
Joseph Fourier University

Master 2nd Year in Computer Science
(Software Architecture and Databases)

Title:

Protocol Oriented Service Deployment
Platform

Author:
Anis Benyelloul (anis.benyelloul [at] gmail [dot] com)

Joseph Fourier University (Grenoble1), Grenoble, France

Supervisor:
Ishikawa Fuyuki (f­ishikawa [at] nii.ac.jp)

National Institute of Informatics(NII), Tokyo, Japan

SCHOOL YEAR 2007/2008

Protocol Oriented Service Deployment
Platform

Author: Anis Benyelloul
anis.benyelloul [at] gmail [dot] com

Joseph Fourier University, Grenoble, France

Supervisor:
Ishikawa Fuyuki

f-ishikawa [at] nii.ac.jp

National Institute of Informatics (NII), Tokyo, Japan

School Year 2007/2008

Contents

1 Introduction to Service Oriented Computing 1
1.1 Introduction . 1
1.2 SOA, Beyond the hype . 2

1.2.1 Lack of focus . 2
1.2.2 Service Oriented Architecture 4
1.2.3 Wrap up . 5

1.3 Fundamental SOA . 6
1.3.1 An analogy . 6
1.3.2 Services Are Units of Encapsulation 7
1.3.3 How services interact 8
1.3.4 How services communicate 9
1.3.5 How services are designed 9

1.4 SOA in practice . 12
1.4.1 Contemporary SOA addresses quality of service issues . 12
1.4.2 Contemporary SOA is fundamentally autonomous . . . 13
1.4.3 Contemporary SOA is based on open standards 13
1.4.4 Contemporary SOA supports vendor diversity 14
1.4.5 Contemporary SOA promotes service discovery 15

2 Service Protocols: Enhanced Interface Specifications 17
2.1 Introduction . 17
2.2 Service Protocols . 21

2.2.1 Examples . 23
2.2.2 Service Protocol Semantics 27

3 Protocol Oriented Service Deployment Platform 33
3.1 Introduction . 33
3.2 Service Model . 34

1

3.2.1 Multiple interfaces per service 34
3.2.2 Service Containers and Service Cores 35

3.3 Protocol Oriented Service Deployment Platform 37
3.4 Message Synchronization . 38
3.5 Service Protocol Enforcement 40
3.6 Application Programming Interface 41
3.7 Interface Exposure . 41

4 Conclusion & Future Work 43

2

List of Figures

1.1 Services can encapsulate various amounts of logic. 8
1.2 Because it has access to service B’s service description, service

A has all of the information it needs to communicate with
service B . 9

1.3 The message is the basic unit of communication in SOA 10
1.4 Service orientation is about how to design the services, the

descriptions and the messages 11
1.5 Open standards and technologies are used inside and outside

solution boundaries . 14
1.6 Thanks to open standards inter-operation across platform be-

comes possible. 15

2.1 RSS feed service protocol . 24
2.2 eStore service protocol . 26
2.3 Algorithm to produce the Equiv set of two protocols 31
2.4 Algorithm to tell if two protocols have no undefined receptions 31
2.5 Algorithm to tell if two protocols have no deadlocks 32

3.1 A service having multiple interfaces. Each interface having a
corresponding WSDL specification as well as a protocol 35

3.2 A travel agency example. Each service can talk to multiple
other services and has one interface per partner service 36

3.3 A service implementation is composed of two parts: the ser-
vice independent code (the service container) and the service
dependent code (the service core) 37

3.4 Two “theoretically compatible” services, but incompatible with-
out message synchronization 39

3

3.5 Timeline trace of a message exchange between the services of
figure 3.4, that leads to unspecified receptions 40

4

Abstract

Service Oriented Computing is gaining momentum and interest both in the
industry and in the research domain as the paradigm for the next generation
of business software architecture. In this context, one particular aspect has
been receiving much attention lately: service protocols. Service protocols are
enhanced interface descriptions that contain not only the enumeration of the
possible messages that a service can send and receive but also the sequencing
constrains that must apply for a conversation to be valid. The purpose of this
work is to show how the idea of service protocols can be leveraged at runtime,
and how to design a “protocol oriented service deployment platform” that
implements those concepts.

Résumé

L’architecture orienté services (SOA) intéresse de plus en plus l’industrie
et le domaine de la recherche comme paradigme pour la prochaine génération
d’architecture logiciel de gestion d’entreprise. Dans ce contexte, un aspect
particulier reoit une attention particuliere : les protocoles de services. Les
protocoles de service sont des descriptions augmentées d’interface qui con-
tiennent non seulement l’énumération des messages possibles qu’un service
peut envoyer et recevoir mais galement les contraintes d’ordonnancement
qui doivent s’appliquer pour qu’une conversation avec le service soit valide.
L’objectif de ce le travail est de montrer comment l’idée des protocoles de
service peut être appliquée au moment de d’exécution, et comment concevoir
une plate-forme de déploiement de service orientée protocoles mettant en
application ces concepts.

Chapter 1

Introduction to Service
Oriented Computing

Contents
1.1 Introduction . 1

1.2 SOA, Beyond the hype 2

1.3 Fundamental SOA 6

1.4 SOA in practice 12

1.1 Introduction

Nowadays, and more then ever before, business IT is put under high com-
petitive pressure, and software systems are now required to adapt quickly
and meet the requirements of an ever growing and fast changing market cli-
mate. Most of today existing infrastructures were not meant to cope with
rapid adaptation and restructuring requirements, which adds another level
of intricacy to an already complex IT landscape[10].

Specifically, the two most important requirements that modern IT are re-
quired to meet are: integration and infrastructure management. Integration
means being able to efficiently combine and reuse existing assets both inside
and across enterprise boundaries to create business value, despite the fact
that all the individual parts have never been meant to be used together, use
different conventions, are based on different platforms, etc. Infrastructure

1

management addresses two objectives: Automation and virtualization of the
environment. Automation aims at keeping the necessary human intervention
to a minimum, and reduce management complexity to enable better use of
assets. Environment virtualization aims at making all enterprise assets easily
accessible from anywhere, just like if there were local[10].

In this context, Service Oriented Architecture (SOA) is perceived by many
as the software engineering paradigm for the next generation of business soft-
ware. One that will permit rapid development, as well as fast re-configuration
and re-composition of existing software assets.

On the other hand, it seems that the most important hurdle that could
prevent wide adoption of SOA is actually a lack of understanding about the
real concept behind it. The next sections will try to show why, as well as
give some insight to help establishing a better understanding of the most
fundamental ideas.

We will first try to give a general overview by focusing on what’s really
new about the concept of SOA. After that, we’ll take a step back and consider
each concept and characteristic in more detail.

1.2 SOA, Beyond the hype

1.2.1 Lack of focus

It seems that the main source of misunderstandings about SOA comes from
the fact that most introductory resources on the subject put the focus on
the wrong concepts or properties, or do not insist enough on the actually
relevant and distinguishing concepts that underlie SOA.

Many resources try to define SOA by defining what a service is, and they
often end up with statements such as:

A service is the fundamental, and primitive component of SOA.
A service fulfills a function that is well-defined, self-contained,
and does not depend on the context or state of other services.

This is correct, but the same definition could apply to the classical “proce-
dure” of the procedural programming paradigms of the 70s, and thus it does
not tell much about what SOA is.

