
A logical view on scheduling in concurrency

Emmanuel Beffara

I2M, CNRS & Université d’Aix-Marseille

Chocola – 3 avril 2014

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 1 / 33

Plan

Introduction
Proofs as processes
Processes as untyped proofs
Why we should search further

Proofs as schedules
MLL with actions
Soundness and completess

Uniform translations
Asynchronous translation
Synchronous translation

Discussion

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 2 / 33

Logic vs computation

The formulae as types approach:

formula ↔ type
proof rules ↔ primitive instructions

proof ↔ program
normalization ↔ evaluation

The proof search approach:

formula ↔ program
proof rules ↔ operational semantics

proof construction ↔ execution
proof ↔ successful run

How can we fit concurrency into this framework?
What is a proper denotational semantics for concurrency?

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 3 / 33

(Logic vs computation) vs concurrency

The formulae as types approach:

formula ↔ type
proof rules ↔ primitive instructions

proof ↔ program
normalization ↔ evaluation

The proof search approach:

formula ↔ program
proof rules ↔ operational semantics

proof construction ↔ execution
proof ↔ successful run

How can we fit concurrency into this framework?
What is a proper denotational semantics for concurrency?

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 3 / 33

Proofs as processes

Cut elimination in proof nets is an interactive process:

..

𝑃

.

𝑄

.

𝑅

.
⊗

.
⅋

It is natural to represent it a language for interactive processes:

(𝜈𝑧)(𝜈𝑥𝑦)(�̄�⟨𝑥𝑦⟩ | 𝑃 | 𝑄) | 𝑧(𝑥𝑦)𝑅

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 4 / 33

Proofs as processes

Cut elimination in proof nets is an interactive process:

..

𝑃

.

𝑄

.

𝑅

It is natural to represent it a language for interactive processes:

(𝜈𝑧)(𝜈𝑥𝑦)(�̄�⟨𝑥𝑦⟩ | 𝑃 | 𝑄) | 𝑧(𝑥𝑦)𝑅

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 4 / 33

Proofs as processes

Cut elimination in proof nets is an interactive process:

..

𝑃

.

𝑄

.

𝑅

.
⊗

.
⅋

It is natural to represent it a language for interactive processes:

(𝜈𝑧)(𝜈𝑥𝑦)(�̄�⟨𝑥𝑦⟩ | 𝑃 | 𝑄) | 𝑧(𝑥𝑦)𝑅

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 4 / 33

Proofs as processes

Cut elimination in proof nets is an interactive process:

..

𝑃

.

𝑄

.

𝑅

It is natural to represent it a language for interactive processes:

(𝜈𝑧)(𝜈𝑥𝑦)(�̄�⟨𝑥𝑦⟩ | 𝑃 | 𝑄) | 𝑧(𝑥𝑦)𝑅 → (𝜈𝑥𝑦)(𝑃 | 𝑄 | 𝑅)

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 4 / 33

Proofs as processes

This idea was first implemented in

Gianluigi Bellin and Phil Sco
On the π-calculus and linear logic
Theoretical Computer Science, 1994

Good points:

Adequate representation of proof dynamics

Study of information flow through proofs

Limitations:

Requires a lot of coding

Touches processes of a very restricted form

Does not provide much insight on the π-calculus

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 5 / 33

Proofs as processes

This idea was first implemented in

Gianluigi Bellin and Phil Sco
On the π-calculus and linear logic
Theoretical Computer Science, 1994

Good points:

Adequate representation of proof dynamics

Study of information flow through proofs

Limitations:

Requires a lot of coding

Touches processes of a very restricted form

Does not provide much insight on the π-calculus

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 5 / 33

Proofs as processes

This idea was first implemented in

Gianluigi Bellin and Phil Sco
On the π-calculus and linear logic
Theoretical Computer Science, 1994

Good points:

Adequate representation of proof dynamics

Study of information flow through proofs

Limitations:

Requires a lot of coding

Touches processes of a very restricted form

Does not provide much insight on the π-calculus

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 5 / 33

Typing processes in linear logic

Axiom and cut:

