
Quantitative testing semantics for non-interleaving
Emmanuel Beffara∗
IML, CNRS & Université Aix-Marseille II

April 15, 2009

Abstract. This paper presents a non-interleaving denotational semantics for the π-calculus. The
basic idea is to define a notion of test where the outcome is not only whether a given process passes
a given test, but also in how many different ways it can pass it. More abstractly, the set of possible
outcomes for tests forms a semiring, and the set of process interpretations appears as a module
over this semiring, in which basic syntactic constructs are affine operators. This notion of test
leads to a trace semantics in which traces are partial orders, in the style of Mazurkiewicz traces,
extended with readiness information. Our construction has standard may- and must-testing as
special cases.

1 Introduction
The theory of concurrency has developed several very different models for processes, focusing on
different aspects of computation. Process calculi are an appealing framework for describing and
analyzing concurrent systems, because the formal language approach is well suited to modular
reasoning, allowing to study sophisticated systems by means of abstract programming primitives
for which powerful theoretical tools can be developed. However, the vast majority of the semantic
studies on process calculi like the π-calculus have focused on the so-called interleaving operational
semantics, which is the basic definition of the dynamic of a process: the interaction of a program
with its environment is reduced to possible sequences of transitions, thus considering that parallel
composition of program components is merely an abstraction that represents all possible ways
of combining several sequential processes into one.

There is clearly something unsatisfactory in this state of things. Although sophisticated
theories have been established for interleaving semantics, most of which are based on various
forms of bisimulation, they fundamentally forget the crucial (and obvious) fact that concurrent
processes are intended to model situations where some events may occur independently. Attempts
at recovering this notion of independence in existing theories have been made, for instance in
the form of subtle variations on bisimulation or by fully abstract encodings of non-interleaving
semantics into interleaving ones (in particular in Sangiorgi’s work on locality and causality [13,
3]). More recently, the old idea of Winskel’s interpretation of CCS in event structures [14] has
been revisited by Crafa, Varacca and Yoshida to provide an actually non-interleaving operational
semantics for the π-calculus, using extensions of event structures [5].

This paper presents an attempt at defining a semantics for the π-calculus that is both non-
interleaving (sometimes called “truly concurrent”) and denotational, in the sense that the internal
dynamics of a process is hidden, and only the part that is observable by other processes is kept.
∗Work partially supported by the French ANR project Choco.

1

These two requirements may seem contradictory: “denotational” as we mean it leads to the
definition of testing semantics, which in turn leads to trace semantics, which is very interleaving
in nature. Indeed, consider the prototypical case of a | b versus a.b + b.a: how is it possible to
distinguish them when looking at their interactions? Both can do a then b or b then a, but in the
first case the paths a.b and b.a are in fact one same run since a and b are independent, while in
the second case they correspond to two actually different choices. We solve the contradiction by
elaborating on this simple idea: instead of checking whether a given process passes a given test,
we check in how many different ways it can pass it. The word “different” here refers to different
choices being made in situations of non-determinism, and not simply different orderings of the
same actions.

The approach presented here follows previous work by the author [1] on the search for alge-
braically pleasant denotational semantics of process calculi. The first step was to introduce in the
π-calculus an additive structure (a formal sum with zero) that represents pure non-determinism,
and this technique proved efficient enough to provide a readiness trace semantics (in the style
of Olderog and Hoare [12]) with a complete axiomatization of equivalence for finite terms. The
second step presented here further extends the space of processes with arbitrary linear combina-
tions, giving a meaning to these combinations in terms of quantitative testing. This introduction
of scalar coefficients was not possible in the interleaving case, because of the combinatorial ex-
plosion that arose even when simply composing independent traces; quotienting by homotopy
is the proper solution to this problem. Growing the space of processes to get more algebraic
structure is motivated by the idea that better structured semantics gives cleaner mathematical
foundations for the object of study, in the hope that the obtained theory will be reusable for
different purposes and that it will benefit from existing mathematical tools.

Outline. In section 2, we define the calculus on which our study is built: a finite form of the
πI-calculus. An non-interleaving operational semantics is defined as follows: transitions are those
of the standard calculus, decorated with the position of each action involved in a given transition,
so that transitions are independent if they derive from actions at independent positions. Two
execution paths are then considered homotopic if they differ only by permutation of independent
actions. This technique is a variant of proved transitions introduced by Boudol and Castellani [4]
and notably studied by Degano and Priami [6, 7].

In section 3, the notion of test is defined. Outcomes are taken from a semiring K in which
multiplication represents the parallel composition of independent results and addition represents
the combination of outcomes from different (non homotopic) runs. Processes are equivalent if
they yield the same outcome in all contexts. The space of process equivalence classes appears a
K-module, on which the outcome is a linear form, and syntactic constructs are affine operators.

In section 4, we derive a first denotational semantics of processes as linear forms over this
space, in a construction similar to that of the theory of distributions. This construction provides
an abstract interpretation of recursive processes without having to include them in the initial
construction of tests.

In section 5, we further describe the space of finite processes by showing that every finite
process is a linear combination of traces. Our notion of trace is an asynchronous variant of the
traces induced by standard semantics: they are partially ordered finite sets of actions, augmented
with readiness information. This provides a second, more concrete denotational semantics that
illustrates the expressiveness of our notion of test.

Finally, in section 6, we show that standard forms of test are particular cases of our construc-
tion, obtained by choosing an appropriate semiring for outcomes.

2

Future and related works. The present work is by no means a complete study of quantitative
testing semantics and its possible applications, but rather a presentation of the basic ideas and
their consequences. A first objective is to clarify the relationships between the two proposed
semantics, possibly by establishing that traces form a basis of the space of processes (maybe by
using a ring or field instead of a semiring for outcomes). Another challenging direction for future
work is using the linear-algebraic interpretation for specification of processes, using tools like
differential equations to specify behaviours; this should provide a reconstruction of the semantics
on arbitrary vector spaces instead of the concrete space of processes, which could be a way to a
new family of denotational semantics for process calculi.

Along with this long-term ideas, it is naturally interesting to extend our work with more
features in the calculus. A more precise account of recursion is a desirable thing: surely infinite
behaviours fit in our framework, but the present work does not study it in full detail for lack
of space. External choice is a natural feature to add in the framework, but previous work [1]
suggests that it is painless. Unrestricted name passing, on the other hand, is a more delicate
matter, and we believe that getting a satisfactory understanding of the more regular case of
internal mobility first is necessary to handle it.

Several works by other authors are related to the present work. Crafa, Varacca and Yoshida’s
event structure semantics probably has very strong relationships with our trace semantics: it has
to be expected that their event structures can be used as an intermediate between the process
calculus and the traces, and that traces and outcomes can be deduced from configurations of
the event structures. The operational semantics and its similarity to Mazurkiewicz traces also
suggests that relations could be made with more abstract semantics, like Melliès and Mimram’s
asynchronous games [10, 11]. Previous work on the search for algebraic semantics of processes
include Boreale and Gadducci’s processes as formal series [2], which has notable similarities with
the present work, although their work is carried out in CSP. Finally, strong relationships are
expected with differential interaction nets [9, 8], which have linear algebraic semantics and are
expressive enough to encode the π-calculus.

Note. Many technical proofs were moved out to the appendix and replaced by sketches, for
lack of space and in the interest of readability.

2 Parallel operational semantics
We consider the π-calculus with internal mobility, or πI-calculus, extended with a parallel com-
position without interaction and with outcomes from a commutative semiring K. We consider
the monadic variant of the calculus for simplicity, but using the polyadic form would not pose
any significant problem. The most important point is that we consider finite processes, without
recursion, for the construction of our framework, and we handle potentially infinite behaviours
in a second phase in section 4.

Definition 1. We assume a countable set N of names. Polarities are elements of P = {´, ˆ}.
Terms are generated by the following grammar:

actions α := uε(x) with u, x ∈N and ε ∈ P
processes P,Q := k outcome, with k ∈ K

α.P action
P performed action
P |Q parallel composition with interaction
P ‖Q parallel composition without interaction
(νx)P hiding

3

α.P
α:ε−−→ P

P
a−→ P ′

P
1.a−−→ P ′

P
uε(x):ι−−−−→ P ′ Q

u¬ε(y):κ−−−−−→ Q′

P |Q (1.ι,2.κ)−−−−−→ (νx)(P ′ |Q′[x/y])

P
a−→ P ′ x /∈ a

(νx)P a−→ (νx)P ′

P
a−→ P ′

P |Q 1.a−−→ P ′ |Q
P

a−→ P ′

Q | P 2.a−−→ Q | P ′
P

a−→ P ′

P ‖Q 1.a−−→ P ′ ‖Q
P

a−→ P ′

Q ‖ P 2.a−−→ Q ‖ P ′

Table 1: Transition rules

Terms are considered up to renaming of bound names and commutation of restrictions, i.e.
(νx)(νy)P = (νy)(νx)P , with the standard convention that all bound names are distinct from
all other names.

