Introduction aux Bases de Données (DEUG1&2, L1&2)

Didier DONSEZ

Université Joseph Fourier

Polytech' Grenoble – LIG/ADELE

Didier.Donsez@imag.fr,

Didier.Donsez@ieee.org

Didier Donsez, 1998-2004, Introduction aux Bases de Données

Au Sommaire

- Qu 'est ce qu 'un Système d 'Information
- Le Langage de Requête SQL
- Différentes formes de Bases de Données
- Conclusion et Bibliographie

Devinette

- Que signifie Informatique ?
 - Réponse : Science de l'Information
 - Discipline scientifique qui traite des moyens de calcul et de gestion de l'information
- Qu 'est ce que l 'Information ?
 - Dictionnaire :
 - « Renseignement que l'on obtient sur quelqu 'un ou sur quelque chose »
 - « Ensemble de données, de connaissances se rapportant à un sujet précis. »
 - ...

Qu'est ce qu'un Système d'Information

 But d'un Système d'Information Rationaliser

I 'acquisition,

le stockage,

la recherche et

la distribution

de I 'Information

Remarque :

D'avantage d'informations ont été produites ces dernières 30 années que durant les 5000 ans précédents

Les Bases de Données (BD)

- Rôle des BDs dans les Systèmes d'Information
 - Représentations (Modélisation et Codage)
 - Stockage (Pérennité)
 - Recherche (Exacte ou Floue)
- Système de Gestion de Bases de Données
 - gère l'accès physique à la BD

La Modélisation de l'Information

- Un monde réel
 - des participants
 - clients, représentants, vins, voitures
 - étudiants, enseignants, cours
- La modélisation
 - Choses (Entité)
 - Relations entre les choses (Association)

Le Langage de Requêtes SQL

- Un langage Normalisé
 - SQL : Structured Query Language
- Notion
 - Table (=Relation)
 - Colonne (=Attribut)
 - Ligne (=Tuple)
- LDD : Langage de Description des Données
 - Table, Vue, Domaine, ...
- LMD : Langage de Manipulation des Données
 - Insertion, Suppression, Modification
- LCD : Langage de Contrôle des Données
 - Autorisation

Exemple de Base Relationnelle (d'après Georges Gardarin)

BUVEURS	NB	NOM	VILLE
	101	Nicolas	Paris
	102	Martin	Marseille
	103	Dupont	Paris
	104	Durant	Lille

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

ABUS	NB	NV	QTE
	101	STEM1	10
	101	STEM2	15
	102	STEM2	10
	103	TAVE1	5
	101	SAUT1	7
	101	TAVE1	4

Types de base

CHARACTER(n), CHARACTER VARYING(n)
 BIT(n), BIT VARYING(n)
 NUMERIC(p,q), DECIMAL(p,q)
 INTEGER, SMALLINT
 FLOAT(p)
 YEAR, MONTH, DAY, HOUR, MINUTE, SECOND
 INTERVAL deftime TO deftime
 DATE, TIME, TIME(6), TIMESTAMP, TIMESTAMP(10)

Création de Table

```
CREATE TABLE BUVEURS(
         NB
                       DECIMAL(5),
         NOM
                       CHAR(20),
         VILLE
                       CHAR(15)
CREATE TABLE VINS(
         NV
                       CHAR(5),
         CRU
                       CHAR(20),
                       INTEGER,
         MILL
         COULEUR
                       CHAR(10)
CREATE TABLE ABUS(
         NB
                       DECIMAL(5),
                       CHAR(5),
         NV
         QTE
                       DECIMAL(5)
```

Domaines

- défini à partir de types de base
- vérification des contraintes d'intégrité sur les valeurs du domaine

```
CREATE DOMAIN

COULEURS CHAR(15)
```

```
CREATE TABLE VINS ( ... , COULEUR COULEURS, .... )
```

Questions

SELECT Colonnes à "Projeter"

FROM Tables Sources

WHERE Conditions sur les Lignes

GROUP BY Colonnes de Groupage

HAVING BY Condition sur les groupes

- Questions Mono-Relations
 - 1 seule relation source
- Questions Multi-Relations
 - N relations sources
 - Condition testée sur chaque ligne issu de leur produit cartesien