𝑢→𝑣 ⊢ 𝑢 ∶ ´𝐴⊥, 𝑣 ∶ ˆ𝐴
𝑃 ⊢ Γ, �⃗� ∶ 𝐴 𝑄 ⊢ �⃗� ∶ 𝐴⊥, Δ

(𝜈�⃗�)(𝑃 | 𝑄) ⊢ Γ, Δ

Multiplicatives:

𝑃 ⊢ Γ, �⃗� ∶ 𝐴 𝑄 ⊢ �⃗� ∶ 𝐵, Δ
𝑃 | 𝑄 ⊢ Γ, �⃗��⃗� ∶ 𝐴 ⊗ 𝐵, Δ

𝑃 ⊢ Γ, �⃗� ∶ 𝐴, �⃗� ∶ 𝐵
𝑃 ⊢ Γ, �⃗��⃗� ∶ 𝐴 ⅋ 𝐵

Actions: 𝑃 ⊢ Γ, �⃗� ∶ 𝐴
𝑢(�⃗�).𝑃 ⊢ Γ, 𝑢 ∶ ´𝐴

𝑃 ⊢ Γ, �⃗� ∶ 𝐴
�̄�(�⃗�).𝑃 ⊢ Γ, 𝑢 ∶ ˆ𝐴

Exponentials for replication, additives for external choice.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 6 / 33

Typing processes in linear logic

The system on the previous slide was introduced in

EB
A concurrent model for linear logic
MFPS 2006

but was found to be strongly related to

Nobuko Yoshida, Martin Berger, and Kohei Honda
Strong normalisation in the π-calculus
LICS 2001

Bellin and Sco’s encoding decomposes inside.
Independently developped:

Luís Caires and Frank Pfenning
Session types as intuitionistic linear propositions
Concur 2010

appears as a fragment.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 7 / 33

Typing processes in linear logic

Good things:

Typed processes cannot diverge or deadlock.

Typing is preserved by reduction
up to structural congruence.

Extends to differential linear logic
through “algebraic” extensions of process calculi.

Induces translations of the λ-calculus into the π-calculus.

Shortcomings:

Typed processes are essentially functional.

Only top-level cut elimination matches execution.

Many well-behaved interaction paerns are not typable.

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 8 / 33

Typing processes in linear logic

Good things:

Typed processes cannot diverge or deadlock.

Typing is preserved by reduction
up to structural congruence.

Extends to differential linear logic
through “algebraic” extensions of process calculi.

Induces translations of the λ-calculus into the π-calculus.

Shortcomings:

Typed processes are essentially functional.

Only top-level cut elimination matches execution.

Many well-behaved interaction paerns are not typable.

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 8 / 33

Processes as proofs

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Standard linear logic is not an option because of confluence.

Differential linear logic allows for explicit non-determinism:
𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 + 𝑄 ⊢ Γ

Its rules allow for an implementation of all processes.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 9 / 33

Processes as untyped proofs

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Standard linear logic is not an option because of confluence.

Differential linear logic allows for explicit non-determinism:
𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 + 𝑄 ⊢ Γ

Its rules allow for an implementation of all processes.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 9 / 33

Processes as untyped proofs

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Standard linear logic is not an option because of confluence.

Differential linear logic allows for explicit non-determinism:
𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 + 𝑄 ⊢ Γ

Its rules allow for an implementation of all processes.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 9 / 33

Processes as untyped proofs

Dual approach: implement processes as proofs in a suitable logic.

Translating all processes requires an untyped proof language.

Standard linear logic is not an option because of confluence.

Differential linear logic allows for explicit non-determinism:
𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 + 𝑄 ⊢ Γ

Its rules allow for an implementation of all processes.

Thomas Ehrhard and Olivier Laurent
Interpreting a finitary π-calculus in differential interaction nets
Concur 2007

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 9 / 33

Processes as untyped proofs

Good points:

Does provide insights on concurrent processes

Relates algebraic proof semantics and process semantics

Limitations:

Not clear how to get logic back into the process language

Prefixing is only described very indirectly:

π-calculus ⟶ solos calculus ⟶ differential nets

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 10 / 33

Processes as untyped proofs

Good points:

Does provide insights on concurrent processes

Relates algebraic proof semantics and process semantics

Limitations:

Not clear how to get logic back into the process language

Prefixing is only described very indirectly:

π-calculus ⟶ solos calculus ⟶ differential nets

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 10 / 33

A few observations

Proof normalization, aka cut elimination:

the meaning of a proof is in its normal form,

normalization is an explicitation procedure,

it really wants to be confluent.