The parallel composition without interaction allows us to write a term like a ‖ ā which can
perform the dual actions a and ā independently but does not allow them to synchronize — this
slightly extends the expressiveness of the calculus but not in a dramatic way, and it simplifies
the theory.

The prefix represents an action that already occurred. It has no computational meaning
but has the effect that the positions of actions in the terms are preserved when reducing, which
will simplify definitions below.

We want to define an operational semantics in which commutation of independent transitions
is allowed. In order to make this possible by only looking at transition labels, we have to enrich
the labels so that different occurrences of a given action are distinguishable. We do this by
simply introducing in each label the positions in the syntax tree of all actions involved (as a
consequence, the operational semantics cannot be defined up to structural congruence).

Definition 2. A position is a finite sequence of integers. The concatenation of ι and κ is written
ι.κ, the empty position is written ε. The prefix order is written 6 and two positions ι and κ are
independent (written ι � κ) if they are incomparable.

Definition 3. Transition labels can be of one of two kinds:

a, b := uε(x) : ι visible action
(ι, κ) internal transition

For a label a and a position ι, ι.a denotes the label a where each position κ is replaced with ι.κ.
Transitions are derived by the rules of table 1.

An interaction is finite sequence of transition labels. A path is a finite sequence of internal
transition labels. An interaction p = a1a2 . . . an is valid for P , written p ∈ P , if there are valid
transitions P a1−→ P1

a2−→ · · · an−−→ Pn.

This technique can be seen as a version of Boudol and Castellani’s proved transitions [4, 7]
simplified for our purpose. It is clear that for all term P and interaction p ∈ P , there is exactly
one term P/p such that there is a transition sequence P p−→ P/p (up to renaming of revealed
bound names). Remark that by removing all positions from labels (replacing (ι, κ) by τ) one
gets the standard labeled transition system for the πI-calculus.

Definition 4. Two labels a and b are independent (written a � b) if all positions in a are
independent of all positions in b. Homotopy is the smallest congruence ≈ over paths such that
ab ≈ ba when a � b.

Two execution paths of a given term are homotopic if it is possible to transform one into the
other by exchanging consecutive transitions if they are independent. Prefixing generates local

4

constraints which propagate to paths by this relation. A first remark is that transition labels
contain enough information so that homotopy does not depend on the term in which paths are
taken.

Proposition 1. For all term P and all interactions p, q such that p ≈ q, p ∈ P if and only if
q ∈ P , and then P/p = P/q.

sketch. The basic ingredient is that if ab ∈ P and a� b, then a and b involve actions in different
parts of the term P , therefore none of them prefixing any other. By a simple case analysis one
checks that the transitions can be swapped, so ba ∈ P . The fact that P/ab = P/ba is also
easily checked, the only subtle case is that of two consecutive interactions in a term P |Q that
introduce hidings in different orders, this is where we use the fact that terms are considered up
to permutation of hidings.

Definition 5. A pre-trace is a homotopy class of interactions. A run is a homotopy class
of maximal paths. The sets of pre-traces and runs of a term P are written P(P) and R(P)
respectively. The unique reduct of a term P by a pre-trace ρ is written P/ρ.

Runs are the intended operational semantics: they are complete executions of a given system,
forgetting unimportant interleaving of actions and remembering only actual ordering constraints.
A pre-trace can be seen as a Mazurkiewicz trace on the infinite language of transition labels,
with the independence relation from definition 4, except that, because of our transition rules
(and because of the use of the place-holder), each label occurs at most once in any interaction.
A crucial fact is that pre-traces are uniquely defined by the set of their labels:

Proposition 2. Let p and q be two interactions of a term P such that p and q are permutations
of each other, then p ≈ q.

Proof. We first prove that for all interaction a1 . . . anb ∈ P such that b ∈ P we have a1 . . . anb ≈
ba1 . . . an, by induction on n. The case n = 0 is trivial. For the case n > 1, remark that the
hypothesis implies a1 � b: if some position in a1 was less than a position in b then b could only
occur after a1, which contradicts b ∈ P , and a1 ∈ P also implies that no position in b is less than
a position in a. Therefore we have ba1 ∈ P and ba1 ≈ a1b. Applying the induction hypothesis on
P/a1 yields ba2 . . . an ≈ a2 . . . anb from which we conclude. The case of arbitrary permutations
follows by recurrence on the length of p and q.

Definition 6. Let P be a term and ρ ∈ P(P). By proposition 2, ρ is identified with the set of
its labels. The causal order in ρ is the partial order 6ρ on labels in ρ such that a 6ρ b if a = b
or a occurs before b in all interactions in ρ.

This presentation is much simpler to handle than explicit sets of runs, so this is the one we will
mainly use. Interactions that constitute a given pre-trace are simply the topological orderings of
this partially ordered set of transitions. Traces are a further quotient of pre-traces, defined and
studied in section 5.

3 Quantitative testing
We now define a form of observation based on interaction, in the style of testing equivalences,
that takes homotopy into account. Standard testing naturally leads to interleaving semantics, so
we have to refine our notion of test, and that is what outcomes are for. The set K is a semiring
in order to represent two ways of combining results: the product is the parallel composition of
independent results and the sum is the combination of results from distinct runs.

5

commutativity P |Q ' Q | P P ‖Q ' Q ‖ P
associativity (P |Q) |R ' P | (Q |R) (P ‖Q) ‖R ' P ‖ (Q ‖R)
neutrality P | 1 ' P P ‖ 1 ' P
scope commutation (νx)(νy)P ' (νy)(νx)P
scope extrusion (νx)(P |Q) ' P | (νx)Q with x /∈ fn(P)
scope neutrality (νx)k ' k
non-interaction (P ‖Q) |R ' (P |R) ‖Q with fn(Q) ∩ fn(R) = ∅
place-holder P ' P
inaction (νu)uε(x).P ' 1
non-interference (νu)(u(x).P | ū(x).Q) ' (νux)(P |Q)

Table 2: Basic equivalences.

Definition 7. The state s(P) ∈ K of a term P is the product of all outcomes in active position
in P :

s(k) := k, s(α.P) := 1, s(P) := s((νx)P) := s(P), s(P |Q) := s(P ‖Q) := s(P) s(Q).

The outcome of a term P is 〈P 〉 =
∑
ρ∈R(P) s(P/ρ). Two terms P and Q are observationally

equivalent, written P ' Q, if 〈P |R〉 = 〈Q |R〉 for all R.

Classic forms of test intuitively correspond to the case where K is the set of booleans for the
two outcomes success and failure, with operations defined appropriately. This particular case is
detailed in section 6.

Theorem 1. Observational equivalence is a congruence.

sketch. This proof is quite technical. For the action prefix, the basic argument is to partition
the runs of α.P | R into those that trigger α and those that do not. The latter are the same in
α.Q | R. The former are further split into one class for each way that R can trigger α, i.e. for
each occurrence of ᾱ in R and each way of reaching it. The contribution of each class to the
outcome of α.P |R has the form 〈P |R′〉, which allows us to equate it with 〈Q |R′〉 and get back
the equality 〈α.P |R〉 = 〈α.Q |R〉.

The case of composition with interaction relies on the easily proved associativity 〈(P |R) | S〉 =
〈P | (R | S)〉. The case of composition without interaction is more subtle, it is proved using a
rewriting of the test 〈(P ‖R) | S〉 into a sum of tests of the form 〈(P |R′) | S′〉 in which non-
interference between P and R′ is guaranteed by the disjointness of their free names. The terms
R′ and S′ are mostly R and S with some actions renamed, so as to ensure which interactions are
between P and S and which interactions are between R and S. Details of this technique can be
found in appendix.

Proposition 3. The equivalences of table 2 hold.

sketch. All the equations are easily proved by establishing bĳections between runs of one member
and runs of the other. These bĳections simply reflect the change in the positions of actions in
the terms. For the non-interaction rule, we use the fact that, in the πI-calculus, two terms may
interact only if they share some public name.

6

Commutative monoid for ⊕, 0:

P ⊕Q ' Q⊕ P (P ⊕Q)⊕R ' P ⊕ (Q⊕R) P ⊕ 0 ' P

Action of the semi-ring K:

1 · P ' P k1k2 · P ' k1 · k2 · P
0 · P ' 0 (k1 + k2) · P ' k1 · P ⊕ k2 · P k · (P ⊕Q) ' k · P ⊕ k ·Q

Bilinearity of compositions, linearity of hiding:

P | (Q⊕R) ' (P |Q)⊕ (P |R) P | (k ·Q) ' k · (P |Q)
P ‖ (Q⊕R) ' (P ‖Q)⊕ (P ‖R) P ‖ (k ·Q) ' k · (P ‖Q)
(νx)(P ⊕Q) ' (νx)P ⊕ (νx)Q (νx)(k · P) ' k · (νx)P

Table 3: K-module laws over processes.