Other possible definitions of SOA include:

2

SOA is about decomposing applications into loosely-coupled parts
(called services) that have a clearly defined interface which pro-
motes evolution, reusability and composability.

Again, this is true but not different from what Object Oriented Programming
has been trying to achieve since its introduction in the 80s.

Other papers yet introduce Web services along with the definition of SOA.
But as many authors have already noted [9]:

• There is nothing new about the concept of Web services, it is just a new
form of distributed computing based on open standard (like CORBA).

• When it comes to SOA, Web Services are just one possible implemen-
tation platform, and certainly not part of the concept of SOA itself.

Some resources also try to include business process management concepts
into SOA:

SOA purpose is the control business processes, establishing corporate-
wide security, privacy, and implementation policies, and providing
auditable information trails, are all examples of ways that SOA
can reduce several of the risks facing companies today.

The companies that actually didn’t have any form of privacy, security and
implementation policies, even long before the advent of SOA, were very sel-
dom. Besides, business process modeling is just one possible application
domain of SOA, and again not part of the concept of SOA itself.

All in all, among the most common mistake we make when trying to
introduce SOA is to put the focus on:

Properties of Service Oriented Software such as loose-coupling, reusabil-
ity, clear interface/implementation separation, abstraction. . . these are
actually the well known properties of “good” software design that are
carried over to the SOA world, but they should not be used as a foun-
dation for understanding SOA.

Web Services Web services is just one possible implementation platform
for SOA, and does not bring any new ground breaking ideas compared
to existing distributed application middlewares[9].

3

Business Process Management Which is one possible application do-
main for SOA, and thus should not serve as a base for explaining what
SOA is.

As a result of this confusion some authors arrived at the conclusion that
there is nothing really new about the concept of SOA, that it is just a “hype”
or a yet another technology buzzword[11].

1.2.2 Service Oriented Architecture

In order to precisely yet fully understand the concept, it useful to split the
problem into two parts: the objective of SOA and the approach of SOA.

The Objective

The “objective” is what SOA strive to achieve. The visionary promise of
SOA is a world were one could develop new applications by leveraging ex-
isting ones. This concept comes as the logical evolution of previous re-use
efforts that were first trying to reuse procedures, then procedure libraries
(e.g numerical analysis libraries), then classes and class libraries (e.g GUI
toolkits), then came the component based software development (CBSD)
paradigm which promotes the idea of being able to build software by easily
assembling existing components without having to write much code yourself.
The next step in this evolution is to be able to reuse entire applications.

Re-using applications does no mean that you “download” them (or part
of them) and link them into your own (this would be traditional class library
or CBSD reuse). It means that the applications are already deployed and
used, that their maintenance and evolution is under the responsibility of
other people. One just has to leverage that application (where is it) and use
its functionalities for his own purposes.

The fact that you can also reuse application across organization bound-
ary, means that your own software would be composed of parts that are
actively run and under control of third parties. This means that application
development time can be dramatically reduced (you now have a much larger
scope of existing software to choose from). But this obviously comes at the
cost of a lot of issues (both technical and non-technical) that are beyond the
scope of this work.

SOA is also different from traditional distributed computing. In the sens
that, in the latter, you create an application that you “split” across a network

4

of hosts. SOA adopts almost the opposite approach where you create new
applications by “assembling” remotely available functionality.

The Approach

The “approach” defines how does SOA try to achieve its objective. This
is where the notion of “service” come in. In order to be able to re-use ex-
isting applications they must expose their functionality as externally visible
“services”, which are simply a set of “operations” or “functions” (function
names and arguments). This means that software developers must now in-
tegrate the idea that their applications could be remotely re-used by other
ones, and thus make their design in a such a way that they can expose key
functionalities as services.

1.2.3 Wrap up

In order to make the definition more comprehensive we can add the following
points:

• Web services are currently the most common and widely adopted imple-
mentation platform for SOA software systems. They define a common
set of file and message format, that enables the inter-operability of ap-
plications running on different environments/platforms (e.g integrating
a Java EE application with a .Net one)

• The most promising application domain for SOA seems to be business
process modeling. Where each service becomes the entry point for the
implementation of a business process.

• The fact of having to think of applications as composed and from dif-
ferent other applications that are run and maintained by third parties
(possibly in an other organization) actually implies that the interfaces
between the applications need to be designed in a way that permits
the application evolution without breaking the clients. Which in turn
means that it will most likely lead to clean and well designed architec-
tures: these are the good “side effects” of SOA.

From what has been seen, it is necessary to distinguish between the dif-
ferent ideas revolving around the notion of SOA if we want to be able to pin

5

point the essential concepts behind it, the ones that set it aside from the
previous paradigms. This is essential to form a sound base of understanding
that will enable both industry wide adoption and research development.

1.3 Fundamental SOA

Due to its recent introduction in the field, service oriented computing has
been getting a lot of attention both from the research and from the business
IT industry. As a result, a whole cloud of additional concept and prop-
erties often gets associated with the basic principle behind SOA (which is
application re-use, within and across organization boundaries, as seen in the
previous section).

This section will try to give more comprehensive overview of service ori-
entation, by detailing the most common “SOA good practices” and “design
guide lines” as well as giving the most common design properties that every
proper service oriented architecture has.

1.3.1 An analogy

In order to understand the idea behind service orientation, it is useful to take
the analogy of nowadays business companies. Business companies rarely work
in isolation, most of them will have to interact with many other companies
in order to produce value. For example, a “farm” company that grow apples
need to form relationships with e.g a fertilizer company, from which it can
buy fertilizer, in addition it will need a relationship with e.g a jam factory
company, to which it may sell its products. The jam company will then need
an agreement with a distribution company to bring its content to the market,
and maybe a separate advertisement company to make its products known
to the public.

In order to create healthy and durable relationships that are profitable
for both parties, companies need to setup a set of agreed upon “conventions”
and standards (for example a common currency for the exchange of goods
and services) for their interaction, most of the time they also have to both
agree on a “contract” that defines the commitments that both parties make
as well as the expectation each party hold upon the other as far as their
interaction is concerned.

6

Each company tries to strike a balance between the following two con-
flicting drives:

• The need to retain its independence, to be able to evolve freely and
easily choose a different partner company whenever the opportunity
arises.

• The need to make each interaction and partnership as effective as pos-
sible. This may lead the company to try to adapt some of its infras-
tructures to accommodates its current particular partner company.

The challenge is to create links that are tight enough to make the partnership
efficient, but still loose enough so that, at a global level, the business company
market retains its dynamic nature and its ability to adapt changes.

In essence, today’s business companies form a network of interdepen-
dence. Each element in the network is completely self-managed and inde-
pendent from the others, yet, it needs to interact with its neighbour ele-
ments in order to produce value. This is essentially the idea behind “service
orientation”.

Similarly to this analogy, SOA is about making each individual compo-
nent of a big software system independent, self-managed and able to evolve
independently from the others, but at the same time, in conformance with a
certain set of standards and convention that will ensure the required inter-
operability of each component with its environment. In the context of service
oriented architecture components are referred to as “services”.

1.3.2 Services Are Units of Encapsulation

Each service encapsulates a certain “processing logic” that basically repre-
sents the task it is supposed to fulfill. The concern addressed by a service can
be small (small granularity services, usually taking care of low level and/or
purely technical aspects of a software system), or large (coarse granularity
services, usually representing high level concepts such as entire business pro-
cesses).