Interpretation of concurrent processes:

the meaning is the interaction, the final (irreducible) state is less
relevant,

a given process may behave very differently depending on
scheduling decisions.

Some information is missing.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 11 / 33

Proofs as schedules

The principles of our new interpretation:

formula ↔ type of interaction
proof rules ↔ primitives for building schedules

proof ↔ schedule for a program
normalization ↔ evaluation according to a schedule

This is not exactly:

Curry-Howard for processes:
proofs are not programs, but behaviours of programs

Proof search:
the dynamics is not in proof construction but in cut-elimination

but a sort of middle ground in between.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 12 / 33

Proofs as schedules: step 1

The first step: a logical description of all executions.

EB and Virgile Mogbil
Proofs as executions
IFIP TCS 2012 — Chocola 14/3/2013

How we proceed:

Back to CCS, for now.

Slightly change the logic to represent actions explicitly.

Match each execution with cut elimination of some proof.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 13 / 33

Multiplicative CCS

We consider a CCS-style process calculus.

𝑃,𝑄 ∶= 1 inaction
𝑎.𝑃 perform 𝑎 then do 𝑃
𝑃 ∣ 𝑄 interaction of 𝑃 and 𝑄

((𝜈𝑎)𝑃 scope restriction)

There is one source of non-determinism:
the pairing of associated events upon synchronization

𝑎.𝑃 ∣ 𝑎.𝑄 ∣ �̄�.𝑅 →
⎧⎪
⎨⎪⎩

𝑎.𝑃 ∣ 𝑄 ∣ 𝑅
𝑃 ∣ 𝑎.𝑄 ∣ 𝑅

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 14 / 33

MLL with actions
The formulas

Types of schedules:

𝐴,𝐵 ∶= ⟨𝑎⟩𝐴 do action 𝑎 and then act as 𝐴
𝐴 ⊗ 𝐵 two independent parts, one as 𝐴, the other as 𝐵
𝐴 ⅋ 𝐵 𝐴 and 𝐵 are both exhibited, but correlated
𝛼 an unspecified behaviour (type variable)
𝛼⊥ something that can interact with 𝛼

(∀𝛼𝐴, ∃𝛼𝐴 quantification over behaviours)

Transforming schedules:

𝐴1, …,𝐴𝑛 ⊢ 𝐵 behave as type 𝐵 in association
with processes behaving as each type 𝐴𝑖

Two-sided version.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 15 / 33

MLL with actions
The formulas

Types of schedules:

𝐴,𝐵 ∶= ⟨𝑎⟩𝐴 do action 𝑎 and then act as 𝐴
𝐴 ⊗ 𝐵 two independent parts, one as 𝐴, the other as 𝐵
𝐴 ⅋ 𝐵 𝐴 and 𝐵 are both exhibited, but correlated
𝛼 an unspecified behaviour (type variable)
𝛼⊥ something that can interact with 𝛼

(∀𝛼𝐴, ∃𝛼𝐴 quantification over behaviours)

Transforming schedules:

⊢ 𝐴⊥
1 , …,𝐴⊥

𝑛 , 𝐵
behave as type 𝐵 in association
with processes behaving as each type 𝐴𝑖

Duality: (𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ ⅋ 𝐵⊥, (⟨𝑎⟩𝐴)⊥ = ⟨�̄�⟩(𝐴⊥).

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 15 / 33

MLL with actions
The formulas

Types of schedules:

𝐴,𝐵 ∶= ⟨𝑎⟩𝐴 do action 𝑎 and then act as 𝐴
𝐴 ⊗ 𝐵 two independent parts, one as 𝐴, the other as 𝐵
𝐴 ⅋ 𝐵 𝐴 and 𝐵 are both exhibited, but correlated
𝛼 an unspecified behaviour (type variable)
𝛼⊥ something that can interact with 𝛼

(∀𝛼𝐴, ∃𝛼𝐴 quantification over behaviours)

Transforming schedules:

𝑃 ⊢ 𝐴⊥
1 , …,𝐴⊥

𝑛 , 𝐵
𝑃 can behave as type 𝐵 in association
with processes behaving as each type 𝐴𝑖

Duality: (𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ ⅋ 𝐵⊥, (⟨𝑎⟩𝐴)⊥ = ⟨�̄�⟩(𝐴⊥).

