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Plan

Introduction
Proofs as processes
Processes as untyped proofs
Why we should search further

Proofs as schedules
MLL with actions
Soundness and completess

Uniform translations
Asynchronous translation
Synchronous translation

Discussion
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Logic vs computation

The formulae as types approach:

formula ↔ type
proof rules ↔ primitive instructions

proof ↔ program
normalization ↔ evaluation

The proof search approach:

formula ↔ program
proof rules ↔ operational semantics

proof construction ↔ execution
proof ↔ successful run

How can we fit concurrency into this framework?
What is a proper denotational semantics for concurrency?
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Proofs as processes

Cut elimination in proof nets is an interactive process:

..

𝑃

.

𝑄

.

𝑅

.
⊗

.
⅋

It is natural to represent it a language for interactive processes:

(𝜈𝑧)(𝜈𝑥𝑦)(�̄�⟨𝑥𝑦⟩ | 𝑃 | 𝑄) | 𝑧(𝑥𝑦)𝑅
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Proofs as processes

This idea was first implemented in

Gianluigi Bellin and Phil Sco
On the π-calculus and linear logic
Theoretical Computer Science, 1994

Good points:

Adequate representation of proof dynamics

Study of information flow through proofs

Limitations:

Requires a lot of coding

Touches processes of a very restricted form

Does not provide much insight on the π-calculus
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Typing processes in linear logic

Axiom and cut:

𝑢→𝑣 ⊢ 𝑢 ∶ ´𝐴⊥, 𝑣 ∶ ˆ𝐴
𝑃 ⊢ Γ, �⃗� ∶ 𝐴 𝑄 ⊢ �⃗� ∶ 𝐴⊥, Δ

(𝜈�⃗�)(𝑃 | 𝑄) ⊢ Γ, Δ

Multiplicatives:

𝑃 ⊢ Γ, �⃗� ∶ 𝐴 𝑄 ⊢ �⃗� ∶ 𝐵, Δ
𝑃 | 𝑄 ⊢ Γ, �⃗��⃗� ∶ 𝐴 ⊗ 𝐵, Δ

𝑃 ⊢ Γ, �⃗� ∶ 𝐴, �⃗� ∶ 𝐵
𝑃 ⊢ Γ, �⃗��⃗� ∶ 𝐴 ⅋ 𝐵

Actions: 𝑃 ⊢ Γ, �⃗� ∶ 𝐴
𝑢(�⃗�).𝑃 ⊢ Γ, 𝑢 ∶ ´𝐴

𝑃 ⊢ Γ, �⃗� ∶ 𝐴
�̄�(�⃗�).𝑃 ⊢ Γ, 𝑢 ∶ ˆ𝐴

Exponentials for replication, additives for external choice.
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Typing processes in linear logic

The system on the previous slide was introduced in

EB
A concurrent model for linear logic
MFPS 2006

but was found to be strongly related to

Nobuko Yoshida, Martin Berger, and Kohei Honda
Strong normalisation in the π-calculus
LICS 2001

Bellin and Sco’s encoding decomposes inside.
Independently developped:

Luís Caires and Frank Pfenning
Session types as intuitionistic linear propositions
Concur 2010

appears as a fragment.
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Typing processes in linear logic

Good things:

Typed processes cannot diverge or deadlock.

Typing is preserved by reduction
up to structural congruence.

Extends to differential linear logic
through “algebraic” extensions of process calculi.

Induces translations of the λ-calculus into the π-calculus.

Shortcomings:

Typed processes are essentially functional.

Only top-level cut elimination matches execution.

Many well-behaved interaction paerns are not typable.

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑
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Processes as proofs

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Standard linear logic is not an option because of confluence.

Differential linear logic allows for explicit non-determinism:
𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 + 𝑄 ⊢ Γ

Its rules allow for an implementation of all processes.
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𝑃 ⊢ Γ 𝑄 ⊢ Γ
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Its rules allow for an implementation of all processes.

Thomas Ehrhard and Olivier Laurent
Interpreting a finitary π-calculus in differential interaction nets
Concur 2007
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Processes as untyped proofs

Good points:

Does provide insights on concurrent processes

Relates algebraic proof semantics and process semantics

Limitations:

Not clear how to get logic back into the process language

Prefixing is only described very indirectly:

π-calculus ⟶ solos calculus ⟶ differential nets
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A few observations

Proof normalization, aka cut elimination:

the meaning of a proof is in its normal form,

normalization is an explicitation procedure,

it really wants to be confluent.

