduction operator
called EL-reduction. Unlike other dataset reduction operators of the lit-
terature, the EL-reduction is independent of the pattern mining problem
considered. In order to define this operator, we restricted the framework
proposed by Arimura and Uno (2009) and Boley et al (2010) to a slightly
more specialized class of pattern mining problems where the patterns have
to occur in a dataset. We also impose some limitations on the selection
criterion, expressed through a new property called decomposability that it
has to satisfy. Our framework covers most of the practical pattern mining
problems studied in the literature.

– The second contribution is a thorough study of the impact of dataset reduc-
tion on the parallel execution of ParaMiner, when using a straightforward
parallelisation of a depth first search algorithm. To the best of our knowl-
edge this is the first time that such a study is conducted. We especially
focus on memory bus contention. The results of this study allow us to dis-
tinguish, during the search space exploration, the nodes where a dataset
reduction has to be perfomed and those where dataset reduction will be
inefficient, and to devise a criterion to determine a priori if a dataset reduc-
tion must be performed or not. We show that such criterion significantly
improve parallel scalability.

The paper is organized as follow. In Section 2, we will recall the state of
the art in closed pattern enumeration. In this setting it is important that each
pattern has a unique closure, we will provide a new property called supported
confluence and will prove that it guarantees closure uniqueness when verified
by a pattern mining problem. In Section 3, we will instantiate three different
pattern mining problems with ParaMiner to show its genericity. In Section 4,
we will describe the ParaMiner algorithm and our original EL-reduction tech-
nique for dataset reduction. We will also prove the soundness and completeness
of ParaMiner. In Section 5, we will first present a detailed study of the im-
pact of dataset reduction on parallel performance and then present a criterion
for selecting the dataset reductions that have to be performed. In Section 6 we
will compare ParaMiner with several specialized algorithms on the problems
we instantiated, to demonstrate that ParaMiner has competitive execution
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times. For recent pattern mining problems, it can outperform state-of-the-art
ad-hoc algorithms by two orders of magnitude. In Section 7, we will relate our
generic framework for pattern mining to other existing generic approaches. In
Section 8, we will conclude and give some research perspectives.

2 Generic framework: definitions and algorithmic background

In this paper we focus on the problem of extracting closed patterns (Pasquier
et al, 1999). A closed pattern is a representative pattern of a class of equivalent
patterns from which it is possible to derive all the patterns of this class.

The set of closed patterns contains exactly the same information as the
complete set of patterns, but there are usually much fewer closed patterns,
which permits a faster mining and an easier analysis of the results.

In order to provide a generic definition for closed patterns we extend the
work of Boley et al (2010) and (Arimura and Uno, 2009). We rely on a homo-
geneous representation of the patterns and of the dataset using sets. Thanks
to this representation, we are able to state a general problem of closed pattern
mining that can capture many specific closed pattern mining problems.

2.1 Preliminaries

We define a dataset as a sequence of transactions over a finite ground set of
elements.

Definition 1 (Dataset) Given a ground set E, a dataset DE is a sequence
of transactions [t1, t2, . . . , tn] where each transaction is a subset of the ground
set E. The set of transaction indices is called the tid set and is denoted TDE

.

We also use the following notations:

– DE(i), with i ∈ TDE
denotes the transaction ti in DE .

– |DE(i)| denotes the number of elements in DE(i).
– |DE | denotes the number of transactions in DE .

– ||DE || =
∑|DE |

i=1 |DE(i)| denotes the size of DE .

Many application datasets can be directly stored in this form. For example,
for frequent itemsets mining in the context of market basket analysis, the
ground set is the set of all available items (e.g., E = {apple, beer, chocolate})
and each transaction in the dataset is a set of items purchased together by the
same customer. An example of a dataset defined over the previous ground set
is: DE = [{apple, beer, chocolate}, {apple, beer}, {apple, chocolate}].

It is also possible to use this definition to mine genomic datasets. For
example in the context of gene network analysis proposed by Yan et al (2005),
given a set of genes denoted G, the ground set E is the cartesian product
G×G of pairs of genes representing all the possible gene interactions between
the genes of G. In the dataset, each transaction is a set of interactions observed
during one experiment. An example is shown in Figure 1.
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E = {(G1, G2), (G1, G3), . . . , (G5, G4)}

DE =
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{(G1, G2), (G1, G5), (G3, G2), (G4, G1)}]

Fig. 1 A dataset of relational graphs, each node is a gene, there is an arc between two
genes GX and GY when the gene GX interacts (i.e. has an influence) with the gene GY .
The ground set E is the set of all the possible interactions between the set of genes, each
transaction in DE is a set of interactions between genes.

We now introduce other important definitions:
A candidate pattern is defined as a subset of the ground set.

Definition 2 (candidate pattern) A candidate pattern is a subset of the
ground set E.

The support set of a candidate pattern is the sub-dataset made of the
transactions including this candidate pattern.

Definition 3 (support set) Given a dataset DE and a candidate pattern
X ⊆ E, the support set of X denoted DE [X] is the set of transactions in DE

including X.

In addition, we define the tid support set of a candidate pattern X as follow.

Definition 4 (tid support set) The tid support set of a candidate pattern
X, denoted DE [[X]] is the set of indices of the transactions in DE [X]: DE [[X]] =
{t ∈ TDE

|X ⊆ DE(t)}.

If a candidate pattern X ⊆ E has a non empty tid set in a dataset DE , we
say that X occurs in DE .

A selection criterion needs to be provided as a user-specified predicate Select
in order to discriminate patterns of interest among candidate patterns.

Definition 5 (Pattern) Given a dataset DE built over a ground set E, a
selection criterion Select, a candidate pattern X ⊆ E is a pattern in DE if
and only if:

1. X occurs in DE

2. X satisfies the selection criterion in the dataset: Select(X,DE) = true.

In the following, we denote by F ⊆ 2E the set of patterns.
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2.2 Closed patterns

Closed patterns were proposed by Pasquier et al (1999) in the context of fre-
quent itemset mining, to reduce the redundancy among the set of the patterns.
A pattern is closed if it is the largest pattern occurring in its support set.

Definition 6 (Closed pattern) A pattern P ∈ F is closed if and only if
there exists no strict superset of P that is a pattern in F with the same
support set.

A closure of a pattern is a superset of this pattern with the same support
set.

Definition 7 (Closure of a pattern) For a pattern P ∈ F , a closed pattern
Q ∈ F is a closure of P if and only if P ⊆ Q and DE [P ] = DE [Q].

This definition guarantees that every pattern admits a closure: Either there
is a superset with the same support or the pattern itself is its own closure.
Algorithm 1 is a generic algorithm that computes a closure of a pattern by
augmenting it with elements from the intersection of the transactions in its
support set.

Algorithm 1 A generic closure algorithm
Require: a ground set E, a dataset DE , a selection criterion Select and a pattern P .
Ensure: returns the unique closure Q of P .
1: Q← P
2: Qmax =

⋂
DE [P ] /*Elements included in every transaction in DE [P ]*/

3: while ∃e ∈ Qmax \Q : Select(Q ∪ {e},DE) do
4: /*While there exists e such that Q ∪ {e} ∈ F*/
5: Q← Q ∪ {e}
6: end while
7:
8: return Q

The uniqueness of closure is crucial for defining a closure operator at the
core of closed pattern enumeration algorithms. We exhibit a property called
supported confluence that is sufficient to guarantee that the closure of every
pattern is unique. This property is satisfied if for every two patterns with the
same support set, the existence of a non empty pattern in their intersection
guarantees that their union is also a pattern.

Property 1 (Supported confluence) Let F be the set of patterns occurring in a
dataset DE . F is support confluent if and only if:
Q ∪Q′ is a pattern for every patterns Q and Q′ such that:

i. Q and Q′ have the same support set in DE , (DE [Q] = DE [Q′])
and

ii. Q∩Q′ includes a non empty pattern, (there exists Z ⊆ Q∩Q′ with Z 6= ∅
such that Z ∈ F)
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Theorem 1 states that the closure of every pattern is unique if the set of
patterns is support confluent.

Theorem 1 (Closure uniqueness)
Let F be the set of patterns occurring in a dataset DE. If F is support con-
fluent, then the closure of every pattern is unique. In this case, we denote
Clo(P,DE) the closure of P in DE.

Proof: Suppose that there exists a pattern P that admits two closures denoted
Q and Q′. From Definition 7, it is guaranteed that: (1) Q and Q′ are patterns,
(2) P ⊆ Q and P ⊆ Q′, and (3) DE [Q] = DE [Q′]. From (3), item (i) of
supported confluence is verified. Since P is a non empty pattern in Q ∩ Q′,
item (ii) of supported confluence is also verified. Hence Q∪Q′ is also a pattern.
Since DE [Q] = DE [Q′], DE [Q ∪ Q′] = DE [Q] ∩ DE [Q′] = DE [Q] = DE [Q′].
However, if Q is closed, there exists no strict super set of Q that admits the
same support set. Hence Q = Q∪Q′. The same goes for Q′, and thus Q = Q′.
Therefore the closure of any pattern P is unique. ut

Other characterizations of the closure uniqueness have been published. In
particular the property of confluence, introduced by Boley et al (2010), which
has inspired the supported confluence. A set of patterns defined over a ground
set is confluent if and only if the union of two patterns having a non empty
pattern in their intersection is also a pattern. If the confluence property is
satisfied for a set of patterns, then the closure uniqueness is guaranteed for
every possible dataset that can be defined over the same ground set.

Guaranteeing that the closure is unique for a given set of pattern and any
dataset is uselessly restrictive and does not apply to most frequent pattern
mining problems including the frequent itemset mining problem.
Proof: Let DE be a dataset defined over a ground set ground set E = {A,B,C}
such that DE = [{A,B}, {B,C}]. The set of frequent itemset sets F =
{∅,A,B, {AB}, {BC}} extracted from DE with a minimum support value ε = 1
is not confluent. Indeed, {AB} ∩ {BC} includes {B} which is a pattern in F ,
yet {AB} ∪ {BC} = {ABC} is not a pattern in F . Hence F is not confluent.

In contrast, supported confluence is satisfied for frequent itemsets as it will
be shown in Section 3.1.

If the closure is unique, Algorithm 1 is a generic closure operator. In prac-
tice, this algorithm may be very costly and can be replaced by more efficient
specific algorithms relying on characterizations of the closure operator that
exploit particular properties of the problem (see Section 3).

2.3 Formal problem statement

In this paper, we address the problem of closed pattern mining where the
closure of every pattern is unique and can be computed with a closure operator.

The general pattern mining problem that we address in this paper can be
stated as follow.
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Definition 8 (Closed pattern mining problem) Given a ground set E,
a dataset DE , a selection criterion Select and closure operator Clo, extract
from DE all the closed patterns, that is any set P ⊆ E such that:

1. P occurs in DE (DE [P ] 6= ∅)
2. Select(P,DE) = true
3. Clo(P,DE) = P .

2.4 Enumeration of closed patterns

Generating and testing the complete set of candidate patterns is not feasible
in practice because of the exponential number of candidate patterns (2|E|).
In order to get acceptable performances, closed (and standard) pattern min-
ing algorithms rely on efficient enumeration strategies. Enumeration strategies
exploit the structured nature of the search space to minimize the number of
candidate pattern tests required to find the complete set of closed patterns.

