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What are we doing here?

Proof theory in 3 dates:
1900 Hilbert: the question of foundations of mathematics
1930 Gödel: incompleteness theorem

Gentzen: sequent calculus and cut elimination
1960 Curry-Howard correspondence

The central question: consistency
logic: is my logical system degenerate?

computation: can my program go wrong?
Implies a search for meaning: semantics.
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Curry-Howard: the setting

Definition
Formulas of propositional logic:

𝐴, 𝐵 ∶= 𝛼 propositional variables
𝐴 ⇒ 𝐵 implication
𝐴 ∧ 𝐵 conjunction

Definition
Terms of the simply-typed 𝜆-calculus with pairs:

𝑡, 𝑢 ∶= 𝑥 variable
𝜆𝑥𝐴.𝑡 abstraction, i.e. function
(𝑡)𝑢 application
⟨𝑡, 𝑢⟩ pairing
𝜋𝑖𝑡 projection, with 𝑖 = 1 or 𝑖 = 2
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Curry-Howard: statics

Identity:
ax

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Implication:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ⇒I
Γ ⊢ 𝜆𝑥𝐴.𝑡 ∶ 𝐴 ⇒ 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 ⇒ 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 ⇒E
Γ ⊢ (𝑡)𝑢 ∶ 𝐵

Conjunction:

 Γ ⊢ 𝑡 ∶ 𝐴  Γ ⊢ 𝑢 ∶ 𝐵 ∧I
 Γ ⊢ ⟨𝑡, 𝑢⟩ ∶ 𝐴 ∧ 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 ∧ 𝐵 ∧E1
 Γ ⊢ 𝜋1𝑡 ∶ 𝐴

Γ ⊢ 𝑡 ∶ 𝐴 ∧ 𝐵 ∧E2 Γ ⊢ 𝜋2𝑡 ∶ 𝐵
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The typed 𝜆-calculus

Definition
Evaluation is the relation generated by the pair of rules

(𝜆𝑥.𝑡)𝑢 ⇝ 𝑡[𝑢/𝑥] and 𝜋𝑖⟨𝑡1, 𝑡2⟩ ⇝ 𝑡𝑖 for 𝑖 = 1 or 𝑖 = 2

Theorem (Subject reduction)
If Γ ⊢ 𝑡 ∶ 𝐴 holds and 𝑡 ⇝ 𝑢 then Γ ⊢ 𝑢 ∶ 𝐴 holds.

Theorem (Termination)
A typable term has no infinite sequence of reductions.

Theorem (Confluence)
For any reductions 𝑡 ⇝∗ 𝑢 and 𝑡 ⇝∗ 𝑣,
there is a term 𝑤 such that 𝑢 ⇝∗ 𝑤 and 𝑣 ⇝∗ 𝑤.
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Curry-Howard: dynamics

What does evaluation mean, when considering proofs?

Theorem
A proof in natural deduction is normal iff there is never an introduction rule
followed by an elimination rule for the same connective.

Theorem (Subformula property)
In a normal proof, any formula occurring in a sequent at any point in the proof
is a subformula of one of the formulas in the conclusion.

Normal proofs are direct, explicit.
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Denotational semantics

The search for invariants of reduction:
models of the 𝜆-calculus (as a theory of functions)
structures for defining the value of proofs

The kind of objects we want is:

logic computation object
formula type space
proof term morphism

normalization evaluation equality

Example
Sets for types, arbitrary functions for terms.
It works but there are way too many functions!
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Coherence spaces

Definition
A coherence space 𝐴 is

a set |𝐴| (the web),
a symmetric and reflexive binary relation¨𝐴 (the coherence).

A clique 𝑎 ∈ 𝐶ℓ(𝐴) is a subset of |𝐴| of points pairwise related by¨𝐴.

Intuition:
points are bits of information about objects of 𝐴,
cliques are consistent descriptions of objects

Example
A coherence space for words could have bits to say

“at position 𝑖 there is a letter 𝑎”
“at position 𝑖 there is the end-of-string symbol”
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Stable functions

A definable function maps information about an object in 𝐴 to
information about an object of 𝐵.

Definition
A stable function from 𝐴 to 𝐵 is a function 𝑓 ∶ 𝐶ℓ(𝐴) → 𝐶ℓ(𝐵) that is
continuous: for a directed family (𝑎𝑖)𝑖∈𝐼 in 𝐶ℓ(𝐴),

𝑓 (⋃𝑖∈𝐼 𝑎𝑖) = ⋃
𝑖∈𝐼 𝑓 (𝑎𝑖);

stable: for all 𝑎, 𝑎′ ∈ 𝐶ℓ(𝐴) such that 𝑎 ∪ 𝑎′ ∈ 𝐶ℓ(𝐴),
𝑓 (𝑎 ∩ 𝑎′) = 𝑓 (𝑎) ∩ 𝑓 (𝑎′).

Implies monotonicity.
The value for an arbitrary input is deduced from finite
approximations,
For every bit of output, there is a minimum input needed to get it.
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Stable functions – traces

Definition
The trace of a stable function 𝑓 ∶ 𝐶ℓ(𝐴) → 𝐶ℓ(𝐵) is

𝑇𝑟􏿴𝑓 􏿷 ∶= 􏿺(𝑎, 𝛽) 􏿖 𝑎 ∈ 𝐶ℓ(𝐴), 𝛽 ∈ 𝑓 (𝑎), ∀𝑎′ ⊊ 𝑎, 𝛽 ∉ 𝑓 (𝑎′)􏿽.

Remarkable facts:
Each stable function is uniquely defined by its trace.
Traces are the cliques in a coherence space 𝐴 ⇒ 𝐵.
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Stable functions – linearity

Definition
A stable function 𝑓 is linear if for all (𝑎, 𝛽) ∈ 𝑇𝑟􏿴𝑓 􏿷, 𝑎 is a singleton.

For one bit of output, you need one bit of input.
The function uses its argument exactly once.
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Linearity in logic

Classical sequent calculus has weakening and contraction of formulas,
which allows using any hypothesis any number of times:

Γ ⊢ Δ wL
Γ, 𝐴 ⊢ Δ

Γ ⊢ Δ wR
Γ ⊢ 𝐴, Δ

Γ, 𝐴, 𝐴 ⊢ Δ
cL

Γ, 𝐴 ⊢ Δ
Γ ⊢ 𝐴, 𝐴, Δ

cR
Γ ⊢ 𝐴, Δ

These make the following rules equivalent:

Γ ⊢ 𝐴, Δ Γ ⊢ 𝐵, Δ ∧Ra
Γ ⊢ 𝐴 ∧ 𝐵, Δ

Γ ⊢ 𝐴, Δ Γ ′ ⊢ 𝐵, Δ′
∧Rm

Γ, Γ ′ ⊢ 𝐴 ∧ 𝐵, Δ, Δ′

additive multiplicative

And similarly for other connectives, left rules, etc.

In the absence of weakening and contraction, these become different.
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Sequent calculi

Sequents in intuitionistic logic:

𝐴1, …, 𝐴𝑛 ⊢ 𝐵

“From hypotheses 𝐴1, …, 𝐴𝑛 deduce 𝐵.”

A proof of this is interpreted as
a way to make a proof of 𝐵 from proofs of the 𝐴𝑖
a function from 𝐴1 × ⋯ × 𝐴𝑛 to 𝐵

Contraction and weakening are allowed on the left.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 15 / 84



Sequent calculi

Sequents in classical logic:

𝐴1, …, 𝐴𝑛 ⊢ 𝐵1, …, 𝐵𝑝

“From hypotheses 𝐴1, …, 𝐴𝑛 deduce 𝐵1 or … or 𝐵𝑝 .”