Projection

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

« Donner la couleur et le cru des vins »

SELECT VINS.COULEUR, VINS.CRU FROM VINS

VIIVO		
VINS	COULEUR	CRU
	Rouge	St Emilion
	Rouge	St Emilion
	Blanc	Sauternes
	Blanc	Chablis
	Rosé	Tavel

« Donner la couleur et le cru des vins » (sans doublon)

SELECT **DISTINCT** VINS.COULEUR, VINS.CRU FROM VINS

VIIVO		
VINS	COULEUR	CRU
	Rouge	St Emilion
	Blanc	Sauternes
	Blanc	Chablis
	Rosé	Tavel

Projection - Attributs Calculés

« Donner les prix TTC des articles»

SELECT REF, PRIXHT*(1+TVA/100) AS PRIXTTC FROM ARTICLES

ARTICLES	REF	PRIXHT	TVA
	101	1000,00	20,6
	101	2000,00	20,6
	102	100,00	5,5

REF	PRIXTTC
101	1206,00
101	2412,00
102	105,50

Restriction

« Donner les vins blancs»

SELECT *

FROM VINS

WHERE VINS.COULEUR='Blanc'

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

VINS	NV	CRU	MILL	COULEUR
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc

Restriction

« Donner les vins blancs de millésimes 1987 »

SELECT

*

FROM

VINS

WHERE

VINS.COULEUR='Blanc' AND MILL=1987

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

VINS	NV	CRU	MILL	COULEUR
	SAUT1	Sauternes	1987	Blanc

Restriction

« Donner les vins rouges et blancs»

SELECT '

FROM VINS

WHERE (VINS.COULEUR='Rouge' OR VINS.COULEUR='Blanc')

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

« Que donne cette question ?»

SELECT *

FROM VINS

WHERE (VINS.COULEUR='Rouge' AND VINS.COULEUR='Blanc')

Restriction

```
« Donner les vins rouges et blancs et des millésimes entre 1987 et
1989 »
SELECT
FROM
         VINS
         (VINS.COULEUR='Rouge' OR VINS.COULEUR='Blanc')
WHERE
         AND (MILL>=1987 AND MILL <= 1989)
      ou bien
         AND (MILL BETWEEN 1987 AND 1989)
      ou bien
         AND (MILL IN (1987, 1988, 1989))
« Donner les noms des buveurs commençant par DU »
SELECT
         NOM
FROM
         BUVEURS
WHERE
         BUVEURS.NOM LIKE 'DU%'
```

Produit Cartésien

SELECT *
FROM BUVEURS, ABUS

BUVEURS	NB	NOM	VILLE
	101	Nicolas	Paris
	102	Martin	Marseille
	103	Dupont	Paris

ABUS	NB	NV	QTE
	101	STEM1	10
	101	STEM2	15
	102	STEM2	10

BUVEURS	NB	NOM	VILLE	NB	NV	QTE
	101	Nicolas	Paris	101	STEM1	10
	101	Nicolas	Paris	101	STEM2	15
	101	Nicolas	Paris	102	STEM2	10
	102	Martin	Marseille	101	STEM1	10
	102	Martin	Marseille	101	STEM2	15
	102	Martin	Marseille	102	STEM2	10
	103	Dupont	Paris	101	STEM1	10
	103	Dupont	Paris	101	STEM2	15
	103	Dupont	Paris	102	STEM2	10

Equi Jointure

Jointure : composition Restriction sur un Produit Cartésien

la restriction compare 2 colonnes ou plus des différentes tables sources

"Donner le nom des buveurs ayant bu un vin ainsi que la quantité bue"

SELECT BUVEURS.NB, BUVEURS.NOM, ABUS.QTE

FROM **BUVEURS**, **ABUS**

WHERE BUVEURS.NB=ABUS.NB

BUVEURS	NB	NOM	VILLE	NB	NV	QTE
	101	Nicolas	Paris	101	STEM1	10
	101	Nicolas	Paris	101	STEM2	15
	101	Nicolas	Paris	102	STEM2	10
	102	Martin	Marseille	101	STEM1	10
	102	Martin	Marseille	101	STEM2	15
	102	Martin	Marseille	102	STEM2	10
	103	Dupont	Paris	101	STEM1	10
	103	Dupont	Paris	101	STEM2	15
	103	Dupont	Paris	102	STEM2	10