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 15 / 33

MLL with actions
Proof rules

Axiom and cut:

1 ⊢ 𝐴⊥, 𝐴
𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐴⊥, Δ

𝑃 | 𝑄 ⊢ Γ,Δ

Multiplicatives:

𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐵,Δ
𝑃 | 𝑄 ⊢ Γ,𝐴 ⊗ 𝐵,Δ

𝑃 ⊢ Γ,𝐴, 𝐵
𝑃 ⊢ Γ,𝐴 ⅋ 𝐵

Actions:

𝑃 ⊢ Γ,𝐴
𝑎.𝑃 ⊢ Γ, ⟨𝑎⟩𝐴

antification:

𝑃 ⊢ Γ,𝐴 𝛼 ∉ fv(Γ)
𝑃 ⊢ Γ, ∀𝛼𝐴

𝑃 ⊢ Γ,𝐴[𝐵/𝛼]
𝑃 ⊢ Γ, ∃𝛼𝐴

Ceci n’est pas un système de types.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 16 / 33

MLL with actions
Proof rules

Axiom and cut:

1 ⊢ 𝐴⊥, 𝐴
𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐴⊥, Δ

𝑃 | 𝑄 ⊢ Γ,Δ

Multiplicatives:

𝑃 ⊢ Γ,𝐴 𝑄 ⊢ 𝐵,Δ
𝑃 | 𝑄 ⊢ Γ,𝐴 ⊗ 𝐵,Δ

𝑃 ⊢ Γ,𝐴, 𝐵
𝑃 ⊢ Γ,𝐴 ⅋ 𝐵

Actions:

𝑃 ⊢ Γ,𝐴
𝑎.𝑃 ⊢ Γ, ⟨𝑎⟩𝐴

antification:

𝑃 ⊢ Γ,𝐴 𝛼 ∉ fv(Γ)
𝑃 ⊢ Γ, ∀𝛼𝐴

𝑃 ⊢ Γ,𝐴[𝐵/𝛼]
𝑃 ⊢ Γ, ∃𝛼𝐴

Ceci n’est pas un système de types.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 16 / 33

MLL with actions
Proof nets

MLLa admits proof nets: those of MLL plus unary links for modalities.

axiom cut tensor par modality

...
𝐴⊥

.
𝐴

..𝜋. 𝜌
...
⊗

...
⅋

...
⟨𝑎⟩

Modality rules commute with everything, indeed 𝐴 ≃ ⟨𝑎⟩𝐴.

Correctness criteria: the same as MLL.

We avoid second-order quantification for simplicity,
we stick with parametricity in type variables.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 17 / 33

The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨�̄�⟩

..

⟨𝑎⟩

.

⟨�̄�⟩

.

⟨𝑏⟩

.. ⅋.

⟨𝑑⟩

.

⟨𝑐⟩

..

⊗

. ⟨�̄�⟩.

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 18 / 33

The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨�̄�⟩

..

⟨�̄�⟩

.

⟨𝑏⟩

.. ⅋.

⟨𝑑⟩

.

⟨𝑐⟩

..

⊗

.

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑 → �̄� | 𝑏.�̄� | 𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 18 / 33

The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨�̄�⟩

..

⟨�̄�⟩

.

⟨𝑏⟩

..

⟨𝑑⟩

.

⟨𝑐⟩

.

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑 → �̄� | 𝑏.�̄� | 𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 18 / 33

The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨�̄�⟩

.

⟨𝑑⟩

.

⟨𝑐⟩

..

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑 → �̄� | 𝑏.�̄� | 𝑐.𝑑 → �̄� | 𝑐.𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 18 / 33

The cyclic example

The following proof is an annotation for 𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑:

..

𝛼⊥

.

⟨𝑑⟩𝛼

.

⟨𝑑⟩

.