The non-interaction rule is formulated as it is for generality. Note that it implies the intuitive
fact that the two compositions coincide for terms with disjoint free names: if fn(P) ∩ fn(Q) = ∅
then

P |Q ' (1 ‖ P) |Q ' (1 |Q) ‖ P ' Q ‖ P ' P ‖Q.

Thanks to these properties, when considering processes up to observational equivalence, we
can consider the compositions to be associative and commutative. In this case we use the notation∏
i∈I Pi to denote the parallel composition without interaction of the Pi in any order (assuming

only that I is finite).
In order to study processes up to observational equivalence, we will now describe some of

the structure of the space of equivalence classes. The first ingredient is to identify an additive
structure that represents pure non-determinism.

Proposition 4. Let ΠK be the set of equivalence classes of processes over the semiring of out-
comes K. For all terms P and Q and all outcome k, define

P ⊕Q := (νu)((u.P | u.Q) | ū.1) where u is a fresh name,
k · P := k | P

Then (ΠK,⊕, 0, ·) is a K-module, parallel compositions are bilinear operators and hiding is linear,
i.e. the equivalences of table 3 hold.

sketch. The proofs reduce to the equation 〈(P ⊕Q) |R〉 = 〈P |R〉 + 〈Q |R〉, which implies all
required rules with the equations of table 2. Note that, contrary to the traditional notation, 0 is
the outcome zero, which not the neutral element of parallel composition but an absorbing one,
neutral for the sum; the usual inactive process is 1.

Remark that all syntactic constructions on terms induce linear constructions on equivalence
classes, except for the action prefix, which is not linear but actually affine. Indeed, for an action
α, the term α.0 is not equivalent to 0: it will be neutral in executions that do not trigger α,
and multiply the outcome by 0 (thus annihilating it) in runs that do. It can be understood as a
statement “I could have performed α but I will not do it” so that any run that contradicts this
statement has outcome 0. The purely linear part of actions is the opposite: the linear action

7

Linearity:

α̂.(P ⊕Q) ' α̂.P ⊕ α̂.Q α̂.(k · P) ' k · α̂.P (νu)ûε(x).P ' 0

Composition of inactions (the subject of β is not bound by α):

α̂.(β.0 | P) ' β.0 | α̂.P α.0 | α.0 ' α.0 α.0 | ᾱ.0 ' 0
α̂.(β.0 ‖ P) ' β.0 ‖ α̂.P α.0 ‖ α.0 ' α.0

Table 4: Laws of linear actions and inactions.

α̂.P will act as α.P if its environment actually triggers the action, but will turn to 0 if it is never
activated.

Definition 8. For all action α and term P , the linear action of α on P is

α̂.P := (νw)(α.(P | w.1) | (w.0 | w̄.1)) where w is a fresh name.

An interaction is said to trigger the linear action if it triggers the action w.1. Terms of the form
α.0 are called an inactions.

This definition has the expected behaviour because of the maximality of runs. If α̂.P is in
active position, then any run that does not trigger α must instead trigger w.0, hence any such
run has outcome 0. A run in which the term α̂.P does not produce 0 must activate α, so that
w.1 acts instead of w.0.

Proposition 5. For all α and P , α.P ' α̂.P ⊕ α.0. The function P 7→ α̂.P is linear and the
equivalences of table 4 hold.

sketch. All these equations are proved in similar ways, using the maximality of runs. In any
run, if a linear action α̂.P = (νw)(α.(P | w.1) | (w.0 | w̄.1)) is in active position, either w.1 is
eventually triggered, which guarantees that α has been triggered and P has reached an active
position, or the action w.0 must be triggered, which puts the outcome 0 in active position, thus
turning the outcome of the run to 0. As a consequence, the only relevant runs are those that do
trigger linear actions. As a consequence, in α̂.(P ⊕ Q), all relevant runs put the choice P ⊕ Q
in active position, so the choice must be made between P and Q. For the computation of final
results, the precise position of this choice does not matter, only the fact that a choice is made
matters, hence the distribution of α̂ over choice. The rules for inactions are proved by the similar
argument that the only relevant runs are those that do not trigger an inaction.

Definition 9. A term is simple if it is generated by the grammar

P,Q := 1, α.0, α̂.P, (P |Q), (P ‖Q), (νx)P

An pre-trace ρ ∈ P(P) is exhaustive if it triggers all linear actions and no inaction, and no
sub-term of P/ρ has the form Q |R with Q containing some α.0 and R containing ᾱ.0. The set
of such pre-traces is written Pe(P).

Simple terms have the property that the outcome of any run is either 1 or 0. More precisely,
it is easy to see that the outcome of a run is 1 if and only if it triggers all linear actions and no
inaction. The notion of exhaustive pre-trace is the correct extension of this notion to pre-traces,
indeed every run of a simple term P | Q with outcome 1 is made of an exhaustive pre-trace of

8

P and an exhaustive pre-trace of Q. The condition on P/ρ simply rules out interactions of P
that lead to a term P ′ where there are dual inactions that may interact, since that would imply
P ′ ' 0, as a generalization of the equation α.0 | ᾱ.0 ' 0.

Remark that, by the decomposition of proposition 5 and the linearity of all constructions
of simple terms, we immediately prove that every term is equivalent to a linear combination of
simple terms. As a consequence, two terms P and Q are equivalent if and only if for all simple
term R, 〈P |R〉 = 〈Q |R〉.

4 A linear algebraic semantics
The equivalence of finite processes is defined by the fact that they give the same outcome when
tested against the same finite processes. The equivalence class of a term P is thus completely
defined by the function Q 7→ 〈P |Q〉, which can be considered as a function from equivalence
classes to outcomes. Moreover, by the properties of the space of processes, we know that this
function is linear.

Definition 10. A behaviour is a linear form over ΠK. A partial behaviour is a linear form
defined over a submodule of ΠK. The behaviour of a term P is the form JP K such that, for all
Q ∈ ΠK, JP K(Q) = 〈P |Q〉.

Switching from a space to its dual makes the space of considered objects grow, as we will see
below. In our context, it allows us to move from inductive objects (finite processes) to coinductive
objects (intuitively, this includes infinite terms). This technique is in some sense analogous to
the basic idea of the theory of distributions: consider a generalized function as a linear form over
simple well-behaved objects (smooth test functions, as analogous of our finite terms).

We now describe a way of giving semantics to infinitary processes, showing that recursive
process definitions have solutions as partial behaviours.

Definition 11. We assume we have a set I of process indeterminates of the form X〈x1 . . . xn〉,
which represent an unknown term with free names x1 . . . xn. The set of partial terms is generated
by the same grammar as finite processes (as of definition 1), augmented with indeterminates.
The set of indeterminates of a partial term P is written ind(P).

The refinement preorder is the relation v over partial terms such that P v Q if Q is obtained
from P by substituting each indeterminate by an arbitrary term with the same free names. The
relation vf is its restriction to the case when the right-hand side is a finite term.

Definition 12. Let P be a partial term. If there is a k ∈ K such that 〈Q〉 = k for all finite Q
with P vf Q, then we set 〈P 〉 = k, otherwise 〈P 〉 is undefined. The interpretation JP K is the
partial function Q 7→ 〈P |Q〉 from ΠK to K. Two partial terms are equivalent if the have the
same interpretation.

This is clearly an extension of the semantics of total terms, since the set of refinements of a
total term P is {P}. One easily checks that this definition of the interpretation of partial terms
enjoys the same properties as finite terms:

Proposition 6. For all partial term P , JP K is a partial behaviour. The equations of tables 2 and
3 hold for partial terms. Interpretations are preserved by injective renaming of indeterminates.
Equivalence is preserved by prefixing, hiding and composition with partial terms with distinct
indeterminates.

9

Definition 13. An ideal is a non-empty set A of partial terms that is downwards closed and
such that for all P,Q ∈ A there is an R ∈ A such that P v R and Q v R. The interpretation
of an ideal A is the upper limit of the interpretations of its elements, that is the partial function
JAK such that for all P , JAK(P) = k if JQK(P) = k for some Q ∈ A.

The definition of JAK is valid since interpretation of partial terms is clearly increasing, when
ordering partial terms by refinements and partial functions by extension (or graph inclusion).
Note that for all total term P , the set {Q | Q vf P } is an ideal that has the same interpretation
as P .