BUVEURS	NB	NOM	QTE
	101	Nicolas	10
	101	Nicolas	15
	102	Martin	10

Restriction-Jointure-Projection

"Donner le nom des buveurs parisien ayant bu un vin rouge ainsi que la quantité bue"

SELECT BUVEURS.NB, BUVEURS.NOM, ABUS.QTE

FROM **BUVEURS**, **ABUS**

WHERE BUVEURS.NB=ABUS.NB

AND BUVEURS.VILLE="Paris » AND VINS.COULEUR="Rouge"

BUVEURS	NB	NOM	VILLE
	101	Nicolas	Paris
	103	Dupont	Paris

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
ABUS	NB	NV	QTE	-
	101	STEM1	10	
	101	STEM2	15	
	102	STEM2	10	
	103	TAVE1	5	
	101	SAUT1	7	
	101	TAVE1	4	

Auto-Jointure

jointure d'une relation avec elle-même

"Donner les noms des buveurs habitant la même ville"
SELECT B1.NOM AS NOM, B2.NOM AS NOM2, B1.VILLE AS VILLE
FROM BUVEURS B1, BUVEURS B2 WHERE B1.VILLE=B2.VILLE

BUVEURS	NB	NOM	VILLE
	101	Nicolas	Paris
	102	Martin	Marseille
	103	Dupont	Paris

NOM	NOM2	VILLE
Nicolas	Nicolas	Paris
Nicolas	Dupont	Paris
Martin	Martin	Marseille
Dupont	Nicolas	Paris
Dupont	Dupont	Paris

WHERE **B1.VILLE<>B2.VILLE**WHERE **B1.VILLE<B2.VILLE**

--Inéqui-Jointure (2 lignes)

--Inéqui-Jointure (1 ligne)

Opérateurs ensemblistes

JOIN, UNION, INTERSECT, MINUS

"Donner le nom des buveurs parisien ayant bu un vin rouge ainsi que la quantité bue"

SELECT BUVEURS.NB, BUVEURS.NOM, ABUS.QTE

FROM BUVEURS JOIN ABUS ON BUVEURS.NB=ABUS.NB

WHERE BUVEURS.VILLE="Paris" AND VINS.COULEUR="Rouge"

"Donner les quantités bues et le nom de tous les buveurs parisiens"

SELECT BUVEURS.NOM, ABUS.QTE

FROM BUVEURS JOIN ABUS ON BUVEURS.NB=ABUS.NB

UNION

SELECT BUVEURS.NOM, 0

FROM BUVEURS

WHERE NB NOT IN (SELECT NB FROM ABUS)

Agrégation

- Fonction d'agrégat
 - appliquée à un ensemble de valeurs d'un même attribut
 - retourne une valeur unique
- Fonctions SQL
 - COUNT, SUM, AVG (Average=Moyenne), MIN, MAX

"Donner le nombre de vins"

SELECT COUNT(*)

FROM VINS

" Donner la quantité totale bue par lebuveur 101"

SELECT **SUM(QTE)**

FROM ABUS WHERE NB=101

Agrégation

"Donner la quantité totale de vin bu par Nicolas"

SELECT **SUM(ABUS.QTE)**

FROM BUVEURS, ABUS

WHERE BUVEURS.NB=ABUS.NB

AND BUVEURS.NOM='Nicolas'

"Donner le nom des buveurs ayant consommer un vin plus que la moyenne"

SELECT BUVEURS.NOM

FROM BUVEURS, ABUS

WHERE BUVEURS.NB=ABUS.NB

AND ABUS.QTE > (SELECT AVG(QTE) FROM ABUS)

<u>Groupage</u>

- partitionnement horizontal d'une relation en plusieurs groupes de lignes ayant les mêmes valeurs d'attributs de groupement
- application d'une fonction d agrégat aux lignes du

```
« Bonner pour chaque cru, la moyenne des millésimes des vins » SELECT CRU, AVG( MILL) FROM VINS GROUP BY CRU
```

```
« idem mais trié par cru »
SELECT CRU, AVG( MILL)
FROM VINS
GROUP BY CRU
ORDER BY CRU
```