If we use boxes, we have a “head cut elimination” matching execution:

𝑎.�̄� | 𝑏.�̄� | �̄�.𝑐.𝑑 → �̄� | 𝑏.�̄� | 𝑐.𝑑 → �̄� | 𝑐.𝑑 → 𝑑

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 18 / 33

The results of step 1

Theorem (Soundness)

Typing is preserved by reduction,
head cut-elimination steps correspond to execution steps.

The definition of “head” cut-elimination requires boxes for modality
rules, to keep track of prefixing.

Theorem (Completeness)

For every lock-avoiding run 𝑃1 → … → 𝑃𝑛 there are annotations such that
𝜋1 ∶ 𝑃1 ⊢ Γ → … → 𝜋𝑛 ∶ 𝑃𝑛 ⊢ Γ is a cut elimination sequence.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 19 / 33

Observations

Every execution correspond to some proof:

the proof provides a schedule (pairing between actions),

cut elimination provides actual execution.

These proofs have very different types:

the type is deduced from the execution, it describes control flow
according a particular schedule;

the type decsribes a way for a process interacts with its
environment,

no most general type.

Step 2: make things more uniform.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 20 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.

𝑄

.

𝐴⊥

.

𝐵

.

𝑅

.

𝐵⊥

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.

𝑄

.

𝐴⊥

.

𝐵

.

𝑅

.

𝐵⊥

..

𝐴⊥

.

𝐴

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.

𝑄

.

𝐴⊥

.

𝐵

.
⅋

.

𝑅

.

𝐵⊥

..

𝐴⊥

.

𝐴

.
⊗

. 𝐴 ⊗ 𝐵⊥

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.
⟨𝑎⟩
.

𝑄

.

𝐴⊥

.

𝐵

.
⅋

.

𝑅

.

𝐵⊥

..

𝐴⊥

.

𝐴

.
⊗

. 𝐴 ⊗ 𝐵⊥

.
⟨�̄�⟩

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.
⟨𝑎⟩
.

𝑄

.

𝐴⊥

.

𝐵

.
⅋

.

𝑅

.

𝐵⊥

..

𝐴⊥

.

𝐴

.
⊗

. 𝐴 ⊗ 𝐵⊥

.
⟨�̄�⟩

The type of �̄�.𝑅 depends on that of 𝑄,
even if only 𝑄 only interacts with 𝑃.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

The trick for actions prefixes

For annotating a process 𝑎.𝑃 | 𝑄 | �̄�.𝑅 in an execution step

𝑎.𝑃 | 𝑄 | �̄�.𝑅 → 𝑃 | 𝑄 | 𝑅

on may need some plumbing:

..

𝑃

.

𝐴

.
⟨𝑎⟩
.

𝑄

.

𝐴⊥

.

𝐵

.
⅋

.

𝑅

.

𝐵⊥

..

𝛼⊥

.

𝛼

.
⊗

. 𝛼 ⊗ 𝐵⊥

.
⟨�̄�⟩

The construction does not depend on the types: parametricity in 𝛼
one can always proceed the same way.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 21 / 33

Type assignment
“Asynchronous” version

Definition
Terms of MCCS are translated into MLLa formulas as follows:

⌈1⌉𝐴 ∶= ∀𝛼 𝛼⊥ ⅋ 𝛼
⌈𝑃 | 𝑄⌉𝐴 ∶= ⌈𝑃⌉𝐴 ⊗ ⌈𝑄⌉𝐴
⌈𝑎.𝑃⌉𝐴 ∶= ∀𝛼 ⟨𝑎⟩𝛼⊥ ⅋ (⌈𝑃⌉𝐴 ⊗ 𝛼) = ∀𝛼 ⟨�̄�⟩𝛼 ⊸ (⌈𝑃⌉𝐴 ⊗ 𝛼)
⌈�̄�.𝑃⌉𝐴 ∶= ∀𝛽 (⌈𝑃⌉𝐴 ⊗ 𝛽⊥) ⅋ ⟨�̄�⟩𝛽 = ∀𝛽 (⌈𝑃⌉𝐴 ⊸ 𝛽) ⊸ ⟨𝑎⟩𝛽

Name hiding is le aside for now.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 22 / 33

Proof assignment
“Asynchronous” version

Fact
For every 𝑃, the type ⌈𝑃⌉𝐴 has one cut-free proof L𝑃M𝐴.
For actions:

L𝑎.𝑃M𝐴 =

...