Structured search space: Most pattern mining algorithms perform a construc-
tive enumeration of the closed patterns, using a pattern augmentation relation.
In our framework, the augmentation relation is defined as follow.

Definition 9 (Pattern augmentation) A pattern Q is an augmentation of
a pattern P if there exists e ∈ Q \ P such that Q = P ∪ {e}.

The set of patterns together with the augmentation relation form a strict
partial order with ⊥ as its minimum element, thus having a directed acyclic
graph (DAG) structure. The Figure 2 (a) is an example of such a DAG struc-
ture.

An enumeration strategy is required to explore this DAG and find all the
closed patterns without generating duplicates. Arimura and Uno (2009) have
shown that it is possible to build polynomial-space enumeration strategies if
the set system that consists in the ground set and the set of patterns satisfies
the property of accessibility.

Definition 10 (Set system) A set system is an ordered pair (E,F) where
E is a set of elements and F ⊆ 2E is a family of subsets of E.

In the context of pattern mining, E is the ground set, and F is the set of
patterns.

Definition 11 (Accessible set system) A set system (E,F) is accessible if
for every non-empty X ∈ F , there exists some e ∈ X such that X \ {e} ∈ F .

The intuition behind the notion of accessibility is that when a set system
is accessible, there exists in the corresponding DAG, a path connecting ⊥ to
any other pattern. This guarantees that it is possible to generate any pattern
by augmenting another smaller pattern.
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Fig. 2 (a): A DAG representation of set of patterns defined over the ground set
{A,B,C,D}. A solid box labeled ABD represent the pattern {A,B,D}. Arrows connecting
the patterns represent the augmentation relations. (b): The same DAG with closed patterns
highlighted (shaded boxes). The thick arrows connecting the closed patterns are the arcs of
a possible enumeration tree.

Augmenting every pattern will possibly generate duplicate patterns. For
example in Figure 2 (a) the augmentation of AD with C and augmentation of
AC with D both lead to the pattern ACD. Following an enumeration tree as
the one in Figure 2 (b) ensures that no duplicate patterns will be generated.
In order to follow an enumeration tree, one must be able to identify a unique
parent for every closed pattern. Once a unique parent has been identified for
each closed pattern, the strategy is to augment a pattern P into Q only if P
is the unique parent of Q. In order to define a unique parent for every closed
pattern, we build a lexicographical order over F (denoted <F ) based on a
given order over the ground set E. Following Arimura and Uno (2009), we call
first parent of a pattern, the smallest parent of this pattern with respect to
<F .

Definition 12 (First parent) Let P be a closed pattern, and Q the closure
of an augmentation P ∪{e} of P such that P <F P ∪{e}. P is the first parent
of Q if there does not exist a closed pattern P ′ <F P and an element e′ such
that P ′ <F P

′ ∪ {e′} and Q is the closure of P ′ ∪ {e′}.

Designing a tree-based enumeration strategy in accessible set systems boils
down to designing a procedure able to detect the first parent of every closed
pattern. Efficient detection of the first parent is critical to build efficient enu-
meration strategies.

Storing the set of closed patterns enumerated so far to find the smallest
parent pattern (w.r.t. the lexicographical order on F) is not a good strategy.
Since the number of closed patterns can grow exponentially with the size of
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the ground set it may require exponential memory space. In addition updat-
ing the set of closed patterns would required extensive communication and
synchronization in the context of a parallel algorithm.

Instead, efficient pattern mining algorithms such as LCM compute the first
parent without relying on a memory representation of the patterns enumerated
so far. This is important because it enables exploration of the search space
without global communication. Arimura and Uno (2009) have shown that it is
possible to compute the first parent in an accessible set system in polynomial
space (thus without retaining patterns in memory). But it requires additional
calls to Select. This does not take into account the fact that calls to Select
requires costly accesses to the dataset.

We now present two properties that are stronger than accessibility that
allow more efficient computation of the first parent.

Definition 13 (Independence set system) A set system (E,F) is an in-
dependence set system if Y ∈ F and X ⊆ Y together imply X ∈ F .

Definition 14 (Strongly accessible set system) A set system (E,F) is
strongly accessible if it is accessible and if for every X,Y ∈ F with X ⊂ Y ,
there exists some e ∈ Y \X such that X ∪ {e} ∈ F .

Any independence set system is strongly accessible (Boley et al, 2010). Any
strongly accessible set system is accessible by definition.

When the set system formed by the patterns is an independence set system,
every subset of a pattern is also a pattern. Therefore checking whether a
pattern P is the first parent of Q can be done at almost no cost by checking
whether P precedes Q in a lexicographical order over F based on any order
over E.

It is worth noting that this method is correct to mine frequent closed item-
sets because the set of frequent itemsets is an independence set system. How-
ever many other pattern mining problems such as the graph mining problem
that we have introduced at the beginning of this section are not independent.
(Proofs are provided in Section 4.)

When the set system formed by patterns is strongly accessible, the first
parent test is more complex but can be done without performing calls to
Select. Boley et al (2010) have shown that testing if a closed pattern P is the
first parent of a closed pattern Q can be done efficiently by retaining in an
exclusion list the elements e ∈ E that are augmentations of a parent of P that
have been developed. If a closure Q of P contains any element of E then it
will be generated from another branch of the enumeration tree and should not
be developed in the current branch.

The principle of closed pattern enumeration in a strongly accessible set
system is given in Algorithm 2. This algorithm is a reformulation of Boley
et al (2010) algorithm adapted to our framework. The enum clo() procedure
builds the augmentations of a pattern P by testing (Line 5) which candidate
pattern P ∪ {e} satisfies the selection criterion Select. If P ∪ {e} satisfies
the selection criterion, enum clo() applies the closure operator Clo to get the
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closure Q of P ∪{e}. Line 9, we check that P is the first parent of Q by testing
that Q does not contain any element in EL. If P is the first parent of Q, then
enum clo() is called with Q as first argument. Then e is added to EL to recall
that supersets of P ∪ {e} must not be explored in next iterations of the forall
loop of Line 5.

Algorithm 2 Enumerate closed patterns in strongly accessible set systems
Require: An strongly accessible set system (E,F), a closure operator Clo and a dataset
DE .

Ensure: Output the set C of all the pattern in F that are closed in DE .
1: enum clo(Clo(⊥,DE), ∅)

2: enum clo(P,EL
Require: A closed pattern P , and an exclusion list EL.
Ensure: Outputs the set of all the closed patterns that have P as an ancestor in the

enumeration tree.
3: output P
4: /* Generate all the augmentation of P .*/
5: for all e such that P ∪ {e} occurs in DE do
6: if Select(P ∪ {e},DE) then
7: Q← Clo(P ∪ {e},DE)
8: /* Detect if P is the first parent of Q.*/
9: if Q ∩ EL = ∅ then

10: enum clo(Clo(P ∪ {e},DE), EL)
11: EL← EL ∪ {e}
12: end if
13: end if
14: end for

We illustrate the principle of Algorithm 2 in Figure 3. Figure 3 repre-
sents an intermediary step of the process of exploring the enumeration tree in
Figure 2 (b). When augmenting ⊥ with element D, ⊥ has been formerly aug-
mented with A and B, thus EL contains A and B. When trying to augment D
with A, we obtain the closed pattern {AD}. However {AD} contains A which
is also included in EL thus D is not the first parent of {AD} signaling that
{A}D have been enumerated from another branch. (The one starting at A.)
We thus consider the next augmentation of D which is {CD}, the closure of

⊥

A B C D

AD BD CD

×

enum clo(⊥ ∪ {D}, {A,B})

enum clo({D} ∪ {C}, {A,B})

...
...

...

Fig. 3 Enumeration with the exclusion list
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{CD} is {CD} it self which does not contain any element in EL. Therefore D
is the first parent of {CD}.

In an a strongly accessible set system, it is guaranteed that if {A} and
{AD} are two patterns, there exists an augmentation path between {A} and
{AD}. (Hidden on Figure 3, visible on Figure 2 (b).) Therefore {D} is not the
first parent of {AD}.

Conversely no subset of {D} could be augmented with C, since {CD} is a
pattern, {D} is its first parent.

Two points deserve to be emphasized:

i. The exclusion lists are transmitted from parent to child but not the other
way around. Thus branches can be explored independently. Illustrated on
Figure 3, it means that is it is not required to explore the branch rooted
at {A} to ensure correct exploration of the branch rooted as {D}. In other
words, sibling branches can be explored in any order without compromising
the soundness or the completeness of the enumeration strategy.

ii. The exclusion list size is log(|E|) thus the space required to compute the
first parents is polynomial even if F is equal to 2n.

We have shown in this section that mining patterns in independence set
systems or in strongly accessible set systems can be done at low cost. However,
strongly accessible set systems are more general (they can capture more pat-
tern mining problems) than independence set systems while retaining several
important properties such as: polynomial space and output polynomial time
complexity with the number of closed pattern, the ability to detect the first
parent with local computations and without additional calls to Select and
accesses to the dataset.

We show in the following Section 3 that strongly accessible set systems are
sufficient to capture a broad range of pattern mining problems. We also show
that it can be turned into an efficient parallel algorithm that can compete with
specialized algorithms.

3 Encoding different pattern mining problem within this generic
framework

The framework presented in Section 2 can capture various types of pattern
mining problems by using the adequate encoding.

First, representing patterns as sets is powerful enough to mine a broad
range of pattern types from frequent itemsets to rigid sequences, or picture
patterns (Arimura and Uno, 2009). In this section, we will focus on three
distinct pattern mining problems: the problem of mining frequent itemsets,
the problem of mining frequent connected relational graphs and the problem
of mining gradual itemsets. For each one of them, we will provide a possible
encoding into our framework, then we will demonstrate the existence of a
closure operator and we will prove the strong accessibility of the corresponding
set system.
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3.1 Mining closed frequent itemsets (fim)

Ground set & dataset: Encoding a frequent itemset input dataset is direct and
has been explained in Section 2.1.

Selection criterion: A subset of the ground set E is a pattern if it occurs in
at least ε transactions (for a given constant ε). For any P ⊆ E, Select(P,DE)
≡ |DE [P ]| ≥ ε.

Closure Uniqueness: The closure uniqueness for the fim problem is a conse-
quence of the fact that a set of frequent itemsets is support confluent.

Theorem 2 (Supported confluence for the fim problem) The fim prob-
lem is support confluent.

Proof: We recall that F is support confluent with respect to a dataset DE

if for every two patterns Q and Q′ in F such that DE [Q] = DE [Q′], ∃Z ⊆
Q ∩Q′ 6= ∅ implies that Q ∪Q′ belongs to F . Let Q and Q′ be two candidate
patterns such that DE [Q] = DE [Q′]. The support set of Q ∪ Q′ is the set of
transactions containing both Q and Q′: DE [Q ∪Q′] = DE [Q] ∩ DE [Q′]. Since
DE [Q] = DE [Q′] by hypothesis, DE [Q]∩DE [Q′] = DE [Q]. Since Q is frequent,
|DE [Q]| ≥ ε hence |DE [Q ∪ Q′] ≥ ε. Thus if Q is a pattern Q ∪ Q′ is also a
pattern. ut

Strong Accessibility: The set system (E,F) formed by the frequent itemsets
have been proved to be an independence set system by Boley et al (2010).