NB: le ou les attributs de partition doivent être dans la projection

Groupage

« Donner pour chaque cru, la moyenne des millésimes des vins »

SELECT CRU, AVG(MILL) AS MILLMOY FROM VINS

GROUP BY CRU

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	STEM2	St Emilion	1989	Rouge
	TAVE1	Tavel	1990	Rosé

VINS	NV	CRU	MILL	COULEUR
	STEM1	St Emilion	1987	Rouge
	STEM2	St Emilion	1989	Rouge
	SAUT1	Sauternes	1987	Blanc
	CHAB1	Chablis	1989	Blanc
	TAVE1	Tavel	1990	Rosé

CRU	MILLMOY
St Emilion	1988
Sauternes	1987
Chablis	1989
Tavel	1990

Les requêtes imbriquées (i)

- Tables résultats dans les clauses FROM et WHERE
- Exemple 1:
 - Quels sont les crus non consommés par des buveurs parisiens?
 - Etape 1 : numéro de vins consommés par des buveurs habitant Paris

SELECT ABUS.NV FROM ABUS,BUVEURS
WHERE ABUS.NB=BUVEURS.NB AND VILLE='Paris'

Etape 2 : liste des consommations totales par cru SELECT CRU FROM VINS WHERE VINS.NV NOT IN (SELECT ABUS.NV FROM ABUS,BUVEURS WHERE ABUS.NB=BUVEURS.NB AND VILLE='Paris'

Les requêtes imbriquées (ii)

- Exemple 2 :
 - Quels sont les crus les plus consommés ?
 - Etape 1 : liste des consommations totales par cru SELECT CRU, SUM(QTE) AS QTETOT FROM VINS, ABUS WHERE VINS,NV=ABUS,NV GROUP BY CRU
 - Etape 2 : consommation totale maximale (d'un cru)
 SELECT MAX(QTETOT) FROM

 (SELECT CRU, SUM(QTE) AS QTETOT FROM VINS, ABUS
 WHERE VINS.NV=ABUS.NV GROUP BY CRU)

Les requêtes imbriquées (iii)

- Exemple 2 (suite):
 - Etape 3 : la réponse « Donner les crus tel que la consommation totale est égale au maximum des consommations totales par cru »

```
SELECT CRU FROM VINS, ABUS WHERE VINS.NV=ABUS.NV
GROUP BY CRU
HAVING BY SUM(QTE) >

( SELECT MAX(QTETOT) FROM

( SELECT CRU, SUM(QTE) AS QTETOT FROM VINS, ABUS
WHERE VINS.NV=ABUS.NV GROUP BY CRU)
)
```

Insertion

```
    « Inserer un nouveau tuple décrivant un Reisling de 1993 »
    INSERT INTO VINS (NV, CRU, MILL, COULEUR)
    VALUES ('REIS1', 'Reisling', 1993, Blanc')
    « Créer une nouvelle table comportant les vins rouges »
    CREATE TABLE VINSROUGES(

            NV
                 CHAR(5),
                  CRU
                  CHAR(20),
                  MILL
                  CHAR(15),
                  PRIMARY KEY (NV))
```

INSERT INTO VINSROUGES

(SELECT NV, CRU, MILL FROM VINS WHERE COULEUR='Rouge')

Suppression et Modification

Modification de tuples

« Augmenter de 1 les consommations du buveur 101 »

UPDATE ABUS

SET QTE = ABUS.QTE + 1

WHERE (ABUS.NB=101)

Suppression de tuples

« Supprimer tous les vins»

DELETE

FROM VINS

« Supprimer le ou les buveurs habitant Paris»

DELETE

FROM BUVEURS

WHERE BUVEURS.VILLE = 'Paris'

« Supprimer les consommations des buveurs habitant Paris»