⅋

.

⟨𝑎⟩

.

⊗

.

L𝑃M𝐴

..

𝛼⊥

.

𝛼

L�̄�.𝑃M𝐴 =

...

⅋

.

⊗

.

L𝑃M𝐴

.

⟨�̄�⟩

..

𝛽⊥

.

𝛽

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 23 / 33

Soundness and completeness
“Asynchronous” version

Theorem
There is an execution 𝑃 →∗ 1 if and only if ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴 is provable in
MLL (without modality rules).

From execution to implication:

each execution step is provable.

From implication to execution:

find a first interaction,
exploiting the correctness criterion for a proof of ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 24 / 33

Soundness and completeness
“Asynchronous” version

Theorem
There is an execution 𝑃 →∗ 1 if and only if ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴 is provable in
MLL (without modality rules).

From execution to implication:

each execution step is provable.

From implication to execution:

find a first interaction,
exploiting the correctness criterion for a proof of ⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 24 / 33

Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 25 / 33

Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 25 / 33

Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
..

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 25 / 33

Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
..

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 25 / 33

Soundness and completeness
“Asynchronous” version: finding the first action

Suppose there is some proof of ⌈𝑎1 .𝑃1 | ⋯ | 𝑎𝑛 .𝑃𝑛⌉𝐴 ⊸ ⌈1⌉𝐴 but no two
𝑎𝑖 can synchronize:

..⅋.
⊗

.

𝜋1

.

⟨ ̄𝑎1⟩𝛼1

.

⊗
.

𝜋2

.

⟨ ̄𝑎2⟩𝛼2

.

⊗
.

𝜋3

.

⟨ ̄𝑎3⟩𝛼3

.

⋯
.

⊗
.

𝜋𝑘

.

⟨ ̄𝑎𝑘⟩𝛼𝑘

.

⋯
...

Impossible because of acyclicity!

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 25 / 33

Type assignment
“Synchronous” version

Definition
Terms of MCCS are translated into MLLa formulas as follows:

⌈1⌉𝑆 ∶= ∀𝛼 𝛼⊥ ⅋ 𝛼 = ∀𝛼 𝛼 ⊸ 𝛼
⌈𝑃 | 𝑄⌉𝑆 ∶= ⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆
⌈𝑎.𝑃⌉𝑆 ∶= ∀𝛼 ⟨𝑎⟩(𝛼⊥ ⅋ (⌈𝑃⌉𝑆 ⊗ 𝛼)) = ∀𝛼 ⟨𝑎⟩(𝛼 ⊸ (⌈𝑃⌉𝑆 ⊗ 𝛼))
⌈�̄�.𝑃⌉𝑆 ∶= ∀𝛽 ⟨�̄�⟩(⌈𝑃⌉𝑆 ⊗ 𝛽⊥) ⅋ 𝛽 = ∀𝛽 ⟨𝑎⟩(⌈𝑃⌉𝑆 ⊸ 𝛽) ⊸ 𝛽

Spot the difference!

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 26 / 33

Proof assignment
“Synchronous” version

Fact
For every 𝑃, the type ⌈𝑃⌉𝑆 has one cut-free proof L𝑃M𝑆.
For actions:

L𝑎.𝑃M𝑆 =

...

⟨𝑎⟩
.

⅋

.

⊗

.

L𝑃M𝑆

..

𝛼⊥

.

𝛼

L�̄�.𝑃M𝑆 =

...

⅋
.

⟨�̄�⟩

.

⊗

.

L𝑃M𝑆

..

𝛽⊥

.

𝛽

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 27 / 33

Soundness and completeness
“Synchronous” version

Theorem
There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
MLL (without modality rules).

From execution to implication:

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 28 / 33

Soundness and completeness
“Synchronous” version

Theorem
There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
MLL (without modality rules).

From execution to implication:

...
⅋
.

⅋

.

⅋

.

⊗

.

⊗

..

𝐴⊥

.

𝐴

..