The set of ideals, ordered by inclusion, is not well founded: if (xn)n∈N is an infinite family of
names, then each set An = {X〈x1, . . . , xi〉 | i > n } is an ideal and {An | n ∈ N } is an infinite
descending chain. However, if we restrict to a finite number of public names (which does not
change expressiveness, since bound names are not restricted), then the set is well-founded, and
the smallest ideal is the set Ω of all indeterminates with the set of all free names.

Every syntactic construction for total terms naturally induces a construction for ideals, for
instance the parallel composition A |B is the downwards closure is {P |Q | P ∈ A,Q ∈ B } for P
and Q chosen with disjoint indeterminates. All these constructions are increasing for inclusion.
Moreover, the union of a directed set of ideals is an ideal, so every equation X = A(X) has a
solution in ideals (the least fixed point of X 7→ A(X), i.e. the union of the An(Ω)). Consequently,
all processes definable by recursion are interpreted by partial behaviours.

5 Asynchronous traces
Simple terms remove one source of ambiguity in the meaning of processes: the fact that each
action may or may not be activated. By linearity, they also reduce the computation of outcomes
to the computation of the number of non-zero outcomes. However, they do not form a basis
of observable process behaviours, because they may contain internal transitions, which are not
observable and can be a source of non-determinism.

A trace as defined below can be seen as a deterministic simple term, up to observational
equivalence. It has visible actions, with a partial order imposed by some internal prefixing
structure, and these actions may not interact with each other, only with the environment; it also
contains inactions, representing the fact that the choice was made not to do some of the actions.

Definition 14. A trace T is a tuple (|T | , p, s,6, N) where

• |T | is a finite set (the events, or action occurrences),

• p is a function from |T | to P (the polarity),

• s is a function from |T | to N] |T | (the subject),

• 6 is a partial order over |T | such that ∀a, b ∈ |T |, if s(b) = a then a < b,

• N is a finite subset of P × (N] |T |) (the inactions).

For an action a ∈ |T |, s(a) is the subject of action a, that is the channel on which a happens:
if s(a) ∈ N then it is a public channel, otherwise it is the private channel bound by the action
s(a). The set N indicates which actions could have been performed (in parallel) after the trace
has been consumed.

Definition 15. Let P be a simple term and let ρ be an exhaustive pre-trace of P . The trace
induced by ρ is the trace ρ∗ such that

10

• |ρ∗| is the set of visible transition labels in ρ,

• p maps labels to their polarity,

• s maps labels to their subject, either the name for public channels or the action that creates
the name for private channels,

• 6 is the causal order (as of definition 6) restricted to visible transition labels,

• N is the set of all (ε, u) such that uε.0 occurs in active position in P/ρ.

Note that the condition that s(b) = a implies a < b is satisfied by ρ∗, because in our
language the action prefixes are synchronous: in an action u(x).P , the action u(x) that binds x
is automatically a prefix of all actions on x. However, synchrony is not necessary for this property
to hold:, the fact that the name is bound is the important point: even if internal transitions can
occur on a bound name, visible transition are possible only after the name has been revealed by
the action it is bound to.

The definition above identifies the trace that is the observable content of a pre-trace. With
some coding, we can prove that any trace can be implemented in the calculus, in the sense that
for every trace T there is a term {T} that has a unique exhaustive pre-trace ρ, the content of
which is T .

Definition 16. Let T be a trace. For all a and b in |T |, let xab, yab, za be fresh names. For all
a ∈ |T |, let act(a) = s(a)p(a)(za) if s(a) ∈N and act(a) = z

p(a)
s(a) (za) if s(a) ∈ |T | and define

ATa := {x̂ba}b<a.âct(a).
(∏

a<c
ˆ̄yac
∥∥∥∥ ∏s(c)=aA

T
c

∥∥∥∥ ∏(ε,a)∈N z
ε
a.0
)

where {x̂ba}b<a represents a sequence of prefixes that contains all actions x̂ba for all b < a, in
any order. The implementation of T is the process

{T} := (νxabyab)a,b∈|T |
(∏

s(a)∈N ATa

∣∣∣∣ ∏a<b ŷab.ˆ̄xab
) ∥∥ ∏

(ε,u)∈N, u∈N uε.0

The intuition is the following: each action in T is translated by the linear action it describes,
which provides the right set of visible actions. Inactions are translated straightforwardly. The
ordering is imposed by communication on internal names: for each action a, the translation
âct(a) is prefixed by a blocking input xba for each action b < a. Activating this action frees the
signals xac for all c > a, which guarantees that the order is respected. We cannot implement this
system one set of names xab, because the actions âct(a) must be composed without interaction,
in order to avoid internal transitions between actions that are supposed to implement visible
transitions. We thus split each signal into two names, xab and yab, and put in parallel (with
interaction) a set of forwarders yab.x̄ab that performs the synchronization between signals. If the
subject of an action a is the bound name of an action b, then act(a) is put in the continuation of
action act(b), which imposes an order between this action; this is compatible with the constraint
b < a from the definition of traces. The formal proof (present in the appendix) of the following
proposition is based on this intuition.

Proposition 7. For all trace T , the term {T} is simple, has a unique exhaustive pre-trace ρ
and ρ∗ = T .

This result justifies that {T} is considered as an implementation of T . The proposition below
proves that traces are actually the part of interactions that are observable by interaction.

11

Proposition 8. For all simple term P , P '
⊕

ρ∈Pe(P) {ρ∗}.

sketch. The idea is that, given a simple process Q, a run ϑ ∈ R(P | Q) has a projection ϑ1 on
P that is an exhaustive pre-trace of P . We can then partition R(P |Q) into one class for each
exhaustive pre-trace ρ of P and show that the sum of the outcomes of the runs of this class is
precisely 〈{ρ∗} |Q〉.

We can thus consider traces as terms of the language. Indeed, given a trace T , all simple
terms that have a unique exhaustive pre-trace ρ with ρ∗ = T are equivalent to {T}. When
precise syntactic information is needed, T used as a term is a short-hand for {T}.

Theorem 2. Every term is equivalent to a linear combination of traces.

Proof. By the decomposition of affine actions from proposition 5 we get that every term is
equivalent to a linear combination of simple terms. By proposition 8, each simple term is in turn
equivalent to a sum of trace implementations. The composition of these equivalences, with the
module structure of ΠK, yields a decomposition of every term as a linear combination of trace
implementations.

We can thus define a semantics of processes based on traces, as of definition 14, by reformulat-
ing the various constructions for combinations of traces. As an example we give a reformulation
of testing for traces. In the definition below, for two traces T and U , if f is a function from |T |
to |U |, then f is implicitly extended to a function from |T |]N to |U |]N as the identity over
names.

Proposition 9. Let T and U be two traces, 〈T | U〉 is the number of synchronizations of T and
U , that is bĳections σ from |T | to |U | such that

• for all a ∈ |T |, pU (σ(a)) = ¬pT (a) and sU (σ(a)) = σ(sT (a)),

• the relation { (a, b) | a 6T b or σ(a) 6U σ(b) } is acyclic,

• for all (ε, x) ∈ NT , (¬ε, σ(x)) /∈ NU .

Proof. Since trace implementations are simple terms, the outcome of a run of T | U is always 0
or 1, so 〈T | U〉 is the number of runs with non zero outcomes. As remarked earlier, such runs
are always made of exhaustive pre-traces of T and U , and by construction these terms have only
one exhaustive pre-trace so relevant runs are completely defined by a bĳection between actions
of T and actions of U . It is easy to check that the conditions on this bĳection are exactly those
that define synchronizations.

We will not develop the trace semantics further here for lack of space, but the abstract
reformulation of outcomes above gives an idea of the construction: a finite process is interpreted
as a linear combination of traces and all basic operations are defined independently of the semiring
K. The linear action prefix maps traces to traces, inactions are basic traces, composition without
interaction is a disjoint union of traces, composition with interaction maps a pair of traces to a
combination of traces with integer coefficients, hiding (νu) maps traces that contain an action
on u to 0, and remove inactions on u from other traces.

12

may and must may testing must testing
· 0 1 ω
0 0 0 0
1 0 1 ω
ω 0 ω ω

+ 0 1 ω
0 0 1 ω
1 1 1 ω
ω ω ω ω

+ 0 1 ω
0 0 1 ω
1 1 1 1
ω ω 1 ω

Table 5: Observation semirings for may and must testing.

6 Classic forms of test
By choosing appropriate structures for K, we can recover the standard may and must testing.
In both cases we have K = {0, 1, ω}, where ω represents success. Table 5 show the rules for
addition and multiplication for may and must. Using this definition it is clear that P and Q are
equivalent for may or must testing if and only if, for all R, 〈P |R〉 = ω if and only if 〈Q |R〉 = ω.
Taking for K the minimal semiring {0, 1} with 1 + 1 = 1 gives the framework studied by the
author in a previous work [1], which also leads to must testing semantics.