Further more, service logic can encompass the logic provided by other
services, in which case it is referred to as a “compound service”.

As shown in Figure 1.1, when building an automation solution consisting
of services, each service can encapsulate a task performed by an individual

7

step or a sub-process comprised of a set of steps. A service can even en-
capsulate the entire process logic. In the latter two cases, the larger scope
represented by the services may encompass the logic encapsulated by other
services.

Figure 1.1: Services can encapsulate various amounts of logic.

1.3.3 How services interact

Individual services can be used by “client programs” or by other services. In
order for an entity (be it a service itself or not) to interact correctly with a
service, it needs to be aware of it. The required information to use a service
is contained in its “service description”.

The purpose of a service description is to provide information about the
interface of a service to potential service users. At the very least, this should
include the name of all the supported operations, the parameters and data
types expected and returned by a service.

The fact that services are able to “describe themselves” by providing their
interface description to potential clients results in a loose coupled relation

8

between the service and its users. For example, Figure 1.2 illustrates that
service A is aware of service B because service A is in possession of service
B’s service description.

Figure 1.2: Because it has access to service B’s service description, service A
has all of the information it needs to communicate with service B

1.3.4 How services communicate

Service interactions imply data exchange. Thus, it is necessary to define
a communication framework allowing easy interoperability between services
while preserving the loosely coupled quality of service’s interactions. One
such framework is “messaging”.

Messages are independent units of communication that can carry all sort
of “meta-information” (in addition to the message content itself) that will
permit to implement many communication-related features such as quality
of service properties (see Figure 1.3).

1.3.5 How services are designed

So far, we’ve described SOA as a set of services exposing their service descrip-
tion to others and using a common messaging framework to communicate.
This forms the basic architecture. The distinguishing aspects of SOA that
makes this different from traditional distributed architecture that support
messaging and a separation of interface from processing logic, is how the

9

Figure 1.3: The message is the basic unit of communication in SOA

three core components (services, descriptions, and messages) are designed.
This is where “service orientation” comes into play.

Much like object-orientation, service-orientation has become a distinct
design approach which introduces commonly accepted principles that govern
the positioning and design of our architectural components (Figure 1.4).

The application of service-orientation principles to processing logic re-
sults in standardized service-oriented processing logic. When a solution is
comprised of units of service-oriented processing logic, it becomes what we
refer to as a service-oriented solution.

The key principles of service orientation are:

Loose coupling Services maintain a relationship that minimizes dependen-
cies and only requires that they retain an awareness of each other.

Service contract Services adhere to a communications agreement, as de-
fined collectively by one or more service descriptions and related doc-
uments.

Autonomy Services have control over the logic they encapsulate.

Abstraction Beyond what is described in the service contract, services hide
logic from the outside world.

Reusability Logic is divided into services with the intention of promoting
reuse.

10

Figure 1.4: Service orientation is about how to design the services, the de-
scriptions and the messages

Composability Collections of services can be coordinated and assembled
to form composite services.

Statelessness Services minimize retaining information specific to an activ-
ity.

Discoverability Services are designed to be outwardly descriptive so that
they can be found and assessed via available discovery mechanisms.

Now that we have defined the three core components of SOA (services,
descriptions and messages), and a set of principles that should guide the
design of those components, all that is missing an implementation platform
that will allow us to pull these pieces together to build service-oriented au-
tomation solutions. The “Web service” technology set and standards offers
such a platform.

11

1.4 SOA in practice

The industry world has had a great influence on SOA. As new practical
problems arouse, new solutions had to be invented and put to practice. The
fundamental SOA principles remain, but those requirement-driven evolutions
have shaped the real world look of SOA.

Major software vendors play an important role in this context. As they
are constantly addressing real world problems, and creating increasingly pow-
erful XML and Web service support into their product platforms. The result
is an extended variation of service oriented architecture we refer to as “con-
temporary SOA”.

Although the actual implementations and feature set vary from vendor
to vendor (and from vendor product to the other), contemporary SOA has
come to a point where a set of common characteristics start to become the
“de facto” standard. Exploring those characteristics will give a better idea of
how nowadays IT businesses are actually leveraging the fundamental aspects
of SOA to respond to their infrastructure and evolution requirements.

Specifically, we explore the following primary characteristics. Contempo-
rary SOA:

• Addresses quality of service issues;

• Is fundamentally autonomous;

• Is based on open standards;

• Supports vendor diversity;

• Promotes service discovery;

1.4.1 Contemporary SOA addresses quality of service
issues

Enterprises tend to have strong reliability requirements regarding their soft-
ware infrastructures. Thus, there has been many efforts to bring quality of
service issues (reliability, safety, speed) into SOA.

The most important quality of service issues are:

Security Includes the protection of messages (encryption) as well as setting
up permission policies for the use of individual services (e.g through
the use of “accounts” and “login” operations in services)

12

Quality of message delivery Includes features to maximise the probabil-
ity that a message reaches its final destination, as well as exception
mechanism to notify a service about the failure in a delivery.

Performance Includes features to make sure the overhead imposed by XML
(and derived standards: SOAP, WSDL, etc) does not become a perfor-
mance bottle-neck.

Transactions Are essential to any business activity to protect the integrity
and coherence of data in case of exceptions.

Many of such requirements are addressed by individual web service extension
standards and specifications. The ultimate objective being to enhance the
primitive SOA model with “quality of service” capabilities.

1.4.2 Contemporary SOA is fundamentally autonomous

Autonomy is one of the fundamental concepts of contemporary SOA. And it
is realized in the following ways:

• Individual services are as independent and as self-contained as pos-
sible. This means that they retain total control over the underlying
application logic they represent.

• Messages are loaded with meta information (such as quality of service
information) that dictates how they should be handled by the recipi-
ents. This makes messages “autonomous units of communication”.

• Enterprise level applications composed of many independent services
can themselves be perceived as autonomous services responsible of their
own business logic within the enterprise boundary.

By creating service abstraction layers, entire domains of solution logic can
achieve control over their respective areas of governance. This establishes a
level of autonomy that can cross solution boundaries.

1.4.3 Contemporary SOA is based on open standards

As seen previously there is nothing fundamentally new behind the idea of
web services ([9]). It is just a form of remote procedure call, like RMI,

13

or RPC (web services originally started as a variation of RPC using XML:
XML-RPC).

The most important contribution behind web services, is not the funda-
mental idea behind it. It is the fact the they are a set of standards that all
vendors seem to have adopted. The set of standards define a complete frame-
work for the implementation of remote procedure calls. From the definition
of the interfaces (WSDL) to the way data is transmitted and messages are
formatted (SOAP).

Contemporary SOA takes this concept to the next level, and actively
limits the role and the impact of any proprietary technology or format can
have on the implementation of the service structure(Figure 1.5).

Figure 1.5: Open standards and technologies are used inside and outside
solution boundaries

1.4.4 Contemporary SOA supports vendor diversity

Closely tied to the concept of open standards discussed in the previous sec-
tion is vendor diversity. The fact that enterprises rely exclusively on open
standards for their business ITs not only means that they can interoperate
with other ITs using the same set of standards but also that they now have
the freedom to choose any application vendor that will match the needs of
their specific application.

