
Realizability with constants

Emmanuel Beffara
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1 Introduction

The proof/program correspondence has been long known to provide an interpretation of logical rules as elementary
programming constructs. From λ-calculus as a formalization of cut-elimination in intuitionistic logic, the theory
extended to classical logic by the introduction of global control operators [3, 6]. Extensive work has been done
studying the proofs with calculus as an underlying tool, but reversing the process by studying the calculus for
itself with logic as a tool is an equally interesting work.

In an attempt to move from the logical framework towards the world of actual programming languages, we
extend Krivine’s classical realizability [4, 5] to a calculus with some constants and primitives and a call-with-
current-continuation construct similar to Felleisen’s C operator. We show that this theory extends smoothly by
associating an appropriate truth value to concrete types. As a consequence, all results from realizability still hold
in this new context; this is especially interesting in the case of specification theorems [2, 1] because they hold a
significant meaning from the programmer’s point of view.

2 The calculus

The calculus we use in this presentation is built as an extension of λκ-calculus with integer constants. We first
define the terms and the evaluation process, then we explain the typing system over it.

2.1 Terms and evaluation

Define inductively the set Λ of terms and the set Π of evaluation contexts as

constants n ::= 0 | 1 | 2 | · · ·
terms t ::= x | t t | λx.t | κx.t | kγ | n | succ t | iter(t, t, t)
contexts γ ::= [ ] | γ t | succ γ | iter(γ, t, t)
executables e ::= γJtK

Our operational semantics is a straightforward call-by-name evaluation. We define it as a reduction relation over
executables. The rules for core λ-calculus and control are
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[
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]
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This defines a relation over executables, since contexts are stable under composition. The rules on the left are
simply a decomposition of β-reduction, while those on the right define continuation saving and restoring. The
binders λx and κx are dual in the sense that one substitutes terms while the other substitutes continuations. The
evaluation rules for constants and the primitive succ are defined as

γJsucc tK � γ
[
succJtK

]
γ
[
succJnK

]
� γJn + 1K

where n + 1 is the integer constant (and not a composed term). The rules for iteration are defined as

γJiter(t, u, v)K � γ
[
iter(JtK, u, v)

]
γ
[
iter(J0K, u, v)

]
� γJvK

γ
[
iter(Jn + 1K, u, v)

]
� γ

[
JuK iter(n, u, v)

]



So the computation uses a call-by-name strategy, except that iter evaluates its integer argument completely before
actually iterating. This is sort of arbitrary, as one could also imagine a rule to reduce terms like iter(succ t, u, v),
but this would lead to a non-deterministic reduction relation, which is undue complication for the point of this
work.

One could want to introduce other primitive operators, such as a comparison to zero or a predecessor. All
of this can be done easily on the model of the primitives we just defined, but we restrict ourselves to these two
constructs as they are representative examples for what we do later on. Moreover, they are already sufficient to
express all primitive recursive functions.

2.2 Typing

The type system is nothing against intuition. We extend second order propositional calculus with a constant truth
value Int that represents the integer constants. Formally, the typing rules for core λκ-calculus are

[axiom]

Γ, x : A ` x : A

Γ, x : A ` t : B
[→i]

Γ ` λx.t : A → B

Γ ` t : A → B Γ ` u : A
[→e]

Γ ` t u : B

Γ ` t : A X 6∈ FV (Γ)
[∀i]

Γ ` t : ∀X A

Γ ` t : ∀X A
[∀e]

Γ ` t : A[B/X]

Γ, x : A → B ` t : A
[Peirce]

Γ ` κx.t : A

The first five rules give a standard presentation, known as natural deduction, for second order propositional
intuitionistic logic. Alongside with the sixth rule, known as Peirce’s law, we get one possible natural deduction
presentation of second order propositional classical logic. Apart from this logical framework, we type constants
and primitives as

` n : Int

Γ ` t : Int

Γ ` succ t : Int

Γ ` t : Int Γ ` u : A → A Γ ` v : A

Γ ` iter(t, u, v) : A

Further on we will use positive and negative literals as types, naturally defining the absurd as ⊥ := ∀X X and
the negation as ¬A := A → ⊥. All the types we consider later on live actually in a fragment of this system that
correspond to simple types augmented with the constants ⊥ and Int, so types are implicitly considered universally
quantified in every variable.

3 Realizability

In pure λ- and λκ-calculus, realizability builds models of propositional logic by associating truth values in the
form of subsets of Π to each closed formula. Let ⊥⊥ ⊆ Λ× Π be a set of executables closed by anti-reduction, i.e.
if e � e′ and e′ ∈ ⊥⊥ then e ∈ ⊥⊥. The executables in this set are called the observables. In the logical setting, ⊥⊥
is said to realize the absurd, while sets of continuations realize hypotheses and sets of terms realize conclusions.

3.1 The logical fragment

From ⊥⊥ we deduce a notion of orthogonality between terms and continuations: a set X of terms is said to be
orthogonal to a set Z of continuations (which we can write X ⊥⊥ Z) if for any term t ∈ X and any continuation
γ ∈ Z we have γJtK ∈ ⊥⊥. The orthogonal of a given set of terms or continuations is then the largest set orthogonal
to it, i.e.