3.2 Mining closed frequent connected relational graphs (crg)

A relational graph is a labelled graph in which all the node labels are distinct.
Such graphs can represent gene networks as well as social networks (Yan et al,
2005). An example of a relation graph dataset has been presented in Figure 1.

The problem of mining frequent connected relation graph can be stated as
follows: Given a set of vertices V and a set of relational graphs G1, . . . , Gn

where each Gi is a relational graph (V,Ei) defined using the nodes in V ,
extract the connected sub-graphs occurring in at least ε input graphs.

The problem of extracting frequent closed connected relational graphs can
be captured in our setting as follows:

Ground set: The ground set E is a set of pairs in V × V , each pair is used to
represent an edge connecting two nodes in V .

Dataset: The dataset DE = [t1, . . . , tn] is a sequence of transactions where
for all i ∈ [1, n], the transaction DE(ti), represents the input graph Gi. Each
element in the transaction ti is a pair representing an edge in Gi.
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Selection criterion: Given a candidate pattern G, Select(G,DE) returns true
if and only if:

– G is a connected set of edges.
– |DEg[G]| ≥ ε (for a given constant ε)

Closure uniqueness: The closure for the crg problem is unique because it is
support confluent.

Theorem 3 (Supported confluence for the fim problem) The crg prob-
lem is support confluent.

Proof: Let Q and Q′ be two patterns in F such that DE [Q] = DE [Q′]. and
let Z be a pattern in F such that Z ⊆ Q ∩Q′ and Z 6= ∅. As patterns, Q, Q′

and Z are connected set of edges. Q is connected implies that for every edges
e, e′ ∈ Q, there exists a path [e, . . . , e′], connecting e and e′. Let e, be an edge
in Q ∩ Q′ (This edge always exists because Q ∩ Q′ ⊇ Z 6= ∅) then ∀e′ ∈ Q
and e′′ ∈ Q′, there exists a path [e′, . . . , e, . . . , e′′] ∈ Q ∪ Q′. Hence Q ∪ Q′ is
connected. In addition since DE [Q] = DE [Q′], every transaction in DE [Q] also
contains Q′ hence |DE [Q ∪Q′]| = |DE [Q]|. By hypothesis |DE [Q]| ≥ ε hence,
|DE [Q ∪ Q′]| ≥ ε and Q ∪ Q′ is also frequent. Since Q ∪ Q′ is frequent and
connected, it is a pattern. F is support confluent. ut

Closure operator: The closure of a graph P is the set of edges connected to P
occurring in every transactions of the support set of P . It can be computed
with Algorithm 3. This algorithm is a specialization of Algorithm 1: in Line
3, we only perform a connectivity test rather than a complete call to Select
because by construction Q∪{e} is frequent. (Q is a frequent pattern, and {e}
has the same support set than Q, therefore Q ∪ {e} is frequent.)

Algorithm 3 Closure operator for the crg problem
Require: a graph pattern P and a dataset DE

Ensure: returns the unique closure Q of P .
1: Q← P
2: /*while there exists e such that e is connected to Q*/
3: while ∃e ∈ ∩DE [P ] \Q such that Q is connected e do
4: Q← Q ∪ {e}
5: end while
6:
7: return Q

Strong accessibility: Theorem 5 states that the set system corresponding to
the crg problem is strongly accessible.

However, in order to prove Theorem 5 we need Theorem 4 that shows that
the intersection of an independent set system and a strongly accessible set
system is strongly accessible.
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Theorem 4 (Set system intersection) Given two set systems S1 = (E,F1)
and S2 = (E,F2) defined over the same ground set E, if S1 is independent
and S2 is strongly accessible, the set system S3 = (E,F1∩F2) is then strongly
accessible.

Proof: We denote F3 the intersection of F1 and F2, hence S3 = (E,F3). Let
Y be a subset of E in F3, and let X be any subset of Y . Since F3 = F1 ∩ F2,
Y is also in F1 and F2. As a subset of Y , X is also in F1, therefore any subset
X of Y belongs to F3 if and only if it belongs to F2.

We now show that S3 is accessible. F2 is strongly accessible thus accessible,
therefore there exists e ∈ Y such that Y \{e} ∈ F . However Y \{e} is a subset
of Y and belongs to F2, therefore it also belongs to F3. S3 is accessible.

In a similar way, we show that S3 is also strongly accessible. Since F2 is
strongly accessible there exists some e ∈ X \ Y such that X ∪ {e} ∈ F2.
However, X ∪ {e} is a subset of Y and therefore also belongs to F3. S3 is
accessible and for any Y,X ∈ F3, there exists e ∈ Y \X such that X∪{e} ∈ F3

therefore S3 is strongly accessible. ut

Theorem 5 (Strong accessibility for crg) The set system associated with
the crg problem is strongly accessible for every dataset DE.

Proof: We denote (E,F0), with F0 = Select(2E ,DE) the set system formed
by all the sets X ⊆ E satisfying the selection criterion. That is, any X such
that:

– X is a frequent set of edges in DE ,
– X is a connected set of edges.

Let F1 be the set of sets X ⊆ E such that X is a frequent set of edges and
let F2 the set of sets Y ⊆ E such that Y is a connected set of edges. Hence,
F = F1∩F2 is set of all the frequent and connected sets of edges F0 = F1∩F2.

We observe that mining frequent sets of edges is equivalent to mine frequent
set of items, hence the set system (E,F1) formed by all the frequent set of
edges is an independence set system.

The set system (E,F2) formed by all the connected sets of edges have been
proved to be strongly accessible in (Boley et al, 2010).

According to Theorem 4, the set system formed by all the frequent and
connected graphs (E,F0 = F1 ∩ F2) is strongly accessible. ut

3.3 Mining closed gradual itemsets (gri)

The problem of mining gradual itemsets consists in mining attribute co-variations
in numerical databases (Ayouni et al, 2010). Consider the numerical database
in Table 1.

When considering the records p1, p2 and p3, it appears that an increase
in temperature is correlated with a decrease in electric consumption. This co-
variation of the temperature and the electric consumption can be represented
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Place Temperature in °C Electric consumption in W
p1 0 2000
p2 10 1000
p3 20 500
p4 30 1500

Table 1 Example of a numerical database

by the gradual itemset (T ↑, EC↓) (where T stands for Temperature and EC
stands for Electric Consumption). This gradual itemset is respected by the
sequence of records [p1, p2, p3]. Note that symmetrically, (T ↓, EC↑) is respected
by [p3, p2, p1].

Let A = {a1, . . . , am} be a set of attributes and P = {p1, . . . , pn} be a
set of records where each record pi with i ∈ [1, n] stores a numerical value for
every attribute in A. The problem of mining closed gradual itemsets can be
represented in our framework by considering as ground set the variations of
attributes and by encoding transactions and patterns as subsets of attribute
variations verifying some constraints. The encoding is the following:

Ground set: E is the set of attributes variations: E = {a↑1, a
↓
1, . . . , a

↑
m, a

↓
m}.

Dataset: In the dataset DE , there are as many transactions as pairs of records
(pi, pj) ∈ P with i, j ∈ [1, n] and i 6= j. A transaction has as identifier (pi, pj)
if it contains the variation for every attribute in A between the records pi and
pj . We will denote the corresponding transaction t(pi,pj): for every attribute

a ∈ A, a↑ ∈ t(pi,pj) ⇔ pi[a] ≤ pj [a] (p[a] denoting the value of attribute a for

record p), a↓ ∈ t(pi,pj) otherwise. The corresponding encoded dataset for the
database in Table 1 is shown in Table 2.

t(p1,p2) : [{T ↑, EC↓},
t(p1,p3) : {T ↑, EC↓},
t(p1,p4) : {T ↑, EC↓},
t(p2,p1) : {T ↓, EC↑},
t(p2,p3) : {T ↑, EC↓},
t(p2,p4) : {T ↑, EC↑},
t(p3,p1) : {T ↓, EC↑},
t(p3,p2) : {T ↓, EC↑},
t(p3,p4) : {T ↑, EC↑},
t(p4,p1) : {T ↓, EC↑},
t(p4,p2) : {T ↓, EC↓},
t(p4,p3) : {T ↓, EC↓}]

Table 2 Encoding of the database in Table 1: each transaction contains the variation of
the attributes T and EC between each record in the database. A variation can be positive
(↑) or negative (↓).
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Selection criterion: Given a constant ε, and a candidate patternG = {av1g1 , . . . , a
vk
gk
}

with g1 < . . . < gk, and v1, . . . , vk variations of the form ↑ or ↓, G is a pattern
if the size of the longest tid path in the tid support set of G is greater or equal
than ε.

Definition 15 (tid path) A tid path is a sequence of transactions identifiers
[(pi1 , pj1), . . . , (pin , pjn)] such that ∀k ∈ [1, n[, pjk = pik+1

.

For example the longest tid path in {(p1, p2), (p1, p3), (p1, p4), (p2, p3)} is [(p1, p2), (p2, p3)]
of size 2.

When it is clear from context, we refer to the longest tid path in the tid
support set of G as the longuest tid path of G.

In addition one can observe that if a pattern is frequent, then a symmetric
pattern is also frequent and does not carry additional information. For ex-
ample: (T ↑, EC↓) and (T ↓, EC↑). To take into account the symmetry of the
problem we discard from the set of patterns, any pattern G = {av1g1 , . . . , a

vk
gk
}

such that v1 is not ↑.

Thus, given a pattern G = {av1g1 , . . . , a
vk
gk
}, Select(G,DE) returns true if and

only if:

1. The size of the longest tid path in the tid support set of G is greater or
equal to ε,

2. G is empty or the first variation v1 of ag1 in G is ↑.

Closure uniqueness: The closure for the gri problem is unique because it is
support confluent.

Theorem 6 (Supported confluence for the gri problem) The gri prob-
lem is support confluent.

Proof: Let Q and Q′ be two patterns in F such that DE [Q] = DE [Q′] and Z
be another pattern in F such that Z ⊆ Q ∩ Q′ and Z 6= ∅. Q is a pattern,
therefore there exists in DE [[Q]] a tid path of size greater or equal than ε. Since
Q and Q′ have the same support set in DE , DE [[Q]] = DE [[Q′]] = DE [[Q ∪Q′]]
and the same tid path also exist in DE [[Q∪Q′]]. Therefore Q∪Q′ is pattern if
and only if the first variation v1 of av1g1 is ↑, which is always granted since Q and
Q′’s first variations are both ↑. Hence Q∪Q′ ∈ F . F is support confluent. ut

Closure operator: We recall that the attributes a1, . . . , am are ordered. The
closure of a pattern P is the intersection of the transactions in DE [P ], from
which we remove the descending variations of the attributes before the first
attribute with an ascending variation. Algorithm 4 is more efficient than the
generic closure operator given in Algorithm 1. Theorem 7 states that both
algorithms are equivalent in the context of the gri problem.