Interpretation of concurrent processes:

the meaning is the interaction, the final (irreducible) state is less
relevant,

a given process may behave very differently depending on
scheduling decisions.

Some information is missing.
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Proofs as schedules

The principles of our new interpretation:

formula ↔ type of interaction
proof rules ↔ primitives for building schedules

proof ↔ schedule for a program
normalization ↔ evaluation according to a schedule

This is not exactly:

Curry-Howard for processes:
proofs are not programs, but behaviours of programs

Proof search:
the dynamics is not in proof construction but in cut-elimination

but a sort of middle ground in between.
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Proofs as schedules: step 1

The first step: a logical description of all executions.

EB and Virgile Mogbil
Proofs as executions
IFIP TCS 2012 — Chocola 14/3/2013

How we proceed:

Back to CCS, for now.

Slightly change the logic to represent actions explicitly.

Match each execution with cut elimination of some proof.
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Multiplicative CCS

We consider a CCS-style process calculus.

𝑃,𝑄 ∶= 1 inaction
𝑎.𝑃 perform 𝑎 then do 𝑃
𝑃 ∣ 𝑄 interaction of 𝑃 and 𝑄

( (𝜈𝑎)𝑃 scope restriction )

There is one source of non-determinism:
the pairing of associated events upon synchronization

𝑎.𝑃 ∣ 𝑎.𝑄 ∣ �̄�.𝑅 →
⎧⎪
⎨⎪⎩

𝑎.𝑃 ∣ 𝑄 ∣ 𝑅
𝑃 ∣ 𝑎.𝑄 ∣ 𝑅
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MLL with actions
The formulas

Types of schedules:

𝐴,𝐵 ∶= ⟨𝑎⟩𝐴 do action 𝑎 and then act as 𝐴
𝐴 ⊗ 𝐵 two independent parts, one as 𝐴, the other as 𝐵
𝐴 ⅋ 𝐵 𝐴 and 𝐵 are both exhibited, but correlated
𝛼 an unspecified behaviour (type variable)
𝛼⊥ something that can interact with 𝛼

( ∀𝛼𝐴, ∃𝛼𝐴 quantification over behaviours )

Transforming schedules:

𝐴1, …,𝐴𝑛 ⊢ 𝐵 behave as type 𝐵 in association
with processes behaving as each type 𝐴𝑖

Two-sided version.
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MLL with actions
Proof rules

Axiom and cut:

1 ⊢ 𝐴⊥, 𝐴
𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐴⊥, Δ

𝑃 | 𝑄 ⊢ Γ,Δ

Multiplicatives:

𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐵,Δ
𝑃 | 𝑄 ⊢ Γ,𝐴 ⊗ 𝐵,Δ

𝑃 ⊢ Γ,𝐴, 𝐵
𝑃 ⊢ Γ,𝐴 ⅋ 𝐵

Actions:

𝑃 ⊢ Γ,𝐴
𝑎.𝑃 ⊢ Γ, ⟨𝑎⟩𝐴

antification:

𝑃 ⊢ Γ,𝐴 𝛼 ∉ fv(Γ)
𝑃 ⊢ Γ, ∀𝛼𝐴

𝑃 ⊢ Γ,𝐴[𝐵/𝛼]
𝑃 ⊢ Γ, ∃𝛼𝐴

Ceci n’est pas un système de types.
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MLL with actions
Proof nets

MLLa admits proof nets: those of MLL plus unary links for modalities.

axiom cut tensor par modality

...
𝐴⊥

.
𝐴

..𝜋. 𝜌
...
⊗

...
⅋

...
⟨𝑎⟩

Modality rules commute with everything, indeed 𝐴 ≃ ⟨𝑎⟩𝐴.

Correctness criteria: the same as MLL.

We avoid second-order quantification for simplicity,
we stick with parametricity in type variables.
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The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨�̄�⟩

..

⟨𝑎⟩

.

⟨�̄�⟩

.

⟨𝑏⟩

.. ⅋.

⟨𝑑⟩

.

⟨𝑐⟩

..

⊗

. ⟨�̄�⟩.

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑
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The results of step 1

Theorem (Soundness)

Typing is preserved by reduction,
head cut-elimination steps correspond to execution steps.

