A logical view on scheduling in concurrency

Emmanuel Beffara

I2M, CNRS & Université d'Aix-Marseille

Chocola – 3 avril 2014

Plan

Introduction

Proofs as processes Processes as untyped proofs Why we should search further

Proofs as schedules

MLL with actions Soundness and completess

Uniform translations

Asynchronous translation Synchronous translation

Discussion

Logic vs computation

The *formulae as types* approach:

formula ↔ type

proof rules \leftrightarrow primitive instructions $\mathsf{proof} \leftrightarrow \mathsf{program}$

- normalization \leftrightarrow evaluation
- The *proof search* approach:

formula ↔ program proof rules \leftrightarrow operational semantics proof construction \leftrightarrow execution proof ↔ successful run

(Logic vs computation) vs concurrency

The *formulae as types* approach:

formula \leftrightarrow type

proof rules \leftrightarrow primitive instructions

proof \leftrightarrow program

- normalization \leftrightarrow evaluation
- \blacksquare The *proof search* approach:

formula \leftrightarrow program proof rules \leftrightarrow operational semantics proof construction \leftrightarrow execution proof ↔ successful run

How can we fit *concurrency* into this framework? What is a proper *denotational semantics* for concurrency?

Cut elimination in proof nets is an interactive process:

Cut elimination in proof nets is an interactive process:

Cut elimination in proof nets is an interactive process:

 \blacksquare It is natural to represent it a language for interactive processes:

 $(vz)\big((vxy)(\bar{z}\langle xy\rangle\mid P\mid Q)\mid z(xy)R\big)$

Cut elimination in proof nets is an interactive process:

 \blacksquare It is natural to represent it a language for interactive processes:

 $(\nu z)\big((\nu xy)(\bar{z}\langle xy\rangle\mid P\mid Q)\mid z(xy)R\big)\rightarrow (\nu xy)(P\mid Q\mid R)$

This idea was first implemented in

Gianluigi Bellin and Phil Scott On the π -calculus and linear logic Theoretical Computer Science, 1994

This idea was first implemented in

Gianluigi Bellin and Phil Scott On the π -calculus and linear logic Theoretical Computer Science, 1994

Good points:

- **Adequate representation of proof dynamics**
- **Study of information flow through proofs**

This idea was first implemented in

Gianluigi Bellin and Phil Scott On the π -calculus and linear logic Theoretical Computer Science, 1994

Good points:

- **Adequate representation of proof dynamics**
- **Study of information flow through proofs**

Limitations:

- Requires a lot of coding
- Touches processes of a very restricted form
- Does not provide much insight on the π -calculus

Axiom and cut:

$$
\frac{p \vdash \Gamma, \vec{x} : A \quad Q \vdash \vec{x} : A^{\perp}, \Delta}{(\nu \vec{x})(P \mid Q) \vdash \Gamma, \Delta}
$$

Multiplicatives:

Exponentials for replication, additives for external choice.

The system on the previous slide was introduced in

ED EB

A concurrent model for linear logic MFPS 2006

but was found to be strongly related to

Nobuko Yoshida, Martin Berger, and Kohei Honda Strong normalisation in the π -calculus LICS 2001

Bellin and Scott's encoding decomposes inside. Independently developped:

Luís Caires and Frank Pfenning Session types as intuitionistic linear propositions Concur 2010

appears as a fragment.

Good things:

- Typed processes cannot diverge or deadlock.
- **Typing is preserved by reduction** up to structural congruence.
- **Extends to differential linear logic** through "algebraic" extensions of process calculi.
- Induces translations of the λ -calculus into the π -calculus.

Good things:

- **Typed processes cannot diverge or deadlock.**
- **Typing is preserved by reduction** up to structural congruence.
- **Extends to differential linear logic** through "algebraic" extensions of process calculi.
- **Induces translations of the** $λ$ **-calculus into the π-calculus.**

Shortcomings:

- **Typed processes are essentially functional.**
- Only top-level cut elimination matches execution.
- \blacksquare Many well-behaved interaction patterns are not typable.