These semirings share an important property, namely that all elements are idempotent for
addition. This is an important restriction, in particular it implies that summing outcomes cannot
count the number of successes or failures. In other words, the “quantitative” part of our testing
semantics disappears. We can remark that this constraint imposes to forget non-interleaving,
since it allows us to decompose everything as totally ordered traces.

Theorem 3. If ∀x, x+ x = x, then ΠK is generated by totally ordered traces.

Proof. We prove the equivalent fact that each trace is equivalent to the sum of all its total
orderings. Let T and U be two traces. Call O the set of total orders over |T | that contain 6T
and for each R ∈ O, call TR the trace obtained from T by replacing the order with R. Let
T ′ =

⊕
R∈O TR.

By proposition 9, 〈T | U〉 is the number of matchings between T and U . This means that
if there are n matchings, then 〈T | U〉 = 1 + · · · + 1 with n occurrences of 1. By hypothesis
1 + 1 = 1, so 〈T | U〉 is 1 if there is at least one matching and 0 otherwise. By the same
argument, for all R ∈ O we have 〈TR | U〉 ∈ {0, 1}, hence 〈T ′ | U〉 is 1 if there is at least one R
such that 〈TR | U〉 = 1 and 0 otherwise.

Assume 〈T | U〉 = 1, and let σ be a matching between T and U . Then σ induces an order 6
on |T | such that a 6T b and σ(a) 6U σ(b) both imply a 6 b. Any completion R of 6 into a total
order yields a total ordering TR of T such that 〈TR | U〉 = 1, which proves that 〈T ′ | U〉 = 1.

Reciprocally, assume that 〈T ′ | U〉 = 1, then there is an R ∈ O such that 〈TR | U〉 = 1, then
there is a matching σ between TR and U . Since the only difference between TR and T is the
order and 6T is included in R, σ is also a matching between T and U , hence 〈T | U〉 = 1.

References
[1] Emmanuel Beffara. An algebraic process calculus. In Proceedings of the twenty-third annual

IEEE symposium on logic in computer science (LICS), pages 130–141, 2008.

[2] Michele Boreale and Fabio Gadducci. Processes as formal power series: a coinductive ap-
proach to denotational semantics. Theoretical Computer Science, 360:440–458, 2006.

[3] Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the π-
calculus. Acta Informatica, 35(5):353–400, 1998.

13

[4] Gérard Boudol and Ilaria Castellani. A non-interleaving semantics for CCS based on proved
transitions. Fundamenta Informaticae, XI:433–453, 1988.

[5] Silvia Crafa, Daniele Varacca, and Nobuko Yoshida. Compositional event structure seman-
tics for the π-calculus. In Proceedings of the 18th international conference on concurrency
theory (CONCUR), volume 4703 of Lecture Notes in Computer Science, pages 317–332.
Springer, 2007.

[6] Pierpaolo Degano and Corrado Priami. Proved trees. In Proceedings of the 19th International
Colloquium on Automata, Languages and Programming (ICALP), volume 623 of Lecture
Notes in Computer Science, pages 629–640. Springer, 1992.

[7] Pierpaolo Degano and Corrado Priami. Non-interleaving semantics for mobile processes.
Theoretical Computer Science, 216:237–270, 1999.

[8] Thomas Ehrhard and Olivier Laurent. Interpreting a finitary π-calculus in differential inter-
action nets. In Luís Caires and Vasco T. Vasconcelos, editors, 18th International Conference
on Concurrency Theory (Concur), volume 4703 of LNCS, pages 333–348. Springer, Septem-
ber 2007.

[9] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Workshop on Logic,
Language, Information and Computation, 2004. Invited paper.

[10] Paul-André Melliès. Asynchronous games 2: the true concurrency of innocence. In Proceed-
ings of the 15th international conference on concurrency theory (CONCUR), volume 3170
of Lecture Notes in Computer Science, pages 448–465. Springer, 2004.

[11] Paul-André Melliès and Samuel Mimram. From asynchronous games to concurrent games.
Submitted, September 2008.

[12] Ernst-Rüdiger Olderog and C. Anthony R. Hoare. Specification-oriented semantics for com-
municating processes. Acta Informatica, 23(1):9–66, 1986.

[13] Davide Sangiorgi. Locality and interleaving semantics in calculi for mobile processes. The-
oretical Computer Science, 155, 1996.

[14] Glynn Winskel. Event structure semantics for CCS and related languages. In Proceedings
of the 9th international colloquium on automata, languages and programming (ICALP),
volume 140 of Lecture Notes in Computer Science, pages 561–576. Springer, July 1982.

14

A Technical proofs
A.1 Homotopy (proposition 1)
The basic case is p = ab and q = ba for some a and b with a� b. We thus prove that for any pair
of transitions P a−→ Q

b−→ R with a � b, there is a term Q′ such that P b−→ Q′
a−→ R. Proceed by

induction on the derivation of P a−→ Q.

• The case of the action rule α.P α:ε−−→ P cannot happen since no position is independent of
ε but b is supposed to be independent of α : ε.

• In the case of the rule, we have P
1.a−−→ Q

1.b−−→ R and we can proceed by induction on
P

a−→ Q
b−→ R.

• In the case of the interaction rule, we have a = (1.ι, 2.κ) for some positions ι and κ, and
the second transition starts from (νx)(P ′ |Q′[x/y]). Reason by case analysis on the shape
of this second transition. If all positions in b start with 1, then b = 1.b′ for some b′ and
the second transition comes from P ′

b′−→ P ′′, so we can apply the induction hypothesis
on P

uε(x):1.ι−−−−−→ P ′
b′−→ P ′′ to get transitions P b′−→ R

uε(x):1.ι−−−−−→ P ′′, from which we deduce
P |Q b−→ R |Q a−→ (νx)(P ′′ |Q′). If all positions in b start with 2, the same argument applies,
the substitution of x for y is innocuous since it only affects actions prefixed by u¬ε(y). If
b = (1.ι′, 2.κ′) for some ι′ and κ′, then we have P ′ vη(x′)ι′−−−−−→ P ′′ and Q′

v¬η(y′)κ′−−−−−−→ Q′′, so
we can apply the induction hypothesis on P and Q independently, from which we deduce
P |Q b−→ (νx′)(P ′′′ |Q′′′[x′/y′]) a−→ (νx′)(νx)(P ′′ |Q′′[x′/y′, x/y]), which concludes this case
since the substitutions [x/y] and [x′/y′] are independent and the order of restrictions is
irrelevant.

• The (νx) context rule is obvious.

• In the right context rule for parallel composition, we have a = 1.a′ for some a′. If b = 2.b′
for some b′, then a occurs in P and b occurs in Q, so they obviously commute. If b has
the form α : 1.ι, then we proceed by induction in P . If b is a label (ι, κ) with one of ι, κ
starting with 1, then we proceed by induction on the visible action at this position, in a
similar way as for parallel composition.

• The other context rules for composition with and without interaction are similar.

The general case follows.

A.2 Testing equivalence is a congruence (theorem 1)
Consider a pair of equivalent processes P ' Q. Let α be an arbitrary action, we first prove that
α.P ' α.Q. Let R be an arbitrary process. The set R(α.P | R) can be split into two parts:
the set R0 of runs where the action α is not triggered and the set R1 of runs in which it is.
Then for each run ρ ∈ R1, there is a position ι such that (1, 2.ι) ∈ ρ. Let ρ1 be the partial run
{ a | a ∈ ρ, a 6ρ (1, 2.ι) }, that is the minimal run that triggers α; we have (α.P |R)/ρ1 = (νx)(P |
R′) for some R′; let ρ2 = ρ \ ρ1, so that ρ2 is a run of P |R′ and (α.P |R)/ρ = (νx)(P |R′)/ρ2.
Let S be the set of triples (ρ1, R

′, ρ2) for all ρ ∈ R1. Obviously R(α.P | R) is in bĳection with
R0] S and

〈α.P |R〉 =
∑

2.ρ∈R0

s(R/ρ) +
∑

(ρ1,R′,ρ2)∈S

s((P |R′)/ρ2)

15

Now let L = { (ρ1, R
′) | ∃ρ2, (ρ1, R

′, ρ2) ∈ S }, and let (ρ1, R
′) ∈ L. Since R1 contains all runs of

α.P |R that trigger α, it contains all the runs of P |R′ since P |R′ can be reached from α.P |R,
so we have { ρ2 | (ρ1, R