Note that the closure operator proposed in 4 is defined in a much simpler
way than the one proposed by Di-Jorio et al (2009). This simplification is due
to the set-based encoding of the problem.



18 Benjamin Negrevergne et al.

Algorithm 4 Closure operator for the gri problem encoding attribute vari-
ations
Require: a gradual itemset pattern P and a dataset DE encoding attribute variations
Ensure: returns the unique closure Q of P .
1: Qmax ← ∩DE [P ]
2: a1 ← the first attribute with an ascending variation in Qmax

3: Q← Qmax

4: while ∃a↓ ∈ Q such that a precedes a1 in the order of the attributes do
5: Q← Q \ {a↓}
6: end while
7:
8: return Q

Theorem 7 (Closure operator for the gri problem) Algorithm 4 com-
putes the unique closure of every gradual itemset.

Proof: We show that the closure operator defined in Algorithm 4 for the gri
problem is equivalent to the generic closure operator defined in Algorithm 1.

Let a1 be the first attribute with an ascending variation in
⋂
DE [P ].

First, let us show that for any a↓ ∈
⋂
DE [P ] such that a is before a1 in the

order of the attributes, there does not exist S ⊂
⋂
DE [P ] such that a↓ ∈ S

and P ∪ S is a pattern.
Suppose that P∪S is a pattern: its first variation is ascending and therefore

there is b↑, where b < a < a1. This contradicts the fact that a1 is the first
attribute with an ascending variation in

⋂
DE [P ]. Therefore the closure of P

cannot include any element in the set R of elements suppressed in Line 5 of
Algorithm 4.

Second, let us show that S′ =
⋂
DE [P ] \ R is the closure of P . P being a

pattern, DE [[P ]] contains a tid path of size ε. By construction S′ has the same
support set as P therefore the tid support set DE [[S′]] of S′ also contain the
same tid path.

By removing R from
⋂
DE [P ] to build S′, it is guaranteed that there is no

descending variation on attributes before a1 in S′. Therefore S′ is a pattern.
By definition elements that are not in

⋂
DE [P ], cannot be in the closure

of P , hence S′ is maximal and thus is the closure of P . ut

Strong accessibility: We state in Theorem 8 that the set system corresponding
to the gri problem is strongly accessible.

Theorem 8 (Strong accessibility for gri) The set system associated with
the gri problem is strongly accessible for every dataset DE.

Proof: We denote (E,F0), with F0 = Select(2E ,DE) the set system formed
by all the set X ⊆ E satisfying the selection criterion. That is, any X =
{av1

x1
, . . . , avkxk

} such that:

– X the longuest path in the tid support set of X is greater or equal than ε.
(P1)
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– X is empty or, the first variation v1 of ax1 in X is ↑. (P2)

Let F1 be the set of sets X ⊆ E satisfying (P1) and, F2 the set of sets Y ⊆ E
satisfying (P2). The set of sets satisfying both conditions is F0 = F1 ∩ F2.

We show that (E,F1) is an independence set system and that (E,F2) is a
strongly accessible set system. Hence we can apply Theorem 4.

(E,F1) is an independence set system: ∀Y ∈ F1 with X ⊆ Y , X ∈ F1

if and only if the tid support set of Y in DE contains a tid path of size greater
than ε. Since X ⊆ Y , DE [Y ] ⊆ DE [X] and DE [[Y ]] ⊆ DE [[X]], therefore the
same tid path also exists in DE [[X]]. Thus X ∈ F1. the set system F1 an inde-
pendence set system.

(E,F2) is strongly accessible: We recall that (E,F2) is strongly acces-
sible if and only if:

1. it is accessible
2. for every X,Y ∈ F with X ⊂ Y , there exists some e ∈ Y \ X such that
X ∪ {e} ∈ F .

We first prove that the set system (E,F2) is accessible. From (P2), Y =
{av1

y1
, . . . , avk

yk
} ∈ F2 implies that the variation v1 of the first attribute ay1

in
Y , is ↑. We show that there always exists aviyi

∈ Y , with i ∈ [1, k], such that
Y \ {aviyi

} still satisfies (P2). For every Y ∈ F2, if |Y | ≥ 2, there exists at
least one aviyi

∈ Y with i 6= 1. Hence there exists aviyi
, such that X = Y \ {aviyi

}
contains av1

y1
. Since av1y1

, is the variation for the first attribute in X, and v1 =↑,
X = Y \ {aviyi

} satisfies (P2). In addition, if |Y | = 1, X = Y \ {av1y1
} = ∅ for

every e ∈ Y , which is granted to be in F2 since the restriction (P2) does not
apply to ∅. Therefore for every Y ∈ F2 there exists at least one aviyi

such that
Y \ {aviyi

} ∈ F2. (E,F2) is accessible. The set system (E,F2) is accessible.
We show that for every X,Y ∈ F with X ⊂ Y , there exists some e ∈ Y \X

such that X ∪ {e} ∈ F . Let X = {av1x1
, . . . , avkxk

} and Y = {av1y1
, . . . , a

vp
yp} be

two patterns in F2 with X ⊂ Y , since (E,F2) is accessible, it also is strongly
accessible if and only if ∀X,Y ∈ F2 with X ⊂ Y , there exists aviyi

∈ Y \ X,
such that X ∪ {aviyi

} ∈ F2.
– If |Y | − |X| = 1 then there exists only one avixi

∈ Y \X and Y \ {avixi
} = X.

Since X ∈ F2, Y \ {avixi
} = X is in F2 as well.

– If |Y |− |X| ≥ 2, let aviyi
be any attribute variation in Y \X with aviyi

6= av1y1
.

Then Y \ {aviyi
} admits av1y1

as a first variation with v1 =↑. Y \ {avi
yi
} ∈ F2.

(E,F2) is a strongly accessible.
From Theorem 4, if (E,F1) is an independence set system, and (E,F2) is

a strongly accessible set system, the set system (E,F0 = F1 ∩ F2) is strongly
accessible. ut

4 The ParaMiner algorithm

In this section, we present ParaMiner, a parallel algorithm able to solve
pattern mining problems formalized in the framework described in Section 2.
ParaMiner relies on the enumeration strategy given in Algorithm 2.



20 Benjamin Negrevergne et al.

ParaMiner is an extension of Algorithm 2 in which we have introduced
a novel dataset reduction technique called EL-reduction. EL-reduction can be
used for pattern mining problems expressed in our framework and enables
efficient pattern testing that is required to build efficient pattern mining algo-
rithms.

The soundness of the EL-reduction relies on the decomposability property
that we will introduce in Section 4.3. The soundness and the completeness
of ParaMiner are then proved for pattern mining problem whose selection
criterion are decomposable.

4.1 ParaMiner: main algorithm

The main procedure of ParaMiner is given in Algorithm 5. This procedure
computes the closure of ⊥ and calls the recursive procedure expand() (Algo-
rithm 6) to compute and output the remaining closed patterns.

Algorithm 5 ParaMiner
Require: ground set E, selection criterion Select, closure operator Clo, dataset DE

Ensure: Outputs all closed patterns occurring in DE .
1: output Clo(⊥,DE)
2: expand(Clo(⊥,DE),DE , ∅)

Algorithm 6 Expanding a closed pattern P

1: expand(P,Dreduced
P , EL)

Require: A closed pattern P , a reduced dataset Dreduced
P , an exclusion list EL.

Ensure: Output all closed patterns that are descendent of P in the enumeration tree.
2: for all e such that e occurs in Dreduced

P do

3: if Select(P ∪ {e},Dreduced
P ) then

4: Q← Clo(P ∪ {e},Dreduced
P )

5: if EL ∩Q = ∅ then
6: /* P is Q’s first parent. */
7: output Q
8: Dreduced

Q ← reduce(Dreduced
P , e, EL)

9: spawn expand(Q,Dreduced
Q , EL)

10: EL← EL ∪ {e}
11: end if
12: end if
13: end for

Given a closed pattern P , an individual call to expand() is in charge of
outputting every closed pattern that is a child of P in the enumeration tree.
When expand() finds a closed pattern Q that is a descendant of P , it calls the
reduce() function that produces the reduced dataset Dreduced

Q of the closed pat-
tern Q. The expand() procedure is then called again to build the descendants
of Q using the reduced dataset Dreduced

Q as illustrated in Figure 4.
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In Line 9 instead of performing a sequential call expand(), we spawn a new
task that can be performed on a different processor.

⊥

expand(⊥, . . .)

A

expand(A, . . .)

AB

expand(AB, . . .)

ABD ABE

AD

B C D

expand(D, . . .)

DF

expand(DF, . . .)

DEF

DE

DreducedA

DreducedD

DreducedDFDreducedAB

Fig. 4 The expand() procedure explores the search space following the enumeration tree
(white boxes and lines). In each call expand() the augmentations of a closed pattern are
built using the reduced dataset of this pattern (shaded boxes).

4.2 Dataset reduction: principles and properties

Dataset reduction techniques were introduced by Han et al (2000) and later
improved by Uno et al (2004). These techniques are based on the observation
that most patterns occur in a small part of the dataset, hence the whole dataset
is not required to compute the selection criterion for a given set of candidate
patterns. However these techniques were developed in the context of specific
algorithms for frequent itemset mining. We further extend this technique and
make it correct for pattern mining problems that have a corresponding set
system that is strongly accessible.

The practical efficiency of ParaMiner relies on the fact that the full
dataset is replaced by appropriate reduced datasets in the computation of
Clo (Line 4 of Algorithm 6), Select (Line 3 of Algorithm 6) and in the el-
ements chosen to expand closed patterns (Line 2 of Algorithm 6). Reduced
datasets are produced by the reduce() function presented in Algorithm 7.

In the following, we denote e the element used to obtain Q by augmenting
P : Q = Clo(P ∪ {e}).

Removing transactions: Transactions are removed Line 2 of Algorithm 7 when
initializingDreduced

Q with the support set of {e} inDreduced
P . This first reduction

step has been introduced by FP-Growth (Han et al, 2000) and consists in
removing any transaction not including Q from the dataset.
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Algorithm 7 The dataset reduction algorithm

1: reduce(Dreduced
P , e, EL)

Require: The reduced dataset Dreduced
P of the parent P of Q, the augmenting element e

such that Q = Clo(P ∪ {e},DE), the exclusion list EL.
Ensure: Returns the reduced dataset of Q: Dreduced

Q

2: Dreduced
Q ← Dreduced

P [{e}]
3: /* Suppress elements from transactions. */
4: for all G ∈ partition(Dreduced

Q , EL) do
5: for all e ∈ EL do
6: if there exists t′ ∈ G such that e 6∈ t′ then
7: Suppress e from all the transactions in G
8: end if
9: end for

10: end for
11:
12: return Dreduced

Q

Suppressing elements from transactions: By construction, elements in the ex-
clusion list EL cannot appear in patterns enumerated from Q. These elements
however cannot be directly suppressed from Dreduced

Q , because some of them
are needed to compute the closure of patterns enumerated from Q (Line 4 of
Algorithm 6) and check that these patterns have an empty intersection with
EL (Line 5). The elements of the exclusion list EL that can be safely removed
from transactions in Dreduced

Q are the ones that are guaranteed not to appear
in any closed pattern that is a descendent of Q in the enumeration tree.