Contraction and weakening are allowed on both sides.
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Sequent calculi

Sequents in linear logic:

𝐴1, …, 𝐴𝑛 ⊢ 𝐵1, …, 𝐵𝑝

“From hypotheses 𝐴1, …, 𝐴𝑛 deduce 𝐵1 or … or 𝐵𝑝 linearly.”

A proof of this is interpreted as
a way to make a proof of 𝐵 from proofs of the 𝐴𝑖
using each 𝐴𝑖 exactly once
a linear map from 𝐴1 ⊗ ⋯ ⊗ 𝐴𝑛 to 𝐵1

&⋯ &𝐵𝑝
Contraction and weakening are not allowed.
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Plan

The proof-program correspondence

Linear sequent calculus
Multiplicative linear logic
One-sided presentation
Full linear logic
The notion of fragment

A bit of semantics

A bit of proof theory

Proof nets
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Formulas and sequents

In this talk we focus on the propositional structure:

formulas 𝐴, 𝐵 ∶= 𝛼 propositional variable
𝐴⊥ linear negation
𝐴 ⊗ 𝐵, 𝐴 &𝐵, 1, ⊥ multiplicatives
𝐴 & 𝐵, 𝐴 ⊕ 𝐵, ⊤, 0 additives
! 𝐴, ?𝐴 exponentials

sequents Γ, Δ, Θ ∶= 𝐴1, …, 𝐴𝑛 ⊢ 𝐵1, …, 𝐵𝑝 with 𝑛, 𝑝 ≥ 0

We focus on MLL, the subsystem made only of multiplicative
connectives and negation.

Definition
𝐴 ⊸ 𝐵 is a notation for 𝐴⊥ &𝐵.
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MLL – the deductive structure

The order of formulas is irrelevant:
Γ, 𝐴, 𝐵, Δ ⊢ Θ

exL
Γ, 𝐵, 𝐴, Δ ⊢ Θ

Γ ⊢ Δ, 𝐴, 𝐵, Θ
exR

Γ ⊢ Δ, 𝐵, 𝐴, Θ

Axiom and cut rules:

ax
𝐴 ⊢ 𝐴

Γ ⊢ 𝐴, Δ Γ ′, 𝐴 ⊢ Δ′
cut

Γ, Γ ′ ⊢ Δ, Δ′

Linear negation:

Γ ⊢ 𝐴, Δ ⊥L
Γ, 𝐴⊥ ⊢ Δ

Γ, 𝐴 ⊢ Δ ⊥R
Γ ⊢ 𝐴⊥, Δ
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MLL – the connectives

Multiplicatives:

Γ ⊢ Δ, 𝐴 Γ ′ ⊢ Δ′, 𝐵 ⊗R
Γ, Γ ′ ⊢ Δ, Δ′, 𝐴 ⊗ 𝐵

Γ, 𝐴, 𝐵 ⊢ Δ ⊗L
Γ, 𝐴 ⊗ 𝐵 ⊢ Δ

Γ, 𝐴 ⊢ Δ Γ ′, 𝐵 ⊢ Δ′ &L
Γ, Γ ′, 𝐴 &𝐵 ⊢ Δ, Δ′

Γ ⊢ Δ, 𝐴, 𝐵 &R
Γ ⊢ Δ, 𝐴 &𝐵

Additives:
Γ ⊢ Δ, 𝐴 ⊕R1Γ ⊢ Δ, 𝐴 ⊕ 𝐵

Γ ⊢ Δ, 𝐵 ⊕R2Γ ⊢ Δ, 𝐴 ⊕ 𝐵
Γ, 𝐴 ⊢ Δ Γ, 𝐵 ⊢ Δ ⊕L

Γ, 𝐴 ⊕ 𝐵 ⊢ Δ
Γ, 𝐴 ⊢ Δ &L1Γ, 𝐴 & 𝐵 ⊢ Δ

Γ, 𝐵 ⊢ Δ &L2Γ, 𝐴 & 𝐵 ⊢ Δ
Γ ⊢ Δ, 𝐴 Γ ⊢ Δ, 𝐵 &R

Γ ⊢ Δ, 𝐴 & 𝐵
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MLL – provability

Example
The following sequents are provable in MLL:

multiplicative excluded middle: ⊢ 𝐴 &𝐴⊥

semi-distributivity of tensor over par: 𝐴 ⊗ (𝐵 &𝐶) ⊢ (𝐴 ⊗ 𝐵) &𝐶
However, 𝐴 ⊢ 𝐴 ⊗ 𝐴 is not provable.

Exercise: Prove that!

Definition
𝐴 and 𝐵 are linearly equivalent if 𝐴 ⊢ 𝐵 and 𝐵 ⊢ 𝐴 are provable, write
this 𝐴 ˛ 𝐵.

Simplest example: 𝐴 ⊗ 𝐵 ˛ 𝐵 ⊗ 𝐴.
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Symmetries

Let us see if we can simplify the system a bit.

Theorem (De Morgan laws)
For all formulas 𝐴 and 𝐵, the following equivalences hold:

𝐴 ˛ 𝐴⊥⊥, (𝐴 ⊗ 𝐵)⊥ ˛ 𝐴⊥ &𝐵⊥, (𝐴 &𝐵)⊥ ˛ 𝐴⊥ ⊗ 𝐵⊥.

Exercise: Prove this.

Theorem
A sequent 𝐴1, …, 𝐴𝑛 ⊢ 𝐵1, …, 𝐵𝑝 is provable if and only the sequent
⊢ 𝐴⊥

1 , …, 𝐴⊥
𝑛 , 𝐵1, …, 𝐵𝑝 is provable.
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One-sided presentation
Redefine the language of formulas:

formulas 𝐴, 𝐵 ∶= 𝛼 propositional variable
𝛼⊥ negated variable
𝐴 ⊗ 𝐵, 𝐴 &𝐵, 1, ⊥ multiplicatives
𝐴 & 𝐵, 𝐴 ⊕ 𝐵, ⊤, 0 additives
! 𝐴, ?𝐴 exponentials

sequents Γ, Δ, Θ ∶= ⊢ 𝐴1, …, 𝐴𝑛 with 𝑛 ≥ 0

Definition
Negation is the operation on formulas defined as

(𝐴 ⊗ 𝐵)⊥ ∶= 𝐴⊥ &𝐵⊥ (𝐴 ⊕ 𝐵)⊥ ∶= 𝐴⊥ & 𝐵⊥ (!𝐴)⊥ ∶= ?(𝐴⊥)
(𝐴 &𝐵)⊥ ∶= 𝐴⊥ ⊗ 𝐵⊥ (𝐴 & 𝐵)⊥ ∶= 𝐴⊥ ⊕ 𝐵⊥ (?𝐴)⊥ ∶= !(𝐴⊥)
(𝛼⊥)⊥ ∶= 𝛼 1⊥ ∶= ⊥ 0⊥ ∶= ⊤ ⊥⊥ ∶= 1 ⊤⊥ ∶= 0

By construction, 𝐴⊥⊥ = 𝐴.
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One-sided sequent calculus

Axiom and cut rules:

ax
⊢ 𝐴⊥, 𝐴

⊢ Γ, 𝐴 ⊢ Δ, 𝐴⊥
cut⊢ Γ, Δ

Multiplicatives:

⊢ Γ, 𝐴 ⊢ Δ, 𝐵 ⊗
⊢ Γ, Δ, 𝐴 ⊗ 𝐵

⊢ Γ, 𝐴, 𝐵 &
⊢ Γ, 𝐴 &𝐵

Additives:
⊢ Γ, 𝐴 ⊢ Γ, 𝐵 &

⊢ Γ, 𝐴 & 𝐵
⊢ Γ, 𝐴 ⊕1⊢ Γ, 𝐴 ⊕ 𝐵

⊢ Γ, 𝐵 ⊕2⊢ Γ, 𝐴 ⊕ 𝐵
Units:

1⊢ 1
⊤⊢ Γ, ⊤

⊢ Γ ⊥⊢ Γ, ⊥
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One-sided sequent calculus

Axiom and cut rules:
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Multiplicatives:
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⊢ Γ, 𝐴 &𝐵

Additives:
⊢ Γ, 𝐴 ⊢ Γ, 𝐵 &

⊢ Γ, 𝐴 & 𝐵
⊢ Γ, 𝐴 ⊕1⊢ Γ, 𝐴 ⊕ 𝐵

⊢ Γ, 𝐵 ⊕2⊢ Γ, 𝐴 ⊕ 𝐵
Units:

1⊢ 1
⊤⊢ Γ, ⊤

⊢ Γ ⊥⊢ Γ, ⊥
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One-sided sequent calculus

Axiom and cut rules:

ax
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Additives vs multiplicatives

Example: distributivity of ⊗ over ⊕.

ax
⊢ 𝐴⊥, 𝐴

ax
⊢ 𝐵⊥, 𝐵 ⊗

⊢ 𝐴⊥, 𝐵⊥, 𝐴 ⊗ 𝐵 ⊕1⊢ 𝐴⊥, 𝐵⊥, (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶)

ax
⊢ 𝐴⊥, 𝐴

ax
⊢ 𝐶⊥, 𝐶 ⊗

⊢ 𝐴⊥, 𝐶⊥, 𝐴 ⊗ 𝐶 ⊕2⊢ 𝐴⊥, 𝐵⊥, (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶)
&

⊢ 𝐴⊥, 𝐵⊥ & 𝐶⊥, (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶) &

⊢ 𝐴⊥ &(𝐵⊥ & 𝐶⊥), (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶)

Hence 𝐴 ⊗ (𝐵 ⊕ 𝐶) ⊸ (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶),
equivalently (𝐴⊥ &𝐵⊥) & (𝐴⊥ &𝐶⊥) ⊸ 𝐴⊥ &(𝐵⊥ & 𝐶⊥).
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⊢ 𝐴⊥, 𝐴
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⊢ 𝐴⊥, 𝐶⊥, 𝐴 ⊗ (𝐵 ⊕ 𝐶) &
⊢ 𝐴⊥ &𝐶⊥, 𝐴 ⊗ (𝐵 ⊕ 𝐶)

&
⊢ (𝐴⊥ &𝐵⊥) & (𝐴⊥ &𝐶⊥), 𝐴 ⊗ (𝐵 ⊕ 𝐶)

Hence (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶) ⊸ 𝐴 ⊗ (𝐵 ⊕ 𝐶),
equivalently 𝐴⊥ &(𝐵⊥ & 𝐶⊥) ⊸ (𝐴⊥ &𝐵⊥) & (𝐴⊥ &𝐶⊥).
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Exponentials

Contraction and weakening are crucial for logical expressiveness.
Linear logic provides them through modalities.

Allowed structural rules:
⊢ Γ, 𝐴 ?
⊢ Γ, ?𝐴

⊢ Γ w
⊢ Γ, ?𝐴

⊢ Γ, ?𝐴, ?𝐴
c

⊢ Γ, ?𝐴
Promotion:

⊢ ?𝐴1, …, ?𝐴𝑛, 𝐵
!

⊢ ?𝐴1, …, ?𝐴𝑛, !𝐵
Idea:

?𝐴 means “𝐴 some number of times”
!𝐴 means “as many 𝐴 as necessary”
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Exponentials – equivalences

Wrong but not too much:

?𝐴 =
∞

􏾘
𝑛=0

𝑛 &

𝑖=1
𝐴, !𝐴 =

∞

&
𝑛=0

𝑛

􏽿
𝑖=1

𝐴.

A bit less wrong:

?𝐴 =
∞ &

𝑛=0
(𝐴 ⊕ ⊥), !𝐴 =

∞

􏽿
𝑛=0

(𝐴 & 1).

Actually true:

!(𝐴 & 𝐵) ˛ !𝐴 ⊗ !𝐵
!𝐴 ⊗ !𝐴 ˛ !𝐴

!!𝐴 ˛ !𝐴
!?!?𝐴 ˛ !?𝐴
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Fragments

Many fragments are interesting:
(possibly) restrict the set of formulas
restrict the rules to allowed formulas
(possibly) further restrict the set of rules

For instance:
MLL = multiplicative = keep only ⊗ and &

MELL = multiplicative-exponential = remove additives
MALL = multiplicative-additive = remove exponentials
ILL = “intuitionistic” = two-sided, one formula on the right
focalized = more on this later
polarized = more on this later
LJ, LK = more on this later
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Plan

The proof-program correspondence

Linear sequent calculus

A bit of semantics
Cut elimination and consistency
Provability semantics
Proof semantics in coherence spaces

A bit of proof theory

Proof nets

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 28 / 84



The question of consistency

We have a definition of formulas, sequents and deduction rules. But
how do we know if the system is consistent?

Provability in LK is preserved through translations.
This is a good hint but it doesn’t say much of LL!
LL has a model in coherent spaces, of course.
But this does not inform us on the possibilities of the system.
Use the argument sequent calculus was built for:

Cut elimination.
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Consistency by cut elimination

Theorem (Admissibility of cut)
A sequent is provable if and only if it is provable without the cut rule.

Corollary (Consistency)
The empty sequent ⊢ is not provable.

Proof.
All rules except cut have at least one formula in conclusion.

Hence you cannot prove both 𝐴 and 𝐴⊥.
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Cut elimination

Define reduction rules over proofs that locally eliminate cuts.
Prove well-foundedness of the reduction relation.
Prove that irreducible proofs are cut-free.
Conclude.
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Cut elimination
Interaction rules

Tensor versus par

𝜋1
⊢ Γ, 𝐴

𝜋2
⊢ Δ, 𝐵 ⊗

⊢ Γ, Δ, 𝐴 ⊗ 𝐵

𝜋3
⊢ Θ, 𝐴⊥, 𝐵⊥ &

⊢ Θ, 𝐴⊥ &𝐵⊥
cut

⊢ Γ, Δ, Θ
↘

𝜋1
⊢ Γ, 𝐴

𝜋2
⊢ Δ, 𝐵

𝜋3
⊢ Θ, 𝐴⊥, 𝐵⊥

cut
⊢ Δ, Θ, 𝐴⊥

cut
⊢ Γ, Δ, Θ
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Cut elimination
Interaction rules

With versus plus

𝜋1
⊢ Γ, 𝐴

𝜋2
⊢ Γ, 𝐵 &

⊢ Γ, 𝐴 & 𝐵

𝜋3
⊢ Δ, 𝐴⊥

⊕1⊢ Δ, 𝐴⊥ ⊕ 𝐵⊥
cut⊢ Γ, Δ

↘
𝜋1

⊢ Γ, 𝐴
𝜋3

⊢ Δ, 𝐴⊥
cut⊢ Γ, Δ
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Cut elimination
Interaction rules