Web services serve as a access point to applications running on other plat-
forms. No matter how proprietary a development environment is, the fact

14

that it can present it’s functionalities to the outside world as web services,
means that it can interoperate with applications running on other develop-
ment environments (Figure 1.6).

Figure 1.6: Thanks to open standards inter-operation across platform be-
comes possible.

This also means that organizations can choose to concentrate on their
existing assets and tools, while still leveraging the advantages of SOA. On
the other hand the option of switching to other vendors is still there. The
web service framework provides a common base everyone agrees upon and
relies on. It provides the common language that allows applications to inter
operate despite a heterogeneous vendor environment.

1.4.5 Contemporary SOA promotes service discovery

Even though the concept of service discovery was given a lot of attention, it
hasn’t convinced many enterprises. Part of the reason might be that there are
simply not enough alternatives to any particular service in a certain context
(e.g if an application needs to contact a “resource management” service to
monitor how much of a certain resource is available to the enterprise, there is
often only on such service that is responsible for that information, and there
is little sens in making the application “discover” or ”look for it” because it

15

is well known in advance). Also, many initial uses of the web services plat-
form were inspired by the more traditional distributed computing mind set
and involved only simple point-to-point connections. These were essentially
implementations of distributed computing environment (not SOA) using web
services as the implementation platform.

SOA encourages the concepts of service registry and service discovery.
Many cutting edge SOA will be likely to rely on some form of service discovery
whenever appropriate.

16

Chapter 2

Service Protocols: Enhanced
Interface Specifications

Contents
2.1 Introduction . 17

2.2 Service Protocols 21

2.1 Introduction

One particular concept that has recently been gaining interest in the research
domain is including, as part of the service description, not only it’s interface
but also it’s business protocol or service protocol.

In the traditional model, service description only consists of “interface
descriptions” (often in the form of WSDL files) that enumerates the set of
operations supported by a service, and for each operation/method, it’s name,
number and type of arguments, as well as information about the return value
(if any) and error reporting.

The traditional model is known to have some shortcoming, among which:

• There are often “implicit” rules that govern how the interface might be
used, and when each of its methods can be invoked. For example, in the
case of an e-shopping service, it makes little sens to call the checkout()
method as a first operation, before having logged in or added anything
to the cart. These rules are often documented in a separate “user

17

manual” and in an informal language. But they can’t be represented
using the current web service technologies (such as WSDL).

• The traditional model often implies a “client-server” vision, where one
service (or more generally, one “end point”) acts as the “user” of an-
other. One service is always the one “requesting” and the other “re-
sponding” to the requests. For example, the traditional interface de-
scriptions concern only messages that can be sent to the service, and
not about messages (or request) that the service may send.

• The idea that both services can send requests to each other brings
about the fact that we need to know how does the messages entwine
to create meaningful conversations.

The idea behind service protocols is to adopt “augmented interface de-
scriptions” containing:

• Message/method signatures both for messages sent and messages re-
ceived, and

• Protocols defining the legal sequences of messages that can be ex-
changed between a service and its mate.

A service protocol can be thought of as a formal “user manual” for the
service interface: it gives instructions on how to use it. Many times, the
different methods a service exposes have a certain semantic that bind them
together, such that it is not possible to invoke anyone of them anytime.
More often than not, there will be strict rules and constraints that has to
be followed by the service user in order to make correct use of the service
interface. That information is the realm of service protocols.

We consider that service protocols are bidirectional, describing both mes-
sages that can be sent and messages that can be received by a service.

Closely related to the notion of service protocol is the notion of “proto-
col compatibility” such that protocol-compatible services can be determined
to be free of certain important errors that cannot be caught by the type
system alone. In the following we’ll describe a simple method to check if
two protocols are compatible and thus if it is possible to compose the two
corresponding services.

Integrating the service protocols as part of the service oriented technolo-
gies brings many important applications that can considerably simplify and
support web service development, debugging and maintenance.

18

For the service user :

Formal interface specification The service user now has more de-
tailed information on how to use a service correctly and is less
likely to develop erroneous clients. Runtime time tools can be
used to check that clients’ usage of a particular service is compli-
ant with its protocol.

Extended search It is now possible to perform searches in service
registries based on the supported protocols. Clients will thus re-
ceive only informations about service they can actually interact
with.

For the service developer :

Automated code generation When the service developer wants to
implement a new service based on an existing service protocol
(e.g a new e-shopping service that supports a standard e-shopping
protocol), it becomes possible to automatically generate a code
skeleton for the service based on the protocol it is supposed to
implement. Just like WSDL and IDL specifications can be used
to obtain code templates.

Automated error handling Since the protocol tells when and under
which circumstances each messages can be sent or received, the
middleware can now automatically filter the incoming and out-
going messages and notify the service code of any “unexpected
message”.

Compliance test Services can now be automatically tested for com-
pliance with standard protocol, to ensure that they will interact
correctly with any client that supports that standard.

In order to put the idea of service protocols into practice, we need the
following:

A Protocol Model : It is clear that the first step is to choose a for-
mal“model” to represent protocols. Many possibilities exist and many
have already been explored, among the most common we find “Peri
networks” and ”Finite State Machines” and their corresponding varia-
tions and extensions. In any case, the chosen model must be expressive

19

enough so that one can express the most common requirements that
usually apply to service interfaces, but at the same time, simple enough
so that we can process, check, and assemble protocols easily and with-
out compromising the performances. In this work, the model we have
chosen is finite state machines (as described in more details below),
because they are at the same time very simple and easy to process but
at the same time can represent the vast majority of requirements one
might want to impose on service interfaces[5].

Protocol Operations : Given a certain protocol model, the next step is to
define a set of basic operations to manipulate protocols. In the context
of finite state machines, many protocol operators, and predicate exist
and have been studied in previous works[1][12], among which:

Compatibility Analysis : This is the one that first comes to mind
when thinking about protocols. “Compatibility analysis” aims at
saying, given two protocols, if the corresponding services are valid
“mates” of each other, that is, if they can actually engage in a
conversation. Compatibility analysis sometimes also include the
ability to pinpoint the exact “incompatibility spot(s)” between
two protocols, which can help fix “almost compatible” protocols.

Repleceability Analysis : The objective of “replaceablility analy-
sis” is to tell if it is “safe” to replace one protocol with another
(or one version of a protocol with another) without breaking exist-
ing clients. In other words, given two protocols, say if one of them
will accepts all the possible conversations that are accepted by
the other. This kind of analysis is useful when updating existing
services and their corresponding protocols.

Protocol compliance analysis : Here the objective is to compare
an existing program (client or server) to see if it conforms to a
given service protocol (i.e. if a client uses a service correctly, or if
a server conforms an imposed protocol).

Tools : The “tools” are simply the implementation of the protocol man-
agement and analysis operations seen above, in the form of computer
programs. Many of the currently existing tools are “design time tools”,
which means they aim at aiding the design and development of service
clients and servers. The present work will concentrate on “runtime

20

tools” that will support the execution of services with service protocol
features.

2.2 Service Protocols

We assume that services interact with each other via typed interfaces. An
interface consists of two parts:

• The set of messages that can be send and received through it. This can
be expressed with traditional interface description languages such as
IDL or WSDL. It describes the set of messages that can be exchanged
between the service and its mate. Besides indicating the type of its
parameters, each message in a collaboration specification is labeled as
a “send” messages (which means the service can send the message to
other paty) or a “receive” message (which means the service is ready
to receive the message from the other party).