′, ρ2) ∈ S } = R(P |R′), hence∑
(ρ1,R′,ρ2)∈S

s((P |R′)/ρ2) =
∑

(ρ1,R′)∈L

∑
ρ2∈R(P |R′)

s((P |R′)/ρ) =
∑

(ρ1,R′)∈L

〈P |R′〉

By hypothesis, for all R′ we have 〈P |R′〉 = 〈Q |R′〉 so

〈α.P |R〉 =
∑
rρ∈R0

s(R/ρ) +
∑

(ρ1,R′)∈L

〈Q |R′〉 = 〈α.Q |R〉

since the reasoning above equally applies to Q. Therefore we get α.P ' α.Q.
For parallel composition, let R and S be arbitrary terms, we want to prove 〈(P |R) | S〉 =

〈(Q |R) | S〉, in order to get P | R ' Q | R. Let ϕ be the function over positions such that
for all ι, ϕ(1.1.ι) = 1.ι, ϕ(1.2.ι) = 2.1.ι and ϕ(2.ι) = 2.ι, and for all path p, let ϕ(p) be the
path obtained by applying ϕ on all positions in p. Then ϕ is a bĳection between the paths
of (P | R) | S and those of P | (R | S), and it preserves homotopy so it actually provides a
bĳection between R((P | R) | S) and R(P | (R | S)). Moreover, for all ρ ∈ R((P | R) | S), we
have s(((P | R) | S)/ρ) = s((P | (R | S))/ϕ(ρ)), so 〈(P |R) | S〉 = 〈P | (R | S)〉. Similarly we get
s((Q | R) | S) = 〈Q | (R | S)〉, and by hypothesis we have P ' Q so 〈P | (R | S)〉 = 〈Q | (R | S)〉,
from which we conclude.

For parallel composition without interaction, let R and S be arbitrary terms, we want to
prove 〈(P ‖R) | S〉 = 〈(Q ‖R) | S〉, in order to get P ‖ R ' Q ‖ R. The technique used for
parallel composition with interaction does not apply here, because there is no simple form of
associativity between the two parallel compositions. However, if the free names of P and R are
disjoint, it is easily seen that P |R and P ‖R are equivalent, and this is the fact we will use here.

Let A be a set of pairs (ι, κ) where ι is the position of an action in R and κ is the position
of an action in S, such that these actions are on a free name and may interact with each other,
and such that A is a partial injection (each position of R occurs at most once on the left, each
position of S occurs at most once on the right). Call this kind of set a synchronization and let
S be the set of all synchronizations. We say that a run ρ ∈ R((P ‖ R) | S) satisfies A, written
ρ A, if the interactions between R and S in ρ are exactly those designated by A, that is if
{ (ι, κ) | (1.2.ι, 2.κ) ∈ ρ } = A.

We will define RA and SA to be rewritings of R and S such that the pairs (ι, κ) are guaranteed
to interact. For this purpose, for each (ι, κ) ∈ A, let aι,κ and wι,κ be fresh names: aι,κ is a new
name on which the pair will interact (in order to avoid conflicts with other names) and wι,κ will
act as a witness of (ι, κ), that will ensure that the pair actually interacts. Define RA as the term
R in which each action aε(x).T at a position ι such that there is an (ι, κ) ∈ A is replaced by
aει,κ(x).(T | wι,κ.1), and define SA as the term S in which each action aε(x).T at a position κ
such that there is an (ι, κ) ∈ A is replaced by aει,κ(x).T (without wι,κ). Let WA be any parallel
composition of wι,κ.0 | w̄ι,κ.1 for all ι, κ ∈ A.

If we now examine the runs of (P | RA) | (SA | WA), we observe that if a run ρ does not
trigger the actions of a given pair (ι, κ) ∈ A, then it must contain the reduction of w1,j .0 | w̄ι,κ.1
into 0 | 1 (because runs are made of maximal paths), so the outcome of this run is 0. On
the other hand, if all the interactions given by A occur in ρ, it is still possible that some of the
wι,κ.0 | w̄ι,κ.1 reduce into 0 | 1, but there is one possibility that each w̄ι,κ.1 interacts with the
wι,κ.1 in RA. From a run that satisfies this condition, we can deduce a unique run of (P ‖R) |S
that satisfies A, and reciprocally from a run of (P ‖R) |S that satisfies A we can deduce a unique
run of (P | RA) | (SA |WA) that does not reduce any wι,κ.0. Moreover, this bĳection between

16

runs preserves outcomes, so
〈
(P |RA) | (SA |WA)

〉
is the sum of all s(((P ‖R) |S)/ρ) for all runs

ρ that satisfy A. From this we get the following decomposition:

〈(P ‖R) | S〉 =
∑
A∈S

∑
ρA

s(((P ‖R) | S)/ρ) =
∑
A∈S

〈
(P |RA) | (SA |WA)

〉
=
∑
A∈S

〈
P | (RA | (SA |WA))

〉
=
∑
A∈S

〈
Q | (RA | (SA |WA))

〉
= 〈(Q ‖R) | S〉

The equality
〈
(P |RA) | (SA |WA)

〉
=
〈
P | (RA | (SA |WA))

〉
is justified by the same argument

as above for parallel composition, and the substitution of Q for P is the hypothesis P ' Q. The
final equality is the same reasoning for Q as for P above.

The equality 〈(νx)P |R〉 = 〈(νx)Q |R〉 is justified by the fact that 〈(νx)P |R〉 and 〈P |R〉
are equal if the name x is fresh with respect to R.

A.3 Basic equivalences (proposition 3)
For commutativity of composition with interaction, consider three terms P,Q,R. We first estab-
lish a bĳection between R((P |Q) |R) and R((Q | P) |R). Let ϕ be the function over positions
that exchanges ll and 1.2 at the beginning of words, i.e. ϕ(1.1.ι) = 1.2.ι, ϕ(1.2.ι) = 1.1.ι and
ϕ(2.ι) = 2.ι for all position ι. For all path p, define ϕ(p) as the path obtained by applying ϕ to all
positions in p. Then clearly, for all path p of (P |Q) |R, ϕ(p) is a path of (Q |P) |R. Moreover, for
all paths p and q, p ≈ q if and only if ϕ(p) ≈ ϕ(q). Therefore ϕ is a bĳection betweenR((P |Q)|R)
andR((Q|P)|R). Besides, since K is commutative, we havem((P |Q)|R/p) = m((Q|P)|R/ϕ(p))
for all P,Q,R and p, so we have 〈(P |Q) |R〉 = 〈(Q | P) |R〉.

For associativity, we use the same technique with relabeling function defined as ϕ(1.1.1.ι) =
1.1.ι, ϕ(1.1.2.ι) = 1.2.1.ι, ϕ(1.2.ι) = 1.2.2.ι for all ι and ϕ(κ) = κ for all other positions κ; the
final argument is associativity of the product in K. For neutrality, we use ϕ(1.1.ι) = ϕ(1.ι) for
all ι and ϕ(κ) = κ for all other positions κ, and conclude by the neutrality of 1 in K.

For parallel composition without interaction, the exact same arguments apply. For the non-
interaction rule, a similar argument applies, using the fact that there can never be any interaction
between Q and R if they do not share any free name (this property is specific of the πI calculus).

For the scoping rules, we simply remark that 〈(νx)P |Q〉 = 〈P |Q〉 if x is a fresh name, since
names have no influence on outcomes.

For the place-holder rule, 〈 P |Q〉 = 〈P |Q〉 is proved by applying the function ϕ such that
ϕ(1.1.ι) = 1.ι for all ι and ϕ(κ) for all other κ. This establishes a bĳection between R(P | Q)
and R(P |Q) since the is never involved in any transition.

For the inaction rule, remark that in a term (νu)uε(x).P | R, there can be no transition
involving uε(x), hence all runs are made of labels of the form (2.ι, 2.κ), so the runs of (νu)uε(x).P |
R are the runs of R with an extra 2 in front of each position, moreover the outcomes are the
same since s((νu)uε(x).P) = 1.

For the non-interference rule, remark that all runs of (νu)(u(x).P | ū(x).Q) | R contain the
transition (1.1, 1.2), because of maximality and the fact that R cannot provide actions on u. The
reduct by this transition is (νux)(P | Q) |R, and its runs are those of the original term without
(1.1, 1.2), so it has the same outcome. We thus have (νu)(u(x).P | ū(x).Q) ' (νux)(P | Q),
and the equivalence (νux)(P | Q) ' (νux)(P |Q) follows from the previous rules.

A.4 The module of processes (proposition 4)
We first show that, for all terms P , Q and R, 〈(P ⊕Q) |R〉 = 〈P |R〉 + 〈Q |R〉. Consider
R((P ⊕Q) |R) = R((νu)((u.P | u.Q) | ū.1) |R). It is clear that any run contains an interaction

17

of ū.1 with either u.P or u.Q, since none of these may interact with anything else. We can thus
write R((P ⊕Q) | R) = R1] R2 where R1 is the set of runs that contain (1.1.1, 1.2) and R2 is
the set of runs that contain (1.1.2, 1.2). The runs in R1 are the runs of (νu)((u.P | 1) | ū) |R and
each of these runs has the same outcome in both terms, so∑

ρ∈R1

s
(
((P ⊕Q) |R)/ρ

)
= 〈(νu)((u.P | 1) | ū) |R〉 = 〈P |R〉

by the equivalences of table 2. By a similar argument, we get the same for R2 and 〈Q |R〉 so we
finally get 〈(P ⊕Q) |R〉 = 〈P |R〉+ 〈Q |R〉.