Promotion versus contraction

𝜋1
⊢ ?Γ, 𝐴 !
⊢ ?Γ, !𝐴

𝜋2
⊢ Δ, ?𝐴⊥, ?𝐴⊥

c
⊢ Δ, ?𝐴⊥

cut⊢ ?Γ, Δ
↘

𝜋1
⊢ ?Γ, 𝐴 !
⊢ ?Γ, !𝐴

𝜋1
⊢ ?Γ, 𝐴 !
⊢ ?Γ, !𝐴

𝜋2
⊢ Δ, ?𝐴⊥, ?𝐴⊥

cut
⊢ ?Γ, Δ, ?𝐴⊥

cut⊢ ?Γ, ?Γ, Δ
c

⊢ ?Γ, Δ
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Cut elimination
Interaction rules

… plus a few other cancellation rules …

left right action
⊗ & propagate the cuts to sub-formulas
1 ⊥ drop the proof of 1

⊕1 & keep only the left proof in the & rule
⊕2 & keep only the right proof in the & rule
! ? propagate the cut to the sub-formula
! w drop the proof from the promotion
! c duplicate the proof from the promotion
ax anything drop the axiom
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Cut elimination
Commutation rules

Commutation with tensor

𝜋1
⊢ Γ, 𝐴

𝜋2
⊢ Δ, 𝐵, 𝐶 ⊗

⊢ Γ, Δ, 𝐴 ⊗ 𝐵, 𝐶
𝜋3

⊢ Θ, 𝐶⊥
cut

⊢ Γ, Δ, Θ, 𝐴 ⊗ 𝐵
↘

𝜋1
⊢ Γ, 𝐴

𝜋2
⊢ Δ, 𝐵, 𝐶

𝜋3
⊢ Θ, 𝐶⊥

cut
⊢ Δ, Θ, 𝐵 ⊗

⊢ Γ, Δ, 𝐴 ⊗ 𝐵, 𝐶
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Cut elimination
Commutation rules

Commutation with “with”

𝜋1
⊢ Γ, 𝐴, 𝐶

𝜋2
⊢ Γ, 𝐵, 𝐶 &

⊢ Γ, 𝐴 & 𝐵, 𝐶
𝜋3

⊢ Δ, 𝐶⊥
cut

⊢ Γ, Δ, 𝐴 & 𝐵
↘

𝜋1
⊢ Γ, 𝐴, 𝐶

𝜋3
⊢ Δ, 𝐶⊥

cut
⊢ Γ, Δ, 𝐴

𝜋2
⊢ Γ, 𝐵, 𝐶

𝜋3
⊢ Δ, 𝐶⊥

cut⊢ Γ, Δ, 𝐵 &
⊢ Γ, Δ, 𝐴 & 𝐵
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Cut elimination
Commutation rules

… plus a lot more commutation rules …
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Normalization

With the right set of rules, clearly irreducible proofs are cut-free.
How to prove that reduction always terminates?

Using a clever induction on formulas and proofs.
Works only in the absence of second-order quantification.
Using reducibility candidates, like in system F.
Lots of technical points to cope with, but it works.
Indirectly through more tractable systems

polarized systems … more on this in a minute
proof nets … more on this later
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The question of completeness

How do we know we are not missing some rules?

Theorem (Completeness)
If a formula 𝐴 is satisfied in every interpretation, then ⊢ 𝐴 is provable in LL.

But what is an interpretation?

We need a structure that plays in LL the role of Boolean algebras in LK.
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Phase spaces

Definition
A phase space is a pair (𝑀, ⊥) where 𝑀 is a commutative monoid and ⊥
is a subset of 𝑀.

points of 𝑀 are tests/interactions/processes…
elements of ⊥ are successful tests, valid interactions…
⊥ is the rule of the game

Definition
Two points 𝑥, 𝑦 ∈ 𝑀 are orthogonal if 𝑥𝑦 ∈ ⊥.
For 𝐴 ⊆ 𝑀, let 𝐴⊥ ∶= 􏿺𝑦 ∈ 𝑀 􏿖 ∀𝑥 ∈ 𝐴, 𝑥𝑦 ∈ ⊥􏿽.
A fact is a set of the form 𝐴⊥.

Exercise: Prove that 𝐴 ⊆ 𝐵 implies 𝐵⊥ ⊆ 𝐴⊥

and that 𝐴 ⊆ 𝐴⊥⊥ and 𝐴⊥⊥⊥ = 𝐴⊥.

Facts play the role of truth values.
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Phase spaces
Connectives

Given (𝑀, ⊥), for subsets 𝐴, 𝐵 ⊆ 𝑀 define

𝐴 ⊗ 𝐵 ∶= 􏿺𝑝𝑞 􏿖 𝑝 ∈ 𝐴, 𝑞 ∈ 𝐵􏿽
⊥⊥

𝐴 &𝐵 ∶= (𝐴⊥ ⊗ 𝐵⊥)⊥

𝐴 ⊕ 𝐵 ∶= (𝐴 ∪ 𝐵)⊥⊥ 𝐴 & 𝐵 ∶= 𝐴 ∩ 𝐵 0 ∶= ∅⊥⊥ ⊤ ∶= 𝑀
!𝐴 ∶= (𝐴 ∩ 𝐼)⊥⊥ ?𝐴 ∶= (𝐴⊥ ∩ 𝐼)⊥ 1 ∶= {1}⊥⊥

where 𝐼 is the set of idempotents belonging to 1.

If propositional variables are interpreted as facts, then for any
formula 𝐴 the interpretation J𝐴K𝑀 is a fact.

𝐴 ⊸ 𝐵 = 𝐴⊥ &𝐵 = 􏿺𝑥 ∈ 𝑀 􏿖 ∀𝑦 ∈ 𝐴, 𝑥𝑦 ∈ 𝐵􏿽
If ⊥ = ∅ then we get the elementary Boolean algebra {∅, ⊤}.
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Phase spaces
Soundness and completeness

Theorem (Soundness)
If ⊢ 𝐴 is provable, then 1 ∈ J𝐴K𝑀 in any phase space 𝑀.

Exercise: Check it by induction over proofs.

Theorem (Completeness)
If 1 ∈ J𝐴K𝑀 in any phase space 𝑀, then ⊢ 𝐴 is provable.

Proof.
Take for 𝑀 the sequents (up to duplication of ? formulas) and for ⊥ the
provable ones. Check that J𝐴K𝑀 = 􏿺Γ 􏿖 ⊢ Γ, 𝐴 is provable􏿽. The neutral
element is the empty sequent so ⊢ 𝐴 is provable.
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Coherence spaces: interpreting formulas

Linear logic was extracted from the notion of linearity observed when
interpreting the 𝜆-calculus in coherence spaces. It can itself be
interpreted in coherence spaces:

Definition

􏿖𝐴⊥􏿖 = |𝐴| and 𝑥 ¨𝐴⊥ 𝑥′ unless 𝑥 ˝𝐴 𝑥′.
|𝐴 ⊗ 𝐵| = |𝐴 &𝐵| = |𝐴| × |𝐵| and

(𝑥, 𝑦) ¨𝐴⊗𝐵 (𝑥′, 𝑦′) if 𝑥 ¨𝐴 𝑥′ and 𝑦 ¨𝐵 𝑦′,
(𝑥, 𝑦) ˝𝐴 &𝐵 (𝑥′, 𝑦′) if 𝑥 ˝𝐴 𝑥′ or 𝑦 ˝𝐵 𝑦′.