• The corresponding protocol that specifies the allowed sequences of mes-
sage exchanges. It describes a set of “sequencing constraints”. Se-
quencing constraints define legal orderings of messages by means of a
finite-state machine (see below).

A finite state machine consists of a set of states and transitions between
those states. The states represent the different “phases” or “steps” in a
given conversation the is service engaged in, while the transitions represent
messages sent and received. Sending or receiving a message is what makes
the conversation advances to the next step.

A transition will be represented as follows

< state >:< direction > (< message >)→< state >

where:

• state: is the symbolic name of a state;

• direction: is either “send” or “receive”; and

• message: is the name of a message described in the interface signature.

21

Every protocol P has a unique state initP that is the initial state when
the conversation begins. And might have any number (including zero) of end
states from which it is not possible to advance to another state (there are no
transitions emerging from end states).

We consider only “deterministic” protocols: we do not allow the same
message to be able to trigger more than one possible transition. When two
transition emanate from the same state, and are both send transitions or
both recieve transitions, they must have different message labels, i.e if:

• s1 :< direction1 > (M1)→ s2

• s1 :< direction2 > (M2)→ s3

are both transitions and < direction1 >=< direction2 > and s2 6= s3, then
M1 6= M2. This is not much of a restriction however, because language theory
has shown that it is possible to transform a non-deterministic finite state
machine, that recognizes a certain language, into a deterministic finite state
machine that recognizes the same language. That algorithm could apply
in this case too, to transform a “non-deterministic” protocol that accepts
certain sequences of messages into a corresponding “deterministic” protocol
that accepts the same set of message sequences.

Initially all protocols will be in their respective initial states (initP). At
each step during the conversation, emanating transitions tell which messages
might be sent, and which messages the service is ready to receive, i.e. As-
suming the current state is s, a service is allowed to send a message M only
if:

s : send(M)→ s′

is a transition in the protocol. Similarly, the service is ready to accept a
message M only if:

s : receive(M)→ s′

is a transition. When a message is sent/received the protocol moves to the
next state (s′) and the interaction can continue in a similar fashion.

When a message is sent (or received) the associated parameters are trans-
mitted as well. Note however, that the actual value of the parameter cannot
influence the protocol advancement (in our model, it is not possible to de-
scribe a transition that depends on the value of a parameter). One the one
hand, this restriction simplifies the protocol analysis, and on the other hand,

22

it is always possible to break a “parameter dependent transition” into mul-
tiple transitions with different message labels.

A protocol may have final states with no outgoing transitions, or it may
be nonterminating. A state is local to an interface; each interface of a service
can be in a different state.

A state in which messages can only be sent is called a send state. A state
in which messages can only be received is called a receive state. A state in
which the component can either receive or send a message is called a mixed
state.

Note that each service may be simultaneously involved in several message
exchanges with different clients, and therefore, will have to keep track of
multiple concurrent instances of the protocol state machine.

We also assume that a service will not indefinitely remain in a state that
contains a send transition. If it is a send state, or if it is a mixed state but
does not receive a message, it will ultimately send a message from that state.
Without this assumption, it might be that one party is in a state where it
can send message m, and its mate is in a state where it can receive message
m, but no progress is made, as the sender never sends the message.

2.2.1 Examples

This section introduces example of service protocols.
The first example is an RSS feed service. The purpose of the service is to

provide its client with a feed of news about a certain topic:

RSS Feed Service {

Receive Messages {

Login(user, pass);

Read(topic);

Stop();

}

Send Messages {

Denied();

Ok();

M();

End();

};

23

Protocol {

States {1,2,3,4};

Transitions {

1: receive(Login)-> 2;

2: send(Denied) -> 1;

2: send(Ok) -> 3;

3: receive(read) -> 4;

4: send(M) -> 4;

4: send(End) -> 3;

4: receive(Stop) -> 3;

};

};

};

Figure 2.1: RSS feed service protocol

See figure 2.1 for a graphical illustration of the finite state machine cor-
responding to the service protocol.

Initially the service is in state 1, in which the only acceptable operation
is Login, which means the service client must first login before he can get
access to the feed.

Once the Login message is sent, the service moves to state 2. In state 2
there are two possible transitions. Either going back to state 1, after having
sent a denied message. Or onto state 3 after sending an ok confirmation
message. This essentially means the service is checking the provided login
information and will either reply positively and move on to state 3. Or
will respond negatively and move back to state 1 to wait for another Login

attempt.

24

Once in state 3 the service waits for a read message that will confirm
that the client wants to start receiving the news. The service will then move
to state 4.

In state 4, the service can either:

• Send a news message M and stay in state 4;

• Send a message End and go back to state 3. This will happen when
there are no more news messages to send;

• Receive a Stop message from the client, which will cause the service to
stop sending messages and go back to state 3.

The second example is an imaginary e-store. Clients of the service buy
products by filling an electronic cart, choosing a payment method and finally
placing their order:

E-Store Service {

Receive Messages {

AddToCart(product_id);

Paym(payment_method);

Check();

}

Send Messages {

Denied();

Ok();

};

Protocol {

States {1,2,3,4,5};

Transitions {

1: receive(Paym)-> 2;

1: receive(AddToCart)-> 1;

2: send(Denied) -> 1;

2: send(Ok) -> 3;

3: receive(check) -> 4;

4: send(Ok) -> 5;

4: send(Denied) -> 3;

25

};

};

};

See figure 2.2 for a graphical representation of the protocol.

Figure 2.2: eStore service protocol

Initially the service is in state 1, in which the service can accept two
operation: AddToCart to add a new product to the electronic cart, in which
case the protocol goes back to state 1. Or it can accept Paym that signals
that the user has finished adding products to the cart and wants to choose
the payment method. In that case, the service goes to state 2.

State 2 contains only “send” transitions. From that point, the service can
send its client either an Ok, in which case it means the payment method is
supported, and the service goes to state 3. Or the service can send a Denied

which means the payment method was rejected in which case the service goes
back to state 2.

State 3 is where the user confirms his order by doing a “checkout”. The
service receives a check message and goes to state 4.

In state 4, the service will either send a Denied message, to notify that
the payment did not went through correctly and go back to state 3, or it will
send a Ok message to notify the user that his order has been confirmed.

Once the Login message is sent, the service moves to state 2. In state 2
there are two possible transitions. Either going back to state 1, after having
sent a denied message. Or onto state 3 after sending an ok confirmation
message. This essentially means the service is checking the provided login
information and will either reply positively and move on to state 3. Or
will respond negatively and move back to state 1 to wait for another Login

attempt.

26

Once in state 3 the service waits for a read message that will confirm
that the client wants to start receiving the news. The service will then move
to state 4.

2.2.2 Service Protocol Semantics

This section present a formal definition of service protocols, protocol inter-
actions, and shows how to implement protocol compatibility analysis.

There are two semantics one can assign to message exchange between
collaborating services[12]:

Asynchronous semantics Under the asynchronous semantics each proto-
col advance independently from the other. A service may send a mes-
sage m when it’s protocol is in a state that permits to send a message
m, even if the recipient of the message is not ready to receive the mes-
sage (yet). Each service in this model will have to maintain a queue of
messages that have arrived but haven’t yet been “consumed”. [3][6].