For example, given the ground set E = {A,B,C,D}, let {C} be a closed
pattern, and EL = {A,B} an exclusion list. Considering the following dataset
(each line is a transaction):

Dreduced
{C} =

↓
A B C D
A C D

C

In this dataset, the only superset of {C} that can be a closed pattern and
a descendent of {C} in the enumeration tree is the candidate pattern {C,D}.
Any other superset of Q would necessarily include A or B which belong to the
exclusion list, hence it would fail the first parent test (Line 5 in Algorithm 6).

However A must be kept in Dreduced
Q because it is a possible element of the

closure of {C,D}. Indeed {C,D} and {A} have the same support set, hence
if Select({A,C,D}) = true, then the closure of {C,D} will be {A,C,D}.
Without A in the dataset the closure of {C,D} cannot be computed correctly
and the first parent test is not guaranteed to fail as it should be. This scenario
could lead to the generation of {C,D} as a closed pattern even if it is not the
case.

B does not have the same support set as any superset of {C} that is a
descendent of {C} in the enumeration tree, therefore it can be removed from
Dreduced

Q without altering neither the soundness nor the completeness of Para-
Miner.
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To easily determine the elements that cannot belong to any closure of a de-
scendent of Q, Dreduced

Q is partitioned (by the function partition(Dreduced
Q , EL)

called Line 4 in Algorithm 7) in groups of sets of transactions that have the
same elements except elements of EL (the partition() function is detailed in
Algorithm 8). For each group G of the partition, we suppress from each of
its transactions the elements of EL that do not appear in all the transactions
of the group. Such elements will not belong to the closure of any pattern Q′

further produced from augmentations of Q and supported by the transactions
in G. (These elements are suppressed Lines 5–9 of Algorithm 7.)

Algorithm 8 The partition function used in reduce()

1: partition(Dreduced
Q , EL)

Require: A dataset Dreduced
Q , an exclusion list EL

Ensure: Returns sets of transactions that are equal when considering only the elements
that are not in EL.

2: T ← Dreduced
Q

3: for all t ∈ T do
4: G← {t}
5: T ← T \ {t}
6: for all t′ ∈ T do
7: if t \ EL = t′ \ EL then
8: /* t and t′ have the same set of non EL-elements. */
9: /* They belong to the same group of transactions. */

10: G← G ∪ {t′}
11: T ← T \ {t′}
12: end if
13: end for
14: G ← G ∪ {G}
15: end for
16:
17: return G

The following theorem characterizes the dataset reduction. It states that
the transaction identifiers (tid support sets, see Definition 4) are preserved by
dataset reduction, and the elements that belong to all the transactions in the
support set of a pattern augmentation are also preserved.

Theorem 9 Let Q = Clo(P ∪ {e},Dreduced
P ) and Dreduced

Q be the result of

reduce(Dreduced
P , e, EL). If e′ occurs in Dreduced

Q and (Q∪{e′})∩EL = ∅ then:

– DE [[Q ∪ {e′}]] = Dreduced
Q [[{e′}]].

–
⋂
DE [Q ∪ {e′}] =

⋂
Dreduced

Q [{e′}].

Proof: Let us prove the first item. Let i be a tid in DE [[Q∪{e′}]]: it is the iden-
tifier of a transaction t in DE including Q∪ {e′}. t cannot have been removed
by Line 2 of reduce() because the support set of DE [Q ∪ {e′}] is included in
DE [Q]. In addition the elements in Q∪{e′} cannot have been removed from t
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by Line 7 because (Q ∪ {e′}) ∩EL = ∅. Therefore the resulting transaction t′

obtained by removing elements from t necessarily is in Dreduced
Q [e′]. Therefore

i is also in Dreduced
Q [[e′]].

Conversely, since e′ /∈ EL, e′ occurs in Dreduced
Q and thus there exists a

tid i in Dreduced
Q [[e′]]. Let t′ the transaction identified by i in Dreduced

Q [[e′]] and
let t the transaction identified by i in DE . By construction: Q ∪ {e′} ⊆ t′ and
t′ ⊆ t, and thus Q ∪ {e′} ⊆ t. Therefore i is in DE [[Q ∪ {e′}]].

Let us now prove the second item. Let a in
⋂
DE [Q∪{e′}]. By construction

each group of transactions in DE including Q∪{e′} also includes a. Hence the
condition in Line 6 in Algorithm 7 is not satisfied for a. Therefore a is not
suppressed by reduce() from any transaction in Dreduced

Q [{e′}] and thus it

belongs to
⋂
Dreduced

Q [{e′}].
Since e′ /∈ EL, e′ occurs inDreduced

Q and thus there exists a in
⋂
Dreduced

Q [{e′}].
Suppose that a is not in

⋂
DE [Q ∪ {e′}]: there exists a transaction t in

DE [Q ∪ {e′}] including Q ∪ {e′} that does not include a. This transaction
cannot have been removed by Line 2 of reduce() because the support set of
DE [Q∪{e′}] is included in DE [Q]. In addition the elements in Q∪{e′} cannot
have been removed from t by Line 7 because (Q ∪ {e′}) 6⊆ EL. Therefore the
resulting transaction t′ obtained by removing elements from t necessarily is in
Dreduced

Q [{e′}]. Since a is not in t it cannot be in t′ either. This contradicts the

fact a is in
⋂
Dreduced

Q [{e′}]. ut

4.3 ParaMiner: soundness and completeness

We have shown in Theorem 9 that reductions preserve the integrity of closed
patterns and their tid support set. We now introduce the decomposability
property which is sufficient to guarantee that the selection criterion can be
correctly computed in a reduced dataset. A selection criterion Select(P,DE)
is decomposable if it can be expressed as the conjunction of two predicates:
one over the pattern P and one over the tid support set of P in DE .

Definition 16 (Decomposability of Select) Given a ground set E, the
Select predicate is decomposable if and only if for every dataset DE , there
exists a predicate p1 : 2E → {true, false} and a predicate p2 : 2TDE →
{true, false} such that for and every candidate pattern P :

Select(P,DE) ≡ p1(P ) ∧ p2(DE [[P ]]),

where DE [[P ]] is the tid support set of P in DE .

Intuitively, the decomposability property discards selection criteria whose
outcome depends on non local properties. For example, the following selection
criterion: Select(P,DE) ≡ true if ∃e ∈ P : e ∈ DE(1) is not decomposable
because the outcome depends on the content the transaction DE(1) that may
not belong to the reduced dataset of P .
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To prove that ParaMiner is sound and complete for every decomposable
selection criteria, we first prove the following lemmas.

Lemma 2 states that the closure Q of a pattern P ∪ {e} computed Line 4
in Algorithm 6 is correctly computed in Dreduced

P (i.e., Clo(P ∪ {e},DE) =
Clo(P ∪ {e},Dreduced

P )).
Lemma 3 states that the expand() procedure of Algorithm 6 outputs the

same set of patterns as enum clo() given in Algorithm 2 which was proved to
be sound and complete by (Boley et al, 2010).

These two lemmas are a corollary of the following technical lemma (Lemma 1)
that results directly from Theorem 9.

Lemma 1 If Select is decomposable then for every call to expand(P,Dreduced
P , EL)

every element e not in EL, occurring in Dreduced
P , and every S ⊂

⋂
DE [P ∪

{e}], Select(P ∪ {e} ∪ S,DE) ≡ Select(P ∪ {e} ∪ S,Dreduced
P ).

Lemma 2 Let P be a closed pattern and Dreduced
P its reduced dataset. If e is

an element such that P ∪ {e} is a pattern in Dreduced
P (e occurs in Dreduced

P

and Select(P ∪ {e},Dreduced
P )) then, if the Select predicate is decomposable,

the following property holds: Clo(P ∪ {e},Dreduced
P ) = Clo(P ∪ {e},DE).

Proof: We show that the generic closure operator provided in Algorithm 1
applied with Dreduced

P as the input dataset returns the same result than the
one provided with DE .

We denote Q(DE) the result of Algorithm 1 applied to (P ∪ {e},DE) and
Q(Dreduced

P ) the result of Algorithm 1 applied to (P ∪ {e},Dreduced
P ).

Let e′ an element of Q(DE), we show that e′ is also in Q(Dreduced
P ).

e′ is in Q(DE) implies the following:

– e′ ∈
⋂
DE [P ∪ {e}]

– let S be the set of elements added before e (i.e. in former iterations of the
while loop in Line 4 in Algorithm 1. It is granted that Select(P ∪{e}∪S ∪
{e′},DE) is true.

Therefore if e′ /∈ Q(Dreduced
P ) either:

– e′ /∈
⋂
Dreduced

P [P ∪ {e}]: this cannot be the case because e′ occurs in
Dreduced

P and P ∪ {e} 6⊆ EL hence Theorem 9 applies with Q = P .
– there exists S′ such that Select(P∪{e}∪S′∪{e′},Dreduced

P ) is false whereas
Select(P ∪ {e} ∪ S′ ∪ {e′},DE) is true. This is impossible from Lemma 1
and S = S′ ∪ {e′}.
Conversely we show that if e′ is an element of Q(Dreduced

P ), e′ is also in
Q(DE).

If e′ /∈ Q(DE) either:

– e′ /∈
⋂
DE [P ∪ {e}]: this cannot be the case because e′ occurs in DE and

P ∪ {e} 6⊆ EL hence Theorem 9 applies with Q = P .
– there exists S′ such that Select(P ∪ {e} ∪ S′ ∪ {e′},DE) is false whereas
Select(P∪{e}∪S′∪{e′},Dreduced

P ) is true. This is impossible from Lemma 1
and S = S′ ∪ {e′}.
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Therefore Q(DE) = Q(Dreduced
P ). ut

Lemma 3 For a given dataset DE and closure operator Clo, if the Select
predicate is decomposable, then: for every argument (P,Dreduced

P , EL) of expand(P,Dreduced
P , EL),

expand(P,Dreduced
P , EL) = enum clo(P,EL) when enum clo is called with the

set system (E,F) formed by all the candidate patterns over E that occur in
DE and satisfy the selection criterion.

Proof: Let Q be an output of enum clo(P,EL): it is of the form Clo(P ∪
{e},DE) where P ∪ {e} is a pattern and e /∈ EL.

Suppose that it is not outputted by expand(P,Dreduced
P , EL). According

to Algorithm 6 it means that:

– either e does not occur in Dreduced
P (Line 2 in Algorithm 6) which is im-

possible: since e does not belong to EL, it cannot have been suppressed by
the dataset reduction returning Dreduced

P .
– or Select(P ∪ {e},Dreduced

P ) is false (Line 3 in Algorithm 6). This cannot
be the case if because of Lemma 1.