|𝐴 ⊕ 𝐵| = |𝐴 & 𝐵| = ({1} × |𝐴|) ∪ ({2} × |𝐵|) and
(𝑖, 𝑥) ¨𝐴⊕𝐵 (𝑗, 𝑥′) if 𝑖 = 𝑗 and 𝑥 ¨ 𝑥′.
(𝑖, 𝑥) ¨𝐴&𝐵 (𝑗, 𝑥′) if 𝑖 ≠ 𝑗 or 𝑥 ¨ 𝑥′.

|!𝐴| is the set of finite cliques of 𝐴, 𝑥 ¨!𝐴 𝑥′ if 𝑥 ∪ 𝑥′ is a clique in 𝐴.

where 𝑥 ˝ 𝑥′ means 𝑥 ¨ 𝑥′ and 𝑥 ≠ 𝑥′.
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Coherence spaces: interpreting proofs
Identity

ax
⊢ 𝛼 ∶ 𝐴⊥, 𝛼 ∶ 𝐴

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴⊥, 𝛿 ∶ Δ
cut⊢ 𝛾 ∶ Γ, 𝛿 ∶ Δ

Multiplicatives

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴 ⊢ 𝛽 ∶ 𝐵, 𝛿 ∶ Δ
⊗

⊢ 𝛾 ∶ Γ, (𝛼, 𝛽) ∶ 𝐴 ⊗ 𝐵, 𝛿 ∶ Δ
⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴, 𝛽 ∶ 𝐵 &

⊢ 𝛾 ∶ Γ, (𝛼, 𝛽) ∶ 𝐴 &𝐵

Exponentials

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴
?

⊢ 𝛾 ∶ Γ, {𝛼} ∶ ?𝐴
⊢ 𝛾 ∶ Γ

w⊢ 𝛾 ∶ Γ, ∅ ∶ ?𝐴
⊢ 𝛾 ∶ Γ, 𝑎 ∶ ?𝐴, 𝑎′?𝐴

c
⊢ 𝛾 ∶ Γ, 𝑎 ∪ 𝑎′ ∶ ?𝐴

􏿺⊢ 𝑎1,𝑖 ∶ ?𝐴1, …𝑎𝑛,𝑖 ∶ ?𝐴𝑛, 𝑏𝑖 ∶ 𝐵􏿽
𝑖∈𝐼 !

⊢ ⋃
𝑖∈𝐼 𝑎1,𝑖 ∶ ?𝐴1, …⋃

𝑖∈𝐼 𝑎𝑛𝑖 ∶ ?𝐴𝑛, {𝑏𝑖 | 𝑖 ∈ 𝐼} ∶ !𝐵
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Coherence spaces: interpreting proofs
Identity

ax
⊢ 𝛼 ∶ 𝐴⊥, 𝛼 ∶ 𝐴

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴 ⊢ 𝛼 ∶ 𝐴⊥, 𝛿 ∶ Δ
cut⊢ 𝛾 ∶ Γ, 𝛿 ∶ Δ

Multiplicatives

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴 ⊢ 𝛽 ∶ 𝐵, 𝛿 ∶ Δ
⊗

⊢ 𝛾 ∶ Γ, (𝛼, 𝛽) ∶ 𝐴 ⊗ 𝐵, 𝛿 ∶ Δ
⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴, 𝛽 ∶ 𝐵 &

⊢ 𝛾 ∶ Γ, (𝛼, 𝛽) ∶ 𝐴 &𝐵

Exponentials

⊢ 𝛾 ∶ Γ, 𝛼 ∶ 𝐴
?

⊢ 𝛾 ∶ Γ, {𝛼} ∶ ?𝐴
⊢ 𝛾 ∶ Γ

w
⊢ 𝛾 ∶ Γ, ∅ ∶ ?𝐴

⊢ 𝛾 ∶ Γ, 𝑎 ∶ ?𝐴, 𝑎′?𝐴
c

⊢ 𝛾 ∶ Γ, 𝑎 ∪ 𝑎′ ∶ ?𝐴

􏿺⊢ 𝑎1,𝑖 ∶ ?𝐴1, …𝑎𝑛,𝑖 ∶ ?𝐴𝑛, 𝑏𝑖 ∶ 𝐵􏿽
𝑖∈𝐼 !

⊢ ⋃
𝑖∈𝐼 𝑎1,𝑖 ∶ ?𝐴1, …⋃

𝑖∈𝐼 𝑎𝑛𝑖 ∶ ?𝐴𝑛, {𝑏𝑖 | 𝑖 ∈ 𝐼} ∶ !𝐵

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 45 / 84



Coherence spaces: sanity check

Theorem
The set of tuples in the interpretation of a proof is always a clique.

Proof.
By a simple induction of proofs.

Theorem
The interpretation of proofs in coherence spaces is invariant by cut elimination.

Proof.
By case analysis on the various cases of cut elimination.
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Plan

The proof-program correspondence

Linear sequent calculus

A bit of semantics

A bit of proof theory
Intuitionistic and classical logics as fragments
Cut elimination and proof equivalence
Reversibility and focalization

Proof nets
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LJ expressed in linear logic

Linear logic arises from the decomposition

𝐴 ⇒ 𝐵 = !𝐴 ⊸ 𝐵 = ?𝐴⊥ &𝐵

Deduction rules can be translated accordingly:

Γ, 𝐴 ⊢𝐿𝐽 𝐵
Γ ⊢𝐿𝐽 𝐴 ⇒ 𝐵

↝ ⊢ Γ ∗, ?(𝐴∗)⊥, 𝐵∗ &
⊢ Γ ∗, ?(𝐴∗)⊥ &𝐵∗

Γ ⊢𝐿𝐽 𝐴 ⇒ 𝐵 Δ ⊢𝐿𝐽 𝐴
Γ, Δ ⊢𝐿𝐽 𝐵

↝
 

⊢ Γ ∗, ?(𝐴∗)⊥ &𝐵∗

⊢ Δ∗, 𝐴∗
!

⊢ Δ∗, !𝐴∗ ax
⊢ (𝐵∗)⊥, 𝐵∗

⊗
⊢ Δ∗, !𝐴 ⊗ (𝐵∗)⊥, 𝐵∗

cut
⊢ Γ ∗, Δ∗, 𝐵∗

The other connectives have adequate translations.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 48 / 84



LK expressed in linear logic
Classical sequents have the shape

𝐴1, …, 𝐴𝑛 ⊢ 𝐵1, …, 𝐵𝑝

with contraction and weakening allowed on both sides.
This suggests translating 𝐴 ⇒ 𝐵 into something like !𝐴 ⊸ ?𝐵.
This does not work, but !𝐴 ⊸ ?!𝐵 and !?𝐴 ⊸ ?𝐵 do work.

Theorem
A sequent is provable in classical sequent calculus if and only if its translation in
linear logic, by any of the above translations, is provable.

LK proofs are translated into LL proofs,
mapping linear connectives to classical ones is the reverse
translation.

Exercise: Prove that in more detail.
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LK as two fragments?

There are two families of translations:
“left-handed”: !?𝐴 ⊸ ?𝐵
the associated reduction for 𝜆-calculus is call by name
“right-handed”: !𝐴 ⊸ ?!𝐵
the associated reduction for 𝜆-calculus is call by value

More precise study of control operators is possible along these lines.
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Cut-elimination as computation

Let us look again at cut elimination.