The definition of “head” cut-elimination requires boxes for modality
rules, to keep track of prefixing.

Theorem (Completeness)

For every lock-avoiding run 𝑃1 → … → 𝑃𝑛 there are annotations such that
𝜋1 ∶ 𝑃1 ⊢ Γ → … → 𝜋𝑛 ∶ 𝑃𝑛 ⊢ Γ is a cut elimination sequence.
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Observations

Every execution correspond to some proof:

the proof provides a schedule (pairing between actions),

cut elimination provides actual execution.

These proofs have very different types:

the type is deduced from the execution, it describes control flow
according a particular schedule;

the type decsribes a way for a process interacts with its
environment,

no most general type.

Step 2: make things more uniform.
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The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.

𝑄

.

𝐴⊥

.

𝐵

.

𝑅

.

𝐵⊥
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𝐵⊥

..

𝐴⊥

.

𝐴
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𝐴
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⟨�̄�⟩

The type of �̄�.𝑅 depends on that of 𝑄,
even if only 𝑄 only interacts with 𝑃.
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.

𝐴⊥

.

𝐵

.
⅋

.

𝑅
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𝐵⊥

..

𝛼⊥

.

𝛼

.
⊗

. 𝛼 ⊗ 𝐵⊥

.
⟨�̄�⟩

The construction does not depend on the types: parametricity in 𝛼
one can always proceed the same way.
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Type assignment
“Asynchronous” version

Definition
Terms of MCCS are translated into MLLa formulas as follows:

⌈1⌉𝐴 ∶= ∀𝛼 𝛼⊥ ⅋ 𝛼
⌈𝑃 | 𝑄⌉𝐴 ∶= ⌈𝑃⌉𝐴 ⊗ ⌈𝑄⌉𝐴
⌈𝑎.𝑃⌉𝐴 ∶= ∀𝛼 ⟨𝑎⟩𝛼⊥ ⅋ (⌈𝑃⌉𝐴 ⊗ 𝛼) = ∀𝛼 ⟨�̄�⟩𝛼 ⊸ (⌈𝑃⌉𝐴 ⊗ 𝛼)
⌈�̄�.𝑃⌉𝐴 ∶= ∀𝛽 (⌈𝑃⌉𝐴 ⊗ 𝛽⊥) ⅋ ⟨�̄�⟩𝛽 = ∀𝛽 (⌈𝑃⌉𝐴 ⊸ 𝛽) ⊸ ⟨𝑎⟩𝛽

Name hiding is le aside for now.
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Proof assignment
“Asynchronous” version

Fact
For every 𝑃, the type ⌈𝑃⌉𝐴 has one cut-free proof L𝑃M𝐴.
For actions:

L𝑎.𝑃M𝐴 =

...

⅋

.

⟨𝑎⟩

.

⊗

.

L𝑃M𝐴

..

𝛼⊥

.

𝛼

L�̄�.𝑃M𝐴 =

...

⅋

.

⊗

.

L𝑃M𝐴

.

⟨�̄�⟩

..

𝛽⊥

.

𝛽
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Soundness and completeness
“Asynchronous” version

Theorem
There is an execution 𝑃 →∗ 1 if and only if ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴 is provable in
MLL (without modality rules).

From execution to implication:

each execution step is provable.

From implication to execution:

find a first interaction,
exploiting the correctness criterion for a proof of ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴.
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Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
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Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
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..⅋.
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.
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⊗
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.
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.

⊗
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𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
...

Impossible because of acyclicity!
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Type assignment
“Synchronous” version

Definition
Terms of MCCS are translated into MLLa formulas as follows:

⌈1⌉𝑆 ∶= ∀𝛼 𝛼⊥ ⅋ 𝛼 = ∀𝛼 𝛼 ⊸ 𝛼
⌈𝑃 | 𝑄⌉𝑆 ∶= ⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆
⌈𝑎.𝑃⌉𝑆 ∶= ∀𝛼 ⟨𝑎⟩(𝛼⊥ ⅋ (⌈𝑃⌉𝑆 ⊗ 𝛼)) = ∀𝛼 ⟨𝑎⟩(𝛼 ⊸ (⌈𝑃⌉𝑆 ⊗ 𝛼))
⌈�̄�.𝑃⌉𝑆 ∶= ∀𝛽 ⟨�̄�⟩(⌈𝑃⌉𝑆 ⊗ 𝛽⊥) ⅋ 𝛽 = ∀𝛽 ⟨𝑎⟩(⌈𝑃⌉𝑆 ⊸ 𝛽) ⊸ 𝛽

Spot the difference!
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Proof assignment
“Synchronous” version

Fact
For every 𝑃, the type ⌈𝑃⌉𝑆 has one cut-free proof L𝑃M𝑆.
For actions:

L𝑎.𝑃M𝑆 =

...