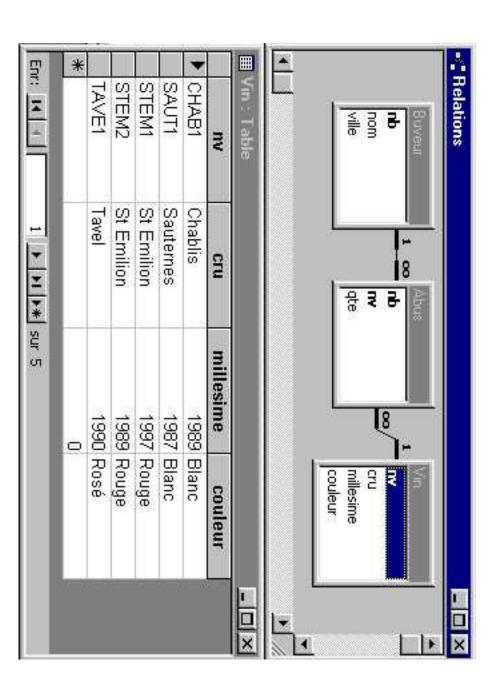
DELETE

FROM ABUS

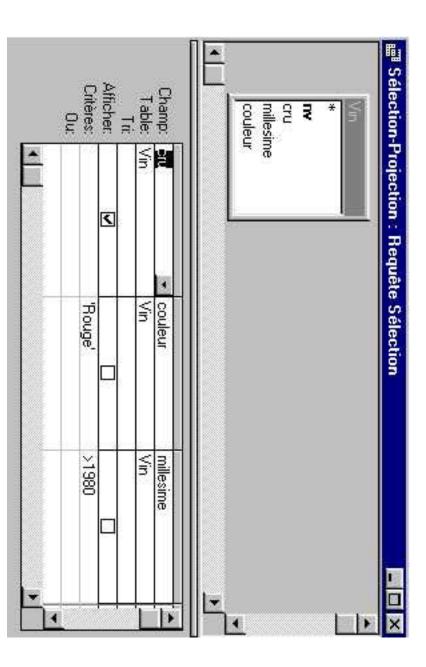
WHERE NB IN (SELECT NB FROM BUVEURS WHERE VILLE = 'Paris')

Des SGBDs

- SGBD
 - Système de Gestion de Bases de Données
- Exemple
 - Oracle, IBM DB2, Sybase, MS SQL Server, ...
 - MS SQL Server Express ...
 - MS Access, Paradox
 - MySql, PostGres
 - **...**


Un exemple : MS Access

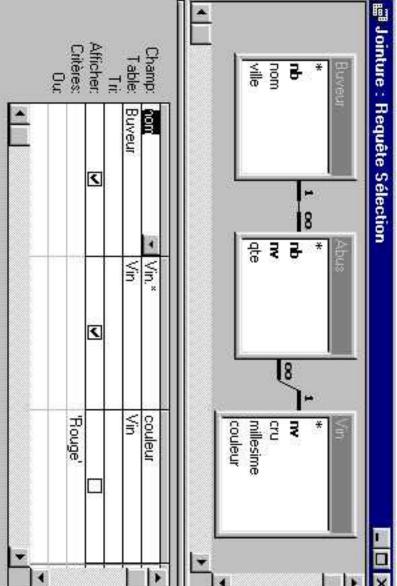
- Système de Gestion de Bases de Données
 - Ordinateur de Bureau
 - Mono-Utilisateur
 - Bases de petite taille


Outils

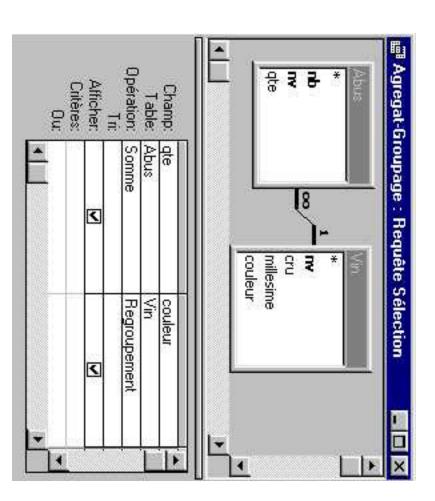
- Manipulation graphique du schéma
- Requêtage graphique
- Construction de Formulaires de saisie, d'Etats, ...