This equality and the fact that (K,+, 0) is a commutative monoid immediately implies that
(ΠK,⊕, 0) is a commutative monoid (where 0 is the atomic term with outcome 0).

For any terms P and Q and any outcome k, it is clear that 〈(k | P) |Q〉 = k 〈P |Q〉, since the
term k has no transition and contributes k multiplicatively to all outcomes of the term. This
directly implies that the operation k · P has all required properties.

For the bilinearity of compositions, consider arbitrary terms P,Q,R, S. By previous results,
we have

〈(P | (Q⊕R)) | S〉 = 〈(Q⊕R) | (P | S)〉 = 〈Q | (P | S)〉+ 〈R | (P | S)〉
= 〈(P |Q) | S〉+ 〈(P |R) | S〉 = 〈((P |Q)⊕ (P |R)) | S〉

This proves that parallel composition distributes over ⊕, and the fact that 0 is absorbing is
equivalent to the rule 0 ·P ' 0. The same rules for parallel composition without interaction can
be proved by similar arguments about the partition of R(P ‖ (Q⊕ R)) into runs that choose Q
and runs that choose R.

For hiding, consider arbitrary terms P,Q,R and let x be a name. Assume (without loss of
generality) that x does not occur in R. Then we have

〈(νx)(P ⊕Q) | S〉 = 〈(P ⊕Q) | S〉
= 〈P | S〉+ 〈Q | S〉 = 〈(νx)P | S〉+ 〈(νx)Q | S〉 = 〈((νx)P ⊕ (νx)Q) | S〉

The equivalence (νx)0 ' 0 is one of the rules of table 2.

A.5 Linear actions and inactions (proposition 5)
We first prove α.P ' α̂.P ⊕α.0. Consider an arbitrary term Q call R1 the set of runs of α.P |Q
that contain a transition (1, ι), i.e. runs that trigger α, and let R0 be the set of runs that do not.
The runs of R0 are also runs of α.0 |Q, moreover for each run ρ ∈ R(α.0 |Q) \R0 the action α is
triggered so 0 contributes to the outcome and s((α.0 |Q)/ρ) = 0, hence

∑
ρ∈R0

s((α.P |Q)/ρ) =
〈α.0 |Q〉. Now consider a run ρ ∈ R1. By definition, there is a κ such that (1, κ) ∈ ρ. We
deduce from ρ a run ρ′ of α̂.P as follows: let ϕ be the function that maps each 1.1.ι to 1.1.1.1.ι
and all other positions to themselves; set ρ′ := ϕ(ρ \ (1, κ)) ∪ {(1.1, κ), (1.1.1.2, 1.2.2)}. This
literally means that ρ′ is ρ where all positions in P are shifted to reflect their positions in
(νw)(α.(P | w.1) | (w.0 | w̄.0)) | Q, (1, κ) is shifted to reflect the new position of α, and the
interaction between w.1 and w̄.1 is added (which is valid since it is freed when α is triggered).
Clearly ρ′ is a run of α̂.P | Q and s((α̂.P | Q)/ρ′) = s((α.P | Q)/ρ). The mapping ρ 7→ ρ′

is objective, and its image is the set of runs of α̂.P | Q that trigger w.1. By maximality, any
other run of α̂.P | Q must trigger w.0, hence the outcome of all other runs is 0, which implies
〈α̂.P |Q〉 =

∑
ρ∈R1

s((α.P |Q)/ρ). We can finally deduce 〈α.P |Q〉 = 〈α.0 |Q〉+ 〈α̂.P |Q〉 and
conclude.

18

For linearity, we use the fact that 〈α̂.P |Q〉 is the sum of the s((α̂.P | Q)/ρ) for the runs
ρ that actually trigger α (and the witness action w.1). If P = k | P ′, these runs are the same
in α̂.(k | P ′) | Q and α̂.(1 | P ′) | Q, but the outcomes are multiplied by k in the first case, so
〈α̂.(k | P ′) |Q〉 = k · 〈α̂.(1 | P ′) |Q〉 and α̂.(k | P ′) ' k | α̂.(1 | P ′) ' k | α̂.P ′. If P = P1 ⊕ P2,
the choice is eventually active in all relevant runs, so each of these runs triggers either P1 or
P2. We can thus establish a bĳection between R(α̂.(P1 ⊕ P2) | Q) and the disjoint union of
R(α̂.P1 | Q) and R(α̂.P2 | Q). Since outcomes are preserved by this bĳection, we finally get
〈α̂.(P1 ⊕ P2) |Q〉 = 〈α̂.P1 |Q〉+ 〈α̂.P2 |Q〉 and (P1 ⊕ P2) |Q ' (P1 |Q)⊕ (P2 |Q).

The equivalence (νu)uε(x).P ' 0 can be deduced from previous equations:

(νu)uε(x).P = (νuw)(uε(x).(P | w.1) | (w.0 | w̄.1))
' (νw)((νu)uε(x).(P | w.1) | (w.0 | w̄.1))
' (νw)(1 | (w.0 | w̄.1)) ' (νw)(w.0 | w̄.1) ' (νw)(0 | 1) ' 0

For the equivalence α̂.(β.0 |P) ' β.0 | α̂.P , assuming the subject of β is not the bound name
of action α, let Q be an arbitrary term and consider R(α̂.(β.0 | P) |Q). Any run that does not
trigger α̂ or that triggers both α̂ and β has outcome 0, so the only relevant runs are those that
trigger α̂ but not β. Clearly these runs are in bĳection with the runs of (β.0 | α̂.P) | Q that
trigger α̂ and not β, by a simple rewriting of the positions. Moreover, this bĳection preserves
outcomes, so the sums of the outcomes of these runs are the same. A similar argument proves
α̂.(β.0 ‖ P) ' β.0 ‖ α̂.P .

For the composition of inactions, the relevant runs of a term (α.0 | α.0) | P or (α.0 ‖ α.0) | P
are those that do not trigger any occurrence of α, so the number of such occurrences does not
matter. Finally, we get α.O | ᾱ.0 ' 0 by the remark that all runs of (α.0 | ᾱ.0) |P must trigger one
of the inactions: either α.0 interacts with P , or ᾱ.0 interacts with P , or none of these happen
and α.0 and ᾱ.0 must interact together, by maximality of runs.

A.6 Interpretation of partial terms (proposition ??)
First, remark that for all P vf P ′, 〈P ′ | 0〉 = 0, hence 〈P | 0〉 so JP K is defined on 0. Now assume
JP K is defined onQ andR, for all P vf P ′ we have 〈P ′ | (Q⊕R)〉 = 〈P ′ |Q〉+〈P ′ |R〉 = JP K(Q)+
JP K(R) so JP K is correctly defined onQ⊕R. The same argument applies for JP K(k·Q) = k·JP K(Q).
As a consequence, JP K is indeed a partial behaviour.

Let P,Q,R be partial terms. The relation

{ ((P ′ |Q′) |R′, (Q′ | P ′) |R′) | P vf P ′, Q vf Q′, R vf R′ }

is obviously a bĳection between total refinements of (P |Q) |R and total refinements of (Q |P) |R,
and this bĳection preserves outcomes because of the equation P |Q ' Q | P for total terms. As
a consequence we have 〈(P |Q) |R〉 = 〈(Q | P) |R〉 for all R, which implies JP |QK = JQ | P K.

The same argument applies for all other equations. For scope extrusion and non-interaction,
we use the fact that indeterminates have a fixed set of free names. For the equations in which a
sub-term is duplicated (distribution of compositions over ⊕), we use the fact that all occurrences
of a given indeterminate are replaced by the same term when refining.

If P is a partial term and Q is a refinement of P obtained by injectively renaming the
indeterminates of P , then for all total R we clearly have P v R if and only if Q v R, so P ' Q.

Let P, P ′, Q be partial terms such that P ' P ′ and ind(P)∩ ind(Q) = ind(P ′)∩ ind(Q) = ∅.
Then the refinements of P | Q are the compositions of a refinement of P and a refinement of
Q, chosen independently since ind(P) ∩ ind(Q) = ∅. Let R be an arbitrary total term. If
〈(P |Q) |R〉 is defined and has value k, then for all refinements P vf P ′′ and Q vf Q′′ we

19

have 〈(P ′′ |Q′′) |R〉 = k so 〈(P |Q′′) |R〉 = k, therefore 〈(P ′ |Q′′) |R〉 is defined and has value
k, hence 〈(P ′ |Q) |R〉 = k and P ′ | Q ' P | Q. Analogous reasoning yields P ′ ‖ Q ' P ‖ Q.
Preservation of equivalence by other syntactic constructs is immediate.