It is a computational process for turning arbitrary proofs into cut-free
canonical proofs:

cut-free proofs are like values,
a proof of 𝐴 ⊸ 𝐵 maps values of 𝐴 to values of 𝐵,
equivalence modulo cut-elimination implies semantic equality.

Incidentally, it decomposes the reduction of the 𝜆-calculus.

It turns arbitrary proofs into explicit, direct proofs:
subformula property,
mechanical proof search is possible.

In the absence of second-order quantification.
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Type isomorphisms
Technical aside: 𝜂-equivalence

Consider possible cut-free proofs of 𝐴 ⊕ (𝐵 ⊗ 𝐶) ⊸ 𝐴 ⊕ (𝐵 ⊗ 𝐶).

ax
⊢ 𝐴⊥, 𝐴 ⊕1⊢ 𝐴⊥, 𝐴 ⊕ (𝐵 ⊗ 𝐶)

ax
⊢ 𝐵⊥, 𝐵

ax
⊢ 𝐶⊥, 𝐶 ⊗

⊢ 𝐵⊥, 𝐶⊥, 𝐵 ⊗ 𝐶
ax

⊢ 𝐵⊥ &𝐶⊥, 𝐵 ⊗ 𝐶 ⊕2⊢ 𝐵⊥ &𝐶⊥, 𝐴 ⊕ (𝐵 ⊗ 𝐶)
ax

⊢ 𝐴⊥ & (𝐵⊥ &𝐶⊥), 𝐴 ⊕ (𝐵 ⊗ 𝐶)
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Type isomorphisms
Technical aside: 𝜂-equivalence
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ax
⊢ 𝐴⊥, 𝐴 ⊕1⊢ 𝐴⊥, 𝐴 ⊕ (𝐵 ⊗ 𝐶)
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⊢ 𝐵⊥, 𝐵

ax
⊢ 𝐶⊥, 𝐶 ⊗

⊢ 𝐵⊥, 𝐶⊥, 𝐵 ⊗ 𝐶 &
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&
⊢ 𝐴⊥ & (𝐵⊥ &𝐶⊥), 𝐴 ⊕ (𝐵 ⊗ 𝐶)

We will consider these proofs as equivalent.
This is the LL version of 𝜂-equivalence in the 𝜆-calculus: 𝑡 ≃𝜂 𝜆𝑥.(𝑡)𝑥.
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Type isomorphisms

Definition
Two formulas 𝐴 and 𝐵 are isomorphic if

there are proofs 𝜋 ⊢ 𝐴⊥, 𝐵 and 𝜌 ⊢ 𝐵⊥, 𝐴
𝜋 cut with 𝜌 on 𝐴 is equivalent to the axiom on 𝐵
𝜋 cut with 𝜌 on 𝐵 is equivalent to the axiom on 𝐴

This implies isomorphism in any model.

These equivalences are isomorphisms:
𝐴 ⊗ 𝐵 ≃ 𝐵 ⊗ 𝐴 𝐴 ⊗ (𝐵 ⊕ 𝐶) ≃ (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶) !(𝐴 & 𝐵) ≃ !𝐴 ⊗ !𝐵

Exercise: Prove it!

These are not:
𝐴 ⊕ 𝐴 ˛ 𝐴 !𝐴 ⊗ !𝐴 ˛ !𝐴 !!𝐴 ˛ !𝐴 !?!?𝐴 ˛ !?𝐴

Exercise: Explain why!
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Standard isomorphisms

Remark that 𝐴 ≃ 𝐵 iff 𝐴⊥ ≃ 𝐵⊥.
Associativity and commutativity

(𝐴 ⊕ 𝐵) ⊕ 𝐶 ≃ 𝐴 ⊕ (𝐵 ⊕ 𝐶) (𝐴 ⊗ 𝐵) ⊗ 𝐶 ≃ 𝐴 ⊗ (𝐵 ⊗ 𝐶)
𝐴 ⊕ 𝐵 ≃ 𝐵 ⊕ 𝐴 𝐴 ⊕ 𝐵 ≃ 𝐵 ⊕ 𝐴
𝐴 ⊕ 0 ≃ 𝐴 𝐴 ⊗ 1 ≃ 𝐴

Distributivity

𝐴 ⊗ (𝐵 ⊕ 𝐶) ≃ (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶) 𝐴 ⊗ 0 ≃ 0

Exponentiation
!(𝐴 & 𝐵) ≃ !𝐴 ⊗ !𝐵 !⊤ ≃ 1
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Reversibility

The rules for &and & are reversible, i.e.
⊢ Γ, 𝐴 &𝐵 is provable iff ⊢ Γ, 𝐴, 𝐵 is provable,
⊢ Γ, 𝐴 & 𝐵 is provable iff ⊢ Γ, 𝐴 and ⊢ Γ, 𝐵 are provable,

i.e. one can always assume that the introduction rule for a &or for a &
comes last.

Moreover:
this can be proved directly using only permutations of rules
moving these rules down does not change the behaviour of the
proofs w.r.t. cut-elimination

&, &, ⊥, ⊤ are called negative.
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Focalization

Definition
A formula is positive if its main connective is ⊗, ⊕, 1, 0 or !.
It is negative if its main connective is &, &, ⊥, ⊤ or ?.

Let Γ = 𝑃1, …, 𝑃𝑛 be a provable sequent consisting of positive formulas
only. Then there is a formula 𝑃𝑖 and proof of ⊢ Γ of the form

𝜋1
⊢ Γ1, 𝑁1 ⋯

𝜋𝑘
⊢ Γ𝑘, 𝑁𝑘 𝑅

⊢ Γ1, …, Γ𝑘, 𝑃𝑖

where the 𝑁𝑗 are the maximal negative subformulas of 𝑃𝑖 and the last
set of rules 𝑅 builds 𝑃𝑖 from the 𝑁𝑗.
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Synthetic connectives

Let Φ(𝑋1, …, 𝑋𝑛) be a formula made of positive connectives from the
variables 𝑋1, …, 𝑋𝑛. Call Φ ∗ the dual of Φ.

Up to associativity/commutativity/neutrality, for some set
𝓘 ⊆ 𝒫({1, …, 𝑛}) one has

Φ(𝑋1, …, 𝑋𝑛) ≃ 􏾘
𝐼∈𝓘

􏽿
𝑖∈𝐼

𝑋𝑖 Φ ∗(𝑋1, …, 𝑋𝑛) ≃ &
𝐼∈𝓘

&
𝑖∈𝐼

𝑋𝑖

There is one family of rules
(⊢ Γ𝑖, 𝐴𝑖 )𝑖∈𝐼 Φ𝐼⊢ (Γ𝑖)𝑖∈𝐼 , Φ(𝐴1, …, 𝐴𝑛)

(⊢ Γ, (𝐴𝑖)𝑖∈𝐼 )𝐼∈𝓘 Φ ∗
⊢ Γ, Φ ∗(𝐴1, …, 𝐴𝑛)

Any provable sequent using Φ and Φ ∗ can be proved with these
rules without decomposing Φ and Φ ∗.