– or Clo(P ∪ {e},Dreduced
P ) ∩EL 6= ∅) (Line 5 in Algorithm 6). This cannot

be the case since according to Lemma 2: Clo(P ∪{e},Dreduced
P ) = Clo(P ∪

{e},DE) and Clo(P ∪ {e}) ∩ EL = ∅ (P ∪ {e} is outputted by enum clo
only if Clo(P ∪ {e}) ∩ EL = ∅ according to Line 9 in Algorithm 2).

Conversely, we prove that a Q outputted by expand(P,Dreduced
P , EL) (Al-

gorithm 6) is also outputted by enum clo(P,EL) (Algorithm 2).
If Q is outputted in Line 7 in Algorithm 6 it means that there exists an e

such that:

1. e occurs in Dreduced
P and Select(P ∪ {e},Dreduced

P ) is true, and
2. EL ∩ Clo(P ∪ {e},Dreduced

P ) = ∅.

From 1., Lemma 1, the condition Select(P ∪{e},DE) Line 6 in Algorithm 2
is satisfied.

From 2., and Lemma 2 stating that Clo(P ∪ {e},Dreduced
P ) = Clo(P ∪

{e},DE), the condition Line 9 in Algorithm 2 is also satisfied.
Therefore Q is outputted by enu clo(P,EL) ut

Theorem 10 (Soundness and completeness of ParaMiner) ParaMiner
computes the set of all closed patterns if the Select predicate is decomposable.

Proof: It is a direct consequence of Lemma 3 and from the fact that enum clo()
(Algorithm 2) is a rephrasing of Boley et al.’s Algorithm 1 (Boley et al, 2010),
which has been shown to compute the set of closed patterns.

We now prove that the Select predicate is decomposable for the fim, crg
and gri pattern mining problems introduced in Section 3. It guarantees that
ParaMiner is sound and complete for these problems.

Corollary 1 ParaMiner is sound and complete for the fim, crg and gri
problems.
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Proof: It is straightforward to show that the Select predicate for the fim
problem is decomposable, since Select(P,DE) is true if and only if P is frequent
in DE . Therefore Select(P,DE) ≡ |DE [[P ]]| ≥ ε (where DE [[P ]] is the tid
support set of P and ε is the frequency threshold).

Similarly, the Select predicate for crg problem is decomposable because
Select(P,DE) is satisfied if and only if P is a connected graph and frequent
in DE . Therefore Select(P,DE) ≡ is connected(P ) ∧ |DE [[P ]]| ≥ ε.

Finally let us consider the gri problem. Let us recall that in this problem
P is a pattern if and only if:

1. its first element is of the form a↑

2. and if its tid support set contains a tid path whose size is greater than ε.

Note that the first condition 1. can be expressed as a predicate over P and
the condition 2. can be expressed as a predicate over the tid support set of P
in DE . Hence Select is decomposable (Definition 16). ut

5 Experimental study of parallel performances on large multi-core
systems: impact of dataset reduction

In this section, we will present our experimental study on the parallel perfor-
mances of ParaMiner. In particular we will study the impact of dataset re-
duction on parallel scalability. Previous research on efficient sequential pattern
mining algorithms have shown that dataset reduction is a critical optimiza-
tion to achieve efficient pattern testing (e.g., Han et al, 2000; Uno et al, 2004).
However we will show in this section that systematically performing dataset
reduction saturates the memory bus and leads to poor parallel scalability on
large multi-core systems.

This observation lead us to study experimentally the amortization of each
dataset reduction performed, and to define a criterion used to disable inefficient
dataset reductions. We will show that it leads to an important increase in
parallel scalability.

5.1 Experimental setting

We have conducted our preliminaries and final experiments on ParaMiner
on assorted pattern mining problems (fim, crg and gri) and datasets. For
the fim problem, we used two datasets from the FIMI repository commonly
used to evaluate the performances of fim algorithms (Goethals, 2004). We
chose Accidents as a representative dense dataset and BMS-WebView-2 as a
representative sparse dataset, following experimentation protocol proposed by
Uno et al (2005). For the crg problem we used a real world gene network
dataset called Hughes-40. This dataset is made of DAGs where each DAG
represents a potential gene interaction network generated from micro array
experiments (described by Imoto et al (2001)). This dataset has 1000 graphs
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having in average 245 nodes and 270 edges. For the gri problem, we used
a real world dataset called I4408 which was also used by Do et al (2010)
for their experiments. This dataset describes gene expression in the context
of breast cancer. It has 100 records with 4408 attributes and is particularly
challenging for existing algorithms. When it is necessary, we also use smaller
datasets, namely Mushroom for the fim problem, I500 for the gri problem,
and Hughes-60 for the crg problem.

The specification of the datasets are given in Table 3. Note that these are
the specifications of the encoded datasets as it was described in Section 3.

name ||DE || |E| Size (MiB)

BMS-2. 320,601 3,340 2.2
Accidents 11,500,870 468 34
Mushroom 186,852 119 0.55

I4408 50,985,072 4408 194.5
I500 5,824,224 500 22.2

Hughes-40 270,985 794 6.0
Hughes-60 173,131 665 4.1

Table 3 Characteristics of the datasets used in our experiments.

The specifications of multi-core system Laptop and Server that we chose
to conduct our experiments are given in Table 4.

Laptop Server

# cores 4 32
Memory (GiB) 8 64
Processor type Intel Core i7 X900 4 x Intel Core i7 X7560
Processor frequency (GHz) 2 2.27
Cache size (MiB) 8 4 × 24
Memory bus bandwidth (GiB/s) 7.9 9.7

Table 4 Specifications of the multi-core systems used: Laptop and Server.

Time measurements are conducted using the time Unix utility and include
all the mining process from the creation of the unix process to its termination.
This includes loading and pre-processing of the dataset, creation of the threads,
mining the patterns, and storing them on the disk.

5.2 Parallel performance of ParaMiner: preliminary experiments

We begin our experimental study by evaluating the overall parallel perfor-
mance of ParaMiner. To this end, we measure the speedup which is a well
recognized metric to evaluate the ability of an algorithm to scale up with a
large number of cores. The speedup is obtained by dividing the time required
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for an execution on a single core, by the time required for an execution ex-
ploiting a number n of cores.

speedupn =
execution time using 1 cores

execution time using n cores

A parallel algorithm has a good speedup with n cores if the speedup ap-
proaches n. We present in Figure 5 the speedups achieved by the implemen-
tation of ParaMiner presented in Section 4.1 for different pattern mining
problems with a variable number of cores. The speedups achieved on Laptop
are presented in Figure 5 (a) and the ones achieved on Server are presented
in Figure 5 (b).

Speedups on Laptop (Figure 5 (a)): When exploiting the 4 cores available
on Laptop, ParaMiner performs 4 times faster for fim on BMS-WebView-
2, as well as for crg and gri. On Accidents, the speedup is 3 due to long
loading time of the Accidents which is performed sequentially in ParaMiner.
However this is constant time at the beginning of the execution and does not
further impact the efficiency of the mining process.

The last column in Figure 5 (a) labeled w/ht shows the speedup achieved
with the hyper-threading technology activated. Hyper-threading enables in-
struction level parallelism allowing a single core to perform multiple instruc-
tions simultaneously. ParaMiner is able to further benefit from this technol-
ogy and achieve a significant improvement resulting in a super-linear speedup
of 5 on 4 cores.
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Fig. 5 Preliminaries experiments: Speedups on Laptop (a), and on Server (b).
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Speedups on Server (Figure 5 (b)): On Server, the maximum speedup varies
depending on problems and datasets at hand. The speedup is near-linear for
gradual itemset mining on I4408 (28 on 32 cores), but is below 4 on 32 cores
for mining frequent itemsets on the Accidents dataset. This indicates an in-
adequate exploitation of the architecture.

We conduct further experimentation to identify the root of the performance
decrease. Modern processors embed a performance monitor unit (PMU) that
permits us to conduct lower level measurements and detect abnormal behav-
iors, in particular memory bus overflow. When the bus is overflowed, memory
operations are delayed, and cores have to wait which ultimately leads to bad
speedups. In Figure 6 we have compared the proportion of delayed mem-
ory operations along two execution of ParaMiner: one on the gri problem
that exhibits good speedups, and one on the fim problem that exhibits lower
speedups.

We observe that for the gri problem, the proportion of delayed memory
operations remains constant whatever the number of cores in exploitation.
For the fim problem, the proportion of delayed memory operations increases
significantly when ParaMiner is executed with more cores. On Server, typical
accesses to the memory are performed in more than 128 cycles, (less if the
data accessed is in cache memory). When running ParaMiner on fim with
32 cores, the proportion of memory operations performed in more than 128
cycles goes from 0% to 3% and a significant number of memory operations
are delayed over 512 cycles. Figure 6 shows that there is a severe memory bus
overflow for the fim problem. This bus overflow is the main cause of the non
optimal speedups observed in Figure 5.
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Fig. 6 Memory transfers latencies
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5.3 Impact of dataset reduction on parallel efficiency

Memory bus overflow is typically caused by a large number of memory accesses
in a short period of time, exceeding bus bandwidth. In pattern mining algo-
rithms, large scale memory operations such as dataset reductions perform an
important amount of memory accesses. However efficient dataset reductions
also drastically reduce the size of the datasets thus contributing to significantly
decrease the amount of memory operations required for the rest of the mining
process. This is an amortization problem: the reductions that cost a lot of
memory accesses without bringing sufficient reduction of the dataset must be
avoided.

In order to measure efficiency of the reductions, we introduce the reduction
factor. The reduction factor compares the memory space required to store a
reduced dataset to the memory space required to store the relevant transac-
tions in the parent dataset. Note that identical transactions are stored only
once, therefore the size occupied by a dataset in memory is bounded by the
number of distinct transactions.

Definition 17 (Reduction factor of a dataset) Let P and Q be two closed
pattern such that Q is a descendant of P in the enumeration tree. Let also
Dreduced

P be the reduced dataset of P and Dreduced
Q be the reduced dataset of

Q. The reduction factor achieved by Dreduced
Q is equal to the ratio between

the number of distinct transactions in Dreduced
P [Q] and the number of distinct

transactions in Dreduced
Q .

We have instrumented an implementation of ParaMiner in order to mea-
sure the reduction factor achieved by every reductions during an execution of
ParaMiner on Accidents. Thanks to the reduction factors obtained we could
conduct a new series of experiments: for each experiment a percentage x of the
total number of reduction is set. Only the x% of the reductions that have the
highest reduction factors will be performed. During these experiments we mea-
sure the number of memory accesses performed per thousands of instructions.
This measure corresponds to the requested bus bandwidth.

The results of this experiments are presented in Figure 7.
Figure 7 shows that:

1. Between performing no reductions and performing 12.5% of the reductions
with the higher reduction factor, the number of memory accesses per thou-
sands instructions drops by more than three times. These reductions are
amortized since they contribute to the overall diminution of the memory
accesses.