Synchronous semantics Under the synchronous semantics, a service S can
only send a message m to its mate if S is in a state that enables it
to send m and if its mate is in a state that enables it to receive m.
The finite-state machines describing the protocols of the two services
advance synchronously, so that the sending and receipt of a message
are considered an atomic action under this abstraction. No queues are
required. In the following we’ll focus primarily on the synchronous
semantics because it fits better with the notion of service protocols.

It is actually possible to implement the synchronous semantics without
actually requiring the two services to send and receive messages atomically.
It turns out that all we really require is that the two components always
agree on the execution trace — the order of messages sent and received (c.f.
3.4).

We define a service protocol P as being a tuple

P = 〈StatesP , InitP , EndStatesP , T ransitionsP ,MessagesP 〉

where:

• StatesP is a finite, non empty set of states;

27

• InitP ∈ StatesP is the initial state of P ;

• EndStatesP ⊂ StatesP is a set of end state (can be empty);

• MessagesP is a finite state of messages. We define the function Polarity(m,P)
that associates a message and a protocol with a “direction”, either +
for a receive message or − for a send message.

• TransitionsP ⊂ (StatesP×MessagesP×StatesP) is a set of transitions
from one state to another in response to a certain message. As stated
above we’ll often represent transitions textually as:

s : send/receive(m)→ s′

where m ∈MessagesP and s ∈ StatesP and s′ ∈ StatesP .

In the rest of this description we make the assumption that given two
protocols P1 and P2 the names of messages sent from P1 to P2 is disjoint
from the names of messages sent from P2 to P1. This allows us to write a
transition as s : m → s , omitting the send and receive keywords from the
message. This does not restrict the set of possible protocol collaboration that
applies to this study, because it is always possible to rename the messages
in such a way that the two message sets are disjoint.

A collaboration state for protocols P1 and P2 is a pair 〈s, t〉, where s ∈
StatesP1 and t ∈ StatesP2 .

A collaboration history for protocols P1 and P2 is a possibly infinite
sequence of the form α1 →m1 α2 →m2 . . . where

• each αi = 〈si, ti〉 is a collaboration state of P1 and P2;

• α1 = 〈initP1 , initP2〉;

• αi+1 = 〈si+1, ti+1〉 if and only if αi = 〈si, ti〉 and (si : mi → si+1) ∈
TransisionsP1 , (ti : mi → ti+1) ∈ TransistionsP2 and Polarity(P1,mi) 6=
Polarity(P2,mi)

Informally this means that the two protocols will start at their respective
initial states (the first collaboration state), and will then advance step by
step, according to the same sequence of messages (m1,m2, . . .). The resulting
sequence of states that each protocol goes through is called a collaboration
history.

28

Let Collabs(P1, P2) be the set of all possible collaboration histories be-
tween P1 and P2. Collabs(P1, P2) give all possible “execution traces” between
P1 and P2.

Protocols P1 and P2 have no unspecified receptions [3] if and only if
for every pair 〈si, ti〉 that is part of a certain collaboration history α ∈
Collabs(P1, P2), the following two holds:

• if (si : mi → si+1) ∈ TransisitionsP1 and Polarity(P1,mi) = − then
(ti : mi → ti+1) ∈ TransitionsP2 and Polarity(P2,mi) = +

• if (ti : mi → ti+1) ∈ TransisitionsP2 and Polarity(P2,mi) = − then
(si : mi → si+1) ∈ TransitionsP1 and Polarity(P1,mi) = +

Informally, this means that P1 and P2 have no unspecified receptions if
and only if, whenever a collaboration α can reach the point where P1 (resp
P2) is in a state where it can send a message m, P2 (resp P1) will be in a state
where it can receive that message, and hence there exists some collaboration
history in which that message is exchanged at that point.

Protocols P1 and P2 are deadlock free [3] if and only if, for all finite
sequences α ∈ Collabs(P1, P2), α = α1 →m1 . . . αn−1 →mn−1 αn, where
αn = 〈sn, tn〉, then either:

• sn and tn are final states of P1 and P2, respectively, or

• there exist α′ ∈ Collabs(P1, P2) such that α is a strict prefix of α′.

That is, P1 and P2 are dead lock free if and only if the collaboration α ends
with both protocols in final states, or the collaboration can continue.

Protocols P1 and P2 are compatible if and only if they have no unspecified
receptions, and are deadlock free.

This definition of protocol compatibility requires that when one party can
send a message m, the other party must be willing to receive that message.
However, the protocols are still compatible even then one party can receive
a message m, yet the other party cannot send that message. This asymme-
try reflects traditional programming environment, where the sender protocol
decides what it wants to send independently of the recipient, and where the
recipient has no control over what the sender sends.

Let s ∈ StatesP1 and t ∈ StatesP2 . By definition, s ∼ t if and only
if there exist a collaboration history α = . . . αi . . . ∈ Collabs(P1, P2) where
αi = 〈s, t〉.

29

Informally this means that s ∼ t if at some point during a collaboration
history in Collabs(P1, P2), P1 was in state s and P2 was in state t.

Since the relation ∼ captures exactly those states s, t ∈ StatesP1 ×
StatesP2 that can appear together in a collaboration state of a collabora-
tion history in Collabs(P1, P2) we can apply the criteria for compatibility
shown above using this relation. In other words, we can reformulate the
definitions of unspecified receptions and deadlock using only the ∼ relation.

Let Equiv(P1, P2) ⊂ StatesP1 × StatesP2 be the smallest set such that:

• 〈initP1 , initP2〉 is in Equiv(P1, P2) and

• if 〈s, t〉 is in Equiv(P1, P2), (s : m→ s′) ∈ Transitions(P1), (t : m→
t′) ∈ Transitions(P2), and Polarity(P1,m) 6= Polarity(P2,m) then
〈s′, t′〉 is in Equiv(P1, P2).

Therefore we have 〈s, t〉 ∈ Equiv(P1, P2) if and only if s ∼ t. So a
simple algorithm for testing if two protocols are compatible is to compute
the ∼ relation and then use it to test for possible unspecified receptions and
deadlocks.Figure 2.3 shows an algorithm for computing the Equiv set of two
protocols P1 and P2 while figure 2.4 shows how to determine if two protocols
have no undefined receptions.

30

Let P1 and P2 two service protocols.

• Let Equiv ← {〈initP1 , initP2〉}

• Let continue← true

• while continue;

– Let continue← false

– for 〈s, t〉 ∈ Equiv
• if (s : m → s′) ∈ TransisionsP1 and (t : m → t′) ∈ TransisionsP2

and Polarity(P1,m) 6= Polarity(P2,m) then

· Let Equiv ← Equiv ∪ {〈s, t〉}
· Let continue← true

• Output Equiv as the result

Figure 2.3: Algorithm to produce the Equiv set of two protocols

Let P1 and P2 two service protocols, and Equiv(P1, P2) the set of all their collabora-
tion states.

• for 〈s, t〉 ∈ Equiv

– if (s : m→ s′) ∈ TransisionsP1

∗ unless ((t : m → t′) ∈ TransisionsP2 and Polarity(P1,m) 6=
Polarity(P2,m)) return false;

– if (t : m→ t′) ∈ TransisionsP2

∗ unless ((s : m → s′) ∈ TransisionsP1 and Polarity(P2,m) 6=
Polarity(P1,m)) return false;

• return true;

Figure 2.4: Algorithm to tell if two protocols have no undefined receptions

31

Let P1 and P2 two service protocols, and Equiv(P1, P2) the set of all their collabora-
tion states.