$a.\overline{b}$ | $b.\overline{c}$ | $\overline{a}.c.d$

Processes as proofs

Dual approach: implement processes as proofs in a suitable logic.

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Dual approach: implement processes as proofs in a suitable logic.

- Translating all processes requires an untyped proof language.
- **Standard linear logic is not an option because of confluence.**

Dual approach: implement processes as proofs in a suitable logic.

- Translating all processes requires an untyped proof language.
- **Standard linear logic is not an option because of confluence.**
- Differential linear logic allows for explicit non-determinism:

$$
\underline{P \vdash \Gamma} \quad \underline{Q \vdash \Gamma}
$$

$\overline{P+Q\vdash\Gamma}$

Its rules allow for an implementation of all processes.

Thomas Ehrhard and Olivier Laurent

Interpreting a finitary π -calculus in differential interaction nets Concur 2007

Good points:

- Does provide insights on concurrent processes
- \blacksquare
 Relates algebraic proof semantics and process semantics

Good points:

Does provide insights on concurrent processes

Relates algebraic proof semantics and process semantics Limitations:

- \blacksquare Not clear how to get logic back into the process language
- Prefixing is only described very indirectly:

 π -calculus \longrightarrow solos calculus \longrightarrow differential nets

A few observations

Proof normalization, aka cut elimination:

- \blacksquare the meaning of a proof is in its normal form,
- normalization is an *explicitation* procedure,
- \blacksquare it really wants to be confluent.

Interpretation of concurrent processes:

- \blacksquare the meaning is the *interaction*, the final (irreducible) state is less relevant,
- a given process may behave very differently depending on scheduling decisions.

Some information is missing.

Proofs as schedules

The principles of our new interpretation:

formula \leftrightarrow type of interaction

proof rules \leftrightarrow primitives for building schedules

proof \leftrightarrow schedule for a program

normalization \leftrightarrow evaluation according to a schedule

This is not exactly:

- *Curry-Howard* for processes: proofs are not programs, but behaviours of programs
- Proof search:

the dynamics is not in proof construction but in cut-elimination but a sort of middle ground in between.

Proofs as schedules: step 1

The first step: a logical description of all executions.

EB and Virgile Mogbil Proofs as executions IFIP TCS 2012 — Chocola 14/3/2013

How we proceed:

- Back to CCS, for now.
- Slightly change the logic to represent actions explicitly.
- **Match each execution with cut elimination of some proof.**

Multiplicative CCS

We consider a CCS-style process calculus.

$$
P, Q := 1
$$
 inaction
\n*a.P* perform *a* then do *P*
\n
$$
P | Q
$$
 interaction of *P* and *Q*
\n(*(va)P* scope restriction)

There is one source of non-determinism: the pairing of associated events upon synchronization

$$
a.P \mid a.Q \mid \bar{a}.R \rightarrow \begin{cases} a.P \mid Q \mid R \\ P \mid a.Q \mid R \end{cases}
$$

The formulas

Types of schedules:

Transforming schedules:

 $A_1, ..., A_n \vdash B$ behave as type B in association with processes behaving as each type ${\cal A}_i$

Two-sided version.

The formulas

Types of schedules:

Transforming schedules:

 $\vdash A_1^{\perp}, ..., A_n^{\perp}$ *, B* behave as type *B* in association
with processes behaving as each type A_i

Duality: $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$, $(\langle a \rangle A)^{\perp} = \langle \bar{a} \rangle (A^{\perp})$.

The formulas

Types of schedules:

Transforming schedules:

 $P \vdash A_1^{\perp}, ..., A_n^{\perp}$

 P can behave as type B in association with processes behaving as each type A_i

Duality: $(A \otimes B)^{\perp} = A^{\perp} \otimes B^{\perp}$, $(\langle a \rangle A)^{\perp} = \langle \bar{a} \rangle (A^{\perp})$.