2. Conversely, the 12.5% reductions with the lowest reduction factors (right-
most bar on the figure) generate an important increase in the number of
memory accesses per thousands of instructions. They introduce more over-
head than they contribute to reduce the number of dataset accesses.
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Fig. 7 Efficiency of dataset reduction

5.4 Amortizing the cost of dataset reduction

In order to improve ParaMiner’s parallel scalability, the previous results
suggest that reductions not amortized should be deactivated. We have also
seen that these reductions have a low reduction factor. However, during an
execution of ParaMiner, it is not possible to know in advance the reduction
factor without an important computational overhead.

In the following, we conduct a brief theoretical study and provide an upper
bound to the reduction factor that can be achieved. This upper bound can be
used to deactivate dataset reductions whose reduction factors are low.

Since the size required to store a dataset depends on the number of distinct
transactions, we provide an upper bound for the number of distinct transac-
tions in a dataset.

Proposition 1 (Maximum number of distinct transactions) Given a
ground set E and an exclusion list EL, let Dreduced

P be the reduced dataset of
a closed pattern P . The number of distinct transactions in Dreduced

P is lower
or equal than 2|E\EL|.

Proof: According to the Algorithm 7, after a reduction each transaction con-
tains the same set of items, thus the number of distinct transactions after a
reduction is equal to the number of partitions. We recall that two transactions
t1 and t2 fall in the same partition if they contain the same set elements not
included in EL: i.e. if t1 \ EL = t2 \ EL. Therefore there cannot be more
distinct transactions than there exist subsets of the set E \ EL. The number
of subsets of E \EL is equal to 2|E\EL|, thus the maximum number of distinct
transactions is also 2|E\EL|. ut

In ParaMiner, every reduction operates on a parent dataset and results in
a child dataset. Let Dreduced

P and Dreduced
Q , be a parent and a child dataset
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respectively. Note that both datasets are reduced datasets, resulting of a call
to reduce(). We call ELP the exclusion list parameter of the reduce() call
resulting in Dreduced

P and ELQ the exclusion list parameter of the reduce()
call resulting in Dreduced

P . We now introduce the notion of exclusion list tail
abbreviated ELtail which represents the set of elements added to the exclusion
list since the last reduction performed.

Definition 18 (Exclusion list tail) Given a parent reduced datasetDreduced
P

reduced with an exclusion list ELP and a child reduced dataset reduced with
an exclusion list ELQ, we call exclusion list tail the set of elements added after
the reduction of Dreduced

P : ELtail = ELQ \ ELP .

The exclusion list tail can be used to compute the maximum reduction
factor that can be achieved between two reductions.

Proposition 2 (Maximum reduction factor) The maximum reduction
factor that can be achieved is 2|ELtail|

Proof: For the sake of clarity, we denote by #trans(dataset) the number of
distinct transactions in dataset .

The minimum number of distinct transactions in Dreduced
Q is the minimum

number of partitions produced by the partition() function applied to Dreduced
P .

Two transactions t1 and t2 from Dreduced
P belong to the same partition in

Dreduced
Q if and only if t1 \ ELQ = t2 \ ELQ that is t1 \ (ELP ∪ ELtail) =

t2 \ (ELP ∪ ELtail). However, since Dreduced
P is also a reduced dataset, for

every two transactions t1, t2: t1 \ ELP 6= t2 \ ELP . Hence two transactions
t1 and t2 in Dreduced

P belong to the same partition in Dreduced
Q if and only if

t1\ELtail = t2\ELtail. Therefore every two transactions in a partition can only
differ by a subset of elements of ELtail. Since the number of distinct subsets
of ELtail is at most 2|ELtail|, the maximum number of distinct transactions in
a partition is at most 2|ELtail|.

It follows that the minimum number of partitions is at least
#trans(Dreduced

P )

2|ELtail|

and that the minimum number of distinct transactions in Dreduced
Q is also at

least
#trans(Dreduced

P )

2|ELtail|
. Therefore

#trans(Dreduced
P )

#trans(Dreduced
Q )

≤ 2|ELtail|. Since Dreduced
P [Q] is

a subset of Dreduced
P , the reduction factor

#trans(Dreduced
P [Q])

#trans(Dreduced
Q )

is at most 2|ELtail|.

ut

To take into account this result, we have modified the reduction algorithm
(Algorithm 7). In the new algorithm Algorithm 9 the EL-reduction is not per-
formed when the maximum reduction factor is below a user defined threshold
δ > 1. It is worth noting that when the EL-reduction is not performed, each
transaction of the child dataset occurs in the parent dataset, therefore no
new additional memory space is required and the reduction is costless. With
this modification we avoid costly dataset reductions with the lowest reduction
factors.
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Algorithm 9 The modified dataset reduction algorithm

1: reduce(Dreduced
P , e, EL)

Require: The reduced dataset Dreduced
P of the parent P of Q, the augmenting element e

such that Q = Clo(P ∪ {e},DE), the exclusion list EL, a minimum reduction factor
threshold δ.

Ensure: Returns the reduced dataset of Q: Dreduced
Q

2: Dreduced
Q ← Dreduced

P [{e}]
3: if 2EL tail ≥ δ then
4: for all G ∈ partition(Dreduced

Q , EL) do
5: for all e ∈ EL do
6: if there exists t′ ∈ G such that e 6∈ t′ then
7: Suppress e from all the transactions in G
8: end if
9: end for

10: end for
11: end if
12:
13: return Dreduced

Q

In Figure 8, we present the speedup of the modified ParaMiner on Server.
For the gri problem the speedup remain near optimal. In the case of the crg
problem, up to twelve cores there is a large increase of speedup. However it
does not scale well using more than twelve cores. The reason is that reduction
factors achieved on this dataset are not very good: for less than twelve cores,
the bus provides enough bandwidth with the reduction at hand but is saturated
again when exploiting more cores. For the fim problem, the speedups are
significantly better than in Figure 5 especially for Accidents which speedup
has been multiplied by more than 5. This results show that our criterion for
deactivating dataset reduction allows to improve the parallel scalability.
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6 Comparative experiments with specialized mining algorithms

In this section, we compare ParaMiner’s efficiency to state of the art special-
ized algorithms. We first compare the execution times necessary to mine closed
frequent itemsets. In this experiment ParaMiner is compared with the state-
of-the-art parallel ad-hoc algorithms PLCM (Negrevergne et al, 2010) and
MT-Closed (Lucchese et al, 2007). These algorithm are parallel implementa-
tions of the two fastest algorithm according to the FIMI workshop(Goethals,
2004). The execution times and the memory usage are reported for the sparse
dataset BMS-WebView and the dense dataset Accidents in Figure 9 (a) and
(b).
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Fig. 9 Comparative experiments for FIM, on BMS-WebView-2: (a) and Accidents: (b).
Runtimes (top) and memory usage (bottom).

On the sparse dataset, ParaMiner have shorter execution times than MT-

Closed and is one order of magnitude slower than Plcm. On the dense dataset,
ParaMiner is between one and two orders of magnitude slower than both
Plcm and MT-Closed. It is worth noting that memory usage for MT-Closed is
below other algorithms because it uses bitmap representations that are more
efficient on dense datasets.
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Plcm and MT-Closed can exploit the problem specificity by ignoring
infrequent elements both in enumeration and for more aggressive dataset re-
duction. Although ParaMiner cannot make these assumptions for the sake
of genericity, it still exhibits reasonable execution times.

crg problem: Even though relational graph datasets are common in bio in-
formatics and social networks, there is no implementation available that is
dedicated for mining subgraphs in relational graphs datasets. The only way
to mine subgraphs in this type of datasets is thus to use more general graph
mining algorithms such as gSpan (Yan and Han, 2002) or Gaston (Nijssen and
Kok, 2004). Comparing ParaMiner with these algorithm is not fair, however
gSpan and Gaston are the most efficient algorithms that a practitioner can find
to analyze a relational graph dataset. Mining times and memory usage for the
three algorithms running on Hughes-60 dataset are presented in Figure 10 (a).
Since gSpan and Gaston are have not been paralleled, we run ParaMiner on
a single core.
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Fig. 10 Comparative experiments for crg on Hughes-40 and gri on I4408. Runtimes (top)
and memory usage (bottom).

It appears clearly that neither gSpan nor Gaston can scale efficiently on
this dataset. ParaMiner which was parametrized with the accurate problem
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definition can complete the mining task within much shorter times. This exper-
iment clearly demonstrates that the adaptability of ParaMiner can be very
beneficial to efficiency and shows the limit of non-parametrizable algorithms.

gri problem: We compared ParaMiner with state-of-the-art parallel algo-
rithm Pglcm (Do et al, 2010). We have use I4408, a real gene expression
dataset with 100 records and 4408 attributes. I4408 was the largest dataset
used to evaluate the performances of Pglcm. The results are shown in Fig-
ure 10(b).

Comparing ParaMiner with Pglcm shows that ParaMiner is two or-
ders of magnitude faster than Pglcm. This is mostly due to the lack of dataset
reduction in Pglcm. As a consequence it needs more than ten hours of com-
putation whereas ParaMiner completes in few minutes. It is worth noting
that designing a dataset reduction for gradual itemsets was left as an open
problem by Do et al (2010), this problem is now solved.

7 Related work

Our framework is able to capture pattern mining problems by encoding the set
of meaningful patterns as sets satisfying a selection criterion in a set system.
Constraint based itemset mining is another framework which focuses on ex-
tracting itemsets satisfying constraints expressed over patterns in the manner
of our selection criterion. Altough the two approaches are different, the result-
ing frameworks and algorithms are quite comparable. Indeed some problems
can be formulated in both frameworks. We show that there exist strong con-
nections between our approach and the constraint based approach, then we
go further and study the accessibility of some constraint-based itemset mining
problems.

Other generic approaches for pattern mining can be classified in the cat-
egory of toolbox approaches. These approaches are based on the observation
that most pattern mining algorithms share similar structures and try to define
a set of algorithmic tools that could be use to create easily new pattern mining
algorithms. Altough they cannot be directly compared with ParaMiner, we
discuss their expressivity and efficiency in Section 7.1.

Because we have a strong focus on parallel pattern mining, we also present
various works conducted on this topic. Most of those works clearly demon-
strate the difficulty of designing parallel pattern mining algorithm. We briefly
discuss the issues identified and the solutions proposed by these publications
in Section 7.3.

7.1 Constraint based itemset mining

The major approach to tackle generic pattern mining is constraint-based pat-
tern mining which has been first proposed by Srikant et al (1997). With this
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approach meaningful patterns are defined through constraints expressed over
patterns.

Constraint pattern mining aims at classifying existing constraints into con-
straint classes such as anti-monotone constraints (Mannila and Toivonen,
1997), monotone constraints (Mannila and Toivonen, 1997), succinct con-
straints (Ng et al, 1998), convertible constraints (Pei and Han, 2000; Pei et al,
2001), loose anti-monotone constraints (Bonchi and Lucchese, 2007) and the
recent area constraint (Soulet and Crémilleux, 2005).

In order to build efficient constraint based mining algorithms, a large body
of work has been dedicated to push the constraints as deeply as possible in the
algorithms in order to prune large portions of the search space and dramat-
ically reduce the mining times. This approach is comparable to our work in
the sense that it studies properties of the search space in order to design algo-
rithms whose soundness does not depend on specific properties of the pattern
mining problem at hand but on more general properties.