• for 〈s, t〉 ∈ Equiv

– if (s : m→ s′) ∈ TransisionsP1

∗ unless ((t : m → t′) ∈ TransisionsP2 and Polarity(P1,m) 6=
Polarity(P2,m)) return false;

– if (t : m→ t′) ∈ TransisionsP2

∗ unless ((s : m → s′) ∈ TransisionsP1 and Polarity(P2,m) 6=
Polarity(P1,m)) return false;

• return true;

Figure 2.5: Algorithm to tell if two protocols have no deadlocks

32

Chapter 3

Protocol Oriented Service
Deployment Platform

Contents
3.1 Introduction . 33

3.2 Service Model . 34

3.3 Protocol Oriented Service Deployment Platform 37

3.4 Message Synchronization 38

3.5 Service Protocol Enforcement 40

3.6 Application Programming Interface 41

3.7 Interface Exposure 41

3.1 Introduction

This chapter will introduce the main purpose of this work: developing a
service deployment platform around the idea of service protocols. Like men-
tioned earlier, there are a lot of existing tools supporting service protocols,
but must of them are design time tools, that operate at the early stage of the
service development process. Such tools include:

Protocol Manipulation Tools These tool lets you graphically create and
manage service protocols (e.g in the form of finite state machines), and

33

export and import the created model into various file formats (most of
which being XML-based). This might also include more advance pro-
tocol analysis features, like the ability to compare protocols for com-
patibility or replaceability.

Service Code Generation Tools These tools aim at aiding the developer
by automatically creating a code template out of the service protocol
to be supported, in the same way that code generators can produce
code templates from IDL or WSDL interface description.

Service Code Analysis Tools The purpose of these tools is to statically
analyse service code, looking for protocol compliance errors.

Most existing tools do not operate when the service actually start executing,
and interacting with clients.

The purpose of this work is to develop a runtime service protocol tool,
that will bring the benefits of service protocol to the service execution. The
following sections will explore this idea in more details.

3.2 Service Model

This section will introduce a model of service interactions that will serve as
a starting point and base for our work.

3.2.1 Multiple interfaces per service

A service will often have to interact with many others in order fulfill his
task. In our model, a service defines explicit interfaces through which it can
be composed with other services. For instance, a book seller service, which
displays a catalogue and allows customers to place orders, may include a
“logging” interface and a “filter” interface. The logging interface can be
“connected” to a matching interface in a home financial management service
that logs financial records, writes checks, etc. The filter interface can be
“connected” to another service which prunes the catalogue using criteria
such as personal preference, supplier location, and price. Composing the
home shopper, logging, and filter services by connecting their interfaces would
yield a compound service.

34

When two services collaborate with each other via particular interfaces,
each sends and receives messages according to the protocols given by the
interface specification.

Figure 3.1 shows an example service which needs to interact with four
other services and thus exposes four different interfaces.

Figure 3.1: A service having multiple interfaces. Each interface having a
corresponding WSDL specification as well as a protocol

When an interface of a service A is bound to an interface of service B, they
are said to engage in a collaboration: messages sent through A’s interface are
received at B’s interface and vice versa.

Note, however, that any particular collaboration is between exactly two
parties. A collaboration between a service S and multiple other services is
modeled by separate interfaces in S, one for each other party it is collab-
orating with. Figure 3.2 shows an example of service composition in the
context of a travel agency service that needs to interact with the clients as
well as the car renting service, room booking hotel service and the flight
ticket reservation service.

3.2.2 Service Containers and Service Cores

From the above description of the service model, we can infer that the pro-
cessing logic required to handle the protocols (maintain current state, and

35

Figure 3.2: A travel agency example. Each service can talk to multiple other
services and has one interface per partner service

filter incoming and outgoing messages according to it) is common to all ser-
vices. On the other hand, the actual number of interfaces, their respective
protocols and more importantly the message handling implementation are
service specific.

Thus, we can divide every service implementation into two parts:

Service Independent Code This part takes care of capturing the mes-
sages that come through a certain interface, checking them against the
protocol of the interface, and advancing the current state of the proto-
col (or triggering an error if the message was unexpected).

Service Dependent Code This part specifies how much interfaces it needs
(i.e how many other services it needs to interact with) the actual pro-
tocol for each service and a message handler for each possible expected
message.

The service dependent code uses the service independent code as a “proxy”
to send messages to other services and to receive messages from them. So
that the service dependent code does not have to worry about maintaining
the protocol current state or protection from unexpected messages.

36

From now on, the service independent code will be called the “service
core” and the service dependent code will be called the “service container”
(c.f. Figure 3.3).

Figure 3.3: A service implementation is composed of two parts: the service
independent code (the service container) and the service dependent code (the
service core)

3.3 Protocol Oriented Service Deployment Plat-

form

The purpose of this work is to bring the idea of service protocol to the service
runtime. As such, we propose a “protocol aware” service platform that will
host service cores developed around the idea of service protocols.

Specifically the role fulfilled by the platform will be:

Application Programming Interface : Offer the developer an easy way
to declare how many interfaces are required as well as the service pro-

37

tocol associated with each one as well as a clear programming interface
(API) to write the service implementation in terms of interfaces and
service protocols.

Service Protocol Conformance Enforcement : At runtime, maintain
the current state of each protocol, check input and output messages for
protocol conformance, and notify the service core of any error.

Message Synchronization : Make sure the two sides of the interaction
see the same sequence of messages (see below).

Interface Exposure : When a service is interacting with another “protocol-
based” service (e.g when the other party is running on another instance
of the same platform) the remote protocol is downloaded and checked
for compatibility against the local one.

The following sections will detail each of the above features.

3.4 Message Synchronization

One important issue that arises when trying to implement service protocols
is that of “message synchronization”, which simply states that in order for
the two services to communicate effectively they must “see the same sequence
of messages”. In other words, the sending operation must “appear” to be
atomic with respect to both parties.

To understand why, consider the example of figure 3.4. The figure shows
two services that are “in theory” compatible. Which means (according to
the definitions given in the previous chapters that they have no unspecified
receptions and that they are deadlock free. Yet, it is possible to “create an
unspecified reception” if the following occurs: The first service (on the left
side of figure 3.4 is initially in state 1, in which it can either accept a message
A or send a message B, in this case, we assume the service decides to send
B, and move to state to state 2 . In the meanwhile, and before the other
service (before it receives the message B from the first one) can also either
send a message A and advance to state 3 or receive message B and advance
to state 2. Since the second service has not yet received the message B, it is
still in state 1, so it decides to send A (see figure 3.5) As a result each of the
services receives a message when it does not expect it.

38

Figure 3.4: Two “theoretically compatible” services, but incompatible with-
out message synchronization

This kind of “protocol desynchornization” is a result of the fact that
service 1 “sees” the sending of his message as occurring first, before service
2 sent his message (and vise versae).

This kind of situation is pretty common in practice. For example, a
numerical processing service may take a long time to process a particular
request. During the calculations, it might be in a state where it can either
send the result (if the calculation is finished) or receive a cancellation request
to stop the processing. In a manner similar to the example of figure 3.4,
without message synchronization it is easy to come across an unspecified
reception even when dealing with a “compatible” protocol.