X⊥⊥ = {γ | X ⊥⊥ γ} and Z⊥⊥ = {t | t ⊥⊥ Z}

(note that we use the same notation in both cases even if the operations are dual).
Let e be a function from propositional variables into the powerset P(Π), i.e. the attribution of a truth value

to each propositional variable. The truth value [A]e associated to a given type A in the valuation e is defined
inductively; for the logical fragment, define

[X]e = e(X) [A → B]e =
{
γ[[ ] t]

∣∣ t ∈ [A]⊥⊥e , γ ∈ [B]e
}

[∀X A]e =
⋃

Z⊆Π[A]e[Z/X]

where e[Z/X] is the environment e where value Z has been assigned to X. The definition is actually rather intuitive
and deduced from the typing and reduction rules: an acceptable context for terms of type A → B mainly applies
a term acceptable for type A to its argument in a context acceptable for type B. Similarly, a context acceptable
for terms of type ∀X A is a context that is acceptable for any particular A[B/X].



3.2 The programming fragment

The rules above inductively define the valuation of any type except for the constant Int. The way we attribute
a value to this type is actually fairly independent from the logical fragment, and this modularity is interesting
because it shows how the method can be transposed to a wide range of cases.

There are obviously constraints on the value we can give to [Int], as it is guided by type inference rules. The
rule for iter implies that if, for any valuation of A, γ is acceptable as a context for A and u and v are acceptable
terms for type A → A and A respectively, then γ[iter([ ], u, v)] must be an acceptable context for integers. We
thus define

[Int]0 := {γ[iter([ ], u, v)] | ∃Z ⊆ Π, γ ∈ Z, u ∈ [Z → Z]⊥⊥, v ∈ Z⊥⊥}
Now the other rule that implies Int in the premises is the one for succ, which implies that if γ is in [Int], then
γ[succ [ ]] must also be in [Int]. Finally, the value of [Int] must ensure that integer constants realize their type.
This is formalized as the inequation

[Int] ⊆
{
γ[succ [ ]]

∣∣ γ ∈ [Int]
}
∪ [Int]0 ⊆ {0, 1, 2, . . .}⊥⊥

Therefore valid valuations of Int are subsets of Π that satisfy the previous equation. An interesting aspect is that
the least fixed point, namely [Int]0 saturated with succ, imposes that all integers are hidden inside iterators, i.e.
that in a sense they are not actual first-class (observable) objects, but only serve as an internal component for
Church integers.

If we were to introduce other primitives, we would have to proceed the same way: the rules that eliminate Int,
in the style of iter, define a set of contexts that must be present, while rules that have Int both as premise and
conclusion define equations over Int. On the whole, they define a monotonic operator over parts of Π that depends
on ⊥⊥ and whose least fixed point is what we need as a valuation for our type constant.

3.3 Adequacy

We have now defined, for a particular choice of ⊥⊥ and [Int], a valuation for all types. In a given valuation e, we
call interpretation of A the set |A|e = [A]⊥⊥e of terms orthogonal to [A]e, and we say that a term t realizes a type
A, which we write t � A, if t is in the interpretation of A.

This � is a semantic relation between terms and types, while the typing provided a syntactic relation. A crucial
result is that for any choice of ⊥⊥ an [Int], the typing relation is actually a subset of the realization relation:

Theorem 1 (adequacy). Let x1 : A1, . . . , xn : An ` t : B be a derivable typing judgment and let ⊥⊥ be a set of
observables. For any appropriate value of [Int] and any valuation e : Var → P(Π), for any family t1, . . . , tn of
terms such that ti ∈ |Ai|e for each i and any context γ ∈ [B]e, the executable γJt[t1/x1, . . . , tn/xn]K is in ⊥⊥.

The proof of this theorem is not really difficult as it derives rather directly from definitions of truth values.
We do not include it here; for the logical fragment, the interested reader can find it in related papers [1, 2].

For closed formulas we can write [A] instead of [A]e since the value is environment-independent (more generally,
[A]e depends only on the values e takes on variables free in A). In this case, the theorem reduces into the following
adequacy lemma:

Proposition 2 (closed adequacy). For any term t and any type A, if ` t : A is derivable then t � A holds for
any value of ⊥⊥ and [Int].

The fact that this result is valid for any choice of ⊥⊥ and [Int] gives it a significant power. By tuning this
choice for particular cases, we derive easy proofs for specification results. The following consistency property is an
interesting example:

Theorem 3. For any term t of type Int, there is a constant n such that JtK evaluates into JnK.

Proof. Define ⊥⊥ as the closure by anti-reduction of {JnK | n ∈ ω} and [Int] as the least valid subset of Π that
contains the context [ ] (that is [Int]0∪{[ ]} saturated by succ). From the adequacy lemma we know that t realizes
Int, so JtK is in ⊥⊥, which means that it reduces into some JnK.

Extending realizability to this calculus with individuals gives us, for free, many of the results that this theory
derives. With respect to computation, this notably contains a range of specification theorems that describe with
precision the behavior inherent to types. As explained in related works [2, 1], this can be a way to synthesize safe
and grounded control forms; as shown above, this can be a way to prove valid termination of typed terms.

The example that we exposed here suggests a general pattern for dealing with constants. New primitives
over integers would be trivially appended, as well as other types like booleans. The same method could even be
extended to parametrized types such as lists, or more generally to inductive types. At this point, inductive types
are a no more than a direction for future work; significant literature exists in the intuitionistic setting, it would
be interesting to see how it transposes in the context of classical realizability.
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