Push this further and you get ludics…
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Polarized linear logic

Since connectives of the same polarity behave well, let us restrict to a
system where polarities are never mixed:

𝑃, 𝑄 ∶= 𝛼, 𝑃 ⊗ 𝑄, 𝑃 ⊕ 𝑄, 1, 0, !𝑁
𝑀, 𝑁 ∶= 𝛼⊥, 𝑀 &𝑁, 𝑀 & 𝑁, ⊥, ⊤, ?𝑃

If 𝑃 is a positive formula where variables only appear under
modalities, then 𝑃 ⊸ !𝑃 is provable.
Hence the following rules are derivable:

⊢ Γ W⊢ Γ, 𝑁
⊢ Γ, 𝑁, 𝑁

C⊢ Γ, 𝑁
⊢ 𝑁1, …, 𝑁𝑛, 𝑁

!⊢ 𝑁1, …, 𝑁𝑛, !𝑁
Any provable polarized sequent has at most one positive formula
(assuming the ⊤ rule respects this as a constraint).

Push this further and you get LLP…
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Plan

The proof-program correspondence

Linear sequent calculus

A bit of semantics

A bit of proof theory

Proof nets
Intuitionistic LL and natural deduction
Proof structures
Correctness criteria
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Proof nets

Why would we need another formalism for proofs?
Cut elimination in LL requires a lot of commutation rules
as in other sequent calculi,
Proofs that differ only by commutation are equivalent w.r.t. cut
elimination.

On the other hand:
Normalization in the 𝜆-calculus only has one rule
unless we use explicit substitutions,
There are separation results.

We would like a natural deduction for LL.
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Intuitionistic LL
The 𝜆-calculus is simpler because it is asymmetric.
What if we made LL asymmetric too?

Definition (Formulas of MILL)

𝐴, 𝐵 ∶= 𝛼 propositional variable
𝐴 ⊸ 𝐵 linear implication
𝐴 ⊗ 𝐵 multiplicative conjunction

Definition (Proof terms for MILL)

𝑡, 𝑢 ∶= 𝑥 variable — axiom
𝜆𝑥.𝑡 linear abstraction — introduction of ⊸
(𝑡)𝑢 linear application — elimination of ⊸
(𝑡, 𝑢) pair — introduction of ⊗
𝑡(𝑥,𝑦∶=𝑢) matching — elimination of ⊗
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MILL – typing rules

Identity
ax

𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Implication

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 ⊸R
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 ⊸ 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 ⊸ 𝐵 Δ ⊢ 𝑢 ∶ 𝐴 ⊸E
Γ, Δ ⊢ (𝑡)𝑢 ∶ 𝐵

Tensor

Γ ⊢ 𝑡 ∶ 𝐴 Δ ⊢ 𝑢 ∶ 𝐵 ⊗R
Γ, Δ ⊢ (𝑡, 𝑢) ∶ 𝐴 ⊗ 𝐵

Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑡 ∶ 𝐶 Δ ⊢ 𝑢 ∶ 𝐴 ⊗ 𝐵
⊗E

Γ, Δ ⊢ 𝑡(𝑥,𝑦∶=𝑢) ∶ 𝐶

No contraction or weakening, of course.
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MILL – reduction

Definition
Cut elimination for MILL is generated by the following rules:

(𝜆𝑥.𝑡)𝑢 ⇝ 𝑡[𝑢/𝑥] 𝑡(𝑥,𝑦∶=(𝑢, 𝑣)) ⇝ 𝑡[𝑢/𝑥][𝑣/𝑦]

Theorem
Cut elimination in MILL computes a unique normal form for every proof.

Subject reduction: straightforward.
Strong normalization: each step decreases the number of typing rules.
Confluence: MILL is strongly confluent.

Linearity makes things simpler than in the 𝜆-calculus.
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MILL – a graphical notation
Axiom and linear implication

..

𝑥 ∶ 𝐴

.ax.

𝐴

.

𝑥

..

Γ

.

𝑡

.⊸.

𝐴 ⊸ 𝐵

.

𝑥 ∶ 𝐴

.

𝜆𝑥.𝑡

..

Γ

.

𝑡

.

Δ

.

𝑢

.⊸.

𝐵

.
𝐴 ⊸ 𝐵

. 𝐴.

(𝑡)𝑢
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MILL – a graphical notation
Tensor

..

Γ

.

𝑡

.

Δ

.

𝑢

.⊗.

𝐴 ⊗ 𝐵

.

(𝑡, 𝑢)

..

Γ

.𝑡.

Δ

.

𝑢

. ⊗.

𝐶

.
𝐴 ⊗ 𝐵

.

𝑡(𝑥,𝑦∶=𝑢)
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The substitution lemma

Lemma
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Δ ⊢ 𝑢 ∶ 𝐴

Γ, Δ ⊢ 𝑡[𝑢/𝑥] ∶ 𝐵 if Γ and Δ have disjoint domains.

The cut rule is admissible.
Graphically:

..

Γ

.

𝑡

. 𝐵.

Δ

.

𝑢
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Γ

.

𝑥 ∶ 𝐴

.
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.

𝑡

. 𝐵.

Δ

.

𝑢

. 𝐴
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MILL – graphical cut elimination
Linear implication

..

Γ

.

Δ

.

ax

.

𝑡

.

𝑢

.

⊸

.

⊸

. 𝐵
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MILL – graphical cut elimination
Linear implication

..

Γ

.

Δ

.

𝑡

.

𝑢

. 𝐵
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MILL – graphical cut elimination
Tensor

..

Γ

.

ax

.

ax

.

𝑡

.

Δ

.

𝑢

.

Θ

.

𝑣

.

⊗

.

⊗

.𝐶
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MILL – graphical cut elimination
Tensor

..

Γ

.

𝑡

.

Δ

.

𝑢

.

Θ

.

𝑣

.𝐶
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Proof structures

We extend the graphical formalism to MLL sequent calculus.
1 Allow several formulas on the right hand side of sequents.

⇒ arbitrary number of outputs

2 Reintroduce negation
⇒ transform a hypothesis into a conclusion and vice versa

3 Hard-wire De Morgan duality
⇒ negation is again an operation on formulas and sequents

4 Forget about inputs.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 69 / 84



Proof structures

We extend the graphical formalism to MLL sequent calculus.
1 Allow several formulas on the right hand side of sequents.

⇒ arbitrary number of outputs
2 Reintroduce negation

⇒ transform a hypothesis into a conclusion and vice versa

3 Hard-wire De Morgan duality
⇒ negation is again an operation on formulas and sequents

4 Forget about inputs.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 69 / 84



Proof structures

We extend the graphical formalism to MLL sequent calculus.
1 Allow several formulas on the right hand side of sequents.

⇒ arbitrary number of outputs
2 Reintroduce negation

⇒ transform a hypothesis into a conclusion and vice versa
3 Hard-wire De Morgan duality

⇒ negation is again an operation on formulas and sequents

4 Forget about inputs.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 69 / 84



Proof structures

We extend the graphical formalism to MLL sequent calculus.
1 Allow several formulas on the right hand side of sequents.

⇒ arbitrary number of outputs
2 Reintroduce negation

⇒ transform a hypothesis into a conclusion and vice versa
3 Hard-wire De Morgan duality

⇒ negation is again an operation on formulas and sequents
4 Forget about inputs.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 69 / 84



Proof structures – MLL proofs

..

𝜋

.

𝜌

.

⊗

.Γ. 𝐴 ⊗ 𝐵. Δ.

𝐴

.

𝐵

..

𝜋

.

&

.Γ. 𝐴 &𝐵.

𝐴

.

𝐵

..

ax

.𝐴⊥. 𝐴 ..

𝜋

.

𝜌

.

cut

.Γ. Δ.

𝐴⊥

.

𝐴
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𝜋

.

𝜌

.

⊗

.Γ. 𝐴 ⊗ 𝐵. Δ.

𝐴

.

𝐵

..

𝜋

.

&

.Γ. 𝐴 &𝐵.