Schéma de la Base sous MS Access

Sélection-Projection sous MS Access

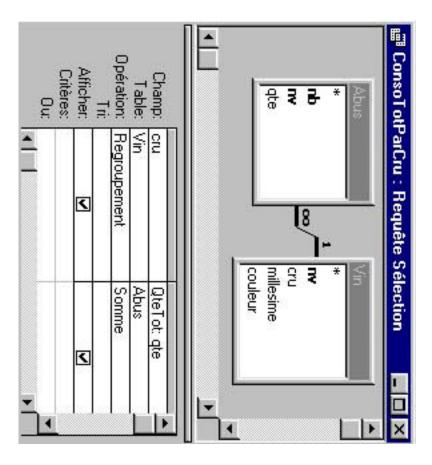


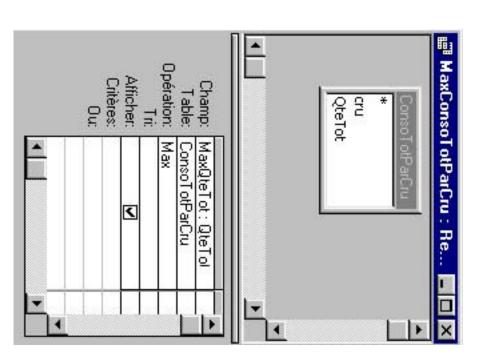
Question:


Question:

Champ: Table: Tri Afficher: Critères: Ou ville Buveur <

Jointure sous MS Access




Agrégat-Groupage sous MS Access

Question :

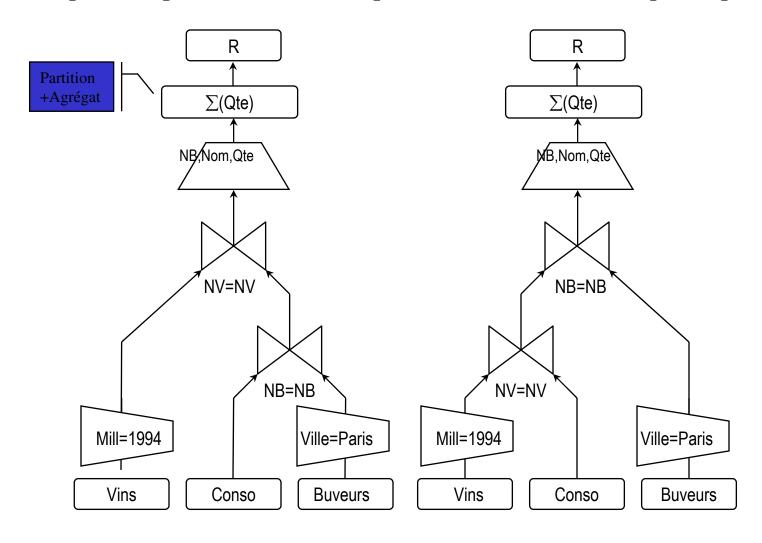
Requête imbriquée sous MS Access

Question :

Différents types de Bases de Données

- Bases de Données Structurées
 - Bases Relationnelles
- Bases de Données Textuelles
 - 90% de l'information d'entreprise est sus la forme de document textuel (papier)
 - Texte au « kilomètre » (non structuré)
 - Documents Structurés
 - Titre, Auteurs, Chapitre, Section, Paragraphe
- Bases de Données Multimédia
 - Sons, Images, Vidéo, Scènes VRML

- Banque de Données
 - Informations collectées, centralisées, analysées, résumées
 - Quelles est la production de charbon de la chine en 1997 ? ...


Conclusion

- Meilleure structuration de l'Information
- Evite les redondances
- SQL : Langage simple et efficace

Bonus track

Représentation en Arbre Algébrique

Utile à l'optimiser pour déterminer un plan d'exécution de la requête optimal

<u>Bibliographie</u>

- Georges Gardarin, "Bases de Données, les systèmes et les langages", Ed Eyrolle (existe en poche ISBN 2-212-07500-6)
- Chris Date, "Introduction aux Bases de Données", 6^{ème} édition, Ed Intl Thomson Publ. ISBN 2-84180-964-1, 970 pp