Proof rules

Axiom and cut:

$$
\frac{\mathbb{P}\vdash \Gamma,A \quad \mathbb{P}\vdash \Gamma,A \quad \mathbb{Q}\vdash A^{\perp},\Delta}{\mathbb{P}\mid \mathbb{Q}\vdash \Gamma,\Delta}
$$

Multiplicatives:

$$
\frac{P \vdash \Gamma, A \quad Q \vdash B, \Delta}{P \mid Q \vdash \Gamma, A \otimes B, \Delta} \qquad \frac{P \vdash \Gamma, A, B}{P \vdash \Gamma, A \otimes B}
$$

Quantification:

Actions:

$$
\frac{P \vdash \Gamma, A}{a.P \vdash \Gamma, \langle a \rangle A} \qquad \qquad \frac{P \vdash \Gamma, A \quad \alpha \notin \text{fv}(\Gamma)}{P \vdash \Gamma, \forall \alpha A} \quad \frac{P \vdash \Gamma, A[B/\alpha]}{P \vdash \Gamma, \exists \alpha A}
$$

Proof rules

Axiom and cut:

$$
\frac{P \vdash \Gamma, A \quad Q \vdash A^{\perp}, \Delta}{P \mid Q \vdash \Gamma, \Delta}
$$

Multiplicatives:

$$
\frac{P \vdash \Gamma, A \quad Q \vdash B, \Delta}{P \mid Q \vdash \Gamma, A \otimes B, \Delta} \qquad \frac{P \vdash \Gamma, A, B}{P \vdash \Gamma, A \mathbin{\Re} B}
$$

Quantification:

Actions:

$$
\frac{P \vdash \Gamma, A}{a.P \vdash \Gamma, \langle a \rangle A} \qquad \qquad \frac{P \vdash \Gamma, A \quad \alpha \notin \text{fv}(\Gamma)}{P \vdash \Gamma, \forall \alpha A} \quad \frac{P \vdash \Gamma, A[B/\alpha]}{P \vdash \Gamma, \exists \alpha A}
$$

Ceci n'est pas un système de types.

MLL with actions Proof nets

MLLa admits proof nets: those of MLL plus unary links for modalities.

- Modality rules commute with everything, indeed $A \simeq \langle a \rangle A$.
- Correctness criteria: the same as MLL.
- We avoid second-order quantification for simplicity, we stick with parametricity in type variables.

The following proof is an annotation for $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d$:

If we use boxes, we have a "head cut elimination" matching execution:

 $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d$

The following proof is an annotation for $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d$:

If we use boxes, we have a "head cut elimination" matching execution:

 $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d \rightarrow \bar{b} \mid b.\bar{c} \mid c.d$

The following proof is an annotation for $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d$:

If we use boxes, we have a "head cut elimination" matching execution:

 $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d \rightarrow \bar{b} \mid b.\bar{c} \mid c.d$

The following proof is an annotation for $a.\bar{b}\mid b.\bar{c}\mid \bar{a}.c.d:$

If we use boxes, we have a "head cut elimination" matching execution:

 $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d \rightarrow \bar{b} \mid b.\bar{c} \mid c.d \rightarrow \bar{c} \mid c.d$

The following proof is an annotation for $a.\bar{b}\mid b.\bar{c}\mid \bar{a}.c.d:$

If we use boxes, we have a "head cut elimination" matching execution:

 $a.\bar{b} \mid b.\bar{c} \mid \bar{a}.c.d \rightarrow \bar{b} \mid b.\bar{c} \mid c.d \rightarrow \bar{c} \mid c.d \rightarrow d$

The results of step 1

Theorem (Soundness)

Typing is preserved by reduction, head cut-elimination steps correspond to execution steps.

The definition of "head" cut-elimination requires boxes for modality rules, to keep track of prefixing.

Theorem (Completeness)

For every lock-avoiding run $P_1 \rightarrow ... \rightarrow P_n$ there are annotations such that $\pi_1 : P_1 \vdash \Gamma \rightarrow ... \rightarrow \pi_n : P_n \vdash \Gamma$ is a cut elimination sequence.

Observations

Every execution correspond to some proof:

- \blacksquare the proof provides a schedule (pairing between actions),
- cut elimination provides actual execution.