𝐴

.

𝐵

..

ax

.𝐴⊥. 𝐴 ..

𝜋

.

𝜌

.

cut

.Γ. Δ.

𝐴⊥

.

𝐴
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Proof structures – a definition

Definition
An MLL proof structure is a directed multigraph

with edges labelled by MLL formulas and nodes labelled by rule
names or the symbol “c”,
with a total order on incoming and outgoing edges on each node,
where nodes have one of these shapes:

..

ax

.𝐴. 𝐴⊥

..

𝐴

.

𝐴⊥

. cut

..

𝐴

.

𝐵

.

⊗

. 𝐴 ⊗ 𝐵 ..

𝐴

.

𝐵

.

&

. 𝐴 &𝐵
The nodes labeled “c” are called the conclusions of the structure.
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Proof structures – an example
Rule commutations are ignored

ax
⊢ 𝐴⊥, 𝐴

ax
⊢ 𝐶⊥, 𝐶

ax
⊢ 𝐵⊥, 𝐵

⊗
⊢ 𝐶⊥ ⊗ 𝐵⊥, 𝐵, 𝐶

⊗
⊢ 𝐶⊥ ⊗ 𝐵⊥, 𝐴⊥, 𝐴 ⊗ 𝐵, 𝐶 &

⊢ 𝐶⊥ ⊗ 𝐵⊥, 𝐴⊥, (𝐴 ⊗ 𝐵) &𝐶 &

⊢ (𝐶⊥ ⊗ 𝐵⊥) &𝐴⊥, (𝐴 ⊗ 𝐵) &𝐶

..

⊗

.

&

.(𝐶⊥ ⊗ 𝐵⊥) &𝐴⊥.

⊗

.

&

. (𝐴 ⊗ 𝐵) &𝐶.

ax

.

ax

.

𝐶

.

𝐵

.

𝐶⊥

.

𝐵⊥

.

ax

.

𝐴⊥

.

𝐴
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Proof structures – an example
Not all proofs are identified
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Correctness

Not all proof structures are translations of sequential proofs:

..

&

.
⊗

.(𝐶⊥ &𝐵⊥) ⊗ 𝐴⊥.

&

.
⊗

. (𝐴 &𝐵) ⊗ 𝐶.

ax

.

𝐶⊥

.

𝐶

.

ax

.

𝐵⊥

.

𝐵

.

ax

.

𝐴⊥

.

𝐴

Indeed, the conclusion is not provable.
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Proof nets

Definition
A proof net is a proof structure that is the translation of some sequential
proof.

Exercise: Enumerate all the cut-free proof structures with conclusions
(𝐴⊥ ⊗ 𝐴⊥) &𝐴⊥, (𝐴 ⊗ 𝐴) &𝐴 and identify which ones are proof nets.
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Cut elimination in proof structures

Tensor versus par:

...

𝐴

.

𝐵

.

⊗
.

𝐴⊥

.

𝐵⊥

.
&

. cut
⇝

...

𝐴

.

𝐵

.

𝐴⊥

.

𝐵⊥

.

cut

. cut

Plus the same rules with the left and right premisses of the cut
exchanged.
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Cut elimination in proof structures

Axiom:

..𝐴.

ax

. cut.

𝐴
⇝ ..𝐴.

𝐴

This assumes that the right premiss of the cut node is not the left
conclusion of the axiom node.
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Cut elimination in proof structures

Theorem (Strong normalization)
In any MLL proof structure, all maximal sequences of cut elimination steps are
finite.

Each step decreases the number of nodes.

Theorem (Strong confluence)
They all have the same length and they all reach the same irreducible proof
structure (up to graph isomorphism).

The only critical pairs are in these situations:

..A.

ax

. cut.

ax

. A ..

A

. cut.

ax

. cut.

A
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Correctness

Theorem (Subject reduction)
Irreducible proof structures are cut free.
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Correctness

Problem
Not all irreducible proof structures are cut free.

..

ax

.cut

Related problem
How do we know that reducing a proof net gives a proof net?
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Correctness criteria

A correctness criterion is characterization of correct proofs among
proof structures.

It should be reasonably easy to prove that correctness is preserved
by cut elimination.
The complexity of actually computing whether a structure satisfies
the criterion is directly related to the complexity of the decision
problem for the considered logic.

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 79 / 84



Reversibility revisited

The &nodes in conclusion are irrelevant for correctness:

..

⊗

.

⊗

.

&

.(𝐶⊥ ⊗ 𝐵⊥) &𝐴⊥.

&

. (𝐴 ⊗ 𝐵) &𝐶.

ax

.

ax

.

𝐶

.

𝐵

.

𝐶⊥

.

𝐵⊥

.

ax

.

𝐴⊥

.

𝐴
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Reversibility revisited

The &nodes in conclusion are irrelevant for correctness:

..

⊗

.

⊗

.𝐶⊥ ⊗ 𝐵⊥. 𝐴⊥. 𝐴 ⊗ 𝐵. 𝐶.

ax

.

ax

.

𝐶

.

𝐵

.

𝐶⊥

.

𝐵⊥

.

ax

.

𝐴⊥

.

𝐴
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Switchings

The reversibility property can be applied even inside proofs:

..
Δ

.
Φ(𝐴 &𝐵)
.

𝐴

.

𝐵

.
𝐴 &𝐵
.

&
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Switchings

The reversibility property can be applied even inside proofs:

..
Δ

.
Φ(𝐴)
.

𝐴

.

𝐵

.
𝐴

.
𝐵

Emmanuel Beffara (IML, Marseille) Introduction to linear logic Torino – 27/8/2013 81 / 84



Switchings

The reversibility property can be applied even inside proofs:

..
Δ

.
Φ(𝐵)
.

𝐴

.

𝐵

.
𝐵

.
𝐴
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Switchings

The reversibility property can be applied even inside proofs:

..
Δ

.
Φ(𝐵)
.

𝐴

.

𝐵

.
𝐵

.
𝐴

Lemma
If 𝜋 is a correct cut-free proof structure, then all its &-switchings are correct.
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Switchings

How can we recognize if a proof structure with only axioms and tensors
is correct?

..

𝜋

.

𝜌

.

⊗

.Γ. 𝐴 ⊗ 𝐵. Δ.

𝐴

.

𝐵

..

ax

.𝐴⊥. 𝐴

Fact
The structures built using these rules are the acyclic and connected ones.
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The DR criterion

Theorem (Danos-Regnier)
An MLL proof structure is sequentializable if and only if all its switchings are
acyclic and connected.

The “only if” part is essentially contained in the previous
arguments.
For the “if” part, the key point is to prove that the condition
implies the existence of a splitting ⊗ node.

More on this tomorrow…
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Cut elimination preserves correctness

Take a tensor/par cut.

...

𝐴

.

𝐵

.

𝐴⊥

.

𝐵⊥

.

⊗
. cut.

&
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Cut elimination preserves correctness

Switch it.

..

𝜋1

.

𝜋2

.

𝜋3

.

𝜋4

.

⊗
. cut
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Cut elimination preserves correctness

It is connected.

..

𝜋1

.

𝜋2

.

𝜋3

.

𝜋4

.

⊗
. cut
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Cut elimination preserves correctness

It is connected and acyclic.
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Cut elimination preserves correctness

It is connected and acyclic.

..

𝜋1
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Cut elimination preserves correctness

Reduce the cut.

..

𝜋1

.

𝜋2

.

𝜋3

.

𝜋4

.

cut

.

cut
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