𝐵⊥

.

𝐵

..

⌈𝑅⌉⊥𝑆

.

⌈𝑅⌉𝑆
with

⎧⎪
⎨⎪⎩

𝐴 = ⟨𝑎⟩(⌈𝑄⌉⊥𝑆 ⅋ (⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆))
𝐵 = ⌈𝑃⌉𝑆 ⊗ ⌈𝑄⌉𝑆

proves ⌈(𝑎.𝑃 | �̄�.𝑄) | 𝑅⌉𝑆 ⊸ ⌈(𝑃 | 𝑄) | 𝑅⌉𝑆

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 28 / 33

Soundness and completeness
“Synchronous” version

Theorem
There is an execution 𝑃 →∗ 𝑄 if and only if ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆 is provable in
MLL (without modality rules).

From execution to implication:
each execution step is provable.

From implication to execution:

take a proof of ⌈𝑃⌉𝑆 ⊸ ⌈𝑄⌉𝑆
cut it against L𝑃M𝑆, eliminate the cut

read back process terms from intermediate steps

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 28 / 33

Pairings

Definition
A pairing is an association between occurrences of dual actions

..
..𝑝1 ∶
. ..𝑃 = ..𝑎. ..𝑏. ..𝐴 ∣ ..̄𝑎. ..𝑐. ..𝐵 ∣ ..̄𝑏. ..̄𝑐. ..𝐶 ∣ ..𝑎. ..̄𝑐
..𝑝2 ∶

Definition
A determinisation of 𝑃 along a pairing 𝑝 is a renaming 𝜕𝑝(𝑃) of actions in
𝑃 where names are equal only for related actions.

𝜕𝑝1(𝑃) = 𝑎1.𝑏1.𝜕(𝐴) ∣ �̄�2.𝑐1.𝜕(𝐵) ∣ �̄�2.�̄�2.𝜕(𝐶) ∣ 𝑎2.�̄�1
𝜕𝑝2(𝑃) = 𝑎1.𝑏1.𝜕(𝐴) ∣ �̄�1.𝑐1.𝜕(𝐵) ∣ �̄�1.�̄�1.𝜕(𝐶) ∣ 𝑎2.�̄�2

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 29 / 33

Pairings vs proofs

Facts about pairings:

each run induces a pairing

runs are equivalent up to permutation of independent events
iff they induce the same pairing

if 𝑝 is a consistent pairing of 𝑃 then 𝑝 is the unique maximal
consistent pairing of 𝜕𝑝(𝑃)

Hence pairings are execution schedules and determinized terms
represent them inside the process language.

Observation
Pairings are related to placements of axiom links in proofs of
⌈𝑃⌉𝐴 ⊸ ⌈1⌉𝐴.

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 30 / 33

Discussion

Some points deserve more investigation:

Replication: everything extends smoothly by seing ⌈!𝑃⌉𝐴 = ! ⌈𝑃⌉𝐴.
Choice: additives are the natural option

Name hiding: the situation is not obvious
use quantifiers?
existential? nabla?
partial scheduling?
(𝜈𝑎)𝑃 is 𝑃 with some proof that decides what
happens on 𝑎

Name passing: need to fix hiding first!

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 31 / 33

Further directions

Current state of affairs:

A logical description of scheduling in processes

Explicitation of control flow through processes

Hints for a new study of prefixing in processes

Ongoing questions:

Which semantics for the logic of schedules?
coherence spaces for MLLa, etc

CPS-like interpretation of processes?
the translation of actions is a kind of double negation

A logical account on π-to-solos encoding?
by relating to other systems

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 32 / 33

Further directions

Current state of affairs:

A logical description of scheduling in processes

Explicitation of control flow through processes

Hints for a new study of prefixing in processes

Ongoing questions:

Which semantics for the logic of schedules?
coherence spaces for MLLa, etc

CPS-like interpretation of processes?
the translation of actions is a kind of double negation

A logical account on π-to-solos encoding?
by relating to other systems

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 32 / 33

Work in progress…

E. Beffara (I2M) A logical view on scheduling in concurrency Chocola – 3 avril 2014 33 / 33

	Introduction
	Proofs as schedules
	Uniform translations
	Discussion