⟨𝑎⟩
.

⅋

.

⊗

.

L𝑃M𝑆

..

𝛼⊥

.

𝛼

L�̄�.𝑃M𝑆 =

...

⅋
.

⟨�̄�⟩

.

⊗

.

L𝑃M𝑆

..

𝛽⊥

.

𝛽
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Soundness and completeness
“Synchronous” version

Theorem
There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
MLL (without modality rules).

From execution to implication:
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There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
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From execution to implication:

...
⅋
.

⅋

.

⅋

.

⊗

.

⊗

..

𝐴⊥

.

𝐴

..

𝐵⊥

.

𝐵

..

⌈𝑅⌉⊥𝑆

.

⌈𝑅⌉𝑆
with

⎧⎪
⎨⎪⎩

𝐴 = ⟨𝑎⟩(⌈𝑄⌉⊥𝑆 ⅋ (⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆))
𝐵 = ⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆

proves ⌈(𝑎.𝑃 | �̄�.𝑄) | 𝑅⌉𝑆 ⊸ ⌈(𝑃 | 𝑄) | 𝑅⌉𝑆
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Soundness and completeness
“Synchronous” version

Theorem
There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
MLL (without modality rules).

From execution to implication:
each execution step is provable.

From implication to execution:

take a proof of ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆
cut it against L𝑃M𝑆, eliminate the cut

read back process terms from intermediate steps
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Pairings

Definition
A pairing is an association between occurrences of dual actions

..
..𝑝1 ∶
. ..𝑃 = ..𝑎. ..𝑏. ..𝐴 ∣ ..̄𝑎. ..𝑐. ..𝐵 ∣ ..̄𝑏. ..̄𝑐. ..𝐶 ∣ ..𝑎. ..̄𝑐
..𝑝2 ∶

Definition
A determinisation of 𝑃 along a pairing 𝑝 is a renaming 𝜕𝑝(𝑃) of actions in
𝑃 where names are equal only for related actions.

𝜕𝑝1(𝑃) = 𝑎1.𝑏1.𝜕(𝐴) ∣ �̄�2.𝑐1.𝜕(𝐵) ∣ �̄�2.�̄�2.𝜕(𝐶) ∣ 𝑎2.�̄�1
𝜕𝑝2(𝑃) = 𝑎1.𝑏1.𝜕(𝐴) ∣ �̄�1.𝑐1.𝜕(𝐵) ∣ �̄�1.�̄�1.𝜕(𝐶) ∣ 𝑎2.�̄�2
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Pairings vs proofs

Facts about pairings:

each run induces a pairing

runs are equivalent up to permutation of independent events
iff they induce the same pairing

if 𝑝 is a consistent pairing of 𝑃 then 𝑝 is the unique maximal
consistent pairing of 𝜕𝑝(𝑃)

Hence pairings are execution schedules and determinized terms
represent them inside the process language.

Observation
Pairings are related to placements of axiom links in proofs of
⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴.
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Discussion

Some points deserve more investigation:

Replication: everything extends smoothly by seing ⌈!𝑃⌉𝐴 = ! ⌈𝑃⌉𝐴.
Choice: additives are the natural option

Name hiding: the situation is not obvious
use quantifiers?
existential? nabla?
partial scheduling?
(𝜈𝑎)𝑃 is 𝑃 with some proof that decides what
happens on 𝑎

Name passing: need to fix hiding first!
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Further directions

Current state of affairs:

A logical description of scheduling in processes

Explicitation of control flow through processes

Hints for a new study of prefixing in processes

Ongoing questions:

Which semantics for the logic of schedules?
coherence spaces for MLLa, etc

CPS-like interpretation of processes?
the translation of actions is a kind of double negation

A logical account on π-to-solos encoding?
by relating to other systems
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Work in progress…
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