These proofs have very different types:

- the type is deduced from the execution, it describes control flow according a particular schedule;
- **n** the type decsribes a way for a process interacts with its environment,
- no most general type.

Step 2: make things more uniform.

For annotating a process $a.P \mid Q \mid \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a}.R \rightarrow P \mid Q \mid R
$$

For annotating a process $a.P \mid Q \mid \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a}.R \quad \rightarrow \quad P \mid Q \mid R
$$

For annotating a process $a.P | Q | \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a}.R \rightarrow P \mid Q \mid R
$$

For annotating a process $a.P | Q | \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a} . R \rightarrow P \mid Q \mid R
$$

For annotating a process $a.P | Q | \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a}.R \rightarrow P \mid Q \mid R
$$

on may need some plumbing:

The type of \bar{a} . R depends on that of Q , even if only Q only interacts with P .

For annotating a process $a.P | Q | \bar{a}.R$ in an execution step

$$
a.P \mid Q \mid \bar{a}.R \rightarrow P \mid Q \mid R
$$

on may need some plumbing:

The construction does not depend on the types: *parametricity in* α one can always proceed the same way.

Type assignment "Asynchronous" version

Definition

Terms of MCCS are translated into MLLa formulas as follows:

 $\left[1\right]_A := \forall \alpha \ \alpha^{\perp} \ \mathfrak{D} \ \alpha$ $\lceil P | Q \rceil_A \coloneqq \lceil P \rceil_A \otimes \lceil Q \rceil_A$ $[a.P]_A := \forall \alpha \langle a \rangle \alpha^\perp \ \Re \left(\left[P \right]_A \otimes \alpha \right) \quad = \forall \alpha \langle \bar{a} \rangle \alpha \multimap \left(\left[P \right]_A \otimes \alpha \right)$ $\left[\bar{a}.P\right]_A := \forall \beta \left(\left[P\right]_A \otimes \beta^\perp\right) \mathcal{R} \langle \bar{a} \rangle \beta \quad = \forall \beta \left(\left[P\right]_A \multimap \beta\right) \multimap \langle a \rangle \beta$

Name hiding is left aside for now.

Proof assignment

"Asynchronous" version

Fact

For every P, the type $\left[P\right]_A$ has one cut-free proof $(\mathbb{P})_A$.

For actions:

"Asynchronous" version

Theorem

There is an execution $P \to^* 1$ if and only if $[P]_A \to [1]_A$ is provable in MLL (without modality rules).

Soundness and completeness "Asynchronous" version

Theorem

There is an execution $P \to^* 1$ if and only if $[P]_A \to [1]_A$ is provable in MLL (without modality rules).

From execution to implication:

each execution step is provable.

From implication to execution:

 \blacksquare find a first interaction, exploiting the correctness criterion for a proof of $\left[f\right]_{A}$ — $\left[1\right]_{A}$.

"Asynchronous" version: finding the first action

"Asynchronous" version: finding the first action

Suppose there is some proof of $[a_1.P_1 | ... | a_n.P_n]_A \to [1]_A$ but no two \mathfrak{a}_i can synchronize:

Impossible because of acyclicity!

Type assignment "Synchronous" version

Definition

Terms of MCCS are translated into MLLa formulas as follows:

 $\begin{aligned} \begin{bmatrix} 1 \end{bmatrix}_S &:= \forall \alpha \, \alpha^\perp \, \Re \, \alpha \end{aligned} \qquad \qquad = \forall \alpha \, \alpha \multimap \alpha$ $\lceil P | Q \rceil_S \coloneqq \lceil P \rceil_S \otimes \lceil Q \rceil_S$ $[a.P]_S := \forall \alpha \langle a \rangle (\alpha^\perp \mathfrak{B}([P]_S \otimes \alpha)) = \forall \alpha \langle a \rangle (\alpha \multimap ([P]_S \otimes \alpha))$ $[\bar{a}.P]_S := \forall \beta \langle \bar{a} \rangle ([P]_S \otimes \beta^{\perp}) \mathcal{B} \beta \quad = \forall \beta \langle a \rangle ([P]_S \multimap \beta) \multimap \beta$

E. Beffara (12M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 26 / 33

Spot the difference!

