
Proposal: Protocol Oriented Service Deployment Platform

Anis Benyelloul

anis.benyelloul at gmail.com

June 2008

Abstract

Web services represent a first step towards seamless
and easy application integration. Web service proto-

cols represent an enhancement over web service in-
terface description, that describes all the possible se-
quences of expected and sent messages of a service.
Most existing tools for leveraging service protocols
are design-time tools. The present work introduces
a service deployment platform that provides runtime

support for service protocols. The platform is being
developed on top of Apache Axis2 web service imple-
mentation.

1 Introduction

The main purpose of SOA is to interconnect indepen-
dent applications in order to build new ones. One of
the most important issues that arise is how to make
sure that two different applications, that were de-
veloped independently and that run on two different
platform are going to interoperate.

Web services are a first step towards the solution.
Web services’ purpose is to standardize the lower lev-
els of communication to make sure that messages ex-
changed between two services always follow the same
format and data representation (SOAP) and to de-
fines the messages that a service can receive/send
as well as the corresponding arguments number and
types (WSDL).

What web services do not address is how a service
behaves dynamically. For example, if a web service
accepts an operation “cancel” but only at certain
points during the interaction, there will be no way

(except from a documentation in a natural language)
to guess it from any web service artifact.

This is what Service Protocols try to do: Describe
how an interaction with a service behaves dynami-

cally. In other words, at each point in an interaction,
the set of all possible messages a service might send,
and the set of all possible messages a service expects

to receive.
The most common model for service protocols is

Finite State Machines(FSM). The states are the ab-
stract individual states a service can be in, while tran-
sitions represent messages sent or messages received
(the sending or reception of a message is what makes
a service move from one state to another).

All in all, a service protocol can be seen as an ex-

tension to the WSDL specification, that gives higher
level information about how to use a service.

2 Existing Work

Many past projects (c.f [1, 3, 2]) tried to exploit the
notion of service protocols to implement tools that
support service implementation and protocol com-
patibility check. Following is a non-comprehensive
list of work on the subject:

Protocol operations Given two protocols (FSM):

• Say if they are compatible;

• Say if they are partially compatible (if there
are some execution scenarios where they
may interoperate);

• Say if they are replaceable (if you can
replace one service protocol with another
without breaking clients of the service);

1



• Compute the intersection of two protocols;

• Compute the difference between two proto-
cols.

Implementation verification :

• Given a service implementation, say if it
conforms to a specified protocol. For ex-
ample we could imagine that all book sell-
ers would agree on one standard protocol
for selling books, and than new book sellers
could check their implementation against
the standard protocol;

• Given a service protocol to conform to, gen-
erate a code template for implementing the
service;

• Given a trace log of an interaction, extract
as much information as possible about the
protocols of the two services

3 Proposal

Most of the existing support for protocol oriented ser-
vice design takes the form of design time tools.

The proposal is to create a Protocol Oriented Ser-

vice Deployment Platform whose objective is to pro-
vide runtime support for protocol oriented service de-
sign.

The following two sections explain the service
model around which the platform revolves and the
specific runtime support it can offer to developers.

3.1 Service Model

In this model, we consider that each service is a black
box that needs to communicate with other services.
For each remote service it needs to interact with a
service exposes an “interface”. An interface defines:

• The set of all messages (method names and ar-
guments) that a service might send and receive
(e.g using WSDL);

• The protocol that this interface conforms to. In
other words, the specification of the messages

that can be sent to the interface, and the mes-
sages that the service can send through it, at
each point during an interaction.

Protocols are modeled as finite state machines. Each
protocol starts in an initial “begin” state. Transitions
represent either a message being sent or received.
The set of all transitions going out of a state represent
all the messages that the service might send/receive
in that state. When a message is sent or received the
corresponding transition is activated and the protocol
moves to the next state, if such a transition does not
exist a “protocol conformance error” is generated.

We do not make the distinction between “server”
services and “client” services. We consider that both
have to expose an interface, and that the interaction
will occur when the two interfaces are “connected”.
No one has to be thought of as the “client service” or
the “server service”, once the interfaces are connected
communication is symmetrical and bidirectional.

On important aspect is that the actual connections
(bindings) between interfaces are not encoded in the
service implementation itself, but are provided as a
separate deployment description file.

3.2 Runtime support

The actual contribution of this work is a service de-
ployment platform that provides runtime support for
the previously described service model. Specifically
the support consist of:

API The platform comes with an API that facili-
tates the development of services according to
the model;

Protocol Enforcement The platform keeps track
and maintains the current FSM-state for each
interface of the service. This permits to filter
non-expected incoming messages at the middle

ware level, without having to write unexpected
message handlers in the service code itself. The
platform also (optionally) filters out going mes-
sages to make sure they are in conformance with
the exposed protocol.

Synchronization The platform makes sure both
sides of an interaction see the same sequence of

2



message exchange, in order for the protocols to
remain synchronized. This is important because
the networks are asynchronous by nature, and
we can have both services send a message at the
same time, in which case they may see a differ-
ent message sequence (e.g they may both think
their their own message was sent before the other
one’s). So they may no longer agree on the cur-
rent interaction point.

Interface Exposure The platform exposes the in-
terface of the deployed services for potential ser-
vice users. Additionally, upon deployment, the
platforms checks if one of the remote services
support protocol interfaces (e.g it is deployed on
another instance of the platform), and if it’s the
case downloads the remote protocol and checks
if it’s compatible with the local one.

4 Implementation

The platform is currently being developed on top of
Apache Axis2 web service implementation.

References

[1] Benatallah, B., Casati, F., and Toumani,

F. Web service conversation modeling: A corner-
stone for e-business automation. IEEE Internet

Computing 8, 1 (2004), 46–54.

[2] Benatallah, B., Casati, F., and Toumani,

F. Representing, analysing and managing web
service protocols. Data Knowl. Eng. 58, 3 (2006),
327–357.

[3] Yellin, D. M., and Strom, R. E. Proto-
col specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19, 2 (1997), 292–
333.

3