In order to provide message synchronization we propose employing the to-
tally ordered multicast algorithm using lamport logical clocks [8]. Except that
in this case there are only two parties involved in the communication. The
algorithm will ensure that both parties will see the same order of messages.

On the other hand this means that some sent messages will need to be
“aborted” or “rolled back”. For example, reconsider the above example of a
numerical processing service. If towards the end of the calculation process,
the service decides that the operation is finished, and prepares to send the
result, while at the same time the client decides that it wants to cancel
the operation (no message has been exchanged yet), then no matter what

39

method we employ one of the two parties will have to give up on its decision
and “roll-back” any action it has undertaken so far. Using lamport’s clocks
ensures that both protocols remain synchronized and agree on which message
is going to be canceled and which one goes through.

The following sections will show how does this affect the application pro-
gramming interface presented to the service developer.

Figure 3.5: Timeline trace of a message exchange between the services of
figure 3.4, that leads to unspecified receptions

3.5 Service Protocol Enforcement

The main purpose behind a runtime support for service protocols is to ensure
that the communication occurs in conformance with the specified protocol.

This means that the platform will keep track of the current protocol state
for each conversation the service is engaged in, so that:

• Before the service core can be notified of a message (and handle it)
the message will have been checked against the current state of the
protocol and make it advance to the next state. If the message was
“unexpected” (according to the protocol), the error handling can be
done by the platform itself without having to require the intervention
of the service core.

40

• Before a message can actually be sent it is also check by the platform
and will make the protocol state machine advance accordingly.

3.6 Application Programming Interface

The application programming interface is essentially the communication that
is happening between the service core (that the service developer writes) and
the service container (that the platform provides).

The message synchronization requirements seen in the previous section
is one of the main influences of the application programming interface that
will be presented to the developer. Indeed due to the fact that sending a
message needs to be an atomic operation with respect to both parties we
cannot simply provide a “send message(m)” primitive that will immediately
send the passed message (c.f. 3.4).

Instead the sending of a message must be a two step process:

1. The service core notifies the service container that he wishes to send a
message M ;

2. The service container takes care of ensuring that both parties agree
on the same sequence of messages (by applying the totally ordered
multicast algorithm[8], waits for acknowledgment messages, etc);

3. When the service container confirms that the message has been deliv-
ered to the other party, it notifies the service core which can then (and
only then) assume that the send operation was effective.

When it comes to receiving messages, the service container can handle all
the communication details and simply deliver the messages to the service core
when they are ready to handled. This can be done either asynchronously in a
“pull mode” where the service container keeps a queue of delivered messages
and the service core has to interrogate the queue. Or in a “push mode”
where the service container asynchronously “interrupts” the service core to
let handle delivered messages.

3.7 Interface Exposure

Another very important application of service protocols is enhanced service
discovery. Indeed, since we now have more information on a protocol behavior

41

it is possible to further filter search results based on the supported protocol.
In order to support this, the platform will provide a special operation,

for each interface that the service exports, that will return the complete
interface specification for the service: the list of supported operations and
the associated protocol.

The information can be used by service registries (or service search en-
gines) to further increase the likelihood of a successful search. It can also be
used by service developer for creating client services (e.g by generation code
templates from the interface description).

42

Chapter 4

Conclusion & Future Work

Most current efforts regarding SOA and Web services are mainly concerned
with implementation and low level aspects (e.g mapping from WSDL to
Java (and back), BPEL execution engines, etc). But there is a clear lacking
support for higher level service analysis and management. The present work
is oriented towards that aim.

Service protocols represent a firm foundation on which to base the next
evolution of service composition. Their main benefit is that they provide ex-
tended interface description in a formal language. The formalisation permits
to automate and extend the application field of service composition.

Many past works have concentrated on implementing the idea of interface
protocols to component based models[12][4]. Those efforts contributed with
models (e.g finite state machines), languages, and compatibility operations
that can be carried on to the area of service orientation.

Existing approaches for service protocols explored many different ways
to model service protocols, including petri nets[2] and state charts[7]. Many
works seem to be concentrating on finite state machines and their variations[1].
In our work, we concentrated on finite state machine mainly for their sim-
plicity and from the fact that surveys[5] of existing web services have shown
that they are expressive enough to model most practical needs.

The main contribution of this work has been to show how we can leverage
the benefits of service protocols at runtime. And how the common features
can be abstracted away in a protocol oriented service deployment platform.

Among the possible future extensions and enhancements we propose:

• Explore the possibility of enhancing the model (e.g. adding the no-
tion of time, where transitions could after a specified amount of time,

43

without any message being exchanged[5]);

• Service protocols do address any semantic issues, it would be interesting
to bring some advancements made in the semantic web field to the area
of service protocols;

• Explore the possible application of other protocol analysis operations
(other than compatibility), like different levels of compatibility or replaceablility[5].

44

Bibliography

[1] Benatallah, B., Casati, F., and Toumani, F. Web service con-
versation modeling: A cornerstone for e-business automation. IEEE
Internet Computing 8, 1 (2004), 46–54.

[2] Best, E., Devillers, R., and Koutny, M. Devillers and m.koutny:
Petri nets, process algebras and concurrent programming languages. In
In: Advances in Petri Nets. Lectures on Petri Nets II: Applications,
W. Reisig and G.Rozenberg (Eds.). Springer-Verlag, Lecture Notes in
Computer Science 1492 (1998), pp. 1–84.

[3] Brand, D., and Zafiropulo, P. Protocol specifications and compo-
nent adaptors. ACM Trans. Program. Lang. Syst. 30, 2 (1983), 323–342.

[4] Canal, C., Fuentes, L., Pimentel, E., Troya, J. M., and Val-
lecillo, A. Adding roles to corba objects. IEEE Trans. Softw. Eng.
29, 3 (2003), 242–260.

[5] Casasti, F., Benatallah, B., Benatallah, B., Casati, F.,
Toumani, F., Toumani, F., Hamadi, R., and Hamadi, R. Con-
ceptual modeling of web service conversations. Springer, pp. 449–467.

[6] Gouda, M. G., Manning, E. G., and Yu, Y. T. On the progress
of communication between two finite state machines. Inf. Control 63, 3
(1986), 200–216.

[7] Harel, D., and Naamad, A. The statemate semantics of statecharts.
ACM Trans. Softw. Eng. Methodol. 5, 4 (1996), 293–333.

[8] Lamport, L. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978), 558–565.

45

[9] Leymann, F. Web services: Distributed applications without limits.
In Datenbanksysteme in Büro, Technik und Wissenschaft - BTW2003
(February 2003), G. Weikum, H. Schöning, and E. Rahm, Eds., vol. 26
of LNI, GI, pp. 2–23.

[10] Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann,
F., and Krämer, B. J. 05462 service-oriented computing: A
research roadmap. In Service Oriented Computing (SOC) (2006),
F. Cubera, B. J. Krämer, and M. P. Papazoglou, Eds., no. 05462
in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
<http://drops.dagstuhl.de/opus/volltexte/2006/524> [date of citation:
2006-01-01].

[11] Vasters, C. Soa doesn’t really exist, does it?
http://vasters.com/clemensv/default,month,2005-05.aspx, 2005.

[12] Yellin, D. M., and Strom, R. E. Protocol specifications and compo-
nent adaptors. ACM Trans. Program. Lang. Syst. 19, 2 (1997), 292–333.

46