Proof assignment

"Synchronous" version

Fact

For actions:

"Synchronous" version

Theorem

There is an execution $P \to^* Q$ if and only if $[P]_S \to [Q]_S$ is provable in MLL (without modality rules).

"Synchronous" version

Theorem

There is an execution $P \to^* Q$ if and only if $[P]_S \to [Q]_S$ is provable in MLL (without modality rules).

From execution to implication:

$$
A^{\perp} A B^{\perp} B
$$
\n
$$
\rightarrow
$$
\n
$$
B^{\perp} B
$$
\nwith\n
$$
\begin{cases}\nA = \langle a \rangle ([Q]_S^{\perp} \mathcal{B} ([P]_S \otimes [Q]_S)) \\
B = [P]_S \otimes [Q]_S\n\end{cases}
$$

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 28 / 33

proves $\lceil (a.P \, | \, \bar{a}.Q) \, | \, R \rceil_{\mathcal{S}} \multimap \lceil (P \, | \, Q) \, | \, R \rceil_{\mathcal{S}}$

"Synchronous" version

Theorem

There is an execution $P \to^* Q$ if and only if $[P]_S \to [Q]_S$ is provable in MLL (without modality rules).

From execution to implication:

 \blacksquare each execution step is provable.

From implication to execution:

- \blacksquare take a proof of $\lceil P \rceil_S \multimap \lceil Q \rceil_S$
- \blacksquare cut it against $\langle P\rangle_S,$ eliminate the cut
- \blacksquare read back process terms from intermediate steps

Pairings

Definition

A pairing is an association between occurrences of dual actions

$$
p_1: p = a.b.A \mid a.c.B \mid b.c.C \mid a.c
$$

Definition

A *determinisation* of P along a pairing p is a renaming $\partial_p(P)$ of actions in \overline{P} where names are equal only for related actions.

$$
\partial_{p_1}(P) = a_1 \cdot b_1 \cdot \partial(A) \mid \bar{a}_2 \cdot c_1 \cdot \partial(B) \mid \bar{b}_2 \cdot \bar{c}_2 \cdot \partial(C) \mid a_2 \cdot \bar{c}_1
$$

$$
\partial_{p_2}(P) = a_1 \cdot b_1 \cdot \partial(A) \mid \bar{a}_1 \cdot c_1 \cdot \partial(B) \mid \bar{b}_1 \cdot \bar{c}_1 \cdot \partial(C) \mid a_2 \cdot \bar{c}_2
$$

Pairings vs proofs

Facts about pairings:

- \blacksquare each run induces a pairing
- **n** runs are equivalent up to permutation of independent events iff they induce the same pairing
- if p is a *consistent* pairing of P then p is the unique maximal consistent pairing of $\partial_p(P)$

Hence pairings are *execution schedules* and determinized terms represent them inside the process language.

Observation

Pairings are related to placements of axiom links in proofs of $\lceil P \rceil_A \multimap \lceil 1 \rceil_A.$

Discussion

Some points deserve more investigation:

Replication: everything extends smoothly by setting $\left[\cdot P\right]_{A} = \left[\cdot \right]_{A}$.

Choice: additives are the natural option

Name hiding: the situation is not obvious

- use quantifiers? existential? nabla?
- partial scheduling? $(\nu a)P$ is P with some proof that decides what happens on a

Name passing: need to fix hiding first!

Further directions

Current state of affairs:

- A logical description of scheduling in processes
- Explicitation of *control flow* through processes
- \blacksquare Hints for a new study of prefixing in processes

Further directions

Current state of affairs:

- A logical description of scheduling in processes
- **Explicitation of** *control flow* through processes
- \blacksquare Hints for a new study of prefixing in processes

Ongoing questions:

- Which semantics for the logic of schedules? coherence spaces for MLLa, etc
- CPS-like interpretation of processes? the translation of actions is a kind of double negation
- A logical account on π -to-solos encoding? by relating to other systems

Work in progress…