Connections between constraints and accessibility properties:
It can be demonstrated that a set of patterns defined with an anti-monotone
constraint has a corresponding set system that is independent. However, aside
from anti-monotony, we have shown that none of the set systems associated
to the existing classes of constraint verifies the accessibility property (Ne-
grevergne, 2011). Indeed, these constraints do not guarantee that the empty
set is part of the set of patterns, which is a requirement for accessibility.

The fact that the set of patterns does not contain the empty set does
not mean that it does not exhibit structural properties similar to accessibility
locally. We thus propose to amend to notion of accessibility to partial accessi-
bility. In order to define partial accessibility, we use the concept of lower border
which will represent the smallest patterns satisfying the constraints at hand.
It was introduced by Sun and Yu (2007) for itemsets. We generalize below
their definition for set systems.

Definition 19 (Lower border of a set system) Let (E,F) be a set system.
The lower border of F , denoted BD−F , is the set of patterns such that:

i. BD−F ⊆ F
ii. For any two patterns X,Y ∈ BD−F , X 6⊆ Y and Y 6⊆ X (BD−F is called an

antichain)
iii. For any pattern X ∈ F , there exists at least one pattern Y ∈ BD−F such

that Y ⊆ X.

We can now propose a weaker property of accessibility based on the lower
border.

Definition 20 (Partial accessibility) Let (E,F) be a set system. (E,F)
is partially accessible if for every X ∈ F \BD−F there exists some e ∈ X such
that X \ {e} ∈ F .
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Definition 21 (Partial strong accessibility) Let (E,F) be a set system.
(E,F) is partially strongly accessible if it is partially accessible and if for every
X ⊂ Y with X ∈ F and Y ∈ F \BD−F , there exists some e ∈ Y \X such that
X ∪ {e} ∈ F .

We have already shown that the set systems corresponding to a set of pat-
terns defined with a monotone constraint, with a convertible anti-monotone
constraint or with a loose anti-monotone constraint (Negrevergne, 2011) is par-
tially accessible. Studying the connection between accessibility properties and
constraint based pattern mining opens some important research perspectives
that will be discussed in Section 8. Note that, in the context of graph mining
Zhu et al (2007) have proposed properties on constraints called strong p-anti-
monotonicity and weak p-anti-monotonicity that correspond to independence
and accessibility of set systems. This work is interesting as it is a first step
toward extending ParaMiner to patterns more complex than sets.

ParaMiner vs other constraint-based pattern mining algorithms:
Even though the two approaches are comparable, there are some important
distinctions between ParaMiner’s and constraint-based pattern mining al-
gorithms. First, many constraint based algorithms such the one proposed by
Bonchi and Lucchese (2007) focus on extracting frequent patterns with ad-
ditional constraints. This is a major difference with ParaMiner because it
prevents from using the algorithm to solve pattern mining problems using a
non trivial encoding such as the one we used to mine gradual itemsets.

Another important distinction between the approaches is that constraint
based approaches tend to see the closure as another constraint. As pointed
by Bonchi and Lucchese (2004), combining closure with other constraints can
lead to ambiguous problem definitions. As a consequence, there is little work
on closed constraint-based pattern mining. However it is worth mentioning the
work by Guns et al (May 2011) with their CP4IM which is able to efficiently
combine the closure constraint with other constraints, and mine closed pat-
tern such as closed frequent itemsets and closed discriminative itemsets fairly
efficiently.

As a consequence, their algorithm outperform other constraint based algo-
rithms. In the experiments presented by Guns et al (May 2011), CP4IM set up
for closed frequent itemset mining exhibit execution times within two orders
of magnitude with the state of the art closed specialized algorithm LCM on
the small dataset Mushroom.

For the sake of completeness, we compare the execution times of with
ParaMiner’s on this dataset. The execution times are obtained by running
both algorithms on Server using only one core (thus not exploiting paral-
lelism). The results are reported in Figure 11.

These results show that on this Mushroom, CP4IM is more than one order
of magnitude slower than ParaMiner. On larger datasets such as BMS −
WebV iew−2 or Accident datasets CP4IM cannot not complete due to memory
exhaustion despite the 64 GiB available on Server.
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Fig. 11 Comparative experiments ParaMiner vs CP4IM. Sequential execution on
Mushroom.

7.2 Other generic approaches

Other approaches for generic pattern mining have been proposed and are dif-
ferent from constraint-based pattern mining. One of them is DMTL which
stands for Data Mining Template Library (Chaoji et al, 2008). It is restricted
to frequent patterns, but it can handle patterns having structures of sequences,
trees or graphs using complex isomorphism tests for testing pattern inclusion
in the dataset. This is something that is not possible neither with ParaMiner
nor with constraint-based pattern mining approaches. However, DMTL cannot
mine closed patterns, and is based on legacy algorithm that do not handle
efficient dataset reductions. It is thus orders of magnitude slower than current
state of the art algorithms and do not scale well on real-world datasets. An-
other approach is the iZi library (Flouvat et al, 2009). It deals with patterns
representable as sets. The patterns are specified through a predicate, similar to
our selection criterion and to what is done in constraint-based pattern mining.
This predicate must be monotone or anti-monotone. One of the interests of
iZi compared to ParaMiner is that it can give the upper- and lower-border
of the results, which can be of interest in some applications. However iZi does
not handle closure and is based on the Apriori algorithm. It is thus very slow
and can only be used on small synthetic datasets.

7.3 Parallel pattern mining

Exploiting parallel computers to tackle larger datasets is not a new idea. Par-
allel algorithms have been quickly considered as a solution to reduce execu-
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tion times due to the heavy computational requirements of pattern mining
(e.g. Agrawal and Shafer, 1996). With the generalization of multi-core proces-
sors, having efficient parallel pattern mining algorithms became a necessity.
However parallel pattern mining has been shown to be a challenging problem
because of several issues well known by the parallel computing community,
but particularly intense when dealing with pattern mining algorithms.

Buehrer et al (2006) proposed a parallelization of the gSpan graph mining
algorithm. They observe that naive task decompositions generally create tasks
of very irregular size which provoke load imbalance among the cores and even-
tually impact the performances. They proposed a task decomposition which
is able to dynamically create new tasks when the work is not correctly bal-
anced among the cores. The task decomposition in ParaMiner is recursive,
which allows larger tasks to be decomposed in sub-tasks. In previous work
(Negrevergne, 2011) we conducted experiments that demonstrated that load
imbalance was not an issue in ParaMiner.

For some pattern mining problems, ensuring correct load balancing is insuf-
ficient to reach the theoretical performances of the computing platform. This
is visible in Figure 5. Ghoting et al (2005) have shown that pattern mining
algorithms generally perform more accesses to the memory than others which
put too much pressure on the bus connecting memory and computing cores
(Tatikonda and Parthasarathy, 2009). In addition, traditional optimizations
tend to worsen to problem (Negrevergne et al, 2010) because they only reduce
the amount of computation required and not the amount of data transfers.
This problem can be solved by performing deep changes in the algorithms
to reduce data transfers generally at the cost of an additional computations.
Although these publications present studies conducted on other pattern min-
ing algorithms, they all illustrate common issues of parallel pattern mining.
They have inspired our study of dataset reduction in parallel and also propose
interesting ideas to further improve ParaMiner’s parallel performances (See
following Section 8).

8 Conclusion

In this paper, we have proposed an efficient generic and parallel pattern mining
algorithm called ParaMiner. ParaMiner represents patterns and datasets
using sets and focuses on problems whose corresponding set system is strongly
accessible and selection criterion is decomposable. We have shown that this
covers many interesting pattern mining problems while allowing short mining
times. This makes ParaMiner a platform that can be parametrized to mine
new types of patterns efficiently.

Efficient pattern mining relies on the fundamental principle that one can
reduce the pattern search space and the data search space simultaneously. Our
main contribution permits to reduce the data search space thanks to a novel
dataset reduction named EL-reduction, that can be applied to a broad range
of pattern mining problems, unlike previous work. We also presented the first
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study of the impact of dataset reduction on parallel execution, showing that
all dataset reductions were not equally useful: some are unavoidable whereas
others congest the memory bus without reducing computation times. This
study has allowed us to improve ParaMiner’s parallel scalability.

This makes ParaMiner adequate for an intermediary class of pattern
mining problems that is in between the class of problems that are variations of
frequent itemset mining, and the class of structured pattern mining problems
(sequences, trees and graphs) that can be encoded in variations of sequence
mining problems. This class captures the problems in which patterns can be
encoded by sets with simple constraints (i.e. constraints guaranteeing that
the selection predicate is monotonic with respect to set inclusion restricted
to the sets that represent patterns). This intermediate class has received less
attention, despite the fact that many practical pattern mining problems, such
as the crg problem and the gri problem studied in this paper, fall in it.

Finally, we recall that ParaMiner is available as an open source software
on the authors’ web page1.

Future work
There exists a variety of work that can be conducted to improve ParaMiner.
We distinguish two types of works: the ones to improve ParaMiner’s effi-
ciency, and the ones to make it work for a broader range of pattern mining
problems.

Many research works on parallel pattern mining algorithms have shown
that pattern mining is a challenging problem for parallelism due to its very
intensive memory usage. There is still room for improvement in this direction in
order to scale up to upcoming platforms. One can implement tiling techniques
such as the ones proposed by Ghoting et al (2005). These techniques improve
the memory locality and reduce the number of costly accesses to the memory.
In ParaMiner it would consist in breaking up the larger datasets into chunks,
and performing all the computations on a chunk before moving to the next
one.

Although we have focused on multi-core architectures, it is worth noting
that ParaMiner can be modified to exploit larger parallel platforms such as
clusters of computers. Thanks to our decomposition of the search space into
independent tasks and the dataset reduction technique no task migration is
required a priori. In practice however, it can be required to balance the work
on clusters with thousands of nodes.

In this paper, we have demonstrated the genericity of ParaMiner on
three pattern mining problems, it has been shown by Arimura and Uno (2009)
that many other pattern mining problems such as rigid itemset sequences or
picture patterns can be represented as sets in a set system. For most of these
problems, the accessibility of the corresponding set system have been proved.
However it has not yet been demonstrated whether or not they are strongly

1 http://membres-liglab.imag.fr/negrevergne/
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accessible and if they satisfy the decomposability property. For most of these
problems there exists no available algorithm. Hence proving that they admit
an encoding adequate to ParaMiner would be a major benefit for the pattern
mining community.

In order to improve ParaMiner’s genericity we have proposed the notion
of partial (strong) accessibility. We have shown that this notion permits to
express the accessibility property of many constraint based pattern mining
problems. We are currently working on ParaMiner to make it able to mine
sets of patterns which are only partially strongly accessible.

Other problems such as the general graph mining problem cannot be de-
scribed in the set framework efficiently. However Zhu et al (2007) have pro-
posed properties similar to accessibility for sets of graphs. In this paper we
demonstrated that strong accessibility was crucial to achieve efficiency. A nat-
ural extension of Zhu et al (2007)’s work would be to define strong accessibility
for graphs and exploit its properties to build efficient generic algorithms for
general graph mining.
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