A.7 Implementation of traces (proposition 7)
The fact that {T} is simple is obvious by definition of {T}.

Let us first build an exhaustive pre-trace of {T}. Let (ai)16i6n be a topological ordering of
|T |. We deduce a sequence of terms (Pi)16i6n+1 such that for each i < n there is an interaction
from Pi to Pi+1 made of a transition act(ai) : ι and internal transitions. Let P1 = {T}. Let i
be an integer such that 1 6 i 6 n, assume Pi is a reduct of {T} that contains the âct(aj) for all
j > i and in active position all the ˆ̄xajak such that j < i 6 k and aj < ak. Then the term ATai
occurs in active position in Pi and the prefix {x̂ajai}aj<ai can be consumed, which puts âct(ai)
in active position. We can then apply a transition act(ai) : ι for some ι followed by an internal
transition that consumes the w.1 contained in the linear action (as of definition 8). This puts
in active position the ˆ̄yai+1aj for all aj > ai, and each of these can interact with the ŷaiaj .ˆ̄xaiaj ,
which puts in active position the ˆ̄xaiaj . By this interaction we reach a state Pi+1 that satisfies
the condition we assumed on Pi. Applying this method until i = n gives a term Pn+1 in which
everything except the uε.0 has been consumed, so this provides a exhaustive pre-trace ρ of {T}.

Now, let ρ′ be another exhaustive pre-trace of {T}. By definition, ρ and ρ′ trigger the same
actions in {T}. From this we can deduce that ρ and ρ′ contain the same transition labels, indeed
the actions âct(a) are necessarily consumed by visible transitions since they are joined together
by a composition without interaction and the only composition with interaction they are involved
in is with the names xab and yab. On the other hand, all actions on these names are consumed
by internal transitions, and for each such name there is exactly one linear input and one linear
output so there is only one possible internal transition for each name. As a consequence the sets
of actions of ρ and ρ′ are the same so ρ = ρ′.

Let us now prove that ρ∗ = T . The only thing we have to check is that the causal order
of ρ is the order of T . First consider two events a, b ∈ |T | with a < b. The action âct(b) in
{T} is prefixed by x̂ab (and possibly other actions), and ˆ̄xab is prefixed by ŷab, which is itself
prefixed by âct(a), so the transition act(a) is before the transition act(b) in ρ. Then consider
two incomparable events a and b. There is a topological ordering of |T | that places a before b
and another that places b before a, so by the construction above we can construct an interaction
in ρ for each case, which proves that the transitions act(a) and act(b) are incomparable in the
causal order of ρ.

A.8 Decomposition into traces (proposition 8)
Let Q be a simple term. The term P |Q is simple, so the outcome of a run of this term is either
1 or 0. Let ρ be a run with outcome 1. This implies that no inaction of P | Q is triggered in ρ
and that each linear action is triggered.

Call ρ1 the projection of ρ on P . Formally, ρ1 is obtained from ρ by replacing each transition
1.a with a, removing every transition 2.a and replacing each transition (1.ι, 2.κ) with the α : ι
that is the left premise of the derivation of (1.ι, 2.κ). Note that the order on ρ1 need not be
the restriction to ρ1 of the order on ρ, it is only a subset of this order. Call ρ2 the analogous
projection on Q.

Since the outcome of ρ is 1, the pre-traces ρ1 and ρ2 are exhaustive pre-traces of P and Q
respectively. Let ρ′ be the unique exhaustive pre-trace of

{
(ρ1)∗

}
. By construction, there is a

bĳection between the positions of the visible actions of ρ1 and those of ρ′, which establishes a

20

bĳection between runs of P |Q with outcome 1 that project on P as ρ1:{
ϑ
∣∣ ϑ ∈ R(P |Q), ϑ1 = ρ1, s((P |Q)/ϑ) = 1

}
and runs of

{
(ρ1)∗

}
|Q with outcome 1:{

ϑ
∣∣ ϑ ∈ R(

{
(ρ1)∗

}
|Q), s((

{
(ρ1)∗

}
|Q)/ϑ) = 1

}
.

This bĳection preserves outcomes, so we have∑
σ∈Re(P |Q)
σ1=ρ1

s((P |Q)/σ) =
〈{

(ρ1)∗
}
|Q
〉

Summing for all potential values of ρ1, i.e. all exhaustive pre-traces of P , yields

〈P |Q〉 =
∑

ρ1∈Pe(P)

∑
σ∈Re(P |Q)
σ1=ρ1

s((P |Q)/σ) =
∑

ρ1∈Pe(P)

〈{
(ρ1)∗

}
|Q
〉

from which we can conclude.

A.9 Trace interaction (proposition 9)
Let P = {T} | {U}. By proposition 8 we have P '

⊕
ρ∈Pe(P) {ρ∗} hence 〈P 〉 =

∑
ρ∈Pe(P) 〈{ρ∗}〉.

Clearly, for all trace V , 〈V 〉 is 1 if |V | = ∅ and 0 otherwise, so 〈P 〉 is the number pre-traces
ρ ∈ Pe(P) such that |ρ∗| is empty.

Consider such a pre-trace ρ, by definition ρ triggers all linear actions in {T} and {U}, so
ρ1 and ρ2 are the unique exhaustive pre-traces of {T} and {U} respectively. The relation
{ (ι, κ) | (1.ι, 2.κ) ∈ ρ } establishes a bĳection between positions of actions in {T} and {U}, which
implies a bĳection σ : |T | → |U |. Clearly, for all a ∈ |T |, we have pU (σ(a)) = ¬pT (a) since an
action can only interact with an action of the opposite polarity. It is also easy to prove that
sU (σ(a)) = σ(sT (a)), since two actions that interact are either on the same public name or on
private names that are unified by the interaction of previous actions. Consider two transitions
(ιa, κa) and (ιb, κb) in ρ, that correspond to the pairs of actions (a, σ(a)) and (b, σ(b)): if a 6T b
then the action at ιa must occur before the action at ιb, so (ιa, κa) 6 (ιb, κb); the same argument
applies if σ(a) 6U σ(b), so the order 6ρ contains the orders 6T and 6U , which proves that
the union of these orders is acyclic. Finally, if there were ε ∈ P and x ∈ N] |T | such that
(ε, x) ∈ NT and (¬ε, σ(x)) ∈ NU , then the run ρ could be extended with an interaction between
the inactions associated with them, and the outcome would be 0. Therefore σ ∈ S(T,U).

Reciprocally, let σ be a synchronization of T and U . Since the relation { (a, b) | a 6T b or σ(a) 6U σ(b) }
is acyclic, there is a non-decreasing enumeration |T | = {a1, . . . , an} such that σ(a1), . . . , σ(an) is
also non-decreasing. Then there is a path p ∈ {T} that reaches a1, . . . , an in this order and a run
q ∈ {U} that reaches σ(a1), . . . , σ(an) in this order. By combining p and q we get a path r ∈ P .
Indeed, for each i we have p(σ(ai)) = ¬p(ai) and s(σ(ai)) = σ(s(ai)) so either ai and σ(ai)
have the same public name as subject, or their subjects are two bound names zs(ai) and zs(σ(ai)).
Since s(ai) < ai by definition, there is j < i such that s(ai) = aj and then s(σ(ai)) = σ(aj), so
the subjects of ai and σ(ai) are unified by the interaction between aj and σ(aj). In any case, the
actions ai and σ(ai) can interact. The term P/r is the composition with interaction of {T} /p and
{U} /q, and these terms are compositions without interaction of the inactions that correspond
to NT and NU respectively. The condition that (¬ε, σ(x)) /∈ NU for all (ε, x) ∈ NT guarantees
that no further interaction can occur, therefore r is a maximal path of P and s(P/r) = 1.

These construction establish a bĳection between S(T,U) and the runs of {T} and {U} with
outcome 1, which proves the expected result.

21

	Introduction
	Parallel operational semantics
	Quantitative testing
	A linear algebraic semantics
	Asynchronous traces
	Classic forms of test
	Technical proofs
	Homotopy (proposition 1)
	Testing equivalence is a congruence (theorem 1)
	Basic equivalences (proposition 3)
	The module of processes (proposition 4)
	Linear actions and inactions (proposition 5)
	Interpretation of partial terms (proposition ??)
	Implementation of traces (proposition 7)
	Decomposition into traces (proposition 8)
	Trace interaction (proposition 9)

